forked from OSchip/llvm-project
1322 lines
52 KiB
C++
1322 lines
52 KiB
C++
//===--- CGStmtOpenMP.cpp - Emit LLVM Code from Statements ----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code to emit OpenMP nodes as LLVM code.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGOpenMPRuntime.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "CodeGenModule.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/StmtOpenMP.h"
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OpenMP Directive Emission
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
/// \brief RAII for inlined OpenMP regions (like 'omp for', 'omp simd', 'omp
|
|
/// critical' etc.). Helps to generate proper debug info and provides correct
|
|
/// code generation for such constructs.
|
|
class InlinedOpenMPRegionScopeRAII {
|
|
InlinedOpenMPRegionRAII Region;
|
|
CodeGenFunction::LexicalScope DirectiveScope;
|
|
|
|
public:
|
|
InlinedOpenMPRegionScopeRAII(CodeGenFunction &CGF,
|
|
const OMPExecutableDirective &D)
|
|
: Region(CGF, D), DirectiveScope(CGF, D.getSourceRange()) {}
|
|
};
|
|
} // namespace
|
|
|
|
/// \brief Emits code for OpenMP 'if' clause using specified \a CodeGen
|
|
/// function. Here is the logic:
|
|
/// if (Cond) {
|
|
/// CodeGen(true);
|
|
/// } else {
|
|
/// CodeGen(false);
|
|
/// }
|
|
static void EmitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
|
|
const std::function<void(bool)> &CodeGen) {
|
|
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
|
|
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
bool CondConstant;
|
|
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
|
|
CodeGen(CondConstant);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the condition did not fold, or we couldn't elide it. Just
|
|
// emit the conditional branch.
|
|
auto ThenBlock = CGF.createBasicBlock(/*name*/ "omp_if.then");
|
|
auto ElseBlock = CGF.createBasicBlock(/*name*/ "omp_if.else");
|
|
auto ContBlock = CGF.createBasicBlock(/*name*/ "omp_if.end");
|
|
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount*/ 0);
|
|
|
|
// Emit the 'then' code.
|
|
CGF.EmitBlock(ThenBlock);
|
|
CodeGen(/*ThenBlock*/ true);
|
|
CGF.EmitBranch(ContBlock);
|
|
// Emit the 'else' code if present.
|
|
{
|
|
// There is no need to emit line number for unconditional branch.
|
|
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBlock(ElseBlock);
|
|
}
|
|
CodeGen(/*ThenBlock*/ false);
|
|
{
|
|
// There is no need to emit line number for unconditional branch.
|
|
auto NL = ApplyDebugLocation::CreateEmpty(CGF);
|
|
CGF.EmitBranch(ContBlock);
|
|
}
|
|
// Emit the continuation block for code after the if.
|
|
CGF.EmitBlock(ContBlock, /*IsFinished*/ true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPAggregateAssign(LValue OriginalAddr,
|
|
llvm::Value *PrivateAddr,
|
|
const Expr *AssignExpr,
|
|
QualType OriginalType,
|
|
const VarDecl *VDInit) {
|
|
EmitBlock(createBasicBlock(".omp.assign.begin."));
|
|
if (!isa<CXXConstructExpr>(AssignExpr) || isTrivialInitializer(AssignExpr)) {
|
|
// Perform simple memcpy.
|
|
EmitAggregateAssign(PrivateAddr, OriginalAddr.getAddress(),
|
|
AssignExpr->getType());
|
|
} else {
|
|
// Perform element-by-element initialization.
|
|
QualType ElementTy;
|
|
auto SrcBegin = OriginalAddr.getAddress();
|
|
auto DestBegin = PrivateAddr;
|
|
auto ArrayTy = OriginalType->getAsArrayTypeUnsafe();
|
|
auto SrcNumElements = emitArrayLength(ArrayTy, ElementTy, SrcBegin);
|
|
auto DestNumElements = emitArrayLength(ArrayTy, ElementTy, DestBegin);
|
|
auto SrcEnd = Builder.CreateGEP(SrcBegin, SrcNumElements);
|
|
auto DestEnd = Builder.CreateGEP(DestBegin, DestNumElements);
|
|
// The basic structure here is a do-while loop, because we don't
|
|
// need to check for the zero-element case.
|
|
auto BodyBB = createBasicBlock("omp.arraycpy.body");
|
|
auto DoneBB = createBasicBlock("omp.arraycpy.done");
|
|
auto IsEmpty =
|
|
Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arraycpy.isempty");
|
|
Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
|
|
|
|
// Enter the loop body, making that address the current address.
|
|
auto EntryBB = Builder.GetInsertBlock();
|
|
EmitBlock(BodyBB);
|
|
auto SrcElementPast = Builder.CreatePHI(SrcBegin->getType(), 2,
|
|
"omp.arraycpy.srcElementPast");
|
|
SrcElementPast->addIncoming(SrcEnd, EntryBB);
|
|
auto DestElementPast = Builder.CreatePHI(DestBegin->getType(), 2,
|
|
"omp.arraycpy.destElementPast");
|
|
DestElementPast->addIncoming(DestEnd, EntryBB);
|
|
|
|
// Shift the address back by one element.
|
|
auto NegativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
|
|
auto DestElement = Builder.CreateGEP(DestElementPast, NegativeOne,
|
|
"omp.arraycpy.dest.element");
|
|
auto SrcElement = Builder.CreateGEP(SrcElementPast, NegativeOne,
|
|
"omp.arraycpy.src.element");
|
|
{
|
|
// Create RunCleanScope to cleanup possible temps.
|
|
CodeGenFunction::RunCleanupsScope Init(*this);
|
|
// Emit initialization for single element.
|
|
LocalDeclMap[VDInit] = SrcElement;
|
|
EmitAnyExprToMem(AssignExpr, DestElement,
|
|
AssignExpr->getType().getQualifiers(),
|
|
/*IsInitializer*/ false);
|
|
LocalDeclMap.erase(VDInit);
|
|
}
|
|
|
|
// Check whether we've reached the end.
|
|
auto Done =
|
|
Builder.CreateICmpEQ(DestElement, DestBegin, "omp.arraycpy.done");
|
|
Builder.CreateCondBr(Done, DoneBB, BodyBB);
|
|
DestElementPast->addIncoming(DestElement, Builder.GetInsertBlock());
|
|
SrcElementPast->addIncoming(SrcElement, Builder.GetInsertBlock());
|
|
|
|
// Done.
|
|
EmitBlock(DoneBB, true);
|
|
}
|
|
EmitBlock(createBasicBlock(".omp.assign.end."));
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPFirstprivateClause(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
auto PrivateFilter = [](const OMPClause *C) -> bool {
|
|
return C->getClauseKind() == OMPC_firstprivate;
|
|
};
|
|
for (OMPExecutableDirective::filtered_clause_iterator<decltype(PrivateFilter)>
|
|
I(D.clauses(), PrivateFilter); I; ++I) {
|
|
auto *C = cast<OMPFirstprivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
auto InitsRef = C->inits().begin();
|
|
for (auto IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered;
|
|
if (*InitsRef != nullptr) {
|
|
// Emit VarDecl with copy init for arrays.
|
|
auto *FD = CapturedStmtInfo->lookup(OrigVD);
|
|
LValue Base = MakeNaturalAlignAddrLValue(
|
|
CapturedStmtInfo->getContextValue(),
|
|
getContext().getTagDeclType(FD->getParent()));
|
|
auto OriginalAddr = EmitLValueForField(Base, FD);
|
|
auto VDInit = cast<VarDecl>(cast<DeclRefExpr>(*InitsRef)->getDecl());
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
|
|
auto Emission = EmitAutoVarAlloca(*VD);
|
|
// Emit initialization of aggregate firstprivate vars.
|
|
EmitOMPAggregateAssign(OriginalAddr, Emission.getAllocatedAddress(),
|
|
VD->getInit(), (*IRef)->getType(), VDInit);
|
|
EmitAutoVarCleanups(Emission);
|
|
return Emission.getAllocatedAddress();
|
|
});
|
|
} else
|
|
IsRegistered = PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered && "firstprivate var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
++IRef, ++InitsRef;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPPrivateClause(
|
|
const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
auto PrivateFilter = [](const OMPClause *C) -> bool {
|
|
return C->getClauseKind() == OMPC_private;
|
|
};
|
|
for (OMPExecutableDirective::filtered_clause_iterator<decltype(PrivateFilter)>
|
|
I(D.clauses(), PrivateFilter); I; ++I) {
|
|
auto *C = cast<OMPPrivateClause>(*I);
|
|
auto IRef = C->varlist_begin();
|
|
for (auto IInit : C->private_copies()) {
|
|
auto *OrigVD = cast<VarDecl>(cast<DeclRefExpr>(*IRef)->getDecl());
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(IInit)->getDecl());
|
|
bool IsRegistered =
|
|
PrivateScope.addPrivate(OrigVD, [&]() -> llvm::Value * {
|
|
// Emit private VarDecl with copy init.
|
|
EmitDecl(*VD);
|
|
return GetAddrOfLocalVar(VD);
|
|
});
|
|
assert(IsRegistered && "private var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
++IRef;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// \brief Emits code for OpenMP parallel directive in the parallel region.
|
|
static void EmitOMPParallelCall(CodeGenFunction &CGF,
|
|
const OMPParallelDirective &S,
|
|
llvm::Value *OutlinedFn,
|
|
llvm::Value *CapturedStruct) {
|
|
if (auto C = S.getSingleClause(/*K*/ OMPC_num_threads)) {
|
|
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
|
|
auto NumThreadsClause = cast<OMPNumThreadsClause>(C);
|
|
auto NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads(),
|
|
/*IgnoreResultAssign*/ true);
|
|
CGF.CGM.getOpenMPRuntime().emitNumThreadsClause(
|
|
CGF, NumThreads, NumThreadsClause->getLocStart());
|
|
}
|
|
CGF.CGM.getOpenMPRuntime().emitParallelCall(CGF, S.getLocStart(), OutlinedFn,
|
|
CapturedStruct);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelDirective(const OMPParallelDirective &S) {
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
auto OutlinedFn = CGM.getOpenMPRuntime().emitOutlinedFunction(
|
|
S, *CS->getCapturedDecl()->param_begin());
|
|
if (auto C = S.getSingleClause(/*K*/ OMPC_if)) {
|
|
auto Cond = cast<OMPIfClause>(C)->getCondition();
|
|
EmitOMPIfClause(*this, Cond, [&](bool ThenBlock) {
|
|
if (ThenBlock)
|
|
EmitOMPParallelCall(*this, S, OutlinedFn, CapturedStruct);
|
|
else
|
|
CGM.getOpenMPRuntime().emitSerialCall(*this, S.getLocStart(),
|
|
OutlinedFn, CapturedStruct);
|
|
});
|
|
} else
|
|
EmitOMPParallelCall(*this, S, OutlinedFn, CapturedStruct);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPLoopBody(const OMPLoopDirective &S,
|
|
bool SeparateIter) {
|
|
RunCleanupsScope BodyScope(*this);
|
|
// Update counters values on current iteration.
|
|
for (auto I : S.updates()) {
|
|
EmitIgnoredExpr(I);
|
|
}
|
|
// Update the linear variables.
|
|
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
|
|
for (auto U : C->updates()) {
|
|
EmitIgnoredExpr(U);
|
|
}
|
|
}
|
|
|
|
// On a continue in the body, jump to the end.
|
|
auto Continue = getJumpDestInCurrentScope("omp.body.continue");
|
|
BreakContinueStack.push_back(BreakContinue(JumpDest(), Continue));
|
|
// Emit loop body.
|
|
EmitStmt(S.getBody());
|
|
// The end (updates/cleanups).
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
if (SeparateIter) {
|
|
// TODO: Update lastprivates if the SeparateIter flag is true.
|
|
// This will be implemented in a follow-up OMPLastprivateClause patch, but
|
|
// result should be still correct without it, as we do not make these
|
|
// variables private yet.
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPInnerLoop(const Stmt &S, bool RequiresCleanup,
|
|
const Expr *LoopCond,
|
|
const Expr *IncExpr,
|
|
const std::function<void()> &BodyGen) {
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.inner.for.end");
|
|
auto Cnt = getPGORegionCounter(&S);
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
auto CondBlock = createBasicBlock("omp.inner.for.cond");
|
|
EmitBlock(CondBlock);
|
|
LoopStack.push(CondBlock);
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
auto ExitBlock = LoopExit.getBlock();
|
|
if (RequiresCleanup)
|
|
ExitBlock = createBasicBlock("omp.inner.for.cond.cleanup");
|
|
|
|
auto LoopBody = createBasicBlock("omp.inner.for.body");
|
|
|
|
// Emit condition.
|
|
EmitBranchOnBoolExpr(LoopCond, LoopBody, ExitBlock, Cnt.getCount());
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
|
|
EmitBlock(LoopBody);
|
|
Cnt.beginRegion(Builder);
|
|
|
|
// Create a block for the increment.
|
|
auto Continue = getJumpDestInCurrentScope("omp.inner.for.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
BodyGen();
|
|
|
|
// Emit "IV = IV + 1" and a back-edge to the condition block.
|
|
EmitBlock(Continue.getBlock());
|
|
EmitIgnoredExpr(IncExpr);
|
|
BreakContinueStack.pop_back();
|
|
EmitBranch(CondBlock);
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdFinal(const OMPLoopDirective &S) {
|
|
auto IC = S.counters().begin();
|
|
for (auto F : S.finals()) {
|
|
if (LocalDeclMap.lookup(cast<DeclRefExpr>((*IC))->getDecl())) {
|
|
EmitIgnoredExpr(F);
|
|
}
|
|
++IC;
|
|
}
|
|
// Emit the final values of the linear variables.
|
|
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
|
|
for (auto F : C->finals()) {
|
|
EmitIgnoredExpr(F);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void EmitOMPAlignedClause(CodeGenFunction &CGF, CodeGenModule &CGM,
|
|
const OMPAlignedClause &Clause) {
|
|
unsigned ClauseAlignment = 0;
|
|
if (auto AlignmentExpr = Clause.getAlignment()) {
|
|
auto AlignmentCI =
|
|
cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AlignmentExpr));
|
|
ClauseAlignment = static_cast<unsigned>(AlignmentCI->getZExtValue());
|
|
}
|
|
for (auto E : Clause.varlists()) {
|
|
unsigned Alignment = ClauseAlignment;
|
|
if (Alignment == 0) {
|
|
// OpenMP [2.8.1, Description]
|
|
// If no optional parameter is specified, implementation-defined default
|
|
// alignments for SIMD instructions on the target platforms are assumed.
|
|
Alignment = CGM.getTargetCodeGenInfo().getOpenMPSimdDefaultAlignment(
|
|
E->getType());
|
|
}
|
|
assert((Alignment == 0 || llvm::isPowerOf2_32(Alignment)) &&
|
|
"alignment is not power of 2");
|
|
if (Alignment != 0) {
|
|
llvm::Value *PtrValue = CGF.EmitScalarExpr(E);
|
|
CGF.EmitAlignmentAssumption(PtrValue, Alignment);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void EmitPrivateLoopCounters(CodeGenFunction &CGF,
|
|
CodeGenFunction::OMPPrivateScope &LoopScope,
|
|
ArrayRef<Expr *> Counters) {
|
|
for (auto *E : Counters) {
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
bool IsRegistered = LoopScope.addPrivate(VD, [&]() -> llvm::Value * {
|
|
// Emit var without initialization.
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
assert(IsRegistered && "counter already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
}
|
|
|
|
static void
|
|
EmitPrivateLinearVars(CodeGenFunction &CGF, const OMPExecutableDirective &D,
|
|
CodeGenFunction::OMPPrivateScope &PrivateScope) {
|
|
for (auto Clause : OMPExecutableDirective::linear_filter(D.clauses())) {
|
|
for (auto *E : Clause->varlists()) {
|
|
auto VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
|
|
bool IsRegistered = PrivateScope.addPrivate(VD, [&]()->llvm::Value * {
|
|
// Emit var without initialization.
|
|
auto VarEmission = CGF.EmitAutoVarAlloca(*VD);
|
|
CGF.EmitAutoVarCleanups(VarEmission);
|
|
return VarEmission.getAllocatedAddress();
|
|
});
|
|
assert(IsRegistered && "linear var already registered as private");
|
|
// Silence the warning about unused variable.
|
|
(void)IsRegistered;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSimdDirective(const OMPSimdDirective &S) {
|
|
// Pragma 'simd' code depends on presence of 'lastprivate'.
|
|
// If present, we have to separate last iteration of the loop:
|
|
//
|
|
// if (LastIteration != 0) {
|
|
// for (IV in 0..LastIteration-1) BODY;
|
|
// BODY with updates of lastprivate vars;
|
|
// <Final counter/linear vars updates>;
|
|
// }
|
|
//
|
|
// otherwise (when there's no lastprivate):
|
|
//
|
|
// for (IV in 0..LastIteration) BODY;
|
|
// <Final counter/linear vars updates>;
|
|
//
|
|
|
|
// Walk clauses and process safelen/lastprivate.
|
|
bool SeparateIter = false;
|
|
LoopStack.setParallel();
|
|
LoopStack.setVectorizerEnable(true);
|
|
for (auto C : S.clauses()) {
|
|
switch (C->getClauseKind()) {
|
|
case OMPC_safelen: {
|
|
RValue Len = EmitAnyExpr(cast<OMPSafelenClause>(C)->getSafelen(),
|
|
AggValueSlot::ignored(), true);
|
|
llvm::ConstantInt *Val = cast<llvm::ConstantInt>(Len.getScalarVal());
|
|
LoopStack.setVectorizerWidth(Val->getZExtValue());
|
|
// In presence of finite 'safelen', it may be unsafe to mark all
|
|
// the memory instructions parallel, because loop-carried
|
|
// dependences of 'safelen' iterations are possible.
|
|
LoopStack.setParallel(false);
|
|
break;
|
|
}
|
|
case OMPC_aligned:
|
|
EmitOMPAlignedClause(*this, CGM, cast<OMPAlignedClause>(*C));
|
|
break;
|
|
case OMPC_lastprivate:
|
|
SeparateIter = true;
|
|
break;
|
|
default:
|
|
// Not handled yet
|
|
;
|
|
}
|
|
}
|
|
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
|
|
// Emit inits for the linear variables.
|
|
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
|
|
for (auto Init : C->inits()) {
|
|
auto *D = cast<VarDecl>(cast<DeclRefExpr>(Init)->getDecl());
|
|
EmitVarDecl(*D);
|
|
}
|
|
}
|
|
|
|
// Emit the loop iteration variable.
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const VarDecl *IVDecl = cast<VarDecl>(cast<DeclRefExpr>(IVExpr)->getDecl());
|
|
EmitVarDecl(*IVDecl);
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
// iteration (e.g., it is foldable into a constant).
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
// Emit the linear steps for the linear clauses.
|
|
// If a step is not constant, it is pre-calculated before the loop.
|
|
for (auto C : OMPExecutableDirective::linear_filter(S.clauses())) {
|
|
if (auto CS = cast_or_null<BinaryOperator>(C->getCalcStep()))
|
|
if (auto SaveRef = cast<DeclRefExpr>(CS->getLHS())) {
|
|
EmitVarDecl(*cast<VarDecl>(SaveRef->getDecl()));
|
|
// Emit calculation of the linear step.
|
|
EmitIgnoredExpr(CS);
|
|
}
|
|
}
|
|
|
|
if (SeparateIter) {
|
|
// Emit: if (LastIteration > 0) - begin.
|
|
RegionCounter Cnt = getPGORegionCounter(&S);
|
|
auto ThenBlock = createBasicBlock("simd.if.then");
|
|
auto ContBlock = createBasicBlock("simd.if.end");
|
|
EmitBranchOnBoolExpr(S.getPreCond(), ThenBlock, ContBlock, Cnt.getCount());
|
|
EmitBlock(ThenBlock);
|
|
Cnt.beginRegion(Builder);
|
|
// Emit 'then' code.
|
|
{
|
|
OMPPrivateScope LoopScope(*this);
|
|
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
|
|
EmitPrivateLinearVars(*this, S, LoopScope);
|
|
EmitOMPPrivateClause(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(/*SeparateIter=*/true), S.getInc(),
|
|
[&S, this]() {
|
|
EmitOMPLoopBody(S);
|
|
EmitStopPoint(&S);
|
|
});
|
|
EmitOMPLoopBody(S, /* SeparateIter */ true);
|
|
}
|
|
EmitOMPSimdFinal(S);
|
|
// Emit: if (LastIteration != 0) - end.
|
|
EmitBranch(ContBlock);
|
|
EmitBlock(ContBlock, true);
|
|
} else {
|
|
{
|
|
OMPPrivateScope LoopScope(*this);
|
|
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
|
|
EmitPrivateLinearVars(*this, S, LoopScope);
|
|
EmitOMPPrivateClause(S, LoopScope);
|
|
(void)LoopScope.Privatize();
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(/*SeparateIter=*/false), S.getInc(),
|
|
[&S, this]() {
|
|
EmitOMPLoopBody(S);
|
|
EmitStopPoint(&S);
|
|
});
|
|
}
|
|
EmitOMPSimdFinal(S);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
|
|
const OMPLoopDirective &S,
|
|
OMPPrivateScope &LoopScope,
|
|
llvm::Value *LB, llvm::Value *UB,
|
|
llvm::Value *ST, llvm::Value *IL,
|
|
llvm::Value *Chunk) {
|
|
auto &RT = CGM.getOpenMPRuntime();
|
|
|
|
// Dynamic scheduling of the outer loop (dynamic, guided, auto, runtime).
|
|
const bool Dynamic = RT.isDynamic(ScheduleKind);
|
|
|
|
assert(!RT.isStaticNonchunked(ScheduleKind, /* Chunked */ Chunk != nullptr) &&
|
|
"static non-chunked schedule does not need outer loop");
|
|
|
|
// Emit outer loop.
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(dynamic,chunk_size) is specified, the iterations are
|
|
// distributed to threads in the team in chunks as the threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be distributed. Each chunk contains chunk_size
|
|
// iterations, except for the last chunk to be distributed, which may have
|
|
// fewer iterations. When no chunk_size is specified, it defaults to 1.
|
|
//
|
|
// When schedule(guided,chunk_size) is specified, the iterations are assigned
|
|
// to threads in the team in chunks as the executing threads request them.
|
|
// Each thread executes a chunk of iterations, then requests another chunk,
|
|
// until no chunks remain to be assigned. For a chunk_size of 1, the size of
|
|
// each chunk is proportional to the number of unassigned iterations divided
|
|
// by the number of threads in the team, decreasing to 1. For a chunk_size
|
|
// with value k (greater than 1), the size of each chunk is determined in the
|
|
// same way, with the restriction that the chunks do not contain fewer than k
|
|
// iterations (except for the last chunk to be assigned, which may have fewer
|
|
// than k iterations).
|
|
//
|
|
// When schedule(auto) is specified, the decision regarding scheduling is
|
|
// delegated to the compiler and/or runtime system. The programmer gives the
|
|
// implementation the freedom to choose any possible mapping of iterations to
|
|
// threads in the team.
|
|
//
|
|
// When schedule(runtime) is specified, the decision regarding scheduling is
|
|
// deferred until run time, and the schedule and chunk size are taken from the
|
|
// run-sched-var ICV. If the ICV is set to auto, the schedule is
|
|
// implementation defined
|
|
//
|
|
// while(__kmpc_dispatch_next(&LB, &UB)) {
|
|
// idx = LB;
|
|
// while (idx <= UB) { BODY; ++idx; } // inner loop
|
|
// }
|
|
//
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When schedule(static, chunk_size) is specified, iterations are divided into
|
|
// chunks of size chunk_size, and the chunks are assigned to the threads in
|
|
// the team in a round-robin fashion in the order of the thread number.
|
|
//
|
|
// while(UB = min(UB, GlobalUB), idx = LB, idx < UB) {
|
|
// while (idx <= UB) { BODY; ++idx; } // inner loop
|
|
// LB = LB + ST;
|
|
// UB = UB + ST;
|
|
// }
|
|
//
|
|
|
|
const Expr *IVExpr = S.getIterationVariable();
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
|
|
RT.emitForInit(
|
|
*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned, IL, LB,
|
|
(Dynamic ? EmitAnyExpr(S.getLastIteration()).getScalarVal() : UB), ST,
|
|
Chunk);
|
|
|
|
auto LoopExit = getJumpDestInCurrentScope("omp.dispatch.end");
|
|
|
|
// Start the loop with a block that tests the condition.
|
|
auto CondBlock = createBasicBlock("omp.dispatch.cond");
|
|
EmitBlock(CondBlock);
|
|
LoopStack.push(CondBlock);
|
|
|
|
llvm::Value *BoolCondVal = nullptr;
|
|
if (!Dynamic) {
|
|
// UB = min(UB, GlobalUB)
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
// IV = LB
|
|
EmitIgnoredExpr(S.getInit());
|
|
// IV < UB
|
|
BoolCondVal = EvaluateExprAsBool(S.getCond(false));
|
|
} else {
|
|
BoolCondVal = RT.emitForNext(*this, S.getLocStart(), IVSize, IVSigned,
|
|
IL, LB, UB, ST);
|
|
}
|
|
|
|
// If there are any cleanups between here and the loop-exit scope,
|
|
// create a block to stage a loop exit along.
|
|
auto ExitBlock = LoopExit.getBlock();
|
|
if (LoopScope.requiresCleanups())
|
|
ExitBlock = createBasicBlock("omp.dispatch.cleanup");
|
|
|
|
auto LoopBody = createBasicBlock("omp.dispatch.body");
|
|
Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
|
|
if (ExitBlock != LoopExit.getBlock()) {
|
|
EmitBlock(ExitBlock);
|
|
EmitBranchThroughCleanup(LoopExit);
|
|
}
|
|
EmitBlock(LoopBody);
|
|
|
|
// Emit "IV = LB" (in case of static schedule, we have already calculated new
|
|
// LB for loop condition and emitted it above).
|
|
if (Dynamic)
|
|
EmitIgnoredExpr(S.getInit());
|
|
|
|
// Create a block for the increment.
|
|
auto Continue = getJumpDestInCurrentScope("omp.dispatch.inc");
|
|
BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
|
|
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(/*SeparateIter=*/false), S.getInc(), [&S, this]() {
|
|
EmitOMPLoopBody(S);
|
|
EmitStopPoint(&S);
|
|
});
|
|
|
|
EmitBlock(Continue.getBlock());
|
|
BreakContinueStack.pop_back();
|
|
if (!Dynamic) {
|
|
// Emit "LB = LB + Stride", "UB = UB + Stride".
|
|
EmitIgnoredExpr(S.getNextLowerBound());
|
|
EmitIgnoredExpr(S.getNextUpperBound());
|
|
}
|
|
|
|
EmitBranch(CondBlock);
|
|
LoopStack.pop();
|
|
// Emit the fall-through block.
|
|
EmitBlock(LoopExit.getBlock());
|
|
|
|
// Tell the runtime we are done.
|
|
// FIXME: Also call fini for ordered loops with dynamic scheduling.
|
|
if (!Dynamic)
|
|
RT.emitForFinish(*this, S.getLocStart(), ScheduleKind);
|
|
}
|
|
|
|
/// \brief Emit a helper variable and return corresponding lvalue.
|
|
static LValue EmitOMPHelperVar(CodeGenFunction &CGF,
|
|
const DeclRefExpr *Helper) {
|
|
auto VDecl = cast<VarDecl>(Helper->getDecl());
|
|
CGF.EmitVarDecl(*VDecl);
|
|
return CGF.EmitLValue(Helper);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPWorksharingLoop(const OMPLoopDirective &S) {
|
|
// Emit the loop iteration variable.
|
|
auto IVExpr = cast<DeclRefExpr>(S.getIterationVariable());
|
|
auto IVDecl = cast<VarDecl>(IVExpr->getDecl());
|
|
EmitVarDecl(*IVDecl);
|
|
|
|
// Emit the iterations count variable.
|
|
// If it is not a variable, Sema decided to calculate iterations count on each
|
|
// iteration (e.g., it is foldable into a constant).
|
|
if (auto LIExpr = dyn_cast<DeclRefExpr>(S.getLastIteration())) {
|
|
EmitVarDecl(*cast<VarDecl>(LIExpr->getDecl()));
|
|
// Emit calculation of the iterations count.
|
|
EmitIgnoredExpr(S.getCalcLastIteration());
|
|
}
|
|
|
|
auto &RT = CGM.getOpenMPRuntime();
|
|
|
|
// Check pre-condition.
|
|
{
|
|
// Skip the entire loop if we don't meet the precondition.
|
|
RegionCounter Cnt = getPGORegionCounter(&S);
|
|
auto ThenBlock = createBasicBlock("omp.precond.then");
|
|
auto ContBlock = createBasicBlock("omp.precond.end");
|
|
EmitBranchOnBoolExpr(S.getPreCond(), ThenBlock, ContBlock, Cnt.getCount());
|
|
EmitBlock(ThenBlock);
|
|
Cnt.beginRegion(Builder);
|
|
// Emit 'then' code.
|
|
{
|
|
// Emit helper vars inits.
|
|
LValue LB =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getLowerBoundVariable()));
|
|
LValue UB =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getUpperBoundVariable()));
|
|
LValue ST =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getStrideVariable()));
|
|
LValue IL =
|
|
EmitOMPHelperVar(*this, cast<DeclRefExpr>(S.getIsLastIterVariable()));
|
|
|
|
OMPPrivateScope LoopScope(*this);
|
|
EmitPrivateLoopCounters(*this, LoopScope, S.counters());
|
|
(void)LoopScope.Privatize();
|
|
|
|
// Detect the loop schedule kind and chunk.
|
|
auto ScheduleKind = OMPC_SCHEDULE_unknown;
|
|
llvm::Value *Chunk = nullptr;
|
|
if (auto C = cast_or_null<OMPScheduleClause>(
|
|
S.getSingleClause(OMPC_schedule))) {
|
|
ScheduleKind = C->getScheduleKind();
|
|
if (auto Ch = C->getChunkSize()) {
|
|
Chunk = EmitScalarExpr(Ch);
|
|
Chunk = EmitScalarConversion(Chunk, Ch->getType(),
|
|
S.getIterationVariable()->getType());
|
|
}
|
|
}
|
|
const unsigned IVSize = getContext().getTypeSize(IVExpr->getType());
|
|
const bool IVSigned = IVExpr->getType()->hasSignedIntegerRepresentation();
|
|
if (RT.isStaticNonchunked(ScheduleKind,
|
|
/* Chunked */ Chunk != nullptr)) {
|
|
// OpenMP [2.7.1, Loop Construct, Description, table 2-1]
|
|
// When no chunk_size is specified, the iteration space is divided into
|
|
// chunks that are approximately equal in size, and at most one chunk is
|
|
// distributed to each thread. Note that the size of the chunks is
|
|
// unspecified in this case.
|
|
RT.emitForInit(*this, S.getLocStart(), ScheduleKind, IVSize, IVSigned,
|
|
IL.getAddress(), LB.getAddress(), UB.getAddress(),
|
|
ST.getAddress());
|
|
// UB = min(UB, GlobalUB);
|
|
EmitIgnoredExpr(S.getEnsureUpperBound());
|
|
// IV = LB;
|
|
EmitIgnoredExpr(S.getInit());
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
EmitOMPInnerLoop(S, LoopScope.requiresCleanups(),
|
|
S.getCond(/*SeparateIter=*/false), S.getInc(),
|
|
[&S, this]() {
|
|
EmitOMPLoopBody(S);
|
|
EmitStopPoint(&S);
|
|
});
|
|
// Tell the runtime we are done.
|
|
RT.emitForFinish(*this, S.getLocStart(), ScheduleKind);
|
|
} else {
|
|
// Emit the outer loop, which requests its work chunk [LB..UB] from
|
|
// runtime and runs the inner loop to process it.
|
|
EmitOMPForOuterLoop(ScheduleKind, S, LoopScope, LB.getAddress(),
|
|
UB.getAddress(), ST.getAddress(), IL.getAddress(),
|
|
Chunk);
|
|
}
|
|
}
|
|
// We're now done with the loop, so jump to the continuation block.
|
|
EmitBranch(ContBlock);
|
|
EmitBlock(ContBlock, true);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForDirective(const OMPForDirective &S) {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
|
|
EmitOMPWorksharingLoop(S);
|
|
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause(OMPC_nowait)) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_for);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPForSimdDirective(const OMPForSimdDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp for simd' is not supported yet.");
|
|
}
|
|
|
|
static LValue createSectionLVal(CodeGenFunction &CGF, QualType Ty,
|
|
const Twine &Name,
|
|
llvm::Value *Init = nullptr) {
|
|
auto LVal = CGF.MakeNaturalAlignAddrLValue(CGF.CreateMemTemp(Ty, Name), Ty);
|
|
if (Init)
|
|
CGF.EmitScalarInit(Init, LVal);
|
|
return LVal;
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionsDirective(const OMPSectionsDirective &S) {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
|
|
auto *Stmt = cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt();
|
|
auto *CS = dyn_cast<CompoundStmt>(Stmt);
|
|
if (CS && CS->size() > 1) {
|
|
auto &C = CGM.getContext();
|
|
auto KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
|
|
// Emit helper vars inits.
|
|
LValue LB = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.lb.",
|
|
Builder.getInt32(0));
|
|
auto *GlobalUBVal = Builder.getInt32(CS->size() - 1);
|
|
LValue UB =
|
|
createSectionLVal(*this, KmpInt32Ty, ".omp.sections.ub.", GlobalUBVal);
|
|
LValue ST = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.st.",
|
|
Builder.getInt32(1));
|
|
LValue IL = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.il.",
|
|
Builder.getInt32(0));
|
|
// Loop counter.
|
|
LValue IV = createSectionLVal(*this, KmpInt32Ty, ".omp.sections.iv.");
|
|
OpaqueValueExpr IVRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
|
OpaqueValueMapping OpaqueIV(*this, &IVRefExpr, IV);
|
|
OpaqueValueExpr UBRefExpr(S.getLocStart(), KmpInt32Ty, VK_LValue);
|
|
OpaqueValueMapping OpaqueUB(*this, &UBRefExpr, UB);
|
|
// Generate condition for loop.
|
|
BinaryOperator Cond(&IVRefExpr, &UBRefExpr, BO_LE, C.BoolTy, VK_RValue,
|
|
OK_Ordinary, S.getLocStart(), /*fpContractable=*/false);
|
|
// Increment for loop counter.
|
|
UnaryOperator Inc(&IVRefExpr, UO_PreInc, KmpInt32Ty, VK_RValue, OK_Ordinary,
|
|
S.getLocStart());
|
|
auto BodyGen = [this, CS, &S, &IV]() {
|
|
// Iterate through all sections and emit a switch construct:
|
|
// switch (IV) {
|
|
// case 0:
|
|
// <SectionStmt[0]>;
|
|
// break;
|
|
// ...
|
|
// case <NumSection> - 1:
|
|
// <SectionStmt[<NumSection> - 1]>;
|
|
// break;
|
|
// }
|
|
// .omp.sections.exit:
|
|
auto *ExitBB = createBasicBlock(".omp.sections.exit");
|
|
auto *SwitchStmt = Builder.CreateSwitch(
|
|
EmitLoadOfLValue(IV, S.getLocStart()).getScalarVal(), ExitBB,
|
|
CS->size());
|
|
unsigned CaseNumber = 0;
|
|
for (auto C = CS->children(); C; ++C, ++CaseNumber) {
|
|
auto CaseBB = createBasicBlock(".omp.sections.case");
|
|
EmitBlock(CaseBB);
|
|
SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
|
|
EmitStmt(*C);
|
|
EmitBranch(ExitBB);
|
|
}
|
|
EmitBlock(ExitBB, /*IsFinished=*/true);
|
|
};
|
|
// Emit static non-chunked loop.
|
|
CGM.getOpenMPRuntime().emitForInit(
|
|
*this, S.getLocStart(), OMPC_SCHEDULE_static, /*IVSize=*/32,
|
|
/*IVSigned=*/true, IL.getAddress(), LB.getAddress(), UB.getAddress(),
|
|
ST.getAddress());
|
|
// UB = min(UB, GlobalUB);
|
|
auto *UBVal = EmitLoadOfScalar(UB, S.getLocStart());
|
|
auto *MinUBGlobalUB = Builder.CreateSelect(
|
|
Builder.CreateICmpSLT(UBVal, GlobalUBVal), UBVal, GlobalUBVal);
|
|
EmitStoreOfScalar(MinUBGlobalUB, UB);
|
|
// IV = LB;
|
|
EmitStoreOfScalar(EmitLoadOfScalar(LB, S.getLocStart()), IV);
|
|
// while (idx <= UB) { BODY; ++idx; }
|
|
EmitOMPInnerLoop(S, /*RequiresCleanup=*/false, &Cond, &Inc, BodyGen);
|
|
// Tell the runtime we are done.
|
|
CGM.getOpenMPRuntime().emitForFinish(*this, S.getLocStart(),
|
|
OMPC_SCHEDULE_static);
|
|
} else {
|
|
// If only one section is found - no need to generate loop, emit as a single
|
|
// region.
|
|
CGM.getOpenMPRuntime().emitSingleRegion(*this, [&]() -> void {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
EmitStmt(Stmt);
|
|
EnsureInsertPoint();
|
|
}, S.getLocStart(), llvm::None, llvm::None, llvm::None, llvm::None);
|
|
}
|
|
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause(OMPC_nowait)) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(
|
|
*this, S.getLocStart(),
|
|
(CS && CS->size() > 1) ? OMPD_sections : OMPD_single);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSectionDirective(const OMPSectionDirective &S) {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
EnsureInsertPoint();
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPSingleDirective(const OMPSingleDirective &S) {
|
|
llvm::SmallVector<const Expr *, 8> CopyprivateVars;
|
|
llvm::SmallVector<const Expr *, 8> SrcExprs;
|
|
llvm::SmallVector<const Expr *, 8> DstExprs;
|
|
llvm::SmallVector<const Expr *, 8> AssignmentOps;
|
|
// Check if there are any 'copyprivate' clauses associated with this 'single'
|
|
// construct.
|
|
auto CopyprivateFilter = [](const OMPClause *C) -> bool {
|
|
return C->getClauseKind() == OMPC_copyprivate;
|
|
};
|
|
// Build a list of copyprivate variables along with helper expressions
|
|
// (<source>, <destination>, <destination>=<source> expressions)
|
|
typedef OMPExecutableDirective::filtered_clause_iterator<decltype(
|
|
CopyprivateFilter)> CopyprivateIter;
|
|
for (CopyprivateIter I(S.clauses(), CopyprivateFilter); I; ++I) {
|
|
auto *C = cast<OMPCopyprivateClause>(*I);
|
|
CopyprivateVars.append(C->varlists().begin(), C->varlists().end());
|
|
SrcExprs.append(C->source_exprs().begin(), C->source_exprs().end());
|
|
DstExprs.append(C->destination_exprs().begin(),
|
|
C->destination_exprs().end());
|
|
AssignmentOps.append(C->assignment_ops().begin(),
|
|
C->assignment_ops().end());
|
|
}
|
|
// Emit code for 'single' region along with 'copyprivate' clauses
|
|
CGM.getOpenMPRuntime().emitSingleRegion(*this, [&]() -> void {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
EnsureInsertPoint();
|
|
}, S.getLocStart(), CopyprivateVars, SrcExprs, DstExprs, AssignmentOps);
|
|
// Emit an implicit barrier at the end.
|
|
if (!S.getSingleClause(OMPC_nowait)) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_single);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPMasterDirective(const OMPMasterDirective &S) {
|
|
CGM.getOpenMPRuntime().emitMasterRegion(*this, [&]() -> void {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
EnsureInsertPoint();
|
|
}, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPCriticalDirective(const OMPCriticalDirective &S) {
|
|
CGM.getOpenMPRuntime().emitCriticalRegion(
|
|
*this, S.getDirectiveName().getAsString(), [&]() -> void {
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
EmitStmt(cast<CapturedStmt>(S.getAssociatedStmt())->getCapturedStmt());
|
|
EnsureInsertPoint();
|
|
}, S.getLocStart());
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitOMPParallelForDirective(const OMPParallelForDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp parallel for' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelForSimdDirective(
|
|
const OMPParallelForSimdDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp parallel for simd' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPParallelSectionsDirective(
|
|
const OMPParallelSectionsDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp parallel sections' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskDirective(const OMPTaskDirective &S) {
|
|
// Emit outlined function for task construct.
|
|
auto CS = cast<CapturedStmt>(S.getAssociatedStmt());
|
|
auto CapturedStruct = GenerateCapturedStmtArgument(*CS);
|
|
auto *I = CS->getCapturedDecl()->param_begin();
|
|
// The first function argument for tasks is a thread id, the second one is a
|
|
// part id (0 for tied tasks, >=0 for untied task).
|
|
auto OutlinedFn =
|
|
CGM.getOpenMPRuntime().emitTaskOutlinedFunction(S, *I, *std::next(I));
|
|
// Check if we should emit tied or untied task.
|
|
bool Tied = !S.getSingleClause(OMPC_untied);
|
|
// Check if the task is final
|
|
llvm::PointerIntPair<llvm::Value *, 1, bool> Final;
|
|
if (auto *Clause = S.getSingleClause(OMPC_final)) {
|
|
// If the condition constant folds and can be elided, try to avoid emitting
|
|
// the condition and the dead arm of the if/else.
|
|
auto *Cond = cast<OMPFinalClause>(Clause)->getCondition();
|
|
bool CondConstant;
|
|
if (ConstantFoldsToSimpleInteger(Cond, CondConstant))
|
|
Final.setInt(CondConstant);
|
|
else
|
|
Final.setPointer(EvaluateExprAsBool(Cond));
|
|
} else {
|
|
// By default the task is not final.
|
|
Final.setInt(/*IntVal=*/false);
|
|
}
|
|
auto SharedsTy = getContext().getRecordType(CS->getCapturedRecordDecl());
|
|
CGM.getOpenMPRuntime().emitTaskCall(*this, S.getLocStart(), Tied, Final,
|
|
OutlinedFn, SharedsTy, CapturedStruct);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskyieldDirective(
|
|
const OMPTaskyieldDirective &S) {
|
|
CGM.getOpenMPRuntime().emitTaskyieldCall(*this, S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPBarrierDirective(const OMPBarrierDirective &S) {
|
|
CGM.getOpenMPRuntime().emitBarrierCall(*this, S.getLocStart(), OMPD_barrier);
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp taskwait' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPFlushDirective(const OMPFlushDirective &S) {
|
|
CGM.getOpenMPRuntime().emitFlush(*this, [&]() -> ArrayRef<const Expr *> {
|
|
if (auto C = S.getSingleClause(/*K*/ OMPC_flush)) {
|
|
auto FlushClause = cast<OMPFlushClause>(C);
|
|
return llvm::makeArrayRef(FlushClause->varlist_begin(),
|
|
FlushClause->varlist_end());
|
|
}
|
|
return llvm::None;
|
|
}(), S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPOrderedDirective(const OMPOrderedDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp ordered' is not supported yet.");
|
|
}
|
|
|
|
static llvm::Value *convertToScalarValue(CodeGenFunction &CGF, RValue Val,
|
|
QualType SrcType, QualType DestType) {
|
|
assert(CGF.hasScalarEvaluationKind(DestType) &&
|
|
"DestType must have scalar evaluation kind.");
|
|
assert(!Val.isAggregate() && "Must be a scalar or complex.");
|
|
return Val.isScalar()
|
|
? CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestType)
|
|
: CGF.EmitComplexToScalarConversion(Val.getComplexVal(), SrcType,
|
|
DestType);
|
|
}
|
|
|
|
static CodeGenFunction::ComplexPairTy
|
|
convertToComplexValue(CodeGenFunction &CGF, RValue Val, QualType SrcType,
|
|
QualType DestType) {
|
|
assert(CGF.getEvaluationKind(DestType) == TEK_Complex &&
|
|
"DestType must have complex evaluation kind.");
|
|
CodeGenFunction::ComplexPairTy ComplexVal;
|
|
if (Val.isScalar()) {
|
|
// Convert the input element to the element type of the complex.
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
auto ScalarVal =
|
|
CGF.EmitScalarConversion(Val.getScalarVal(), SrcType, DestElementType);
|
|
ComplexVal = CodeGenFunction::ComplexPairTy(
|
|
ScalarVal, llvm::Constant::getNullValue(ScalarVal->getType()));
|
|
} else {
|
|
assert(Val.isComplex() && "Must be a scalar or complex.");
|
|
auto SrcElementType = SrcType->castAs<ComplexType>()->getElementType();
|
|
auto DestElementType = DestType->castAs<ComplexType>()->getElementType();
|
|
ComplexVal.first = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().first, SrcElementType, DestElementType);
|
|
ComplexVal.second = CGF.EmitScalarConversion(
|
|
Val.getComplexVal().second, SrcElementType, DestElementType);
|
|
}
|
|
return ComplexVal;
|
|
}
|
|
|
|
static void EmitOMPAtomicReadExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *V,
|
|
SourceLocation Loc) {
|
|
// v = x;
|
|
assert(V->isLValue() && "V of 'omp atomic read' is not lvalue");
|
|
assert(X->isLValue() && "X of 'omp atomic read' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
LValue VLValue = CGF.EmitLValue(V);
|
|
RValue Res = XLValue.isGlobalReg()
|
|
? CGF.EmitLoadOfLValue(XLValue, Loc)
|
|
: CGF.EmitAtomicLoad(XLValue, Loc,
|
|
IsSeqCst ? llvm::SequentiallyConsistent
|
|
: llvm::Monotonic,
|
|
XLValue.isVolatile());
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
switch (CGF.getEvaluationKind(V->getType())) {
|
|
case TEK_Scalar:
|
|
CGF.EmitStoreOfScalar(
|
|
convertToScalarValue(CGF, Res, X->getType(), V->getType()), VLValue);
|
|
break;
|
|
case TEK_Complex:
|
|
CGF.EmitStoreOfComplex(
|
|
convertToComplexValue(CGF, Res, X->getType(), V->getType()), VLValue,
|
|
/*isInit=*/false);
|
|
break;
|
|
case TEK_Aggregate:
|
|
llvm_unreachable("Must be a scalar or complex.");
|
|
}
|
|
}
|
|
|
|
static void EmitOMPAtomicWriteExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *E,
|
|
SourceLocation Loc) {
|
|
// x = expr;
|
|
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
if (XLValue.isGlobalReg())
|
|
CGF.EmitStoreThroughGlobalRegLValue(ExprRValue, XLValue);
|
|
else
|
|
CGF.EmitAtomicStore(ExprRValue, XLValue,
|
|
IsSeqCst ? llvm::SequentiallyConsistent
|
|
: llvm::Monotonic,
|
|
XLValue.isVolatile(), /*IsInit=*/false);
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
}
|
|
|
|
static Optional<llvm::AtomicRMWInst::BinOp>
|
|
getCompatibleAtomicRMWBinOp(ASTContext &Context, BinaryOperatorKind Op,
|
|
bool IsXLHSInRHSPart, LValue XLValue,
|
|
RValue ExprRValue) {
|
|
Optional<llvm::AtomicRMWInst::BinOp> RMWOp;
|
|
// Allow atomicrmw only if 'x' and 'expr' are integer values, lvalue for 'x'
|
|
// expression is simple and atomic is allowed for the given type for the
|
|
// target platform.
|
|
if (ExprRValue.isScalar() &&
|
|
ExprRValue.getScalarVal()->getType()->isIntegerTy() &&
|
|
XLValue.isSimple() &&
|
|
(isa<llvm::ConstantInt>(ExprRValue.getScalarVal()) ||
|
|
(ExprRValue.getScalarVal()->getType() ==
|
|
XLValue.getAddress()->getType()->getPointerElementType())) &&
|
|
Context.getTargetInfo().hasBuiltinAtomic(
|
|
Context.getTypeSize(XLValue.getType()),
|
|
Context.toBits(XLValue.getAlignment()))) {
|
|
switch (Op) {
|
|
case BO_Add:
|
|
RMWOp = llvm::AtomicRMWInst::Add;
|
|
break;
|
|
case BO_Sub:
|
|
if (IsXLHSInRHSPart) {
|
|
RMWOp = llvm::AtomicRMWInst::Sub;
|
|
}
|
|
break;
|
|
case BO_And:
|
|
RMWOp = llvm::AtomicRMWInst::And;
|
|
break;
|
|
case BO_Or:
|
|
RMWOp = llvm::AtomicRMWInst::Or;
|
|
break;
|
|
case BO_Xor:
|
|
RMWOp = llvm::AtomicRMWInst::Xor;
|
|
break;
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
break;
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
case BO_Assign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_AndAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
case BO_Comma:
|
|
llvm_unreachable("Unexpected binary operation in 'atomic update'.");
|
|
}
|
|
}
|
|
return std::move(RMWOp);
|
|
}
|
|
|
|
static void EmitOMPAtomicUpdateExpr(CodeGenFunction &CGF, bool IsSeqCst,
|
|
const Expr *X, const Expr *E,
|
|
const Expr *UE, bool IsXLHSInRHSPart,
|
|
SourceLocation Loc) {
|
|
assert(isa<BinaryOperator>(UE->IgnoreImpCasts()) &&
|
|
"Update expr in 'atomic update' must be a binary operator.");
|
|
auto *BOUE = cast<BinaryOperator>(UE->IgnoreImpCasts());
|
|
// Update expressions are allowed to have the following forms:
|
|
// x binop= expr; -> xrval + expr;
|
|
// x++, ++x -> xrval + 1;
|
|
// x--, --x -> xrval - 1;
|
|
// x = x binop expr; -> xrval binop expr
|
|
// x = expr Op x; - > expr binop xrval;
|
|
assert(X->isLValue() && "X of 'omp atomic write' is not lvalue");
|
|
LValue XLValue = CGF.EmitLValue(X);
|
|
RValue ExprRValue = CGF.EmitAnyExpr(E);
|
|
const auto &Op =
|
|
getCompatibleAtomicRMWBinOp(CGF.CGM.getContext(), BOUE->getOpcode(),
|
|
IsXLHSInRHSPart, XLValue, ExprRValue);
|
|
auto AO = IsSeqCst ? llvm::SequentiallyConsistent : llvm::Monotonic;
|
|
if (Op) {
|
|
auto *ExprVal = ExprRValue.getScalarVal();
|
|
if (auto *IC = dyn_cast<llvm::ConstantInt>(ExprVal)) {
|
|
ExprVal = CGF.Builder.CreateIntCast(
|
|
IC, XLValue.getAddress()->getType()->getPointerElementType(),
|
|
XLValue.getType()->hasSignedIntegerRepresentation());
|
|
}
|
|
CGF.Builder.CreateAtomicRMW(*Op, XLValue.getAddress(), ExprVal, AO);
|
|
} else {
|
|
auto *LHS = cast<OpaqueValueExpr>(BOUE->getLHS()->IgnoreImpCasts());
|
|
auto *RHS = cast<OpaqueValueExpr>(BOUE->getRHS()->IgnoreImpCasts());
|
|
CodeGenFunction::OpaqueValueMapping MapExpr(
|
|
CGF, IsXLHSInRHSPart ? RHS : LHS, ExprRValue);
|
|
auto *XRValExpr = IsXLHSInRHSPart ? LHS : RHS;
|
|
if (XLValue.isGlobalReg()) {
|
|
// Emit an update expression: 'xrval' binop 'expr' or 'expr' binop
|
|
// 'xrval'.
|
|
CodeGenFunction::OpaqueValueMapping MapX(
|
|
CGF, XRValExpr, CGF.EmitLoadOfLValue(XLValue, Loc));
|
|
CGF.EmitStoreThroughLValue(CGF.EmitAnyExpr(UE), XLValue);
|
|
} else {
|
|
// Perform compare-and-swap procedure.
|
|
CGF.EmitAtomicUpdate(
|
|
XLValue, AO, [&CGF, &UE, &XRValExpr](RValue XRVal) -> RValue {
|
|
CodeGenFunction::OpaqueValueMapping MapX(CGF, XRValExpr, XRVal);
|
|
return CGF.EmitAnyExpr(UE);
|
|
}, /*IsVolatile=*/false);
|
|
}
|
|
}
|
|
// OpenMP, 2.12.6, atomic Construct
|
|
// Any atomic construct with a seq_cst clause forces the atomically
|
|
// performed operation to include an implicit flush operation without a
|
|
// list.
|
|
if (IsSeqCst)
|
|
CGF.CGM.getOpenMPRuntime().emitFlush(CGF, llvm::None, Loc);
|
|
}
|
|
|
|
static void EmitOMPAtomicExpr(CodeGenFunction &CGF, OpenMPClauseKind Kind,
|
|
bool IsSeqCst, const Expr *X, const Expr *V,
|
|
const Expr *E, const Expr *UE,
|
|
bool IsXLHSInRHSPart, SourceLocation Loc) {
|
|
switch (Kind) {
|
|
case OMPC_read:
|
|
EmitOMPAtomicReadExpr(CGF, IsSeqCst, X, V, Loc);
|
|
break;
|
|
case OMPC_write:
|
|
EmitOMPAtomicWriteExpr(CGF, IsSeqCst, X, E, Loc);
|
|
break;
|
|
case OMPC_unknown:
|
|
case OMPC_update:
|
|
EmitOMPAtomicUpdateExpr(CGF, IsSeqCst, X, E, UE, IsXLHSInRHSPart, Loc);
|
|
break;
|
|
case OMPC_capture:
|
|
llvm_unreachable("CodeGen for 'omp atomic clause' is not supported yet.");
|
|
case OMPC_if:
|
|
case OMPC_final:
|
|
case OMPC_num_threads:
|
|
case OMPC_private:
|
|
case OMPC_firstprivate:
|
|
case OMPC_lastprivate:
|
|
case OMPC_reduction:
|
|
case OMPC_safelen:
|
|
case OMPC_collapse:
|
|
case OMPC_default:
|
|
case OMPC_seq_cst:
|
|
case OMPC_shared:
|
|
case OMPC_linear:
|
|
case OMPC_aligned:
|
|
case OMPC_copyin:
|
|
case OMPC_copyprivate:
|
|
case OMPC_flush:
|
|
case OMPC_proc_bind:
|
|
case OMPC_schedule:
|
|
case OMPC_ordered:
|
|
case OMPC_nowait:
|
|
case OMPC_untied:
|
|
case OMPC_threadprivate:
|
|
case OMPC_mergeable:
|
|
llvm_unreachable("Clause is not allowed in 'omp atomic'.");
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPAtomicDirective(const OMPAtomicDirective &S) {
|
|
bool IsSeqCst = S.getSingleClause(/*K=*/OMPC_seq_cst);
|
|
OpenMPClauseKind Kind = OMPC_unknown;
|
|
for (auto *C : S.clauses()) {
|
|
// Find first clause (skip seq_cst clause, if it is first).
|
|
if (C->getClauseKind() != OMPC_seq_cst) {
|
|
Kind = C->getClauseKind();
|
|
break;
|
|
}
|
|
}
|
|
|
|
const auto *CS =
|
|
S.getAssociatedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
|
|
if (const auto *EWC = dyn_cast<ExprWithCleanups>(CS))
|
|
enterFullExpression(EWC);
|
|
InlinedOpenMPRegionScopeRAII Region(*this, S);
|
|
|
|
EmitOMPAtomicExpr(*this, Kind, IsSeqCst, S.getX(), S.getV(), S.getExpr(),
|
|
S.getUpdateExpr(), S.isXLHSInRHSPart(), S.getLocStart());
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTargetDirective(const OMPTargetDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp target' is not supported yet.");
|
|
}
|
|
|
|
void CodeGenFunction::EmitOMPTeamsDirective(const OMPTeamsDirective &) {
|
|
llvm_unreachable("CodeGen for 'omp teams' is not supported yet.");
|
|
}
|
|
|