llvm-project/llvm/lib/CodeGen/CalcSpillWeights.cpp

324 lines
11 KiB
C++

//===- CalcSpillWeights.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <tuple>
using namespace llvm;
#define DEBUG_TYPE "calcspillweights"
void VirtRegAuxInfo::calculateSpillWeightsAndHints() {
LLVM_DEBUG(dbgs() << "********** Compute Spill Weights **********\n"
<< "********** Function: " << MF.getName() << '\n');
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
if (MRI.reg_nodbg_empty(Reg))
continue;
calculateSpillWeightAndHint(LIS.getInterval(Reg));
}
}
// Return the preferred allocation register for reg, given a COPY instruction.
Register VirtRegAuxInfo::copyHint(const MachineInstr *MI, unsigned Reg,
const TargetRegisterInfo &TRI,
const MachineRegisterInfo &MRI) {
unsigned Sub, HSub;
Register HReg;
if (MI->getOperand(0).getReg() == Reg) {
Sub = MI->getOperand(0).getSubReg();
HReg = MI->getOperand(1).getReg();
HSub = MI->getOperand(1).getSubReg();
} else {
Sub = MI->getOperand(1).getSubReg();
HReg = MI->getOperand(0).getReg();
HSub = MI->getOperand(0).getSubReg();
}
if (!HReg)
return 0;
if (Register::isVirtualRegister(HReg))
return Sub == HSub ? HReg : Register();
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
MCRegister CopiedPReg = HSub ? TRI.getSubReg(HReg, HSub) : HReg.asMCReg();
if (RC->contains(CopiedPReg))
return CopiedPReg;
// Check if reg:sub matches so that a super register could be hinted.
if (Sub)
return TRI.getMatchingSuperReg(CopiedPReg, Sub, RC);
return 0;
}
// Check if all values in LI are rematerializable
bool VirtRegAuxInfo::isRematerializable(const LiveInterval &LI,
const LiveIntervals &LIS,
const VirtRegMap &VRM,
const TargetInstrInfo &TII) {
Register Reg = LI.reg();
Register Original = VRM.getOriginal(Reg);
for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
I != E; ++I) {
const VNInfo *VNI = *I;
if (VNI->isUnused())
continue;
if (VNI->isPHIDef())
return false;
MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
// Trace copies introduced by live range splitting. The inline
// spiller can rematerialize through these copies, so the spill
// weight must reflect this.
while (MI->isFullCopy()) {
// The copy destination must match the interval register.
if (MI->getOperand(0).getReg() != Reg)
return false;
// Get the source register.
Reg = MI->getOperand(1).getReg();
// If the original (pre-splitting) registers match this
// copy came from a split.
if (!Register::isVirtualRegister(Reg) || VRM.getOriginal(Reg) != Original)
return false;
// Follow the copy live-in value.
const LiveInterval &SrcLI = LIS.getInterval(Reg);
LiveQueryResult SrcQ = SrcLI.Query(VNI->def);
VNI = SrcQ.valueIn();
assert(VNI && "Copy from non-existing value");
if (VNI->isPHIDef())
return false;
MI = LIS.getInstructionFromIndex(VNI->def);
assert(MI && "Dead valno in interval");
}
if (!TII.isTriviallyReMaterializable(*MI, LIS.getAliasAnalysis()))
return false;
}
return true;
}
bool VirtRegAuxInfo::isLiveAtStatepointVarArg(LiveInterval &LI) {
return any_of(VRM.getRegInfo().reg_operands(LI.reg()),
[](MachineOperand &MO) {
MachineInstr *MI = MO.getParent();
if (MI->getOpcode() != TargetOpcode::STATEPOINT)
return false;
return StatepointOpers(MI).getVarIdx() <= MI->getOperandNo(&MO);
});
}
void VirtRegAuxInfo::calculateSpillWeightAndHint(LiveInterval &LI) {
float Weight = weightCalcHelper(LI);
// Check if unspillable.
if (Weight < 0)
return;
LI.setWeight(Weight);
}
float VirtRegAuxInfo::weightCalcHelper(LiveInterval &LI, SlotIndex *Start,
SlotIndex *End) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineBasicBlock *MBB = nullptr;
MachineLoop *Loop = nullptr;
bool IsExiting = false;
float TotalWeight = 0;
unsigned NumInstr = 0; // Number of instructions using LI
SmallPtrSet<MachineInstr *, 8> Visited;
std::pair<Register, Register> TargetHint = MRI.getRegAllocationHint(LI.reg());
if (LI.isSpillable()) {
Register Reg = LI.reg();
Register Original = VRM.getOriginal(Reg);
const LiveInterval &OrigInt = LIS.getInterval(Original);
// li comes from a split of OrigInt. If OrigInt was marked
// as not spillable, make sure the new interval is marked
// as not spillable as well.
if (!OrigInt.isSpillable())
LI.markNotSpillable();
}
// Don't recompute spill weight for an unspillable register.
bool IsSpillable = LI.isSpillable();
bool IsLocalSplitArtifact = Start && End;
// Do not update future local split artifacts.
bool ShouldUpdateLI = !IsLocalSplitArtifact;
if (IsLocalSplitArtifact) {
MachineBasicBlock *LocalMBB = LIS.getMBBFromIndex(*End);
assert(LocalMBB == LIS.getMBBFromIndex(*Start) &&
"start and end are expected to be in the same basic block");
// Local split artifact will have 2 additional copy instructions and they
// will be in the same BB.
// localLI = COPY other
// ...
// other = COPY localLI
TotalWeight += LiveIntervals::getSpillWeight(true, false, &MBFI, LocalMBB);
TotalWeight += LiveIntervals::getSpillWeight(false, true, &MBFI, LocalMBB);
NumInstr += 2;
}
// CopyHint is a sortable hint derived from a COPY instruction.
struct CopyHint {
const Register Reg;
const float Weight;
CopyHint(Register R, float W) : Reg(R), Weight(W) {}
bool operator<(const CopyHint &Rhs) const {
// Always prefer any physreg hint.
if (Reg.isPhysical() != Rhs.Reg.isPhysical())
return Reg.isPhysical();
if (Weight != Rhs.Weight)
return (Weight > Rhs.Weight);
return Reg.id() < Rhs.Reg.id(); // Tie-breaker.
}
};
std::set<CopyHint> CopyHints;
DenseMap<unsigned, float> Hint;
for (MachineRegisterInfo::reg_instr_nodbg_iterator
I = MRI.reg_instr_nodbg_begin(LI.reg()),
E = MRI.reg_instr_nodbg_end();
I != E;) {
MachineInstr *MI = &*(I++);
// For local split artifacts, we are interested only in instructions between
// the expected start and end of the range.
SlotIndex SI = LIS.getInstructionIndex(*MI);
if (IsLocalSplitArtifact && ((SI < *Start) || (SI > *End)))
continue;
NumInstr++;
if (MI->isIdentityCopy() || MI->isImplicitDef())
continue;
if (!Visited.insert(MI).second)
continue;
// For terminators that produce values, ask the backend if the register is
// not spillable.
if (TII.isUnspillableTerminator(MI) && MI->definesRegister(LI.reg())) {
LI.markNotSpillable();
return -1.0f;
}
float Weight = 1.0f;
if (IsSpillable) {
// Get loop info for mi.
if (MI->getParent() != MBB) {
MBB = MI->getParent();
Loop = Loops.getLoopFor(MBB);
IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
}
// Calculate instr weight.
bool Reads, Writes;
std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
Weight = LiveIntervals::getSpillWeight(Writes, Reads, &MBFI, *MI);
// Give extra weight to what looks like a loop induction variable update.
if (Writes && IsExiting && LIS.isLiveOutOfMBB(LI, MBB))
Weight *= 3;
TotalWeight += Weight;
}
// Get allocation hints from copies.
if (!MI->isCopy())
continue;
Register HintReg = copyHint(MI, LI.reg(), TRI, MRI);
if (!HintReg)
continue;
// Force hweight onto the stack so that x86 doesn't add hidden precision,
// making the comparison incorrectly pass (i.e., 1 > 1 == true??).
//
// FIXME: we probably shouldn't use floats at all.
volatile float HWeight = Hint[HintReg] += Weight;
if (HintReg.isVirtual() || MRI.isAllocatable(HintReg))
CopyHints.insert(CopyHint(HintReg, HWeight));
}
// Pass all the sorted copy hints to mri.
if (ShouldUpdateLI && CopyHints.size()) {
// Remove a generic hint if previously added by target.
if (TargetHint.first == 0 && TargetHint.second)
MRI.clearSimpleHint(LI.reg());
std::set<Register> HintedRegs;
for (auto &Hint : CopyHints) {
if (!HintedRegs.insert(Hint.Reg).second ||
(TargetHint.first != 0 && Hint.Reg == TargetHint.second))
// Don't add the same reg twice or the target-type hint again.
continue;
MRI.addRegAllocationHint(LI.reg(), Hint.Reg);
}
// Weakly boost the spill weight of hinted registers.
TotalWeight *= 1.01F;
}
// If the live interval was already unspillable, leave it that way.
if (!IsSpillable)
return -1.0;
// Mark li as unspillable if all live ranges are tiny and the interval
// is not live at any reg mask. If the interval is live at a reg mask
// spilling may be required. If li is live as use in statepoint instruction
// spilling may be required due to if we mark interval with use in statepoint
// as not spillable we are risky to end up with no register to allocate.
// At the same time STATEPOINT instruction is perfectly fine to have this
// operand on stack, so spilling such interval and folding its load from stack
// into instruction itself makes perfect sense.
if (ShouldUpdateLI && LI.isZeroLength(LIS.getSlotIndexes()) &&
!LI.isLiveAtIndexes(LIS.getRegMaskSlots()) &&
!isLiveAtStatepointVarArg(LI)) {
LI.markNotSpillable();
return -1.0;
}
// If all of the definitions of the interval are re-materializable,
// it is a preferred candidate for spilling.
// FIXME: this gets much more complicated once we support non-trivial
// re-materialization.
if (isRematerializable(LI, LIS, VRM, *MF.getSubtarget().getInstrInfo()))
TotalWeight *= 0.5F;
if (IsLocalSplitArtifact)
return normalize(TotalWeight, Start->distance(*End), NumInstr);
return normalize(TotalWeight, LI.getSize(), NumInstr);
}