llvm-project/polly/lib/External/ppcg/gpu.c

5850 lines
184 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright 2010-2011 INRIA Saclay
* Copyright 2012-2013 Ecole Normale Superieure
* Copyright 2015-2016 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
* 91893 Orsay, France
* and Ecole Normale Superieure, 45 rue dUlm, 75230 Paris, France
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <isl/polynomial.h>
#include <isl/union_set.h>
#include <isl/aff.h>
#include <isl/ilp.h>
#include <isl/flow.h>
#include <isl/schedule.h>
#include <isl/schedule_node.h>
#include <isl/options.h>
#include <isl/ast_build.h>
#include "cpu.h"
#include "gpu.h"
#include "gpu_array_tile.h"
#include "gpu_group.h"
#include "gpu_hybrid.h"
#include "gpu_tree.h"
#include "hybrid.h"
#include "schedule.h"
#include "ppcg_options.h"
#include "print.h"
#include "util.h"
struct gpu_array_info;
/* Return the name of the outer array (of structs) accessed by "access".
*/
static const char *get_outer_array_name(__isl_keep isl_map *access)
{
isl_space *space;
const char *name;
space = isl_space_range(isl_map_get_space(access));
while (space && isl_space_is_wrapping(space))
space = isl_space_domain(isl_space_unwrap(space));
name = isl_space_get_tuple_name(space, isl_dim_set);
isl_space_free(space);
return name;
}
/* Collect all references to the given array and store pointers to them
* in array->refs.
*/
void collect_references(struct gpu_prog *prog,
struct gpu_array_info *array)
{
int i;
int n;
n = 0;
for (i = 0; i < prog->n_stmts; ++i) {
struct gpu_stmt *stmt = &prog->stmts[i];
struct gpu_stmt_access *access;
for (access = stmt->accesses; access; access = access->next) {
const char *name;
name = get_outer_array_name(access->access);
if (name && !strcmp(array->name, name))
n++;
}
}
array->n_ref = n;
array->refs = isl_alloc_array(prog->ctx, struct gpu_stmt_access *, n);
assert(array->refs);
n = 0;
for (i = 0; i < prog->n_stmts; ++i) {
struct gpu_stmt *stmt = &prog->stmts[i];
struct gpu_stmt_access *access;
for (access = stmt->accesses; access; access = access->next) {
const char *name;
name = get_outer_array_name(access->access);
if (!name || strcmp(array->name, name))
continue;
array->refs[n++] = access;
}
}
}
/* Compute and return the extent of "array", taking into account the set of
* accessed elements.
*
* In particular, the extent in the outer dimension is taken
* from "accessed", while the extents in the remaining dimensions
* are taken from array->extent.
*
* The extent in the outer dimension cannot be taken from array->extent
* because that may be unbounded. Furthermore, even if it is bounded,
* it may be larger than the piece of the array that is being accessed.
*/
static __isl_give isl_set *compute_extent(struct pet_array *array,
__isl_keep isl_set *accessed)
{
int n_index;
isl_id *id;
isl_set *outer;
isl_set *extent;
extent = isl_set_copy(array->extent);
n_index = isl_set_dim(accessed, isl_dim_set);
if (n_index == 0)
return extent;
extent = isl_set_project_out(extent, isl_dim_set, 0, 1);
outer = isl_set_copy(accessed);
outer = isl_set_project_out(outer, isl_dim_set, 1, n_index - 1);
extent = isl_set_flat_product(outer, extent);
id = isl_set_get_tuple_id(accessed);
extent = isl_set_set_tuple_id(extent, id);
return extent;
}
/* Is the array "array" being extracted a read-only scalar?
*
* That is, is "array" a scalar that is never possibly written to.
* An array containing structures is never considered to be a scalar.
*/
static int is_read_only_scalar(struct gpu_array_info *array,
struct gpu_prog *prog)
{
isl_set *space;
isl_union_map *write;
int empty;
if (array->has_compound_element)
return 0;
if (array->n_index != 0)
return 0;
write = isl_union_map_copy(prog->may_write);
space = isl_set_universe(isl_space_copy(array->space));
write = isl_union_map_intersect_range(write,
isl_union_set_from_set(space));
empty = isl_union_map_is_empty(write);
isl_union_map_free(write);
return empty;
}
/* Is "array" only accessed as individual, fixed elements?
* That is, does each access to "array" access a single, fixed element?
*/
isl_bool only_fixed_element_accessed(struct gpu_array_info *array)
{
int i;
for (i = 0; i < array->n_ref; ++i)
if (!array->refs[i]->fixed_element)
return isl_bool_false;
return isl_bool_true;
}
/* Compute bounds on the host array "pa" based on the corresponding
* accessed elements in "arrays"
* and collect all references to the array.
* Store the results in "info".
*
* If the array is zero-dimensional and does not contain structures,
* i.e., if the array is a scalar, we check whether it is read-only.
* We also check whether the array is accessed at all.
*/
static int extract_array_info(struct gpu_prog *prog,
struct gpu_array_info *info, struct pet_array *pa,
__isl_keep isl_union_set *arrays)
{
int empty;
const char *name;
int n_index;
isl_multi_pw_aff *bounds;
isl_set *accessed, *extent;
n_index = isl_set_dim(pa->extent, isl_dim_set);
name = isl_set_get_tuple_name(pa->extent);
info->space = isl_set_get_space(pa->extent);
info->name = strdup(name);
info->n_index = n_index;
info->linearize = prog->scop->options->linearize_device_arrays;
info->type = strdup(pa->element_type);
info->size = pa->element_size;
info->local = pa->declared && !pa->exposed;
info->has_compound_element = pa->element_is_record;
info->read_only_scalar = is_read_only_scalar(info, prog);
info->declared_extent = isl_set_copy(pa->extent);
accessed = isl_union_set_extract_set(arrays,
isl_space_copy(info->space));
empty = isl_set_is_empty(accessed);
extent = compute_extent(pa, accessed);
isl_set_free(accessed);
info->extent = extent;
if (empty < 0)
return -1;
info->accessed = !empty;
bounds = ppcg_size_from_extent(isl_set_copy(extent));
bounds = isl_multi_pw_aff_gist(bounds, isl_set_copy(prog->context));
if (!bounds)
return -1;
if (!isl_multi_pw_aff_is_cst(bounds))
info->linearize = 1;
info->bound = bounds;
collect_references(prog, info);
info->only_fixed_element = only_fixed_element_accessed(info);
return 0;
}
/* Remove independence from the order constraints "order" on array "array".
* Since the pairs of iterations in the filter relation of an independence
* are guaranteed to be completely independent by the user, there is
* no need to ensure that live ranges are ordered along those pairs.
* We make an exception for local variables, though, as the independence
* guarantee does not apply to those.
*
* The order constraints are used in two places.
* Those on scalars are used in check_scalar_live_ranges to check if
* we need to force the scalar to be private. Any non-local scalar
* should not be forced scalar if it only appears in independent loops.
* Those on non-scalars are added to the coincidence constraints
* in compute_schedule because we do not support any array expansion.
* Accesses to non-local arrays should not prevent a loop from being
* considered coincident so we should indeed remove those constraints
* from the order constraints.
*/
static __isl_give isl_union_map *remove_independences(struct gpu_prog *prog,
struct gpu_array_info *array, __isl_take isl_union_map *order)
{
// We do not have independence information in Polly. Hence, make this
// function a no-op.
return order;
int i;
for (i = 0; i < prog->scop->pet->n_independence; ++i) {
struct pet_independence *pi = prog->scop->pet->independences[i];
if (isl_union_set_contains(pi->local, array->space))
continue;
order = isl_union_map_subtract(order,
isl_union_map_copy(pi->filter));
}
return order;
}
/* For each array in "prog", store the (untagged) order dependences
* derived from the array in array->dep_order.
* In particular, consider all references that access the given array
* and take the order dependences that have one of these references
* as source. (Since an order dependence relates two references to
* the same array, the target of these order dependences will also
* be one of these references.)
* Additionally, store the union of these array->dep_order relations
* for all arrays that cannot be mapped to private memory in prog->array_order.
*/
void collect_order_dependences(struct gpu_prog *prog)
{
int i;
isl_space *space;
isl_union_map *accesses;
space = isl_union_map_get_space(prog->read);
prog->array_order = isl_union_map_empty(space);
accesses = isl_union_map_copy(prog->scop->tagged_reads);
accesses = isl_union_map_union(accesses,
isl_union_map_copy(prog->scop->tagged_may_writes));
accesses = isl_union_map_universe(accesses);
accesses = isl_union_map_apply_range(accesses,
isl_union_map_copy(prog->to_outer));
for (i = 0; i < prog->n_array; ++i) {
struct gpu_array_info *array = &prog->array[i];
isl_set *set;
isl_union_set *uset;
isl_union_map *order;
set = isl_set_universe(isl_space_copy(array->space));
uset = isl_union_set_from_set(set);
uset = isl_union_map_domain(
isl_union_map_intersect_range(isl_union_map_copy(accesses),
uset));
order = isl_union_map_copy(prog->scop->tagged_dep_order);
order = isl_union_map_intersect_domain(order, uset);
order = isl_union_map_zip(order);
order = isl_union_set_unwrap(isl_union_map_domain(order));
order = remove_independences(prog, array, order);
array->dep_order = order;
if (gpu_array_can_be_private(array))
continue;
prog->array_order = isl_union_map_union(prog->array_order,
isl_union_map_copy(array->dep_order));
}
isl_union_map_free(accesses);
}
/* Construct a gpu_array_info for each array referenced by prog->scop and
* collect them in prog->array.
*
* The sizes are based on the extents and the set of possibly accessed
* elements by "prog".
* If there are any member accesses involved, then they are first mapped
* to the outer arrays of structs.
* Only extract gpu_array_info entries for these outer arrays.
*
* If we are allowing live range reordering, then also set
* the dep_order field. Otherwise leave it NULL.
*/
static int collect_array_info(struct gpu_prog *prog)
{
int i;
int r = 0;
isl_union_set *arrays;
arrays = isl_union_map_range(isl_union_map_copy(prog->read));
arrays = isl_union_set_union(arrays,
isl_union_map_range(isl_union_map_copy(prog->may_write)));
arrays = isl_union_set_apply(arrays,
isl_union_map_copy(prog->to_outer));
arrays = isl_union_set_coalesce(arrays);
prog->n_array = prog->scop->pet->n_array;
prog->array = isl_calloc_array(prog->ctx,
struct gpu_array_info, prog->n_array);
assert(prog->array);
prog->n_array = 0;
for (i = 0; i < prog->scop->pet->n_array; ++i) {
isl_bool field;
field = isl_set_is_wrapping(prog->scop->pet->arrays[i]->extent);
if (field < 0)
break;
if (field)
continue;
if (extract_array_info(prog, &prog->array[prog->n_array++],
prog->scop->pet->arrays[i], arrays) < 0)
r = -1;
}
if (i < prog->scop->pet->n_array)
r = -1;
isl_union_set_free(arrays);
if (prog->scop->options->live_range_reordering)
collect_order_dependences(prog);
return r;
}
static void free_array_info(struct gpu_prog *prog)
{
int i;
for (i = 0; i < prog->n_array; ++i) {
free(prog->array[i].type);
free(prog->array[i].name);
isl_multi_pw_aff_free(prog->array[i].bound);
isl_ast_expr_free(prog->array[i].bound_expr);
isl_space_free(prog->array[i].space);
isl_set_free(prog->array[i].declared_extent);
isl_set_free(prog->array[i].extent);
isl_ast_expr_free(prog->array[i].declared_size);
free(prog->array[i].refs);
isl_union_map_free(prog->array[i].dep_order);
}
free(prog->array);
}
/* Check if a gpu array is a scalar. A scalar is a value that is not stored
* as an array or through a pointer reference, but as a single data element.
* At the moment, scalars are represented as zero-dimensional arrays.
* Note that the single data element may be an entire structure.
*/
int gpu_array_is_scalar(struct gpu_array_info *array)
{
return array->n_index == 0;
}
/* Can "array" be mapped to private memory?
* That is, is it only accessed as individual elements with
* constant index expressions?
*/
isl_bool gpu_array_can_be_private(struct gpu_array_info *array)
{
if (!array)
return isl_bool_error;
return array->only_fixed_element;
}
/* Is "array" a read-only scalar?
*/
int gpu_array_is_read_only_scalar(struct gpu_array_info *array)
{
return array->read_only_scalar;
}
/* Does "array" need to be allocated on the device?
* If it is a read-only scalar, then it will be passed as an argument
* to the kernel and therefore does not require any allocation.
* If this device memory is not accessed at all, then it does not
* need to be allocated either.
*/
int gpu_array_requires_device_allocation(struct gpu_array_info *array)
{
if (gpu_array_is_read_only_scalar(array))
return 0;
if (!array->global)
return 0;
return 1;
}
/* Return the set of parameter values for which the array has a positive
* size in all dimensions.
* If the sizes are only valid for some parameter values, then those
* constraints are also taken into account.
*/
__isl_give isl_set *gpu_array_positive_size_guard(struct gpu_array_info *array)
{
int i;
isl_space *space;
isl_set *guard;
if (!array)
return NULL;
space = isl_space_params(isl_space_copy(array->space));
guard = isl_set_universe(space);
for (i = 0; i < array->n_index; ++i) {
isl_pw_aff *bound;
isl_set *guard_i, *zero;
bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
guard_i = isl_pw_aff_nonneg_set(isl_pw_aff_copy(bound));
zero = isl_pw_aff_zero_set(bound);
guard_i = isl_set_subtract(guard_i, zero);
guard = isl_set_intersect(guard, guard_i);
}
return guard;
}
/* Internal data structure for extract_size_of_type.
* "type" specifies the name of the space that we want to extract.
* "res" is used to store the subset of that space.
*/
struct ppcg_extract_size_data {
const char *type;
isl_set *res;
};
/* This function is called for each set in a union_set.
* If the name of the set matches data->type, we store the
* set in data->res.
*/
static isl_stat extract_size_of_type(__isl_take isl_set *size, void *user)
{
struct ppcg_extract_size_data *data = user;
const char *name;
name = isl_set_get_tuple_name(size);
if (name && !strcmp(name, data->type)) {
data->res = size;
return isl_stat_error;
}
isl_set_free(size);
return isl_stat_ok;
}
/* Given a union map { kernel[i] -> *[...] },
* return the range in the space called "type" for the kernel with
* sequence number "id".
*/
static __isl_give isl_set *extract_sizes(__isl_keep isl_union_map *sizes,
const char *type, int id)
{
isl_space *space;
isl_set *dom;
isl_union_set *local_sizes;
struct ppcg_extract_size_data data = { type, NULL };
if (!sizes)
return NULL;
space = isl_union_map_get_space(sizes);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, 1);
space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
dom = isl_set_universe(space);
dom = isl_set_fix_si(dom, isl_dim_set, 0, id);
local_sizes = isl_union_set_apply(isl_union_set_from_set(dom),
isl_union_map_copy(sizes));
isl_union_set_foreach_set(local_sizes, &extract_size_of_type, &data);
isl_union_set_free(local_sizes);
return data.res;
}
/* Given a singleton set, extract the first (at most *len) elements
* of the single integer tuple into *sizes and update *len if needed.
*/
static void read_sizes_from_set(__isl_take isl_set *set, int *sizes, int *len)
{
int i;
int dim;
if (!set)
return;
dim = isl_set_dim(set, isl_dim_set);
if (dim < *len)
*len = dim;
for (i = 0; i < *len; ++i) {
isl_val *v;
v = isl_set_plain_get_val_if_fixed(set, isl_dim_set, i);
assert(v);
sizes[i] = isl_val_get_num_si(v);
isl_val_free(v);
}
isl_set_free(set);
}
/* Add the map { kernel[id] -> type[sizes] } to gen->used_sizes,
* if the option debug->dump_sizes is set.
*/
static void set_used_sizes(struct gpu_gen *gen, const char *type, int id,
int *sizes, int len)
{
int i;
isl_space *space;
isl_map *map;
if (!gen->options->debug->dump_sizes)
return;
space = isl_union_map_get_space(gen->used_sizes);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, 1);
space = isl_space_set_tuple_name(space, isl_dim_set, "kernel");
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out, len);
space = isl_space_set_tuple_name(space, isl_dim_out, type);
map = isl_map_universe(space);
map = isl_map_fix_si(map, isl_dim_in, 0, id);
for (i = 0; i < len; ++i)
map = isl_map_fix_si(map, isl_dim_out, i, sizes[i]);
gen->used_sizes = isl_union_map_add_map(gen->used_sizes, map);
}
/* Extract user specified "tile" sizes from the "sizes" command line option,
* defaulting to option->tile_size in each dimension.
* *tile_len contains the maximum number of tile sizes needed.
* Update *tile_len to the number of specified tile sizes, if any, and
* return a pointer to the tile sizes (or NULL on error).
* Add the effectively used sizes to gen->used_sizes.
*/
static int *read_tile_sizes(struct gpu_gen *gen, int *tile_len)
{
int n;
int *tile_size;
isl_set *size;
tile_size = isl_alloc_array(gen->ctx, int, *tile_len);
if (!tile_size)
return NULL;
for (n = 0; n < *tile_len; ++n)
tile_size[n] = gen->options->tile_size;
size = extract_sizes(gen->sizes, "tile", gen->kernel_id);
read_sizes_from_set(size, tile_size, tile_len);
set_used_sizes(gen, "tile", gen->kernel_id, tile_size, *tile_len);
return tile_size;
}
/* Extract user specified "block" sizes from the "sizes" command line option,
* after filling in some potentially useful defaults.
*/
static void read_block_sizes(struct ppcg_kernel *kernel,
__isl_keep isl_union_map *sizes)
{
isl_set *size;
if (kernel->n_block > 3)
kernel->n_block = 3;
switch (kernel->n_block) {
case 1:
kernel->block_dim[0] = 512;
break;
case 2:
kernel->block_dim[0] = 32;
kernel->block_dim[1] = 16;
break;
default:
kernel->block_dim[0] = 32;
kernel->block_dim[1] = 4;
kernel->block_dim[2] = 4;
break;
}
size = extract_sizes(sizes, "block", kernel->id);
read_sizes_from_set(size, kernel->block_dim, &kernel->n_block);
}
/* Extract user specified "grid" sizes from the "sizes" command line option,
* after filling in some potentially useful defaults.
*/
static void read_grid_sizes(struct ppcg_kernel *kernel,
__isl_keep isl_union_map *sizes)
{
isl_set *size;
if (kernel->n_grid > 2)
kernel->n_grid = 2;
switch (kernel->n_grid) {
case 1:
kernel->grid_dim[0] = 32768;
break;
default:
kernel->grid_dim[0] = 256;
kernel->grid_dim[1] = 256;
break;
}
size = extract_sizes(sizes, "grid", kernel->id);
read_sizes_from_set(size, kernel->grid_dim, &kernel->n_grid);
}
/* Extract user specified grid and block sizes from the gen->sizes
* command line option after filling in some potentially useful defaults.
* Store the extracted sizes in "kernel".
* Add the effectively used sizes to gen->used_sizes.
*/
static void read_grid_and_block_sizes(struct ppcg_kernel *kernel,
struct gpu_gen *gen)
{
read_block_sizes(kernel, gen->sizes);
read_grid_sizes(kernel, gen->sizes);
set_used_sizes(gen, "block", kernel->id,
kernel->block_dim, kernel->n_block);
set_used_sizes(gen, "grid", kernel->id,
kernel->grid_dim, kernel->n_grid);
}
static void *free_stmts(struct gpu_stmt *stmts, int n)
{
int i;
if (!stmts)
return NULL;
for (i = 0; i < n; ++i) {
struct gpu_stmt_access *access, *next;
for (access = stmts[i].accesses; access; access = next) {
next = access->next;
isl_id_free(access->ref_id);
isl_map_free(access->access);
isl_map_free(access->tagged_access);
free(access);
}
isl_id_free(stmts[i].id);
}
free(stmts);
return NULL;
}
/* Add parameters p[i] with identifiers "ids" to "set",
* with bounds to 0 <= p[i] < size[i].
*/
__isl_give isl_set *add_bounded_parameters(__isl_take isl_set *set,
int *size, __isl_keep isl_id_list *ids)
{
int i, len;
unsigned nparam;
len = isl_id_list_n_id(ids);
nparam = isl_set_dim(set, isl_dim_param);
set = isl_set_add_dims(set, isl_dim_param, len);
for (i = 0; i < len; ++i) {
isl_id *id;
id = isl_id_list_get_id(ids, i);
set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
set = isl_set_lower_bound_si(set, isl_dim_param, nparam + i, 0);
set = isl_set_upper_bound_si(set, isl_dim_param,
nparam + i, size[i] - 1);
}
return set;
}
/* Add "len" parameters p[i] with identifiers "ids" and intersect "set"
* with
*
* { : 0 <= p[i] < size[i] }
*
* or an overapproximation.
*/
static __isl_give isl_set *add_bounded_parameters_dynamic(
__isl_take isl_set *set, __isl_keep isl_multi_pw_aff *size,
__isl_keep isl_id_list *ids)
{
int i, len;
unsigned nparam;
isl_space *space;
isl_local_space *ls;
len = isl_multi_pw_aff_dim(size, isl_dim_out);
nparam = isl_set_dim(set, isl_dim_param);
set = isl_set_add_dims(set, isl_dim_param, len);
for (i = 0; i < len; ++i) {
isl_id *id;
id = isl_id_list_get_id(ids, i);
set = isl_set_set_dim_id(set, isl_dim_param, nparam + i, id);
}
space = isl_space_params(isl_set_get_space(set));
ls = isl_local_space_from_space(space);
for (i = 0; i < len; ++i) {
isl_pw_aff *param, *size_i, *zero;
isl_set *bound;
param = isl_pw_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_param, nparam + i);
size_i = isl_multi_pw_aff_get_pw_aff(size, i);
bound = isl_pw_aff_lt_set(isl_pw_aff_copy(param), size_i);
bound = isl_set_from_basic_set(isl_set_simple_hull(bound));
set = isl_set_intersect_params(set, bound);
zero = isl_pw_aff_zero_on_domain(isl_local_space_copy(ls));
bound = isl_pw_aff_ge_set(param, zero);
set = isl_set_intersect_params(set, bound);
}
isl_local_space_free(ls);
return set;
}
/* Return the union of all tagged access relations in the group.
*/
static __isl_give isl_union_map *group_tagged_access_relation(
struct gpu_array_ref_group *group)
{
int i;
isl_union_map *access;
access = isl_union_map_empty(isl_map_get_space(group->access));
for (i = 0; i < group->n_ref; ++i) {
isl_map *map_i;
map_i = isl_map_copy(group->refs[i]->tagged_access);
access = isl_union_map_union(access,
isl_union_map_from_map(map_i));
}
return access;
}
/* Return the extent of "array", recomputed from the bounds.
* The recomputed extent may be simpler than the original extent.
*/
static __isl_give isl_set *array_extent(struct gpu_array_info *array)
{
int i;
isl_id *id;
isl_space *space;
isl_local_space *ls;
isl_set *extent;
id = isl_set_get_tuple_id(array->extent);
space = isl_set_get_space(array->extent);
extent = isl_set_universe(isl_space_copy(space));
ls = isl_local_space_from_space(space);
for (i = 0; i < array->n_index; ++i) {
isl_pw_aff *bound;
isl_aff *aff;
isl_pw_aff *index;
isl_set *lt;
extent = isl_set_lower_bound_si(extent, isl_dim_set, i, 0);
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_set, i);
index = isl_pw_aff_from_aff(aff);
bound = isl_multi_pw_aff_get_pw_aff(array->bound, i);
bound = isl_pw_aff_from_range(bound);
bound = isl_pw_aff_add_dims(bound, isl_dim_in, array->n_index);
bound = isl_pw_aff_set_tuple_id(bound, isl_dim_in,
isl_id_copy(id));
lt = isl_pw_aff_lt_set(index, bound);
extent = isl_set_intersect(extent, lt);
}
isl_local_space_free(ls);
isl_id_free(id);
return extent;
}
/* Return a map from the first group->shared_tile->depth dimensions
* of the computed schedule to the array tile in
* global memory that corresponds to the shared memory copy.
*
* In particular, return a map
*
* { D[i] -> A[a] }
*
* with constraints
*
* tile_offset(i) <= a <= tile_offset(i) + tile_size - 1 (1)
*
* and
*
* 0 <= a <= array_size - 1 (2)
*
* Note that if some stride has been detected (i.e., when
* group->shared_tile->bound[i].shift is set), then a in (1) refers
* to the shifted and scaled down version.
*
* Constraints (1) are obtained by mapping the size constraints on the
* shared/private memory tile back to the access relation.
* Constraints (2) are obtained from the (recomputed) extent.
*/
static __isl_give isl_map *group_tile(struct gpu_array_ref_group *group)
{
int i;
int n_index = group->array->n_index;
isl_map *tile;
isl_space *space;
isl_set *local;
isl_set *extent;
space = isl_multi_aff_get_space(group->shared_tile->tiling);
space = isl_space_range(space);
local = isl_set_universe(space);
for (i = 0; i < n_index; ++i) {
isl_val *bound;
local = isl_set_lower_bound_si(local, isl_dim_set, i, 0);
bound = isl_val_copy(group->shared_tile->bound[i].size);
bound = isl_val_sub_ui(bound, 1);
local = isl_set_upper_bound_val(local, isl_dim_set, i, bound);
}
local = isl_set_preimage_multi_aff(local,
isl_multi_aff_copy(group->shared_tile->tiling));
tile = isl_set_unwrap(local);
extent = array_extent(group->array);
tile = isl_map_intersect_range(tile, extent);
return tile;
}
/* Given a mapping "iterator_map" from the AST schedule to a domain,
* return the corresponding mapping from the AST schedule to
* to the outer kernel->copy_schedule_dim dimensions of
* the schedule computed by PPCG for this kernel.
*
* Note that kernel->copy_schedule_dim is at least as large as
* the largest depth of any array reference group associated to the kernel.
* This is needed as the returned schedule is used to extract a mapping
* to the outer tile->depth dimensions in transform_index.
*/
static __isl_give isl_pw_multi_aff *compute_sched_to_copy(
struct ppcg_kernel *kernel, __isl_take isl_pw_multi_aff *iterator_map)
{
isl_union_pw_multi_aff *upma;
isl_pw_multi_aff *pma;
isl_space *space;
space = isl_space_range(isl_pw_multi_aff_get_space(iterator_map));
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_out,
kernel->copy_schedule_dim);
upma = isl_union_pw_multi_aff_copy(kernel->copy_schedule);
pma = isl_union_pw_multi_aff_extract_pw_multi_aff(upma, space);
isl_union_pw_multi_aff_free(upma);
return isl_pw_multi_aff_pullback_pw_multi_aff(pma, iterator_map);
}
/* If max_shared_memory is not set to infinity (-1), then make
* sure that the total amount of shared memory required by the
* array reference groups mapped to shared memory by "kernel"
* is no larger than this maximum.
*
* We apply a greedy approach and discard (keep in global memory)
* those groups that would result in a total memory size that
* is larger than the maximum.
*
* This function should be called after any function that may
* affect the decision on whether to place a reference group
* in private, shared or global memory.
*/
static void check_shared_memory_bound(struct ppcg_kernel *kernel)
{
int i, j;
isl_val *left, *size;
if (kernel->options->max_shared_memory < 0)
return;
left = isl_val_int_from_si(kernel->ctx,
kernel->options->max_shared_memory);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
for (j = 0; j < local->n_group; ++j) {
struct gpu_array_ref_group *group;
enum ppcg_group_access_type type;
group = local->groups[j];
type = gpu_array_ref_group_type(group);
if (type != ppcg_access_shared)
continue;
size = gpu_array_tile_size(group->shared_tile);
size = isl_val_mul_ui(size, local->array->size);
if (isl_val_le(size, left)) {
left = isl_val_sub(left, size);
continue;
}
isl_val_free(size);
group->shared_tile =
gpu_array_tile_free(group->shared_tile);
}
}
isl_val_free(left);
}
/* Mark all arrays of "kernel" that have an array reference group
* that is not mapped to private or shared memory as
* accessing the corresponding global device memory.
*/
static void mark_global_arrays(struct ppcg_kernel *kernel)
{
int i, j;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
if (local->global)
continue;
for (j = 0; j < local->n_group; ++j) {
if (gpu_array_ref_group_tile(local->groups[j]))
continue;
local->global = 1;
local->array->global = 1;
break;
}
}
}
/* Compute a tiling for all the array reference groups in "kernel".
*/
static void compute_group_tilings(struct ppcg_kernel *kernel)
{
int i, j;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j)
gpu_array_ref_group_compute_tiling(array->groups[j]);
}
}
/* Compute the effective grid size as a list of the sizes in each dimension.
*
* The grid size specified by the user or set by default
* in read_grid_sizes() and applied by the block filter,
* may be too large for the given code in the sense that
* it may contain blocks that don't need to execute anything.
* We therefore don't return this grid size, but instead the
* smallest grid size that ensures that all blocks that actually
* execute code are included in the grid.
*
* We first extract a description of the grid, i.e., the possible values
* of the block ids, from the domain elements in "domain" and
* kernel->block_filter.
* The block ids are parameters in kernel->block_filter.
* We simply need to change them into set dimensions.
*
* Then, for each block dimension, we compute the maximal value of the block id
* and add one.
*/
static __isl_give isl_multi_pw_aff *extract_grid_size(
struct ppcg_kernel *kernel, __isl_take isl_union_set *domain)
{
int i;
isl_set *grid;
isl_set *context;
isl_multi_pw_aff *size;
domain = isl_union_set_intersect(domain,
isl_union_set_copy(kernel->block_filter));
grid = isl_union_set_params(domain);
grid = isl_set_from_params(grid);
grid = isl_set_add_dims(grid, isl_dim_set, kernel->n_grid);
for (i = 0; i < kernel->n_grid; ++i) {
int pos;
isl_id *id;
id = isl_id_list_get_id(kernel->block_ids, i);
pos = isl_set_find_dim_by_id(grid, isl_dim_param, id);
isl_id_free(id);
assert(pos >= 0);
grid = isl_set_equate(grid, isl_dim_param, pos, isl_dim_set, i);
grid = isl_set_project_out(grid, isl_dim_param, pos, 1);
}
grid = isl_set_coalesce(grid);
size = ppcg_size_from_extent(grid);
context = isl_set_params(isl_set_copy(kernel->context));
return isl_multi_pw_aff_gist(size, context);
}
/* Compute the size of a fixed bounding box around the origin and "set",
* where "set" is assumed to contain only non-negative elements,
* and store the results in "size".
* In particular, compute the maximal value of "set" in each direction
* and add one.
*/
static void extract_fixed_size(__isl_take isl_set *set, int *size)
{
int i, n;
isl_local_space *ls;
isl_aff *obj;
n = isl_set_dim(set, isl_dim_set);
ls = isl_local_space_from_space(isl_set_get_space(set));
obj = isl_aff_zero_on_domain(ls);
for (i = 0; i < n; ++i) {
isl_val *max;
obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 1);
max = isl_set_max_val(set, obj);
size[i] = isl_val_get_num_si(max) + 1;
isl_val_free(max);
obj = isl_aff_set_coefficient_si(obj, isl_dim_in, i, 0);
}
isl_aff_free(obj);
isl_set_free(set);
}
/* Compute the effective block size as a list of the sizes in each dimension
* and store the sizes in kernel->block_dim.
*
* The block size specified by the user or set by default
* in read_block_sizes() and applied by the thread filter,
* may be too large for the given code in the sense that
* it may contain threads that don't need to execute anything.
* We therefore update this block size in kernel->block_dim
* to the smallest block size that ensures that all threads
* that actually execute code are included in the block.
*
* The set of possible values of the thread ids is obtained from
* the domain elements "domain" and kernel->thread_filter.
* The current implementation eliminates all parameters, ensuring
* that the size is a fixed constant in each dimension.
* In principle we could also compute parametric sizes.
* We would have to make sure to project out all b%d and t%d parameters,
* however.
*/
static isl_stat extract_block_size(struct ppcg_kernel *kernel,
__isl_take isl_union_set *domain)
{
int i;
int nparam;
isl_set *block;
domain = isl_union_set_intersect(domain,
isl_union_set_copy(kernel->thread_filter));
block = isl_union_set_params(domain);
block = isl_set_from_params(block);
block = isl_set_add_dims(block, isl_dim_set, kernel->n_block);
for (i = 0; i < kernel->n_block; ++i) {
int pos;
isl_id *id;
if (!block)
return isl_stat_error;
id = isl_id_list_get_id(kernel->thread_ids, i);
pos = isl_set_find_dim_by_id(block, isl_dim_param, id);
isl_id_free(id);
if (pos < 0)
isl_die(isl_set_get_ctx(block), isl_error_internal,
"missing constraints on thread identifier",
block = isl_set_free(block));
block = isl_set_equate(block, isl_dim_param, pos,
isl_dim_set, i);
}
nparam = isl_set_dim(block, isl_dim_param);
block = isl_set_project_out(block, isl_dim_param, 0, nparam);
if (!block)
return isl_stat_error;
extract_fixed_size(block, kernel->block_dim);
return isl_stat_ok;
}
struct ppcg_kernel *ppcg_kernel_free(struct ppcg_kernel *kernel)
{
int i, j;
if (!kernel)
return NULL;
isl_id_list_free(kernel->block_ids);
isl_id_list_free(kernel->thread_ids);
isl_multi_pw_aff_free(kernel->grid_size);
isl_ast_expr_free(kernel->grid_size_expr);
isl_set_free(kernel->context);
isl_union_set_free(kernel->core);
isl_union_set_free(kernel->arrays);
isl_union_pw_multi_aff_free(kernel->contraction);
isl_union_set_free(kernel->expanded_domain);
isl_space_free(kernel->space);
isl_ast_node_free(kernel->tree);
isl_union_set_free(kernel->block_filter);
isl_union_set_free(kernel->thread_filter);
isl_union_pw_multi_aff_free(kernel->copy_schedule);
isl_union_set_free(kernel->sync_writes);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j)
gpu_array_ref_group_free(array->groups[j]);
free(array->groups);
isl_multi_pw_aff_free(array->bound);
isl_ast_expr_free(array->bound_expr);
}
free(kernel->array);
for (i = 0; i < kernel->n_var; ++i) {
free(kernel->var[i].name);
isl_vec_free(kernel->var[i].size);
}
free(kernel->var);
free(kernel);
return NULL;
}
/* Wrapper around ppcg_kernel_free for use as a isl_id_set_free_user callback.
*/
static void ppcg_kernel_free_wrap(void *user)
{
struct ppcg_kernel *kernel = user;
ppcg_kernel_free(kernel);
}
static void create_kernel_var(isl_ctx *ctx, struct gpu_array_ref_group *group,
struct ppcg_kernel_var *var)
{
int j;
struct gpu_array_tile *tile;
isl_printer *p;
var->array = group->array;
var->type = gpu_array_ref_group_type(group);
tile = gpu_array_ref_group_tile(group);
p = isl_printer_to_str(ctx);
p = gpu_array_ref_group_print_name(group, p);
var->name = isl_printer_get_str(p);
isl_printer_free(p);
var->size = isl_vec_alloc(ctx, group->array->n_index);
for (j = 0; j < group->array->n_index; ++j)
var->size = isl_vec_set_element_val(var->size, j,
isl_val_copy(tile->bound[j].size));
}
static int create_kernel_vars(struct ppcg_kernel *kernel)
{
int i, j, n;
n = 0;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j) {
struct gpu_array_ref_group *group = array->groups[j];
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type != ppcg_access_global)
++n;
}
}
kernel->n_var = n;
kernel->var = isl_calloc_array(kernel->ctx, struct ppcg_kernel_var, n);
if (!kernel->var)
return -1;
n = 0;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j) {
struct gpu_array_ref_group *group = array->groups[j];
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_global)
continue;
create_kernel_var(kernel->ctx, group, &kernel->var[n]);
++n;
}
}
return 0;
}
/* Replace "pa" by the zero function defined over the universe domain
* in the space of "pa".
*/
static __isl_give isl_pw_aff *set_universally_zero(__isl_take isl_pw_aff *pa)
{
isl_space *space;
isl_aff *zero;
space = isl_space_domain(isl_pw_aff_get_space(pa));
isl_pw_aff_free(pa);
zero = isl_aff_zero_on_domain(isl_local_space_from_space(space));
return isl_pw_aff_from_aff(zero);
}
/* The sizes of the arrays on the host that have been computed by
* extract_array_info may depend on the parameters. Use the extra
* constraints on the parameters that are valid at "host_domain"
* to simplify these expressions and store the results in kernel->array.
*
* We only need these localized bounds for arrays that are accessed
* by the current kernel. If we have found at least one reference group
* then the array is accessed by the kernel.
*
* The resulting sizes may be functions that are nowhere defined
* in case the access function cannot possibly access anything inside
* the kernel for some reason. If so, they are replaced by the zero
* function. Since the access function cannot actually access anything,
* there is no harm in printing the array sizes as zero.
*/
static void localize_bounds(struct ppcg_kernel *kernel,
__isl_keep isl_set *host_domain)
{
int i, j;
isl_set *context;
context = isl_set_copy(host_domain);
context = isl_set_params(context);
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
isl_multi_pw_aff *bound;
int n_index;
if (local->n_group == 0)
continue;
n_index = local->array->n_index;
bound = isl_multi_pw_aff_copy(local->array->bound);
for (j = 0; j < n_index; ++j) {
isl_pw_aff *pwaff;
int empty;
pwaff = isl_multi_pw_aff_get_pw_aff(bound, j);
pwaff = isl_pw_aff_gist(pwaff, isl_set_copy(context));
empty = isl_pw_aff_is_empty(pwaff);
if (empty < 0)
pwaff = isl_pw_aff_free(pwaff);
else if (empty)
pwaff = set_universally_zero(pwaff);
bound = isl_multi_pw_aff_set_pw_aff(bound, j, pwaff);
}
local->n_index = n_index;
local->bound = bound;
}
isl_set_free(context);
}
/* Create the array of gpu_local_array_info structures "array"
* inside "kernel". The number of elements in this array is
* the same as the number of arrays in "prog".
* Initialize the "array" field of each local array to point
* to the corresponding array in "prog".
*/
static struct ppcg_kernel *ppcg_kernel_create_local_arrays(
struct ppcg_kernel *kernel, struct gpu_prog *prog)
{
int i;
isl_ctx *ctx;
ctx = isl_set_get_ctx(prog->context);
kernel->array = isl_calloc_array(ctx,
struct gpu_local_array_info, prog->n_array);
if (!kernel->array)
return ppcg_kernel_free(kernel);
kernel->n_array = prog->n_array;
for (i = 0; i < prog->n_array; ++i)
kernel->array[i].array = &prog->array[i];
return kernel;
}
/* Does "kernel" need to be passed an argument corresponding to array "i"?
*
* The argument is only needed if the kernel accesses this device memory.
*/
int ppcg_kernel_requires_array_argument(struct ppcg_kernel *kernel, int i)
{
return kernel->array[i].global;
}
/* Find the element in gen->stmt that has the given "id".
* Return NULL if no such gpu_stmt can be found.
*/
static struct gpu_stmt *find_stmt(struct gpu_prog *prog, __isl_keep isl_id *id)
{
int i;
for (i = 0; i < prog->n_stmts; ++i) {
if (id == prog->stmts[i].id)
break;
}
return i < prog->n_stmts ? &prog->stmts[i] : NULL;
}
void ppcg_kernel_stmt_free(void *user)
{
struct ppcg_kernel_stmt *stmt = user;
if (!stmt)
return;
switch (stmt->type) {
case ppcg_kernel_copy:
isl_ast_expr_free(stmt->u.c.index);
isl_ast_expr_free(stmt->u.c.local_index);
break;
case ppcg_kernel_domain:
isl_id_to_ast_expr_free(stmt->u.d.ref2expr);
break;
case ppcg_kernel_sync:
break;
}
free(stmt);
}
/* Return the gpu_stmt_access in the list "accesses" that corresponds
* to "ref_id".
*/
static struct gpu_stmt_access *find_access(struct gpu_stmt_access *accesses,
__isl_keep isl_id *ref_id)
{
struct gpu_stmt_access *access;
for (access = accesses; access; access = access->next)
if (access->ref_id == ref_id)
return access;
return NULL;
}
/* Return the index of the array called "name" in the list of arrays.
*/
static int find_array_index(struct ppcg_kernel *kernel, const char *name)
{
int i;
for (i = 0; i < kernel->n_array; ++i)
if (!strcmp(name, kernel->array[i].array->name))
return i;
return -1;
}
/* Internal data structure for the index and AST expression transformation
* callbacks for pet_stmt_build_ast_exprs.
*
* "kernel" is the kernel for which are computing AST expressions and
* may be NULL if we are not inside a kernel.
* "accesses" is the list of gpu_stmt_access in the statement.
* "iterator_map" expresses the statement iterators in terms of
* the AST loop iterators.
* "sched2copy" expresses the outer copy_schedule_dim dimensions of
* the kernel schedule in terms of the AST loop iterators and
* may be NULL if we are not inside a kernel.
*
* The following fields are set in transform_index and used in transform_expr.
* "array" is the array that is being accessed.
* "global" is set if the global array is accessed (rather than
* shared/private memory).
* "local_array" refers to information on the array specialized
* to the current kernel.
*/
struct ppcg_transform_data {
struct ppcg_options *options;
struct ppcg_kernel *kernel;
struct gpu_stmt_access *accesses;
isl_pw_multi_aff *iterator_map;
isl_pw_multi_aff *sched2copy;
struct gpu_array_info *array;
int global;
struct gpu_local_array_info *local_array;
};
/* Return a pointer to the gpu_array_ref_group in "local"
* that contains the reference "access".
* Return NULL if no such group can be found.
*/
static struct gpu_array_ref_group *find_ref_group(
struct gpu_local_array_info *local, struct gpu_stmt_access *access)
{
int i, j;
for (i = 0; i < local->n_group; ++i) {
struct gpu_array_ref_group *group = local->groups[i];
for (j = 0; j < group->n_ref; ++j)
if (group->refs[j] == access)
return group;
}
return NULL;
}
/* Given an index expression "index" of the form
*
* L -> F(A),
*
* with F(A) either A or some subfield of A and L the AST loop iterators,
* and a tiling "tiling" of the form
*
* [L -> A] -> T
*
* apply the tiling to the outer array in the index expression to obtain
*
* L -> T(A)
*
* If F(A) is some subfield of A, then separate the member access
* into the base index expression and the field index expression,
* apply the tiling to the base index expression and combine the result
* with the field index expression.
*
* If F(A) is A, then modify index to keep track of the iterators
*
* L -> [L -> A]
*
* and combine the result with the tiling to obtain a tiled index expression
* in terms of the AST loop iterators
*
* L -> T
*/
static __isl_give isl_multi_pw_aff *tile_outer(
__isl_take isl_multi_pw_aff *index, __isl_take isl_multi_pw_aff *tiling)
{
isl_bool is_wrapping;
isl_space *space;
isl_multi_pw_aff *mpa;
is_wrapping = isl_multi_pw_aff_range_is_wrapping(index);
if (is_wrapping < 0)
goto error;
if (is_wrapping) {
isl_multi_pw_aff *field;
field = isl_multi_pw_aff_copy(index);
field = isl_multi_pw_aff_range_factor_range(field);
index = isl_multi_pw_aff_range_factor_domain(index);
index = tile_outer(index, tiling);
return isl_multi_pw_aff_range_product(index, field);
}
space = isl_space_domain(isl_multi_pw_aff_get_space(index));
space = isl_space_map_from_set(space);
mpa = isl_multi_pw_aff_identity(space);
index = isl_multi_pw_aff_range_product(mpa, index);
index = isl_multi_pw_aff_pullback_multi_pw_aff(tiling, index);
return index;
error:
isl_multi_pw_aff_free(index);
isl_multi_pw_aff_free(tiling);
return NULL;
}
/* Index transformation callback for pet_stmt_build_ast_exprs.
*
* "index" expresses the array indices in terms of statement iterators
*
* We first reformulate "index" in terms of the AST loop iterators.
* Then we check if we are accessing the global array or
* a shared/private copy. In particular, if we are not inside a kernel
* then we must be accessing a global array.
* In the former case, we simply return
* the updated index. If "index" is an affine expression rather
* than an array access, then we also return the updated index here.
*
* If no reference groups have been computed for the array,
* then we can only be accessing the global array.
*
* Otherwise, we apply the tiling to the index.
* This tiling is of the form
*
* [D -> A] -> T
*
* where D corresponds to the outer tile->depth dimensions of
* the kernel schedule.
* The index is of the form
*
* L -> A
*
* We update the tiling to refer to the AST loop iterators
*
* [L -> A] -> T
*
* and combine it with the index to obtain a tiled index expression in terms
* of the AST loop iterators
*
* L -> T
*
* Note that while the tiling applies directly to an outer array.
* the index may refer to some subfield of this outer array.
* In such cases, the result will refer to the same subfield of the tile.
* That is, an index expression of the form L -> F(A) will be transformed
* into an index expression of the form L -> F(T).
*/
static __isl_give isl_multi_pw_aff *transform_index(
__isl_take isl_multi_pw_aff *index, __isl_keep isl_id *ref_id,
void *user)
{
struct ppcg_transform_data *data = user;
struct gpu_stmt_access *access;
struct gpu_array_ref_group *group;
struct gpu_array_tile *tile;
isl_pw_multi_aff *iterator_map;
int i;
int dim;
const char *name;
isl_space *space;
isl_multi_pw_aff *tiling;
isl_pw_multi_aff *pma;
isl_pw_multi_aff *sched2depth;
data->array = NULL;
iterator_map = isl_pw_multi_aff_copy(data->iterator_map);
index = isl_multi_pw_aff_pullback_pw_multi_aff(index, iterator_map);
if (!data->kernel)
return index;
access = find_access(data->accesses, ref_id);
if (!access)
return index;
if (!isl_map_has_tuple_name(access->access, isl_dim_out))
return index;
name = get_outer_array_name(access->access);
i = find_array_index(data->kernel, name);
if (i < 0)
isl_die(isl_multi_pw_aff_get_ctx(index), isl_error_internal,
"cannot find array",
return isl_multi_pw_aff_free(index));
data->local_array = &data->kernel->array[i];
data->array = data->local_array->array;
group = find_ref_group(data->local_array, access);
if (!group) {
data->global = 1;
return index;
}
tile = gpu_array_ref_group_tile(group);
data->global = !tile;
if (!tile)
return index;
space = isl_space_domain(isl_multi_aff_get_space(tile->tiling));
space = isl_space_range(isl_space_unwrap(space));
space = isl_space_map_from_set(space);
pma = isl_pw_multi_aff_identity(space);
sched2depth = isl_pw_multi_aff_copy(data->sched2copy);
dim = isl_pw_multi_aff_dim(sched2depth, isl_dim_out);
sched2depth = isl_pw_multi_aff_drop_dims(sched2depth, isl_dim_out,
tile->depth, dim - tile->depth);
pma = isl_pw_multi_aff_product(sched2depth, pma);
tiling = isl_multi_pw_aff_from_multi_aff(
isl_multi_aff_copy(tile->tiling));
tiling = isl_multi_pw_aff_pullback_pw_multi_aff(tiling, pma);
index = tile_outer(index, tiling);
return index;
}
/* Dereference "expr" by adding an index [0].
* The original "expr" is assumed not to have any indices.
*
* If "expr" is a member access, then the dereferencing needs
* to be applied to the structure argument of this member access.
*/
static __isl_give isl_ast_expr *dereference(__isl_take isl_ast_expr *expr)
{
isl_ctx *ctx;
isl_ast_expr *arg0, *res;
isl_ast_expr_list *list;
arg0 = isl_ast_expr_get_op_arg(expr, 0);
if (!arg0)
return isl_ast_expr_free(expr);
if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
isl_ast_expr *arg;
arg = isl_ast_expr_get_op_arg(arg0, 0);
arg = dereference(arg);
arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
return expr;
}
isl_ast_expr_free(arg0);
ctx = isl_ast_expr_get_ctx(expr);
res = isl_ast_expr_from_val(isl_val_zero(ctx));
list = isl_ast_expr_list_from_ast_expr(res);
res = isl_ast_expr_get_op_arg(expr, 0);
res = isl_ast_expr_access(res, list);
isl_ast_expr_free(expr);
return res;
}
/* Linearize the index expression "expr" based on the array bounds
* of "array".
*
* That is, transform expression
*
* A[i_0][i_1]...[i_n]
*
* to
*
* A[(..((i_0 * b_1 + i_1) ... ) * b_n + i_n]
*
* where b_0, b_1, ..., b_n are the bounds on the array.
*
* If the base of "expr" is a member access, then the linearization needs
* to be applied to the structure argument of this member access.
*
* In the base case, if "expr" has no arguments (other than the name of
* the array), then we are passing an entire array to a function.
* In this case, there is nothing to linearize.
* Note that at this point an expression with no arguments can
* only be an entire array because the scalar case and
* the case of single struct are handled by the caller.
*
* If the number of specified index expressions in "expr"
* is smaller than the dimension of the accessed array,
* then the missing i_j also do not appear in the linearized expression.
* Furthermore, since such an expression does not refer to a single
* element while the default linearized expression would refer to
* a single element, we return the expression
*
* A + (..((i_0 * b_1 + i_1) ... ) * b_l + i_l)
*
* instead. Note that because of the special case handling above,
* we can assume here that there is at least one index expression.
*/
__isl_give isl_ast_expr *gpu_local_array_info_linearize_index(
struct gpu_local_array_info *array, __isl_take isl_ast_expr *expr)
{
int i, n;
isl_ast_expr *arg0;
isl_ast_expr *res;
isl_ast_expr_list *list;
arg0 = isl_ast_expr_get_op_arg(expr, 0);
if (isl_ast_expr_get_type(arg0) == isl_ast_expr_op &&
isl_ast_expr_get_op_type(arg0) == isl_ast_op_member) {
isl_ast_expr *arg;
arg = isl_ast_expr_get_op_arg(arg0, 0);
arg = gpu_local_array_info_linearize_index(array, arg);
arg0 = isl_ast_expr_set_op_arg(arg0, 0, arg);
expr = isl_ast_expr_set_op_arg(expr, 0, arg0);
return expr;
}
isl_ast_expr_free(arg0);
if (isl_ast_expr_get_op_n_arg(expr) == 1)
return expr;
n = isl_ast_expr_get_op_n_arg(expr);
res = isl_ast_expr_get_op_arg(expr, 1);
for (i = 1; i < array->n_index; ++i) {
isl_ast_expr *expr_i;
expr_i = isl_ast_expr_get_op_arg(array->bound_expr, 1 + i);
res = isl_ast_expr_mul(res, expr_i);
if (i + 1 >= n)
continue;
expr_i = isl_ast_expr_get_op_arg(expr, i + 1);
res = isl_ast_expr_add(res, expr_i);
}
if (1 + array->n_index > n) {
res = isl_ast_expr_add(isl_ast_expr_get_op_arg(expr, 0), res);
} else {
list = isl_ast_expr_list_from_ast_expr(res);
res = isl_ast_expr_get_op_arg(expr, 0);
res = isl_ast_expr_access(res, list);
}
isl_ast_expr_free(expr);
return res;
}
/* AST expression transformation callback for pet_stmt_build_ast_exprs.
*
* If the AST expression refers to an array that is not accessed
* at all, then this means the value of the expression is not used,
* so we might as well print zero (NULL pointer) instead.
*
* If the AST expression refers to a global scalar that is not
* a read-only scalar, then its address was passed to the kernel and
* we need to dereference it.
*
* If the AST expression refers to an access to a global array,
* then we linearize the access exploiting the bounds in data->local_array.
*/
static __isl_give isl_ast_expr *transform_expr(__isl_take isl_ast_expr *expr,
__isl_keep isl_id *id, void *user)
{
struct ppcg_transform_data *data = user;
if (!data->array)
return expr;
if (!data->array->accessed) {
isl_ctx *ctx;
ctx = isl_ast_expr_get_ctx(expr);
isl_ast_expr_free(expr);
return isl_ast_expr_from_val(isl_val_zero(ctx));
}
if (gpu_array_is_read_only_scalar(data->array))
return expr;
if (!data->global)
return expr;
if (data->array->n_index == 0)
return dereference(expr);
if (!data->array->linearize)
return expr;
return gpu_local_array_info_linearize_index(data->local_array, expr);
}
/* This function is called for each instance of a user statement
* in the kernel "kernel", identified by "gpu_stmt".
* "kernel" may be NULL if we are not inside a kernel.
*
* We attach a struct ppcg_kernel_stmt to the "node", containing
* a computed AST expression for each access, through an annotation
* with name "user".
* These AST expressions are computed from iterator_map,
* which expresses the domain
* elements in terms of the generated loops, and sched2copy,
* which expresses the outer copy_schedule_dim dimensions of
* the kernel schedule computed by PPCG in terms of the generated loops.
*/
static __isl_give isl_ast_node *create_domain_leaf(
struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build, struct gpu_stmt *gpu_stmt,
struct gpu_gen *gen)
{
struct ppcg_transform_data data;
struct ppcg_kernel_stmt *stmt;
isl_ctx *ctx;
isl_id *id;
isl_pw_multi_aff *sched2copy;
isl_map *map;
isl_pw_multi_aff *iterator_map;
isl_union_map *schedule;
if (!node)
return NULL;
ctx = isl_ast_node_get_ctx(node);
stmt = isl_calloc_type(ctx, struct ppcg_kernel_stmt);
if (!stmt)
return isl_ast_node_free(node);
schedule = isl_ast_build_get_schedule(build);
map = isl_map_reverse(isl_map_from_union_map(schedule));
iterator_map = isl_pw_multi_aff_from_map(map);
if (kernel)
sched2copy = compute_sched_to_copy(kernel,
isl_pw_multi_aff_copy(iterator_map));
else
sched2copy = NULL;
stmt->type = ppcg_kernel_domain;
stmt->u.d.stmt = gpu_stmt;
data.kernel = kernel;
data.accesses = stmt->u.d.stmt->accesses;
data.iterator_map = iterator_map;
data.sched2copy = sched2copy;
stmt->u.d.ref2expr = gen->build_ast_expr(stmt->u.d.stmt->stmt,
build, &transform_index, &data,
&transform_expr, &data);
isl_pw_multi_aff_free(iterator_map);
isl_pw_multi_aff_free(sched2copy);
id = isl_id_alloc(ctx, "user", stmt);
id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
return isl_ast_node_set_annotation(node, id);
}
/* This function is called for each statement node in the AST
* for copying to or from shared/private memory.
* Attach a pointer to a ppcg_kernel_stmt representing the copy
* statement to the node.
* The statement name is "read" or "write", depending on whether we are
* reading from global memory or writing to global memory.
*
* The schedule is of the form
*
* type[D -> A] -> L
*
* where D corresponds to the outer tile->depth dimensions of
* the kernel schedule, A to the global array and L to the outer
* generated AST schedule.
* We compute the inverse and strip off the type, resulting in
*
* L -> [D -> A]
*
* We combine this mapping with on the one hand the projection
*
* [D -> A] -> A
*
* and on the other hand the group tiling
*
* [D -> A] -> T
*
* resulting in
*
* L -> A and L -> T
*
* and store the corresponding expressions in stmt->index and stmt->local_index,
* where stmt points to the ppcg_kernel_stmt that is attached to the node.
* stmt->index is linearized if the global memory array is linearized.
*/
static __isl_give isl_ast_node *create_access_leaf(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, __isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build)
{
struct ppcg_kernel_stmt *stmt;
struct gpu_array_tile *tile;
isl_id *id;
isl_ast_expr *expr;
isl_space *space;
isl_map *access;
isl_pw_multi_aff *pma, *pma2;
const char *type;
stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
if (!stmt)
return isl_ast_node_free(node);
access = isl_map_from_union_map(isl_ast_build_get_schedule(build));
type = isl_map_get_tuple_name(access, isl_dim_in);
stmt->u.c.read = !strcmp(type, "read");
access = isl_map_reverse(access);
pma = isl_pw_multi_aff_from_map(access);
pma = isl_pw_multi_aff_reset_tuple_id(pma, isl_dim_out);
space = isl_space_range(isl_pw_multi_aff_get_space(pma));
space = isl_space_unwrap(space);
pma2 = isl_pw_multi_aff_range_map(space);
pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2,
isl_pw_multi_aff_copy(pma));
expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
if (group->array->linearize)
expr = gpu_local_array_info_linearize_index(group->local_array,
expr);
stmt->u.c.index = expr;
tile = gpu_array_ref_group_tile(group);
pma2 = isl_pw_multi_aff_from_multi_aff(
isl_multi_aff_copy(tile->tiling));
pma2 = isl_pw_multi_aff_pullback_pw_multi_aff(pma2, pma);
expr = isl_ast_build_access_from_pw_multi_aff(build, pma2);
stmt->u.c.local_index = expr;
stmt->u.c.array = group->array;
stmt->u.c.local_array = group->local_array;
stmt->type = ppcg_kernel_copy;
id = isl_id_alloc(kernel->ctx, "copy", stmt);
id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
return isl_ast_node_set_annotation(node, id);
}
/* Create a synchronization ppcg_kernel_stmt and
* attach it to the node "node" representing the synchronization.
*/
static __isl_give isl_ast_node *create_sync_leaf(
struct ppcg_kernel *kernel, __isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build)
{
struct ppcg_kernel_stmt *stmt;
isl_id *id;
stmt = isl_calloc_type(kernel->ctx, struct ppcg_kernel_stmt);
if (!stmt)
return isl_ast_node_free(node);
stmt->type = ppcg_kernel_sync;
id = isl_id_alloc(kernel->ctx, "sync", stmt);
id = isl_id_set_free_user(id, &ppcg_kernel_stmt_free);
return isl_ast_node_set_annotation(node, id);
}
/* Build AST expressions for the device array sizes of all arrays in "prog"
* that require allocation on the device using "build", as well as
* for the original array sizes of all arrays that need to be declared
* on the host.
* "node" is freed in case of error.
*/
static __isl_give isl_ast_node *build_array_bounds(
__isl_take isl_ast_node *node, struct gpu_prog *prog,
__isl_keep isl_ast_build *build)
{
int i;
for (i = 0; i < prog->n_array; ++i) {
struct gpu_array_info *array = &prog->array[i];
isl_multi_pw_aff *size;
isl_ast_expr *expr;
if (!gpu_array_requires_device_allocation(array))
continue;
size = isl_multi_pw_aff_copy(array->bound);
expr = ppcg_build_size_expr(size, build);
array->bound_expr = expr;
if (!expr)
return isl_ast_node_free(node);
}
for (i = 0; i < prog->n_array; ++i) {
struct gpu_array_info *array = &prog->array[i];
isl_set *extent;
isl_multi_pw_aff *size;
isl_ast_expr *expr;
if (!array->declare_local)
continue;
extent = isl_set_copy(array->declared_extent);
size = ppcg_size_from_extent(extent);
expr = ppcg_build_size_expr(size, build);
array->declared_size = expr;
if (!expr)
return isl_ast_node_free(node);
}
return node;
}
/* Internal data structure for at_domain.
*
* "prog" represents the entire scop.
* "kernel" points to the kernel to which the current schedule node
* belongs. It is set by before_mark and reset by after_mark.
* It may be NULL if we are outside any kernel.
*/
struct ppcg_at_domain_data {
struct gpu_prog *prog;
struct gpu_gen *gen;
struct ppcg_kernel *kernel;
};
/* This function is called for each instance of a user statement
* in the kernel. This may be one of the original user statements
* or a statement introduced by PPCG.
*
* We first check if the statement id corresponds to a gpu statement,
* which indicates the statement is an original user statement. Any statement
* that is not an original user statement has been introduced by PPCG and
* requires special handling.
*
* If the user statement is one of the original user statements, then we call
* create_domain_leaf. If it is "init_device", then we call
* build_array_bounds. Otherwise, we check if it is a copy or synchronization
* statement and call the appropriate functions. Statements that copy an array
* to/from the device do not need any further treatment.
* Neither does "clear_device".
*/
static __isl_give isl_ast_node *at_domain(__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build, void *user)
{
struct ppcg_at_domain_data *data = user;
struct gpu_stmt *gpu_stmt;
isl_ast_expr *expr, *arg;
isl_id *id;
int is_sync;
const char *name;
void *p;
expr = isl_ast_node_user_get_expr(node);
arg = isl_ast_expr_get_op_arg(expr, 0);
id = isl_ast_expr_get_id(arg);
name = isl_id_get_name(id);
p = isl_id_get_user(id);
isl_ast_expr_free(expr);
isl_ast_expr_free(arg);
gpu_stmt = find_stmt(data->prog, id);
is_sync = gpu_tree_id_is_sync(id, data->kernel);
isl_id_free(id);
if (gpu_stmt)
return create_domain_leaf(data->kernel, node, build, gpu_stmt,
data->gen);
if (!prefixcmp(name, "to_device_") || !prefixcmp(name, "from_device_"))
return node;
if (!strcmp(name, "init_device"))
return build_array_bounds(node, data->prog, build);
if (!strcmp(name, "clear_device"))
return node;
if (is_sync < 0)
return isl_ast_node_free(node);
if (!strcmp(name, "read") || !strcmp(name, "write")) {
struct gpu_array_ref_group *group = p;
return create_access_leaf(data->kernel, group, node, build);
}
if (!is_sync)
isl_die(data->prog->ctx, isl_error_internal,
"unknown statement type",
return isl_ast_node_free(node));
return create_sync_leaf(data->kernel, node, build);
}
/* Given a set of wrapped references "ref", return the corresponding
* access relations based on the tagged access relations "tagged".
*
* The elements of "ref" are of the form
*
* [D -> R]
*
* with D an iteration domains and R a reference.
* The elements of "tagged" are of the form
*
* [D -> R] -> A
*
* with A an array.
*
* Extend "tagged" to include the iteration domain in the range, i.e.,
*
* [D -> R] -> [D -> A]
*
* apply the result to "ref" and then unwrap the resulting set
* to obtain relations of the form
*
* D -> A
*/
static __isl_give isl_union_map *wrapped_reference_to_access(
__isl_take isl_union_set *ref, __isl_take isl_union_map *tagged)
{
isl_union_map *tag2access;
tag2access = isl_union_map_copy(tagged);
tag2access = isl_union_map_universe(tag2access);
tag2access = isl_union_set_unwrap(isl_union_map_domain(tag2access));
tag2access = isl_union_map_domain_map(tag2access);
tag2access = isl_union_map_range_product(tag2access, tagged);
ref = isl_union_set_coalesce(ref);
ref = isl_union_set_apply(ref, tag2access);
return isl_union_set_unwrap(ref);
}
/* Given an access relation "access" from one or more array reference groups,
* remove those reads if ("read" is 1) or writes (if "read" is 0)
* that are only needed to communicate data within
* the same iteration of "sched".
* The domain of "sched" corresponds to the original statement instances,
* i.e., those that appear in the domains of the access relations.
* "tagged" contains all tagged access relations to all
* the array reference groups accessed by "access" from statement
* instances scheduled by "sched".
*
* If the access is a read then it is either an element of
*
* live_in union (range flow)
*
* where live_in and flow may be overapproximations, or
* it reads an uninitialized value (that is not live-in because
* there is an intermediate kill) or it reads a value that was
* written within the same (compound) statement instance.
* If the access is a write then it is either an element of
*
* live_out union (domain flow)
*
* or it writes a value that is never read (and is not live-out
* because of an intermediate kill) or only
* within the same (compound) statement instance.
* In both cases, the access relation is also a subset of
* the group access relation.
*
* The cases where an uninitialized value is read or a value is written
* that is never read or where the dataflow occurs within a statement
* instance are also considered local and may also be removed.
*
* Essentially, we compute the intersection of "access" with either
*
* live_in union (range non-local-flow)
*
* or
*
* live_out union (domain non-local-flow)
*
* We first construct a relation "local"
*
* [[D -> R] -> [D' -> R']]
*
* of pairs of domain iterations accessing the reference group
* and references in the group that are coscheduled by "sched".
*
* If this relation does not intersect the dataflow dependences,
* then there is nothing we can possibly remove, unless the dataflow
* dependences themselves only relate a subset of the accesses.
* In particular, the accesses may not be involved in any dataflow
* dependences, either because they are uninitialized reads/dead writes
* or because the dataflow occurs inside a statement instance.
*
* Since the computation below may break up the access relation
* into smaller pieces, we only perform the intersection with
* the non-local dependent accesses if the local pairs
* intersect the dataflow dependences. Otherwise, we intersect
* with the universe of the non-local dependent accesses.
* This should at least remove accesses from statements that
* do not participate in any dependences.
*
* In particular, we remove the "local" dataflow dependences from
* the set of all dataflow dependences, or at least those
* that may contribute to a domain/range that intersects
* the domain of "access".
* Note that if the potential dataflow dependences are an overapproximation
* of the actual dataflow dependences, then the result remains an
* overapproximation of the non-local dataflow dependences.
* Copying to/from global memory is only needed for the references
* in the domain/range of the result or for accesses that are live out/in
* for the entire scop.
*
* We therefore map the domain/range of the "external" relation
* to the corresponding access relation and take the union with
* the live out/in relation.
*/
static __isl_give isl_union_map *remove_local_accesses(
struct gpu_prog *prog, __isl_take isl_union_map *tagged,
__isl_take isl_union_map *access, __isl_take isl_union_map *sched,
int read)
{
int empty;
isl_union_pw_multi_aff *tagger;
isl_union_set *domain, *access_domain;
isl_union_map *local, *external, *universe;
isl_union_set *tag_set;
if (isl_union_map_is_empty(access)) {
isl_union_map_free(sched);
isl_union_map_free(tagged);
return access;
}
tagger = isl_union_pw_multi_aff_copy(prog->scop->tagger);
domain = isl_union_map_domain(isl_union_map_copy(tagged));
tagger = isl_union_pw_multi_aff_intersect_domain(tagger,
isl_union_set_copy(domain));
sched = isl_union_map_preimage_domain_union_pw_multi_aff(sched, tagger);
local = isl_union_map_apply_range(sched,
isl_union_map_reverse(isl_union_map_copy(sched)));
local = isl_union_map_intersect(local,
isl_union_map_copy(prog->scop->tagged_dep_flow));
empty = isl_union_map_is_empty(local);
external = isl_union_map_copy(prog->scop->tagged_dep_flow);
universe = isl_union_map_universe(isl_union_map_copy(access));
access_domain = isl_union_map_domain(universe);
domain = isl_union_set_universe(domain);
universe = isl_union_set_unwrap(domain);
universe = isl_union_map_intersect_domain(universe, access_domain);
domain = isl_union_map_wrap(universe);
if (read)
external = isl_union_map_intersect_range(external, domain);
else
external = isl_union_map_intersect_domain(external, domain);
external = isl_union_map_intersect_params(external,
isl_set_copy(prog->scop->context));
external = isl_union_map_subtract(external, local);
if (read) {
tag_set = isl_union_map_range(external);
external = wrapped_reference_to_access(tag_set, tagged);
external = isl_union_map_union(external,
isl_union_map_copy(prog->scop->live_in));
} else {
tag_set = isl_union_map_domain(external);
external = wrapped_reference_to_access(tag_set, tagged);
external = isl_union_map_union(external,
isl_union_map_copy(prog->scop->live_out));
}
if (empty < 0)
external = isl_union_map_free(external);
else if (empty)
external = isl_union_map_universe(external);
access = isl_union_map_intersect(access, external);
return access;
}
/* Given an access relation "access" from "group", remove those reads
* if ("read" is 1) or writes (if "read" is 0) that are only needed to
* communicate data within the same iteration of the schedule "prefix"
* at the position where the copying of the group is inserted.
* That is, the output dimension of "prefix"
* is equal to tile->depth.
* The domain of "prefix" corresponds to the original statement instances,
* i.e., those that appear in the domains of the access relations.
*
* Extract the tagged access relation of "group" and
* then call remove_local_accesses.
*/
static __isl_give isl_union_map *remove_local_accesses_group(
struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
__isl_take isl_union_map *access, __isl_keep isl_union_map *prefix,
int read)
{
isl_union_map *sched, *tagged;
if (isl_union_map_is_empty(access))
return access;
tagged = group_tagged_access_relation(group);
sched = isl_union_map_copy(prefix);
return remove_local_accesses(kernel->prog, tagged, access, sched, read);
}
/* Build an access AST expression for the effective grid size using "build".
* Store the result in kernel->grid_size_expr.
*/
static isl_stat build_grid_size(struct ppcg_kernel *kernel,
__isl_keep isl_ast_build *build)
{
isl_multi_pw_aff *size;
size = isl_multi_pw_aff_copy(kernel->grid_size);
size = isl_multi_pw_aff_set_tuple_name(size, isl_dim_out, "grid");
kernel->grid_size_expr = ppcg_build_size_expr(size, build);
if (!kernel->grid_size_expr)
return isl_stat_error;
return isl_stat_ok;
}
/* Build access AST expressions for the localized array sizes using "build".
* Store the result in local->bound_expr.
* Only do this for arrays for which localized bounds have been computed.
*/
static isl_stat build_local_array_sizes(struct ppcg_kernel *kernel,
__isl_keep isl_ast_build *build)
{
int i;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *local = &kernel->array[i];
isl_multi_pw_aff *size;
if (local->n_group == 0)
continue;
size = isl_multi_pw_aff_copy(local->bound);
local->bound_expr = ppcg_build_size_expr(size, build);
if (!local->bound_expr)
return isl_stat_error;
}
return isl_stat_ok;
}
/* Build access AST expressions for the effective grid size and
* the localized array sizes using "build".
*/
static isl_stat build_grid_and_local_array_sizes(struct ppcg_kernel *kernel,
__isl_keep isl_ast_build *build)
{
if (build_grid_size(kernel, build) < 0)
return isl_stat_error;
if (build_local_array_sizes(kernel, build) < 0)
return isl_stat_error;
return isl_stat_ok;
}
/* This function is called before the AST generator starts traversing
* the schedule subtree of a node with mark "mark".
*
* If the mark is called "kernel", store the kernel pointer in data->kernel
* for use in at_domain and build AST expressions for the grid size and
* the localized array sizes.
*/
static isl_stat before_mark(__isl_keep isl_id *mark,
__isl_keep isl_ast_build *build, void *user)
{
struct ppcg_at_domain_data *data = user;
if (!mark)
return isl_stat_error;
if (!strcmp(isl_id_get_name(mark), "kernel")) {
data->kernel = isl_id_get_user(mark);
if (build_grid_and_local_array_sizes(data->kernel, build) < 0)
return isl_stat_error;
}
return isl_stat_ok;
}
/* This function is called after the AST generator has finished traversing
* the schedule subtree of a mark node. "node" points to the corresponding
* mark AST node.
*
* If the mark is called "kernel", then replace "node" by a user node
* that "calls" the kernel, representing the launch of the kernel.
* The original "node" is stored inside the kernel object so that
* it can be used to print the device code.
* Note that this assumes that a kernel is only launched once.
* Also clear data->kernel.
*/
static __isl_give isl_ast_node *after_mark(__isl_take isl_ast_node *node,
__isl_keep isl_ast_build *build, void *user)
{
isl_ctx *ctx;
isl_id *id;
isl_ast_expr *expr;
isl_ast_expr_list *list;
struct ppcg_kernel *kernel;
struct ppcg_at_domain_data *data = user;
ctx = isl_ast_node_get_ctx(node);
id = isl_ast_node_mark_get_id(node);
if (!id)
return isl_ast_node_free(node);
if (strcmp(isl_id_get_name(id), "kernel") || !data->kernel) {
isl_id_free(id);
return node;
}
kernel = data->kernel;
data->kernel = NULL;
kernel->space = isl_ast_build_get_schedule_space(build);
kernel->tree = isl_ast_node_mark_get_node(node);
isl_ast_node_free(node);
expr = isl_ast_expr_from_id(isl_id_copy(id));
list = isl_ast_expr_list_alloc(ctx, 0);
expr = isl_ast_expr_call(expr, list);
node = isl_ast_node_alloc_user(expr);
node = isl_ast_node_set_annotation(node, id);
return node;
}
static isl_bool update_depth(__isl_keep isl_schedule_node *node, void *user)
{
int *depth = user;
int node_depth;
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
return isl_bool_true;
node_depth = isl_schedule_node_get_schedule_depth(node);
if (node_depth > *depth)
*depth = node_depth;
return isl_bool_false;
}
/* Use isl to generate code for both the host and the device
* from "schedule".
* The device code is marked by "kernel" mark nodes in the schedule tree,
* containing a pointer to a ppcg_kernel object.
* The returned AST only contains the AST for the host code.
* The ASTs for the device code are embedded in ppcg_kernel objects
* attached to the leaf nodes that call "kernel".
*/
__isl_give isl_ast_node *generate_code(struct gpu_gen *gen,
__isl_take isl_schedule *schedule)
{
struct ppcg_at_domain_data data;
isl_ast_build *build;
isl_ast_node *tree;
isl_id_list *iterators;
int depth;
data.prog = gen->prog;
data.gen = gen;
data.kernel = NULL;
depth = 0;
if (isl_schedule_foreach_schedule_node_top_down(schedule, &update_depth,
&depth) < 0)
return NULL;
build = isl_ast_build_alloc(gen->prog->ctx);
iterators = ppcg_scop_generate_names(gen->prog->scop, depth, "c");
build = isl_ast_build_set_iterators(build, iterators);
build = isl_ast_build_set_at_each_domain(build, &at_domain, &data);
build = isl_ast_build_set_before_each_mark(build, &before_mark, &data);
build = isl_ast_build_set_after_each_mark(build, &after_mark, &data);
if (gen->prog->scop->options->debug->dump_final_schedule)
isl_schedule_dump(schedule);
tree = isl_ast_build_node_from_schedule(build, schedule);
isl_ast_build_free(build);
return tree;
}
__isl_give isl_union_map *extract_sizes_from_str(isl_ctx *ctx, const char *str)
{
if (!str)
return NULL;
return isl_union_map_read_from_str(ctx, str);
}
/* Can "node" be tiled and then mapped to block and thread identifiers?
* That is, is it permutable with at least one coincident dimension?
*/
static int is_permutable(__isl_keep isl_schedule_node *node)
{
if (!node)
return -1;
if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
return 0;
if (!isl_schedule_node_band_get_permutable(node))
return 0;
if (isl_schedule_node_band_n_member(node) < 1)
return 0;
if (!isl_schedule_node_band_member_get_coincident(node, 0))
return 0;
return 1;
}
/* A isl_schedule_foreach_schedule_node_top_down callback
* for setting *any_permutable and aborting the search
* if "node" is a permutable band with coincident dimensions.
* Otherwise, continue searching.
*/
static isl_bool set_permutable(__isl_keep isl_schedule_node *node, void *user)
{
int *any_permutable = user;
int permutable;
permutable = is_permutable(node);
if (permutable < 0)
return isl_bool_error;
if (!permutable)
return isl_bool_true;
*any_permutable = 1;
return isl_bool_error;
}
/* Does the subtree rooted at "node" have any suitably permutable band nodes?
* That is, does it have any nodes that are permutable and that
* have a least one coincident dimension?
*/
static int subtree_has_permutable_bands(__isl_keep isl_schedule_node *node)
{
int any_parallelism = 0;
if (isl_schedule_node_foreach_descendant_top_down(node, &set_permutable,
&any_parallelism) < 0 &&
!any_parallelism)
return -1;
return any_parallelism;
}
/* Does "schedule" contain any permutable band with at least one coincident
* member?
*/
int has_any_permutable_node(__isl_keep isl_schedule *schedule)
{
isl_schedule_node *root;
int any_permutable;
root = isl_schedule_get_root(schedule);
any_permutable = subtree_has_permutable_bands(root);
isl_schedule_node_free(root);
return any_permutable;
}
/* Is "node" a candidate for mapping to block and thread identifiers?
* In particular, is it permutable with at least one coincident dimension?
* Alternatively, does the subtree rooted at "node" not contain
* any such permutable node? Filter nodes are skipped in this case,
* because a band node will be inserted in front of the returned
* node and this is not possible for filter nodes that are children
* of set or sequence nodes.
*/
static int is_candidate(__isl_keep isl_schedule_node *node)
{
int permutable;
if (isl_schedule_node_get_type(node) == isl_schedule_node_leaf)
return 1;
permutable = is_permutable(node);
if (permutable < 0 || permutable)
return permutable;
if (isl_schedule_node_get_type(node) == isl_schedule_node_filter)
return 0;
permutable = subtree_has_permutable_bands(node);
if (permutable < 0)
return -1;
return !permutable;
}
/* Is "node" the outermost node in its branch that can be tiled
* and then mapped to block and thread identifiers?
* If there are no such nodes in the subtree at "node" and
* if "node" is not a filter node, then it is accepted too.
*/
static int is_outer_tilable(__isl_keep isl_schedule_node *node)
{
int tilable;
isl_schedule_node *ancestor;
tilable = is_candidate(node);
if (tilable < 0)
return -1;
if (!tilable)
return 0;
tilable = 0;
ancestor = isl_schedule_node_copy(node);
while (isl_schedule_node_has_parent(ancestor)) {
ancestor = isl_schedule_node_parent(ancestor);
tilable = is_candidate(ancestor);
if (tilable < 0 || tilable)
break;
}
isl_schedule_node_free(ancestor);
return tilable < 0 ? -1 : !tilable;
}
/* Collect the references to all writes in "group".
* Each reference is represented by a universe set in a space
*
* [S[i,j] -> R[]]
*
* with S[i,j] the statement instance space and R[] the array reference.
*/
static __isl_give isl_union_set *group_tagged_writes(
struct gpu_array_ref_group *group)
{
int i;
isl_space *space;
isl_union_set *writes;
space = isl_map_get_space(group->access);
writes = isl_union_set_empty(space);
for (i = 0; i < group->n_ref; ++i) {
isl_space *space;
isl_set *writes_i;
if (!group->refs[i]->write)
continue;
space = isl_map_get_space(group->refs[i]->tagged_access);
space = isl_space_domain(space);
writes_i = isl_set_universe(space);
writes = isl_union_set_add_set(writes, writes_i);
}
return writes;
}
/* Is there any write access in "group" that requires synchronization
* on a write to global memory?
* We currently take into account all writes that would require
* synchronization at the thread level depth, but if the copying
* for this group is performed at an outer level, then we do not
* actually need to take into account dependences at intermediate levels.
*/
static int any_sync_writes_in_group(struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group)
{
isl_union_set *writes;
int empty, disjoint;
empty = isl_union_set_is_empty(kernel->sync_writes);
if (empty < 0)
return -1;
if (empty)
return 0;
writes = group_tagged_writes(group);
disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
isl_union_set_free(writes);
return disjoint < 0 ? -1 : !disjoint;
}
/* Collect the references to all writes in "kernel" that write directly
* to global or shared memory, i.e., that are not mapped to private memory.
* Each reference is represented by a universe set in a space
*
* [S[i,j] -> R[]]
*
* with S[i,j] the statement instance space and R[] the array reference.
*/
static __isl_give isl_union_set *collect_non_private_tagged_writes(
struct ppcg_kernel *kernel)
{
isl_union_set *writes;
int i, j;
writes = isl_union_set_empty(isl_union_set_get_space(kernel->arrays));
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j) {
struct gpu_array_ref_group *group = array->groups[j];
enum ppcg_group_access_type type;
isl_union_set *writes_ij;
if (!group->write)
continue;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_private)
continue;
writes_ij = group_tagged_writes(group);
writes = isl_union_set_union(writes, writes_ij);
}
}
return writes;
}
/* Are there any direct writes to global memory that require
* synchronization?
*/
static int any_global_or_shared_sync_writes(struct ppcg_kernel *kernel)
{
isl_union_set *writes;
int empty, disjoint;
empty = isl_union_set_is_empty(kernel->sync_writes);
if (empty < 0)
return -1;
if (empty)
return 0;
writes = collect_non_private_tagged_writes(kernel);
disjoint = isl_union_set_is_disjoint(kernel->sync_writes, writes);
isl_union_set_free(writes);
return disjoint < 0 ? -1 : !disjoint;
}
/* Construct an isl_multi_val for use as tile sizes for tiling "node"
* from the elements in "tile_size".
*/
static __isl_give isl_multi_val *construct_band_tiles_sizes(
__isl_keep isl_schedule_node *node, int *tile_size)
{
isl_space *space;
if (!node)
return NULL;
space = isl_schedule_node_band_get_space(node);
return ppcg_multi_val_from_int_list(space, tile_size);
}
/* Replace the partial schedule S of the band node "node" by
*
* floor(S/f)
*
* or
*
* f * floor(S/f)
*
* if scale_tile_loops is set, with f the integers in "factor".
* The list that "factor" points to is assumed to contain at least
* as many elements as the number of members in the band.
*/
static __isl_give isl_schedule_node *snap_band_to_sizes(
__isl_take isl_schedule_node *node, int *factor,
struct ppcg_options *options)
{
isl_multi_val *mv;
mv = construct_band_tiles_sizes(node, factor);
node = isl_schedule_node_band_scale_down(node, isl_multi_val_copy(mv));
if (options->scale_tile_loops)
node = isl_schedule_node_band_scale(node,
isl_multi_val_copy(mv));
isl_multi_val_free(mv);
return node;
}
/* Tile "band" with tile size specified by "sizes".
*
* Since the tile loops will be mapped to block ids, we forcibly
* turn off tile loop scaling. We may want to enable tile loop scaling
* at some later point, but then we would have to support the detection
* of strides during the mapping to block ids.
* Similarly, since the point loops will be mapped to thread ids,
* we forcibly shift the point loops so that they start at zero.
*/
static __isl_give isl_schedule_node *tile_band(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
{
isl_ctx *ctx = isl_schedule_node_get_ctx(node);
int scale_tile;
int shift_point;
scale_tile = isl_options_get_tile_scale_tile_loops(ctx);
isl_options_set_tile_scale_tile_loops(ctx, 0);
shift_point = isl_options_get_tile_shift_point_loops(ctx);
isl_options_set_tile_shift_point_loops(ctx, 1);
node = isl_schedule_node_band_tile(node, sizes);
isl_options_set_tile_scale_tile_loops(ctx, scale_tile);
isl_options_set_tile_shift_point_loops(ctx, shift_point);
return node;
}
/* Extract the set of parameter values and outer schedule dimensions
* for which any statement instance
* in the kernel inserted at "node" needs to be executed.
* Intersect the set of parameter values derived from the host schedule
* relation with the context of "prog".
*/
static __isl_give isl_set *extract_context(__isl_keep isl_schedule_node *node,
struct gpu_prog *prog)
{
isl_union_map *schedule;
isl_union_set *schedule_domain;
isl_set *context;
int empty;
schedule = isl_schedule_node_get_prefix_schedule_relation(node);
schedule_domain = isl_union_map_range(schedule);
empty = isl_union_set_is_empty(schedule_domain);
if (empty < 0) {
isl_union_set_free(schedule_domain);
return NULL;
}
if (empty) {
int depth;
isl_space *space;
space = isl_union_set_get_space(schedule_domain);
isl_union_set_free(schedule_domain);
space = isl_space_set_from_params(space);
depth = isl_schedule_node_get_schedule_depth(node);
space = isl_space_add_dims(space, isl_dim_set, depth);
context = isl_set_empty(space);
} else {
context = isl_set_from_union_set(schedule_domain);
}
context = isl_set_intersect_params(context,
isl_set_copy(prog->context));
return context;
}
/* Return the set of outer array elements accessed by
* by the statement instances in "domain" in "prog".
* The instances in "domain" are those that appear
* in the domains of the access relations in "prog".
*/
static __isl_give isl_union_set *accessed_by_domain(
__isl_take isl_union_set *domain, struct gpu_prog *prog)
{
isl_union_map *access;
isl_union_set *arrays;
access = isl_union_map_union(isl_union_map_copy(prog->read),
isl_union_map_copy(prog->may_write));
access = isl_union_map_intersect_domain(access, domain);
arrays = isl_union_map_range(access);
arrays = isl_union_set_apply(arrays,
isl_union_map_copy(prog->to_outer));
return arrays;
}
/* Return the number of outer band members of the band node "node"
* that are marked coincident.
*/
static int n_outer_coincidence(__isl_keep isl_schedule_node *node)
{
int i, n;
n = isl_schedule_node_band_n_member(node);
for (i = 0; i < n; ++i)
if (!isl_schedule_node_band_member_get_coincident(node, i))
break;
return i;
}
/* If the band node "node" has more than "n" members, then split off
* the first "n" of them.
*/
static __isl_give isl_schedule_node *split_band(
__isl_take isl_schedule_node *node, int n)
{
int dim;
dim = isl_schedule_node_band_n_member(node);
if (n < dim)
node = isl_schedule_node_band_split(node, n);
return node;
}
/* Scale a band node that may have been split by split_band.
* "sizes" are the scaling factors for the original node.
* "node" either points to the original band node, or the outer
* of the two pieces after splitting.
*
* If the number of elements in "node" is smaller than the number of
* elements in "sizes", then some splitting has occurred and we split
* "sizes" in the same way.
*/
static __isl_give isl_schedule_node *scale_band(
__isl_take isl_schedule_node *node, __isl_take isl_multi_val *sizes)
{
int n, dim;
n = isl_multi_val_dim(sizes, isl_dim_set);
dim = isl_schedule_node_band_n_member(node);
if (n > dim) {
isl_multi_val *sizes2;
sizes2 = isl_multi_val_copy(sizes);
sizes = isl_multi_val_drop_dims(sizes,
isl_dim_set, dim, n - dim);
sizes2 = isl_multi_val_drop_dims(sizes2, isl_dim_set, 0, dim);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_band_scale(node, sizes2);
node = isl_schedule_node_parent(node);
}
return isl_schedule_node_band_scale(node, sizes);
}
/* Return an isl_multi_aff, with as elements the parameters in "space"
* that have the names specified by the elements in "names".
* If (some of) these parameters do not already appear in "space",
* then they are added first.
*/
static __isl_give isl_multi_aff *parameter_vector(__isl_take isl_space *space,
__isl_keep isl_id_list *names)
{
int i, n;
isl_local_space *ls;
isl_multi_aff *ma;
if (!names)
space = isl_space_free(space);
n = isl_id_list_n_id(names);
for (i = 0; i < n; ++i) {
int pos;
isl_id *id;
id = isl_id_list_get_id(names, i);
pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
if (pos >= 0) {
isl_id_free(id);
continue;
}
pos = isl_space_dim(space, isl_dim_param);
space = isl_space_add_dims(space, isl_dim_param, 1);
space = isl_space_set_dim_id(space, isl_dim_param, pos, id);
}
ma = isl_multi_aff_zero(isl_space_copy(space));
ls = isl_local_space_from_space(isl_space_domain(space));
for (i = 0; i < n; ++i) {
int pos;
isl_id *id;
isl_aff *aff;
id = isl_id_list_get_id(names, i);
pos = isl_space_find_dim_by_id(space, isl_dim_param, id);
isl_id_free(id);
aff = isl_aff_var_on_domain(isl_local_space_copy(ls),
isl_dim_param, pos);
ma = isl_multi_aff_set_aff(ma, i, aff);
}
isl_local_space_free(ls);
return ma;
}
/* Return constraints on the domain elements that equate a sequence of
* parameters called "names", to the partial schedule
* of "node" modulo the integers in "size".
* The number of elements in the array "size" should be equal
* to the number of elements in "names".
* The number of members of the band node "node" should be smaller
* than or equal to this number. If it is smaller, then the first
* elements of "names" are equated to zero.
*/
static __isl_give isl_union_set *set_schedule_modulo(
__isl_keep isl_schedule_node *node, __isl_keep isl_id_list *names,
int *size)
{
int n, n_zero;
isl_space *space;
isl_multi_aff *ma;
isl_multi_union_pw_aff *mupa, *mupa2;
isl_multi_val *mv;
isl_union_set *domain;
if (!node)
return NULL;
n = isl_id_list_n_id(names);
if (n == 0)
return isl_schedule_node_get_universe_domain(node);
n_zero = n - isl_schedule_node_band_n_member(node);
mupa = isl_schedule_node_band_get_partial_schedule(node);
mv = construct_band_tiles_sizes(node, size + n_zero);
mupa = isl_multi_union_pw_aff_mod_multi_val(mupa, mv);
space = isl_multi_union_pw_aff_get_space(mupa);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, n_zero);
ma = isl_multi_aff_zero(space);
domain = isl_schedule_node_get_universe_domain(node);
mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(
isl_union_set_copy(domain), ma);
mupa = isl_multi_union_pw_aff_range_product(mupa2, mupa);
space = isl_multi_union_pw_aff_get_space(mupa);
ma = parameter_vector(space, names);
mupa2 = isl_multi_union_pw_aff_multi_aff_on_domain(domain, ma);
mupa = isl_multi_union_pw_aff_sub(mupa, mupa2);
return isl_multi_union_pw_aff_zero_union_set(mupa);
}
/* Insert a context node at "node" introducing the block and thread
* identifiers along with their bounds, which are stored in kernel->grid_size
* and kernel->block_dim.
* Note that the bounds on the block identifiers may implicitly impose
* constraints on the parameters. A guard needs to be inserted
* in the schedule tree to ensure that those bounds hold at "node".
* This guard is inserted in insert_guard.
*/
static __isl_give isl_schedule_node *insert_context(struct ppcg_kernel *kernel,
__isl_take isl_schedule_node *node)
{
isl_set *context;
context = isl_set_universe(isl_set_get_space(kernel->context));
context = add_bounded_parameters_dynamic(context,
kernel->grid_size, kernel->block_ids);
context = add_bounded_parameters(context,
kernel->block_dim, kernel->thread_ids);
node = isl_schedule_node_insert_context(node, context);
return node;
}
/* Insert a guard that eliminates kernel launches where the kernel
* obviously does not have any work to do.
*
* In particular, eliminate kernel launches where there are obviously
* zero blocks.
* Use the same block size constraints that are used to create the context
* to ensure that all constraints implicit in the constructed context
* are imposed by the guard.
*
* Additionally, add other constraints that are valid
* for each executed instance ("context"), as long as this does not result
* in a disjunction.
*/
static __isl_give isl_schedule_node *insert_guard(
__isl_take isl_schedule_node *node, __isl_keep isl_set *context,
__isl_keep isl_multi_pw_aff *size, struct ppcg_scop *scop)
{
unsigned nparam, n;
isl_set *guard;
isl_id_list *ids;
guard = isl_set_copy(context);
guard = isl_set_compute_divs(guard);
guard = isl_set_from_basic_set(isl_set_simple_hull(guard));
nparam = isl_set_dim(guard, isl_dim_param);
n = isl_multi_pw_aff_dim(size, isl_dim_out);
ids = ppcg_scop_generate_names(scop, n, "__ppcg_tmp");
guard = add_bounded_parameters_dynamic(guard, size, ids);
isl_id_list_free(ids);
guard = isl_set_project_out(guard, isl_dim_param, nparam, n);
node = isl_schedule_node_insert_guard(node, guard);
return node;
}
/* Does any array reference group mapping require the band that is mapped
* to threads to be unrolled?
*/
static int kernel_requires_unroll(struct ppcg_kernel *kernel)
{
int i, j;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j) {
struct gpu_array_ref_group *group = array->groups[j];
if (gpu_array_ref_group_requires_unroll(group))
return 1;
}
}
return 0;
}
/* Mark the given band node "node" for unrolling by the AST generator and
* then sink it to the leaves of the schedule tree.
* All dimensions of "node" are assumed to be coincident, such that this
* sinking is a valid operation.
*/
static __isl_give isl_schedule_node *unroll(__isl_take isl_schedule_node *node)
{
node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
node = isl_schedule_node_band_sink(node);
return node;
}
/* Insert a synchronization node in the schedule tree of "node"
* after the core computation of "kernel" at the level of the band
* that is mapped to threads, except if that level is equal to
* that of the band that is mapped to blocks or if there are no writes
* to global or shared memory in the core computation that require
* synchronization.
* If there are any writes to shared memory and the shared memory
* copying is performed at the same level, then synchronization
* is needed between the core and the copying anyway, so we might
* as well add it here. If the copying is performed at a higher
* level, then different iterations of intermediate schedule dimensions
* may have a different mapping from between shared memory elements and
* threads, such that synchronization is required after the core.
* "node" is assumed to point to the kernel node.
*
* If the shared and the thread mark point to the same node, then make
* sure the synchronization is inserted outside of the shared mark.
*/
static __isl_give isl_schedule_node *add_sync(struct ppcg_kernel *kernel,
__isl_take isl_schedule_node *node)
{
int depth;
int need_sync;
need_sync = any_global_or_shared_sync_writes(kernel);
if (need_sync < 0)
return isl_schedule_node_free(node);
if (!need_sync)
return node;
node = gpu_tree_move_down_to_thread(node, kernel->core);
depth = isl_schedule_node_get_schedule_depth(node);
node = gpu_tree_move_up_to_kernel(node);
if (depth == isl_schedule_node_get_schedule_depth(node))
return node;
node = gpu_tree_move_down_to_depth(node, depth, kernel->core);
node = gpu_tree_ensure_following_sync(node, kernel);
node = gpu_tree_move_up_to_kernel(node);
return node;
}
/* Return a read ("read" is 1) or write access relation for "group"
* with those accesses removed that are only needed to communicate data
* within the subtree of the schedule rooted at "node".
* Furthermore, include the prefix schedule at "node".
* That is, return a relation of the form
*
* S -> [D -> A]
*
* with D the outer schedule dimensions at "node".
*/
static __isl_give isl_union_map *anchored_non_local_accesses(
struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
__isl_take isl_schedule_node *node, int read)
{
isl_union_map *access;
isl_union_map *prefix;
prefix = isl_schedule_node_get_prefix_schedule_relation(node);
prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
isl_union_pw_multi_aff_copy(kernel->contraction));
access = gpu_array_ref_group_access_relation(group, read, !read);
access = remove_local_accesses_group(kernel, group, access, prefix,
read);
access = isl_union_map_range_product(prefix, access);
return access;
}
/* Given an array reference group "group", create a mapping
*
* read[D -> A] -> [D -> A]
*
* if "read" is set or
*
* write[D -> A] -> [D -> A]
*
* if "read" is not set.
* D corresponds to the outer tile->depth dimensions of
* the kernel schedule.
*/
static __isl_give isl_multi_aff *create_from_access(isl_ctx *ctx,
struct gpu_array_ref_group *group, int read)
{
struct gpu_array_tile *tile;
isl_space *space;
isl_id *id;
tile = gpu_array_ref_group_tile(group);
space = isl_space_copy(group->array->space);
space = isl_space_from_range(space);
space = isl_space_add_dims(space, isl_dim_in, tile->depth);
space = isl_space_wrap(space);
space = isl_space_map_from_set(space);
id = isl_id_alloc(ctx, read ? "read" : "write", group);
space = isl_space_set_tuple_id(space, isl_dim_in, id);
return isl_multi_aff_identity(space);
}
/* If any writes in "group" require synchronization, then make sure
* that there is a synchronization node for "kernel" after the node
* following "node" in a sequence.
*
* If "shared" is set and no synchronization is needed for
* the writes to global memory, then add synchronization before
* the kernel to protect shared memory from being overwritten
* by the next iteration of the core computation.
* No additional synchronization is needed to protect against
* the next copy into shared memory because each element of
* the shared memory tile is always copied by the same thread.
*/
static __isl_give isl_schedule_node *add_group_write_sync(
__isl_take isl_schedule_node *node, struct ppcg_kernel *kernel,
struct gpu_array_ref_group *group, int shared)
{
int need_sync;
need_sync = any_sync_writes_in_group(kernel, group);
if (need_sync < 0)
return isl_schedule_node_free(node);
if (need_sync) {
node = isl_schedule_node_parent(node);
node = isl_schedule_node_next_sibling(node);
node = isl_schedule_node_child(node, 0);
node = gpu_tree_ensure_following_sync(node, kernel);
} else if (shared) {
struct gpu_array_tile *tile;
tile = gpu_array_ref_group_tile(group);
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
node = gpu_tree_move_down_to_depth(node, tile->depth,
kernel->core);
node = gpu_tree_move_left_to_sync(node, kernel);
}
return node;
}
/* Add copy statements to the schedule tree of "node"
* for reading from global memory to private memory (if "read" is set) or
* for writing back from private memory to global memory
* (if "read" is not set) for the array reference group "group" that
* is mapped to private memory.
* On input, "node" points to the kernel node, and it is moved
* back there on output.
*
* The copies are performed in the order of the array elements.
* The copy statement instances include a reference to the outer
* tile->depth dimensions of the kernel schedule for ease of
* combining them with the group tiling.
*
* That is, the extra schedule is of the form
*
* type[D -> A] -> A
*
* where D corresponds to the outer tile->depth dimensions of
* the kernel schedule and A to the global array.
* This schedule is unrolled because registers are not addressable.
*
* The copying is inserted in the schedule tree through an extension
* of the form
*
* D -> type[D -> A]
*
* where the extra domain elements type[D -> A] are those accessed
* by the group.
* A filter is inserted on type[D -> A] to ensure that the element
* is read/written by the same thread that needs the element.
* This filter is obtained by applying
*
* S -> type[D -> A]
*
* to the thread filter for the core statements.
*
* The extension is inserted before the core computation in case of a read
* and after the core computation in case of a write.
* In the latter case, we also make sure that there is a synchronization
* node after the write to global memory, unless this write is performed
* at the outer level of the kernel.
* In principle, this synchronization could be inserted higher
* in the schedule tree depending on where the corresponding reads
* from global memory are performed.
*/
static __isl_give isl_schedule_node *add_copies_group_private(
struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
__isl_take isl_schedule_node *node, int read)
{
struct gpu_array_tile *tile;
isl_union_map *access;
isl_union_set *domain;
isl_space *space;
isl_multi_aff *from_access;
isl_multi_pw_aff *mpa;
isl_multi_union_pw_aff *mupa;
isl_union_pw_multi_aff *contraction;
isl_schedule_node *graft;
isl_union_set *filter;
int kernel_depth;
int empty;
kernel_depth = isl_schedule_node_get_schedule_depth(node);
tile = gpu_array_ref_group_tile(group);
node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
access = anchored_non_local_accesses(kernel, group, node, read);
empty = isl_union_map_is_empty(access);
if (empty < 0 || empty) {
isl_union_map_free(access);
if (empty < 0)
return isl_schedule_node_free(node);
return gpu_tree_move_up_to_kernel(node);
}
group->array->global = 1;
group->local_array->global = 1;
from_access = create_from_access(kernel->ctx, group, read);
space = isl_space_domain(isl_multi_aff_get_space(from_access));
access = isl_union_map_preimage_range_multi_aff(access, from_access);
filter = isl_union_set_copy(kernel->thread_filter);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
filter = isl_union_set_preimage_union_pw_multi_aff(filter, contraction);
filter = isl_union_set_apply(filter, isl_union_map_copy(access));
filter = isl_union_set_detect_equalities(filter);
filter = isl_union_set_coalesce(filter);
domain = isl_union_map_range(access);
access = isl_union_set_wrapped_domain_map(domain);
access = isl_union_map_reverse(access);
access = isl_union_map_coalesce(access);
graft = isl_schedule_node_from_extension(access);
space = isl_space_map_from_set(space);
mpa = isl_multi_pw_aff_identity(space);
mpa = isl_multi_pw_aff_range_factor_range(mpa);
mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
graft = isl_schedule_node_child(graft, 0);
graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
graft = unroll(graft);
graft = isl_schedule_node_insert_filter(graft, filter);
graft = isl_schedule_node_parent(graft);
if (read)
node = isl_schedule_node_graft_before(node, graft);
else {
node = isl_schedule_node_graft_after(node, graft);
if (kernel_depth < tile->depth)
node = add_group_write_sync(node, kernel, group, 0);
}
node = gpu_tree_move_up_to_kernel(node);
return node;
}
/* Add copy statements to the schedule tree of "node"
* for reading from global memory to shared memory (if "read" is set) or
* for writing back from shared memory to global memory
* (if "read" is not set) for the array reference group "group" that
* is mapped to shared memory.
* On input, "node" points to the kernel node, and it is moved
* back there on output.
*
* The copies are performed in the order of the corresponding shared
* memory tile.
* The copy statement instances include a reference to the outer
* tile->depth dimensions of the kernel schedule for ease of
* combining them with the group tiling.
*
* If we are performing a read from global memory to shared memory and
* if the array involved is not a scalar, then we copy
* the entire tile to shared memory. This may result in some extra
* elements getting copied, but it should lead to simpler code
* (which means that fewer registers may be needed) and less divergence.
*
* Otherwise, we only copy the elements that will be read or have been written
* in the kernel.
*
* That is, the extra schedule is of the form
*
* type[D -> A] -> T
*
* where D corresponds to the outer tile->depth dimensions of
* the kernel schedule, A to the global array and T is the corresponding
* shared memory tile.
*
* The copying is inserted in the schedule tree through an extension
* of the form
*
* D -> type[D -> A]
*
* where the extra domain elements type[D -> A] are those accessed
* by the group. In the case of read from a non-scalar, this set
* is replaced by the entire shared memory tile.
*
* If the "unroll_copy_shared" option is set, then the AST generator
* is instructed to unroll the copying code.
*
* A filter is inserted on type[D -> A] to map the copy instances
* to the threads. In particular, the thread identifiers are
* equated to the position inside the shared memory tile (T)
* modulo the block size.
* We try to align the innermost tile dimension with the innermost
* thread identifier (x) as a heuristic to improve coalescing.
* In particular, if the dimension of the tile is greater than
* the dimension of the block, then the schedule mapping to the tile
* is broken up into two pieces and the filter is applied to the inner part.
* If, on the other hand, the dimension of the tile is smaller than
* the dimension of the block, then the initial thread identifiers
* are equated to zero and the remaining thread identifiers are
* matched to the memory tile.
*
* The extension is inserted before the core computation in case of a read
* and after the core computation in case of a write.
* In the case of a read, we first need to make sure there is some
* synchronization before the core computation such that we can put the read
* from global memory to shared memory before that synchronization.
* This ensures that all threads have finished copying into shared memory
* before the shared memory is used.
* We also need to make sure that there is a synchronization node after
* the core computation to ensure that the next load into shared memory
* only happens after all data has been used. There is no need for
* this synchronization if we are at the outer level since then there
* won't be a next load.
* In the case of a write, we need to make sure there is some synchronization
* after the core computation such taht we can put the write from shared
* memory to global memory after that synchronization.
* Unless we are at the outer level, we also need a synchronization node
* after the write to ensure the data is saved to global memory
* before the next iteration write to the same shared memory.
* It also makes sure the data has arrived in global memory before
* it is read in a subsequent iteration.
*/
static __isl_give isl_schedule_node *add_copies_group_shared(
struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
__isl_take isl_schedule_node *node, int read)
{
struct gpu_array_tile *tile;
isl_union_map *access;
isl_union_set *domain;
isl_multi_aff *ma;
isl_multi_aff *from_access;
isl_multi_pw_aff *mpa;
isl_multi_union_pw_aff *mupa;
isl_schedule_node *graft;
isl_union_set *filter;
int skip;
int kernel_depth;
int empty;
tile = gpu_array_ref_group_tile(group);
kernel_depth = isl_schedule_node_get_schedule_depth(node);
node = gpu_tree_move_down_to_depth(node, tile->depth, kernel->core);
access = anchored_non_local_accesses(kernel, group, node, read);
empty = isl_union_map_is_empty(access);
if (empty < 0 || empty) {
isl_union_map_free(access);
if (empty < 0)
return isl_schedule_node_free(node);
return gpu_tree_move_up_to_kernel(node);
}
group->array->global = 1;
group->local_array->global = 1;
from_access = create_from_access(kernel->ctx, group, read);
ma = isl_multi_aff_copy(tile->tiling);
ma = isl_multi_aff_pullback_multi_aff(ma,
isl_multi_aff_copy(from_access));
mpa = isl_multi_pw_aff_from_multi_aff(ma);
mupa = isl_multi_union_pw_aff_from_multi_pw_aff(mpa);
domain = isl_union_map_range(access);
if (read && !gpu_array_is_scalar(group->array)) {
isl_map *map;
isl_union_set_free(domain);
map = group_tile(group);
domain = isl_union_set_from_set(isl_map_wrap(map));
}
domain = isl_union_set_preimage_multi_aff(domain, from_access);
access = isl_union_set_wrapped_domain_map(domain);
access = isl_union_map_reverse(access);
access = isl_union_map_coalesce(access);
graft = isl_schedule_node_from_extension(access);
graft = isl_schedule_node_child(graft, 0);
graft = isl_schedule_node_insert_partial_schedule(graft, mupa);
if (kernel->options->unroll_copy_shared)
graft = ppcg_set_schedule_node_type(graft, isl_ast_loop_unroll);
if (tile->n > kernel->n_block && kernel->n_block > 0) {
graft = isl_schedule_node_band_split(graft,
tile->n - kernel->n_block);
graft = isl_schedule_node_child(graft, 0);
}
if (tile->n < kernel->n_block)
skip = kernel->n_block - tile->n;
else
skip = 0;
filter = set_schedule_modulo(graft, kernel->thread_ids,
kernel->block_dim);
if (!kernel->options->wrap)
graft = snap_band_to_sizes(graft, kernel->block_dim + skip,
kernel->options);
if (tile->n > kernel->n_block && kernel->n_block > 0)
graft = isl_schedule_node_parent(graft);
graft = isl_schedule_node_insert_filter(graft, filter);
while (graft && isl_schedule_node_has_parent(graft))
graft = isl_schedule_node_parent(graft);
if (read) {
if (kernel_depth < tile->depth)
node = gpu_tree_ensure_sync_after_core(node, kernel);
node = gpu_tree_move_left_to_sync(node, kernel);
node = isl_schedule_node_graft_before(node, graft);
} else {
node = gpu_tree_move_right_to_sync(node, kernel);
node = isl_schedule_node_graft_after(node, graft);
if (kernel_depth < tile->depth)
node = add_group_write_sync(node, kernel, group, 1);
}
node = gpu_tree_move_up_to_kernel(node);
return node;
}
/* Check whether the array reference group "group" is mapped to
* private or shared memory and, if so,
* add copy statements to the schedule tree of "node"
* for reading from global memory to private or shared memory
* (if "read" is set) or for writing back from private or shared memory
* to global memory (if "read" is not set) for this group.
* On input, "node" points to the kernel node, and it is moved
* back there on output.
*/
static __isl_give isl_schedule_node *add_copies_group(
struct ppcg_kernel *kernel, struct gpu_array_ref_group *group,
__isl_take isl_schedule_node *node, int read)
{
enum ppcg_group_access_type type;
type = gpu_array_ref_group_type(group);
if (type == ppcg_access_private)
return add_copies_group_private(kernel, group, node, read);
if (type == ppcg_access_shared)
return add_copies_group_shared(kernel, group, node, read);
return node;
}
/* For each array reference group that is mapped to private or shared memory,
* add copy statements to the schedule tree of "node"
* for reading from global memory to private or shared memory
* and for writing back.
* On input, "node" points to the kernel node, and it is moved
* back there on output.
*/
static __isl_give isl_schedule_node *add_copies(struct ppcg_kernel *kernel,
__isl_take isl_schedule_node *node)
{
int i, j;
for (i = 0; i < kernel->n_array; ++i) {
struct gpu_local_array_info *array = &kernel->array[i];
for (j = 0; j < array->n_group; ++j) {
struct gpu_array_ref_group *group = array->groups[j];
node = add_copies_group(kernel, group, node, 1);
if (!node)
return NULL;
node = add_copies_group(kernel, group, node, 0);
if (!node)
return NULL;
}
}
return node;
}
/* Mark all dimensions in the current band node atomic.
*/
static __isl_give isl_schedule_node *atomic(__isl_take isl_schedule_node *node)
{
return ppcg_set_schedule_node_type(node, isl_ast_loop_atomic);
}
/* Mark "node" atomic, if it is a band node.
* Do the same for all ancestors.
* Return a pointer to "node" (in the updated schedule tree).
*/
static __isl_give isl_schedule_node *atomic_ancestors(
__isl_take isl_schedule_node *node)
{
int pos;
if (!node)
return NULL;
if (!isl_schedule_node_has_parent(node))
return node;
pos = isl_schedule_node_get_child_position(node);
node = isl_schedule_node_parent(node);
if (isl_schedule_node_get_type(node) == isl_schedule_node_band)
node = atomic(node);
node = atomic_ancestors(node);
node = isl_schedule_node_child(node, pos);
return node;
}
/* Collect all write references that require synchronization.
* "node" is assumed to point to the kernel node.
* Each reference is represented by a universe set in a space
*
* [S[i,j] -> R[]]
*
* with S[i,j] the statement instance space and R[] the array reference.
*
* This function should be called before block and thread filters are added.
*
* Synchronization is needed after a write if there is a subsequent read
* within the same block that may not be performed by the same thread.
* There should not be any dependences between different blocks,
* so we start with the flow dependences within the same kernel invocation
* and we subtract from these those dependences that are mapped
* to the same iteration of the bands where synchronization is inserted.
* We do not remove pairs of instances that are known to map to
* the same thread across different iterations of the intermediate
* bands because the read may be performed by a different thread
* than the one that needs the value if shared memory is involved.
*
* We also consider all pairs of possible writes that access the same
* memory location and that may be mapped to the same block but not
* to the same iteration of the intermediate bands.
* In theory, it would be possible for one thread to still be in
* a previous iteration of a loop in these bands.
* A write to global memory in this delayed thread could then overwrite
* a write from another thread that has already moved on to
* the next iteration.
*
* After computing the above writes paired off with reads or writes
* that depend on them, we project onto the domain writes.
* Sychronization is needed after writes to global memory
* through these references.
*/
static __isl_give isl_union_set *compute_sync_writes(
struct ppcg_kernel *kernel, __isl_keep isl_schedule_node *node)
{
isl_union_map *local;
isl_union_map *may_writes, *shared_access;
isl_union_map *kernel_prefix, *thread_prefix;
isl_union_map *equal;
isl_union_set *wrap;
isl_union_set *domain;
isl_union_pw_multi_aff *contraction;
kernel_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
node = isl_schedule_node_copy(node);
node = gpu_tree_move_down_to_thread(node, kernel->core);
thread_prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
isl_schedule_node_free(node);
contraction = kernel->contraction;
kernel_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
kernel_prefix, isl_union_pw_multi_aff_copy(contraction));
thread_prefix = isl_union_map_preimage_domain_union_pw_multi_aff(
thread_prefix, isl_union_pw_multi_aff_copy(contraction));
domain = isl_union_set_copy(kernel->expanded_domain);
domain = isl_union_set_universe(domain);
may_writes = isl_union_map_copy(kernel->prog->scop->tagged_may_writes);
may_writes = isl_union_map_curry(may_writes);
may_writes = isl_union_map_intersect_domain(may_writes, domain);
may_writes = isl_union_map_uncurry(may_writes);
shared_access = isl_union_map_copy(may_writes);
shared_access = isl_union_map_apply_range(shared_access,
isl_union_map_reverse(may_writes));
local = isl_union_map_copy(kernel->prog->scop->tagged_dep_flow);
local = isl_union_map_union(local, shared_access);
local = isl_union_map_zip(local);
equal = isl_union_map_apply_range(kernel_prefix,
isl_union_map_reverse(isl_union_map_copy(kernel_prefix)));
wrap = isl_union_map_wrap(equal);
local = isl_union_map_intersect_domain(local, wrap);
equal = isl_union_map_apply_range(thread_prefix,
isl_union_map_reverse(isl_union_map_copy(thread_prefix)));
wrap = isl_union_map_wrap(equal);
local = isl_union_map_subtract_domain(local, wrap);
local = isl_union_map_zip(local);
local = isl_union_map_universe(local);
return isl_union_map_domain(local);
}
/* Group the domain elements into a single space, named kernelX,
* with X the kernel sequence number "kernel_id".
*/
static __isl_give isl_schedule_node *group_statements(
__isl_take isl_schedule_node *node, int kernel_id)
{
char buffer[20];
isl_id *id;
if (!node)
return NULL;
snprintf(buffer, sizeof(buffer), "kernel%d", kernel_id);
id = isl_id_alloc(isl_schedule_node_get_ctx(node), buffer, NULL);
return isl_schedule_node_group(node, id);
}
/* Create a ppcg_kernel representing the domain instances that reach "node"
* and insert a mark node pointing to the ppcg_kernel before "node".
* The band that "node" points to is the band that needs to be mapped
* to block identifiers. The band that needs to be mapped to thread
* identifiers should be marked by a "thread" mark by the caller.
* The linear branch between the current node and the "thread" mark
* may also have a "shared" mark. If present, the mapping to shared
* memory is computed at that point.
* Both marks are removed by this function.
* If "scale" is set, then the band that "node" points to is scaled
* by "sizes".
*
* Mark all outer band nodes as atomic to ensure each kernel is only
* scheduled once.
* If the domain elements that reach "node" live in more than one space,
* then group the domain elements into a single space, named kernelX,
* with X the kernel sequence number.
*
* Insert a guard node governing the kernel node to ensure that
* no kernels with zero blocks are launched.
*
* Insert a context node describing the block and thread
* identifiers inside the kernel mark.
* The context node needs to be inserted after the effective block size
* has been determined such that the bounds on the thread identifiers
* would reflect the effective block size.
* Insert a filter node inside the context node mapping the statement
* instances to block identifiers. In particular, the block identifiers
* are equated to the partial schedule of band that was marked for mapping
* to blocks modulo the grid size.
* Insert a filter node inside the "thread" mark mapping the statement
* instances to thread identifiers. In particular, the thread identifiers
* are equated to the partial schedule of band that was marked for mapping
* to threads modulo the block size.
*
* Compute array reference groups for all arrays, set the local
* array bounds based on the set of domain instances that reach
* the kernel node, check the total amount of shared memory used
* and compute all group tilings.
* The array reference groups are computed after the block filter
* has been inserted because it affects the mapping to shared or
* private memory. This computation also requires the thread filter
* (in the ppcg_kernel object), but this thread filter should not
* have been added to the schedule tree yet since the computation
* requires the schedule of the band that needs to be mapped to
* threads before the privatization is applied.
*
* If any array reference group requires the band mapped to threads
* to be unrolled, then we perform the required unrolling.
*
* We save a copy of the schedule that may influence the mappings
* to shared or private memory in kernel->copy_schedule.
*
* Finally, we add synchronization and copy statements to the schedule tree,
* remove the "thread" mark and create representations for the local
* variables in the kernel.
*
* We keep a copy of the isl_id that points to the kernel to ensure
* that the kernel does not get destroyed if the schedule node
* is freed due to some error condition.
*/
__isl_give isl_schedule_node *gpu_create_kernel(struct gpu_gen *gen,
__isl_take isl_schedule_node *node, int scale,
__isl_keep isl_multi_val *sizes)
{
struct ppcg_kernel *kernel;
isl_id *id;
isl_schedule_node *node_thread;
isl_union_map *host_schedule;
isl_union_pw_multi_aff *contraction;
isl_set *host_domain;
isl_union_set *domain, *expanded;
int single_statement;
node = gpu_tree_insert_shared_before_thread(node);
if (!node)
return NULL;
kernel = isl_calloc_type(gen->ctx, struct ppcg_kernel);
kernel = ppcg_kernel_create_local_arrays(kernel, gen->prog);
if (!kernel)
return isl_schedule_node_free(node);
domain = isl_schedule_node_get_domain(node);
single_statement = isl_union_set_n_set(domain) == 1;
kernel->ctx = gen->ctx;
kernel->prog = gen->prog;
kernel->options = gen->options;
kernel->context = extract_context(node, gen->prog);
kernel->core = isl_union_set_universe(isl_union_set_copy(domain));
contraction = isl_schedule_node_get_subtree_contraction(node);
kernel->contraction = isl_union_pw_multi_aff_copy(contraction);
expanded = isl_union_set_copy(domain);
expanded = isl_union_set_preimage_union_pw_multi_aff(expanded,
contraction);
kernel->expanded_domain = isl_union_set_copy(expanded);
kernel->arrays = accessed_by_domain(expanded, gen->prog);
kernel->n_grid = n_outer_coincidence(node);
node_thread = isl_schedule_node_copy(node);
node_thread = gpu_tree_move_down_to_thread(node_thread, kernel->core);
node_thread = isl_schedule_node_child(node_thread, 0);
kernel->n_block = n_outer_coincidence(node_thread);
isl_schedule_node_free(node_thread);
kernel->id = gen->kernel_id++;
read_grid_and_block_sizes(kernel, gen);
kernel->sync_writes = compute_sync_writes(kernel, node);
host_schedule = isl_schedule_node_get_prefix_schedule_union_map(node);
host_domain = isl_set_from_union_set(isl_union_map_range(
host_schedule));
node = atomic_ancestors(node);
id = isl_id_alloc(gen->ctx, "kernel", kernel);
id = isl_id_set_free_user(id, &ppcg_kernel_free_wrap);
node = isl_schedule_node_insert_mark(node, isl_id_copy(id));
if (!single_statement)
node = group_statements(node, kernel->id);
node = isl_schedule_node_child(node, 0);
node = split_band(node, kernel->n_grid);
kernel->block_ids = ppcg_scop_generate_names(gen->prog->scop,
kernel->n_grid, "b");
kernel->block_filter = set_schedule_modulo(node, kernel->block_ids,
kernel->grid_dim);
kernel->grid_size = extract_grid_size(kernel,
isl_union_set_copy(domain));
if (!kernel->options->wrap)
node = snap_band_to_sizes(node, kernel->grid_dim,
kernel->options);
if (scale)
node = scale_band(node, isl_multi_val_copy(sizes));
node = isl_schedule_node_parent(node);
if (!single_statement)
node = isl_schedule_node_parent(node);
node = insert_guard(node, kernel->context, kernel->grid_size,
gen->prog->scop);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_child(node, 0);
node = split_band(node, kernel->n_block);
kernel->thread_ids = ppcg_scop_generate_names(gen->prog->scop,
kernel->n_block, "t");
kernel->thread_filter = set_schedule_modulo(node, kernel->thread_ids,
kernel->block_dim);
if (extract_block_size(kernel, domain) < 0)
node = isl_schedule_node_free(node);
node = gpu_tree_move_up_to_kernel(node);
node = isl_schedule_node_child(node, 0);
node = insert_context(kernel, node);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_insert_filter(node,
isl_union_set_copy(kernel->block_filter));
node = gpu_tree_move_up_to_kernel(node);
if (gpu_group_references(kernel, node) < 0)
node = isl_schedule_node_free(node);
localize_bounds(kernel, host_domain);
isl_set_free(host_domain);
check_shared_memory_bound(kernel);
mark_global_arrays(kernel);
compute_group_tilings(kernel);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_child(node, 0);
if (!kernel->options->wrap)
node = snap_band_to_sizes(node, kernel->block_dim,
kernel->options);
node = isl_schedule_node_insert_filter(node,
isl_union_set_copy(kernel->thread_filter));
if (kernel_requires_unroll(kernel)) {
node = isl_schedule_node_child(node, 0);
node = unroll(node);
}
node = gpu_tree_move_up_to_thread(node);
kernel->copy_schedule_dim = isl_schedule_node_get_schedule_depth(node);
kernel->copy_schedule =
isl_schedule_node_get_prefix_schedule_union_pw_multi_aff(node);
contraction = isl_union_pw_multi_aff_copy(kernel->contraction);
kernel->copy_schedule =
isl_union_pw_multi_aff_pullback_union_pw_multi_aff(
kernel->copy_schedule, contraction);
node = gpu_tree_move_up_to_kernel(node);
node = add_sync(kernel, node);
node = add_copies(kernel, node);
node = gpu_tree_move_down_to_shared(node, kernel->core);
node = isl_schedule_node_delete(node);
node = gpu_tree_move_down_to_thread(node, kernel->core);
node = isl_schedule_node_delete(node);
node = gpu_tree_move_up_to_kernel(node);
if (create_kernel_vars(kernel) < 0)
node = isl_schedule_node_free(node);
if (!single_statement)
node = isl_schedule_node_parent(node);
node = isl_schedule_node_parent(node);
isl_id_free(id);
return node;
}
/* Insert a zero-dimensional permutable band at "node".
*/
static __isl_give isl_schedule_node *insert_empty_permutable_band(
__isl_take isl_schedule_node *node)
{
isl_space *space;
isl_schedule *schedule;
isl_union_set *domain;
isl_multi_union_pw_aff *mupa;
schedule = isl_schedule_node_get_schedule(node);
domain = isl_schedule_get_domain(schedule);
space = isl_union_set_get_space(domain);
isl_union_set_free(domain);
isl_schedule_free(schedule);
space = isl_space_set_from_params(space);
mupa = isl_multi_union_pw_aff_zero(space);
node = isl_schedule_node_insert_partial_schedule(node, mupa);
node = isl_schedule_node_band_set_permutable(node, 1);
return node;
}
/* See if hybrid tiling can be performed on "node" and its parent.
* If so, apply hybrid tiling and return the updated schedule tree.
* If not, return the original schedule tree.
* Return NULL on error.
*
* First check if "node", together with its parent, meets
* the basic requirements for hybrid tiling.
* If so, compute the relative dependence distances of "node"
* with respect to its parent and check if they are sufficiently bounded.
* If so, apply hybrid tiling using user specified tile sizes.
*
* The tile sizes are read before the dependence distance bounds are
* computed, because the user may have specified fewer dimensions
* than are available. In this case, the remaining schedule dimensions
* are split off and the dependence distances should be computed
* after these dimensions have been split off.
*/
static __isl_give isl_schedule_node *try_hybrid_tile(struct gpu_gen *gen,
__isl_take isl_schedule_node *node)
{
int tile_len;
int *tile_size;
isl_bool ok;
isl_schedule_node *orig = node;
ppcg_ht_bounds *bounds;
ok = ppcg_ht_parent_has_input_pattern(node);
if (ok < 0)
return isl_schedule_node_free(node);
if (!ok)
return orig;
tile_len = 1 + isl_schedule_node_band_n_member(node);
tile_size = read_tile_sizes(gen, &tile_len);
if (!tile_size)
return isl_schedule_node_free(node);
node = isl_schedule_node_copy(node);
node = split_band(node, tile_len - 1);
node = isl_schedule_node_parent(node);
bounds = ppcg_ht_compute_bounds(gen->prog->scop, node);
node = isl_schedule_node_child(node, 0);
ok = ppcg_ht_bounds_is_valid(bounds);
if (ok >= 0 && ok)
node = gpu_hybrid_tile(gen, node, bounds, tile_size);
else
ppcg_ht_bounds_free(bounds);
free(tile_size);
if (ok >= 0 && !ok) {
isl_schedule_node_free(node);
return orig;
}
isl_schedule_node_free(orig);
if (ok < 0)
return isl_schedule_node_free(node);
return node;
}
/* If "node" is the outermost permutable band that can be mapped to block and
* thread identifiers in its branch (or the root of a subtree with
* no such outer bands),
* then mark the band as such, attaching a ppcg_kernel to the mark.
*
* If hybrid tiling is allowed, then first try and apply it
* to "node" and its parent.
*
* If "node" is the root of a subtree without permutable bands,
* then insert a zero-dimensional permutable band such that
* we can assume that "node" always points to a band node.
* This includes the case where "node" already points to a band node,
* but one without any coincident dimension. In this case,
* the extra node ensures that this original node does not get tiled.
*
* Tile "node" using user specified tile sizes, after splitting the band
* if the number of specified tile sizes is smaller than the dimension
* of the band. Mark the point band of this tiling as the band that
* needs to be mapped to threads and instruct the AST generator to unroll
* the band if the "unroll_gpu_tile" option is set.
* Create a kernel representing the domain instances that reach "node" and
* insert a mark node pointing to the ppcg_kernel before the band node.
*/
static __isl_give isl_schedule_node *mark_outer_permutable(
__isl_take isl_schedule_node *node, void *user)
{
struct gpu_gen *gen = user;
int outer;
int scale;
int tile_len;
int *tile_size;
isl_id *id;
isl_multi_val *sizes;
outer = is_outer_tilable(node);
if (outer < 0)
return isl_schedule_node_free(node);
if (!outer)
return node;
if (gen->options->hybrid) {
isl_schedule_node *saved = isl_schedule_node_copy(node);
node = try_hybrid_tile(gen, node);
isl_schedule_node_free(saved);
if (node != saved)
return node;
}
if (isl_schedule_node_get_type(node) != isl_schedule_node_band ||
!isl_schedule_node_band_member_get_coincident(node, 0))
node = insert_empty_permutable_band(node);
tile_len = isl_schedule_node_band_n_member(node);
tile_size = read_tile_sizes(gen, &tile_len);
if (!tile_size)
return isl_schedule_node_free(node);
if (tile_len < isl_schedule_node_band_n_member(node))
node = isl_schedule_node_band_split(node, tile_len);
sizes = construct_band_tiles_sizes(node, tile_size);
node = tile_band(node, isl_multi_val_copy(sizes));
node = isl_schedule_node_child(node, 0);
if (gen->options->unroll_gpu_tile)
node = ppcg_set_schedule_node_type(node, isl_ast_loop_unroll);
id = isl_id_alloc(gen->ctx, "thread", NULL);
node = isl_schedule_node_insert_mark(node, id);
node = isl_schedule_node_parent(node);
scale = gen->options->scale_tile_loops;
node = gpu_create_kernel(gen, node, scale, sizes);
isl_multi_val_free(sizes);
free(tile_size);
return node;
}
/* Given a set or sequence node, return the union the filters of either all
* (if "only_initial" is not set) or the initial (if "only_initial" is set)
* direct subtrees that do not contain any suitably permutable bands
* (according to subtree_has_permutable_bands).
*/
static __isl_give isl_union_set *get_non_parallel_subtree_filters(
__isl_keep isl_schedule_node *node, int only_initial)
{
isl_space *space;
isl_union_set *filter;
int i, n;
n = isl_schedule_node_n_children(node);
if (n < 0)
return NULL;
node = isl_schedule_node_copy(node);
node = isl_schedule_node_child(node, 0);
filter = isl_schedule_node_filter_get_filter(node);
node = isl_schedule_node_parent(node);
space = isl_union_set_get_space(filter);
isl_union_set_free(filter);
filter = isl_union_set_empty(space);
for (i = 0; i < n; ++i) {
int parallelism;
node = isl_schedule_node_child(node, i);
parallelism = subtree_has_permutable_bands(node);
if (parallelism < 0) {
filter = isl_union_set_free(filter);
} else if (!parallelism) {
isl_union_set *filter_i;
filter_i = isl_schedule_node_filter_get_filter(node);
filter = isl_union_set_union(filter, filter_i);
} else if (only_initial)
break;
node = isl_schedule_node_parent(node);
}
isl_schedule_node_free(node);
return filter;
}
/* Given a set or sequence node, return the union of the filters of
* the direct subtrees that do not contain any suitably permutable bands
* (according to subtree_has_permutable_bands).
*/
static __isl_give isl_union_set *get_all_non_parallel_subtree_filters(
__isl_keep isl_schedule_node *node)
{
return get_non_parallel_subtree_filters(node, 0);
}
/* Given a set or sequence node, return the union of the filters of
* the initial direct subtrees that do not contain any suitably permutable
* bands (according to subtree_has_permutable_bands).
*/
static __isl_give isl_union_set *get_initial_non_parallel_subtree_filters(
__isl_keep isl_schedule_node *node)
{
return get_non_parallel_subtree_filters(node, 1);
}
/* Mark all variables that are accessed by the statement instances in "domain"
* and that are local to "prog" as requiring a declaration in the host code.
* The statement instances in "domain" correspond to (a subset of)
* the active instances at "node".
* "node" is not modified by this function, except that NULL is returned
* in case of error.
*/
static __isl_give isl_schedule_node *declare_accessed_local_variables(
__isl_take isl_schedule_node *node, struct gpu_prog *prog,
__isl_keep isl_union_set *domain)
{
isl_union_pw_multi_aff *contraction;
isl_union_set *arrays;
int i;
if (!ppcg_scop_any_hidden_declarations(prog->scop))
return node;
contraction = isl_schedule_node_get_subtree_contraction(node);
domain = isl_union_set_copy(domain);
domain = isl_union_set_preimage_union_pw_multi_aff(domain, contraction);
arrays = accessed_by_domain(domain, prog);
for (i = 0; i < prog->n_array; ++i) {
isl_space *space;
isl_set *set;
int empty;
if (!prog->array[i].local)
continue;
space = isl_set_get_space(prog->array[i].extent);
set = isl_union_set_extract_set(arrays, space);
empty = isl_set_plain_is_empty(set);
isl_set_free(set);
if (empty < 0)
goto error;
if (!empty)
prog->array[i].declare_local = 1;
}
isl_union_set_free(arrays);
return node;
error:
isl_union_set_free(arrays);
return isl_schedule_node_free(node);
}
/* If "node" points to a set node, then separate its children
* into subtrees that have suitably permutable bands and
* those that do not.
* Adjust the schedule tree in order to execute the second group
* after the first group and return a pointer to the first group,
* assuming there are any such subtrees.
* If "node" points to a sequence node, then separate the initial
* children that do not have suitably permutable bands and
* return a pointer to the subsequence of children that do have such bands,
* assuming there are any such subtrees.
*
* In both cases, mark all local variables in "prog" that are accessed by
* the group without permutable bands as requiring a declaration on the host.
*/
static __isl_give isl_schedule_node *isolate_permutable_subtrees(
__isl_take isl_schedule_node *node, struct gpu_prog *prog)
{
isl_union_set *filter;
enum isl_schedule_node_type type;
if (!node)
return NULL;
type = isl_schedule_node_get_type(node);
if (type == isl_schedule_node_set) {
filter = get_all_non_parallel_subtree_filters(node);
node = declare_accessed_local_variables(node, prog, filter);
node = isl_schedule_node_order_after(node, filter);
} else if (type == isl_schedule_node_sequence) {
filter = get_initial_non_parallel_subtree_filters(node);
node = declare_accessed_local_variables(node, prog, filter);
node = isl_schedule_node_order_before(node, filter);
}
return node;
}
/* Replace any reference to an array element in the range of "copy"
* by a reference to all array elements (defined by the extent of the array).
*/
static __isl_give isl_union_map *approximate_copy_out(
__isl_take isl_union_map *copy, struct gpu_prog *prog)
{
int i;
isl_union_map *res;
res = isl_union_map_empty(isl_union_map_get_space(copy));
for (i = 0; i < prog->n_array; ++i) {
isl_space *space;
isl_set *set;
isl_union_map *copy_i;
isl_union_set *extent, *domain;
space = isl_space_copy(prog->array[i].space);
extent = isl_union_set_from_set(isl_set_universe(space));
copy_i = isl_union_map_copy(copy);
copy_i = isl_union_map_intersect_range(copy_i, extent);
set = isl_set_copy(prog->array[i].extent);
extent = isl_union_set_from_set(set);
domain = isl_union_map_domain(copy_i);
copy_i = isl_union_map_from_domain_and_range(domain, extent);
res = isl_union_map_union(res, copy_i);
}
isl_union_map_free(copy);
return res;
}
/* Insert "kernel" marks that point to a ppcg_kernel structure
* in front of all outermost tilable band that (by construction)
* have at least one parallel loop.
*/
static __isl_give isl_schedule_node *mark_kernels(struct gpu_gen *gen,
__isl_take isl_schedule_node *node)
{
return isl_schedule_node_map_descendant_bottom_up(node,
&mark_outer_permutable, gen);
}
/* Construct schedule constraints from the dependences in prog->scop and
* the array order dependences in prog->array_order.
*
* If live range reordering is allowed, then we need to make sure
* that live ranges on arrays are not run in parallel since doing
* so would require array expansion. We therefore add the array
* order dependences to the coincidence dependences. Non-zero array
* order dependences will then prevent a schedule dimension from being
* considered parallel.
* Live ranges derived from scalars are allowed to be run in parallel
* since we force the scalars to be mapped to private memory in
* check_scalar_live_ranges.
* If live range reordering is allowed, then the false dependences
* are not added to the validity constraints as that would prevent
* reordering. Instead, the external false dependences that enforce that reads
* from potentially live-in data precede any later write and
* that writes of potentially live-out data follow any other earlier write
* are added to the validity and the coincidence constraints.
* The false dependences are still added to the proximity constraints
* for consistency with the case where live range reordering is not allowed.
* The coincidence constraints then consist of flow dependences,
* external false dependences and array order dependences.
* The independences can be filtered out from the first two sets.
* They have already been filtered out from the array order dependences
* on a per array basis in collect_order_dependences.
* There is no need for a per array handling of the other two sets
* as there should be no flow or external false dependence on local
* variables that can be filtered out.
*/
static __isl_give isl_schedule_constraints *construct_schedule_constraints(
struct gpu_prog *prog)
{
isl_union_set *domain;
isl_union_map *dep_raw, *dep;
isl_union_map *validity, *proximity, *coincidence;
isl_schedule_constraints *sc;
domain = isl_union_set_copy(prog->scop->domain);
sc = isl_schedule_constraints_on_domain(domain);
sc = isl_schedule_constraints_set_context(sc,
isl_set_copy(prog->scop->context));
if (prog->scop->options->live_range_reordering) {
sc = isl_schedule_constraints_set_conditional_validity(sc,
isl_union_map_copy(prog->scop->tagged_dep_flow),
isl_union_map_copy(prog->scop->tagged_dep_order));
proximity = isl_union_map_copy(prog->scop->dep_flow);
validity = isl_union_map_copy(proximity);
validity = isl_union_map_union(validity,
isl_union_map_copy(prog->scop->dep_forced));
proximity = isl_union_map_union(proximity,
isl_union_map_copy(prog->scop->dep_false));
coincidence = isl_union_map_copy(validity);
coincidence = isl_union_map_subtract(coincidence,
isl_union_map_copy(prog->scop->independence));
coincidence = isl_union_map_union(coincidence,
isl_union_map_copy(prog->array_order));
} else {
dep_raw = isl_union_map_copy(prog->scop->dep_flow);
dep = isl_union_map_copy(prog->scop->dep_false);
dep = isl_union_map_union(dep, dep_raw);
dep = isl_union_map_coalesce(dep);
proximity = isl_union_map_copy(dep);
coincidence = isl_union_map_copy(dep);
validity = dep;
}
sc = isl_schedule_constraints_set_validity(sc, validity);
sc = isl_schedule_constraints_set_coincidence(sc, coincidence);
sc = isl_schedule_constraints_set_proximity(sc, proximity);
if (prog->scop->options->debug->dump_schedule_constraints)
isl_schedule_constraints_dump(sc);
return sc;
}
/* Compute an appropriate schedule based on the accesses in
* gen->read and gen->write.
*
* We derive schedule constraints from the dependences in gen->prog->scop
* and then use isl to compute a schedule that has a parallel loop
* in each tilable band.
* During the schedule construction, some statement instances
* may be grouped first based on the input schedule.
*/
static __isl_give isl_schedule *compute_schedule(struct gpu_gen *gen)
{
isl_schedule_constraints *sc;
isl_schedule *schedule;
sc = construct_schedule_constraints(gen->prog);
schedule = gen->prog->scop->schedule;
schedule = ppcg_compute_schedule(sc, schedule, gen->options);
return schedule;
}
/* If the band node "node" has exactly one member then mark it permutable.
*/
static __isl_give isl_schedule_node *band_set_permutable(
__isl_take isl_schedule_node *node,
__isl_keep isl_schedule_constraints *sc)
{
if (isl_schedule_node_band_n_member(node) == 1)
node = isl_schedule_node_band_set_permutable(node, 1);
return node;
}
/* Return the coincidence constraints between pairs of instances
* that are scheduled together by the ancestors of "node".
* That is, select those coincidence constraints that relate
* pairs of instances that have the same value for the prefix schedule.
* If the schedule depth is zero, then the prefix schedule does not
* contain any information, so we intersect domain and range
* of the schedule constraints with the reaching domain elements instead.
*/
static __isl_give isl_union_map *get_local_coincidence(
__isl_keep isl_schedule_node *node,
__isl_keep isl_schedule_constraints *sc)
{
isl_union_map *coincidence;
isl_multi_union_pw_aff *prefix;
isl_union_pw_multi_aff *contraction;
coincidence = isl_schedule_constraints_get_coincidence(sc);
contraction = isl_schedule_node_get_subtree_contraction(node);
if (isl_schedule_node_get_schedule_depth(node) == 0) {
isl_union_set *domain;
domain = isl_schedule_node_get_domain(node);
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
contraction);
coincidence = isl_union_map_intersect_domain(coincidence,
isl_union_set_copy(domain));
coincidence = isl_union_map_intersect_range(coincidence,
domain);
return coincidence;
}
prefix = isl_schedule_node_get_prefix_schedule_multi_union_pw_aff(node);
prefix = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(prefix,
contraction);
return isl_union_map_eq_at_multi_union_pw_aff(coincidence, prefix);
}
/* For each member in the band node "node", determine whether
* it is coincident with respect to the outer nodes and mark
* it accordingly.
*
* That is, for each coincidence constraint between pairs
* of instances that are scheduled together by the outer nodes,
* check that domain and range are assigned the same value
* by the band member. This test is performed by checking
* that imposing the same value for the band member does not
* remove any elements from the set of coincidence constraints.
*/
static __isl_give isl_schedule_node *band_set_coincident(
__isl_take isl_schedule_node *node,
__isl_keep isl_schedule_constraints *sc)
{
isl_union_map *coincidence;
isl_union_pw_multi_aff *contraction;
isl_multi_union_pw_aff *partial;
int i, n;
coincidence = get_local_coincidence(node, sc);
partial = isl_schedule_node_band_get_partial_schedule(node);
contraction = isl_schedule_node_get_subtree_contraction(node);
partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
contraction);
n = isl_schedule_node_band_n_member(node);
for (i = 0; i < n; ++i) {
isl_union_map *coincidence_i;
isl_union_pw_aff *upa;
isl_multi_union_pw_aff *partial_i;
int subset;
upa = isl_multi_union_pw_aff_get_union_pw_aff(partial, i);
partial_i = isl_multi_union_pw_aff_from_union_pw_aff(upa);
coincidence_i = isl_union_map_copy(coincidence);
coincidence_i = isl_union_map_eq_at_multi_union_pw_aff(
coincidence_i, partial_i);
subset = isl_union_map_is_subset(coincidence, coincidence_i);
isl_union_map_free(coincidence_i);
if (subset < 0)
break;
node = isl_schedule_node_band_member_set_coincident(node, i,
subset);
}
if (i < n)
node = isl_schedule_node_free(node);
isl_multi_union_pw_aff_free(partial);
isl_union_map_free(coincidence);
return node;
}
/* If "node" is a band, then set its properties.
*
* In particular, if the band has exactly one member, then mark it permutable.
* Mark the band member coincident based on the coincidence constraints
* of "sc".
*/
static __isl_give isl_schedule_node *set_band_properties(
__isl_take isl_schedule_node *node, void *user)
{
isl_schedule_constraints *sc = user;
if (isl_schedule_node_get_type(node) != isl_schedule_node_band)
return node;
if (isl_schedule_node_band_n_member(node) == 0)
return node;
node = band_set_permutable(node, sc);
node = band_set_coincident(node, sc);
return node;
}
/* Return the original schedule with all bands marked permutable and
* all band members marked coincident based on the coincidence constraints.
* The bands are explicitly marked permutable so that they will be considered
* by mark_outer_permutable.
*/
static __isl_give isl_schedule *determine_properties_original_schedule(
struct gpu_gen *gen)
{
isl_schedule *schedule;
isl_schedule_constraints *sc;
schedule = isl_schedule_copy(gen->prog->scop->schedule);
sc = construct_schedule_constraints(gen->prog);
schedule = isl_schedule_map_schedule_node_bottom_up(schedule,
&set_band_properties, sc);
isl_schedule_constraints_free(sc);
return schedule;
}
/* Compute a schedule or determine the properties of the original schedule
* depending on the value of the "reschedule" option.
*/
static __isl_give isl_schedule *compute_or_set_properties(void *user)
{
struct gpu_gen *gen = user;
if (gen->options->reschedule)
return compute_schedule(gen);
else
return determine_properties_original_schedule(gen);
}
/* Obtain a schedule for the scop, by reading it from
* a file, by computing one or by determining the properties
* of the original schedule.
*/
__isl_give isl_schedule *get_schedule(struct gpu_gen *gen)
{
return ppcg_get_schedule(gen->ctx, gen->options,
&compute_or_set_properties, gen);
}
/* Construct the string "<a>_<b>".
*/
static char *concat(isl_ctx *ctx, const char *a, const char *b)
{
isl_printer *p;
char *s;
p = isl_printer_to_str(ctx);
p = isl_printer_print_str(p, a);
p = isl_printer_print_str(p, "_");
p = isl_printer_print_str(p, b);
s = isl_printer_get_str(p);
isl_printer_free(p);
return s;
}
/* For each array in "prog" of which an element appears in "accessed" and
* that is not a read only scalar, create a zero-dimensional universe set
* of which the tuple id has name "<prefix>_<name of array>" and a user
* pointer pointing to the array (gpu_array_info).
*
* If the array is local to "prog", then make sure it will be declared
* in the host code.
*
* Return the list of these universe sets.
*/
static __isl_give isl_union_set_list *create_copy_filters(struct gpu_prog *prog,
const char *prefix, __isl_take isl_union_set *accessed)
{
int i;
isl_ctx *ctx;
isl_union_set_list *filters;
ctx = prog->ctx;
filters = isl_union_set_list_alloc(ctx, 0);
for (i = 0; i < prog->n_array; ++i) {
struct gpu_array_info *array = &prog->array[i];
isl_space *space;
isl_set *accessed_i;
int empty;
char *name;
isl_id *id;
isl_union_set *uset;
if (gpu_array_is_read_only_scalar(array))
continue;
space = isl_space_copy(array->space);
accessed_i = isl_union_set_extract_set(accessed, space);
empty = isl_set_plain_is_empty(accessed_i);
isl_set_free(accessed_i);
if (empty < 0) {
filters = isl_union_set_list_free(filters);
break;
}
if (empty)
continue;
array->global = 1;
if (array->local)
array->declare_local = 1;
name = concat(ctx, prefix, array->name);
id = name ? isl_id_alloc(ctx, name, array) : NULL;
free(name);
space = isl_space_set_alloc(ctx, 0, 0);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
uset = isl_union_set_from_set(isl_set_universe(space));
filters = isl_union_set_list_add(filters, uset);
}
isl_union_set_free(accessed);
return filters;
}
/* Make sure that code for the statements in "filters" that
* copy arrays to or from the device is only generated when
* the size of the corresponding array is positive.
* That is, add a set node underneath "graft" with "filters" as children
* and for each child add a guard that the selects the parameter
* values for which the corresponding array has a positive size.
* The array is available in the user pointer of the statement identifier.
* "depth" is the schedule depth of the position where "graft"
* will be added.
*/
static __isl_give isl_schedule_node *insert_positive_size_guards(
__isl_take isl_schedule_node *graft,
__isl_take isl_union_set_list *filters, int depth)
{
int i, n;
graft = isl_schedule_node_child(graft, 0);
graft = isl_schedule_node_insert_set(graft, filters);
n = isl_schedule_node_n_children(graft);
for (i = 0; i < n; ++i) {
isl_union_set *filter;
isl_set *domain, *guard;
isl_id *id;
struct gpu_array_info *array;
graft = isl_schedule_node_child(graft, i);
filter = isl_schedule_node_filter_get_filter(graft);
domain = isl_set_from_union_set(filter);
id = isl_set_get_tuple_id(domain);
array = isl_id_get_user(id);
isl_id_free(id);
isl_set_free(domain);
guard = gpu_array_positive_size_guard(array);
guard = isl_set_from_params(guard);
guard = isl_set_add_dims(guard, isl_dim_set, depth);
graft = isl_schedule_node_child(graft, 0);
graft = isl_schedule_node_insert_guard(graft, guard);
graft = isl_schedule_node_parent(graft);
graft = isl_schedule_node_parent(graft);
}
graft = isl_schedule_node_parent(graft);
return graft;
}
/* Create a graft for copying arrays to or from the device,
* whenever the size of the array is strictly positive.
* Each statement is called "<prefix>_<name of array>" and
* the identifier has a user pointer pointing to the array.
* The graft will be added at the position specified by "node".
* "copy" contains the array elements that need to be copied.
* Only arrays of which some elements need to be copied
* will have a corresponding statement in the graph.
* Note though that each such statement will copy the entire array.
*/
static __isl_give isl_schedule_node *create_copy_device(struct gpu_prog *prog,
__isl_keep isl_schedule_node *node, const char *prefix,
__isl_take isl_union_set *copy)
{
int depth;
isl_ctx *ctx;
isl_space *space;
isl_union_set *all, *domain;
isl_union_set_list *filters;
isl_union_map *extension;
isl_schedule_node *graft;
ctx = prog->ctx;
depth = isl_schedule_node_get_schedule_depth(node);
filters = create_copy_filters(prog, prefix, copy);
all = isl_union_set_list_union(isl_union_set_list_copy(filters));
space = depth < 0 ? NULL : isl_space_set_alloc(ctx, 0, depth);
domain = isl_union_set_from_set(isl_set_universe(space));
extension = isl_union_map_from_domain_and_range(domain, all);
graft = isl_schedule_node_from_extension(extension);
if (!filters)
return isl_schedule_node_free(graft);
if (isl_union_set_list_n_union_set(filters) == 0) {
isl_union_set_list_free(filters);
return graft;
}
return insert_positive_size_guards(graft, filters, depth);
}
/* Return (the universe spaces of) the arrays that are declared
* inside the scop corresponding to "prog" and for which all
* potential writes inside the scop form a subset of "domain".
*/
static __isl_give isl_union_set *extract_local_accesses(struct gpu_prog *prog,
__isl_keep isl_union_set *domain)
{
int i;
isl_union_set *local;
local = isl_union_set_empty(isl_union_set_get_space(domain));
for (i = 0; i < prog->n_array; ++i) {
isl_set *set;
isl_union_map *to_outer;
isl_union_map *may_write;
isl_union_set *write_domain;
isl_union_set *fields;
int subset;
if (!prog->array[i].local)
continue;
set = isl_set_universe(isl_space_copy(prog->array[i].space));
to_outer = isl_union_map_copy(prog->to_outer);
to_outer = isl_union_map_intersect_range(to_outer,
isl_union_set_from_set(isl_set_copy(set)));
fields = isl_union_map_domain(to_outer);
may_write = isl_union_map_copy(prog->may_write);
may_write = isl_union_map_intersect_range(may_write, fields);
write_domain = isl_union_map_domain(may_write);
subset = isl_union_set_is_subset(write_domain, domain);
isl_union_set_free(write_domain);
if (subset < 0) {
isl_set_free(set);
return isl_union_set_free(local);
} else if (subset) {
local = isl_union_set_add_set(local, set);
} else {
isl_set_free(set);
}
}
return local;
}
/* Internal data structure for node_may_persist.
*
* "tagger" maps tagged iteration domains to the corresponding untagged
* iteration domain.
*
* "may_persist_flow" is the set of all tagged dataflow dependences
* with those dependences removed that either precede or follow
* the kernel launch in a sequence.
* "inner_band_flow" is the set of all tagged dataflow dependences
* that are local to a given iteration of the outer band nodes
* with respect to the current node.
* "local_flow" is equal to "inner_band_flow", except that the domain
* and the range have been intersected with intermediate filters
* on children of sets or sequences.
*/
struct ppcg_may_persist_data {
isl_union_pw_multi_aff *tagger;
isl_union_map *local_flow;
isl_union_map *inner_band_flow;
isl_union_map *may_persist_flow;
};
/* Update the information in "data" based on the band ancestor "node".
*
* In particular, we restrict the dependences in data->local_flow
* to those dependence where the source and the sink occur in
* the same iteration of the given band node.
* We also update data->inner_band_flow to the new value of
* data->local_flow.
*/
static int update_may_persist_at_band(__isl_keep isl_schedule_node *node,
struct ppcg_may_persist_data *data)
{
isl_multi_union_pw_aff *partial;
isl_union_pw_multi_aff *contraction;
isl_union_map *flow;
if (isl_schedule_node_band_n_member(node) == 0)
return 0;
partial = isl_schedule_node_band_get_partial_schedule(node);
contraction = isl_schedule_node_get_subtree_contraction(node);
partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
contraction);
partial = isl_multi_union_pw_aff_pullback_union_pw_multi_aff(partial,
isl_union_pw_multi_aff_copy(data->tagger));
flow = data->local_flow;
flow = isl_union_map_eq_at_multi_union_pw_aff(flow, partial);
data->local_flow = flow;
isl_union_map_free(data->inner_band_flow);
data->inner_band_flow = isl_union_map_copy(data->local_flow);
return 0;
}
/* Given a set of local reaching domain elements "domain",
* expand them to the corresponding leaf domain elements using "contraction"
* and insert the array references tags using data->tagger.
*/
static __isl_give isl_union_set *expand_and_tag(
__isl_take isl_union_set *domain,
__isl_take isl_union_pw_multi_aff *contraction,
struct ppcg_may_persist_data *data)
{
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
contraction);
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
isl_union_pw_multi_aff_copy(data->tagger));
return domain;
}
/* Given a filter node that is the child of a set or sequence node,
* restrict data->local_flow to refer only to those elements
* in the filter of the node.
* "contraction" maps the leaf domain elements of the schedule tree
* to the corresponding domain elements at (the parent of) "node".
*/
static int filter_flow(__isl_keep isl_schedule_node *node,
struct ppcg_may_persist_data *data,
__isl_take isl_union_pw_multi_aff *contraction)
{
isl_union_set *filter;
isl_union_map *flow;
flow = data->local_flow;
filter = isl_schedule_node_filter_get_filter(node);
filter = expand_and_tag(filter, contraction, data);
flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(filter));
flow = isl_union_map_intersect_range(flow, filter);
data->local_flow = flow;
return 0;
}
/* Given a filter node "node", collect the filters on all preceding siblings
* (which are also filter nodes), add them to "filters" and return the result.
*/
static __isl_give isl_union_set *add_previous_filters(
__isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
{
isl_schedule_node *sibling;
sibling = isl_schedule_node_copy(node);
while (sibling && isl_schedule_node_has_previous_sibling(sibling)) {
isl_union_set *filter;
sibling = isl_schedule_node_previous_sibling(sibling);
filter = isl_schedule_node_filter_get_filter(sibling);
filters = isl_union_set_union(filters, filter);
}
isl_schedule_node_free(sibling);
if (!sibling)
return isl_union_set_free(filters);
return filters;
}
/* Given a filter node "node", collect the filters on all following siblings
* (which are also filter nodes), add them to "filters" and return the result.
*/
static __isl_give isl_union_set *add_next_filters(
__isl_take isl_union_set *filters, __isl_keep isl_schedule_node *node)
{
isl_schedule_node *sibling;
sibling = isl_schedule_node_copy(node);
while (sibling && isl_schedule_node_has_next_sibling(sibling)) {
isl_union_set *filter;
sibling = isl_schedule_node_next_sibling(sibling);
filter = isl_schedule_node_filter_get_filter(sibling);
filters = isl_union_set_union(filters, filter);
}
isl_schedule_node_free(sibling);
if (!sibling)
return isl_union_set_free(filters);
return filters;
}
/* Remove those flow dependences from data->may_persist_flow
* that flow between elements of "domain" within the same iteration
* of all outer band nodes.
* "contraction" maps the leaf domain elements of the schedule tree
* to the corresponding elements "domain".
*/
static void remove_external_flow(struct ppcg_may_persist_data *data,
__isl_take isl_union_set *domain,
__isl_keep isl_union_pw_multi_aff *contraction)
{
isl_union_map *flow;
contraction = isl_union_pw_multi_aff_copy(contraction);
domain = expand_and_tag(domain, contraction, data);
flow = isl_union_map_copy(data->local_flow);
flow = isl_union_map_intersect_domain(flow, isl_union_set_copy(domain));
flow = isl_union_map_intersect_range(flow, domain);
data->may_persist_flow = isl_union_map_subtract(data->may_persist_flow,
flow);
}
/* Update the information in "data" based on the filter ancestor "node".
* We only need to modify anything if the filter is the child
* of a set or sequence node.
*
* In the case of a sequence, we remove the dependences between
* statement instances that are both executed either before or
* after the subtree that will be mapped to a kernel, within
* the same iteration of outer bands.
*
* In both cases, we restrict data->local_flow to the current child.
*/
static int update_may_persist_at_filter(__isl_keep isl_schedule_node *node,
struct ppcg_may_persist_data *data)
{
enum isl_schedule_node_type type;
isl_schedule_node *parent;
isl_space *space;
isl_union_pw_multi_aff *contraction;
isl_union_set *before, *after, *filter;
type = isl_schedule_node_get_parent_type(node);
if (type != isl_schedule_node_sequence && type != isl_schedule_node_set)
return 0;
parent = isl_schedule_node_copy(node);
parent = isl_schedule_node_parent(parent);
contraction = isl_schedule_node_get_subtree_contraction(parent);
isl_schedule_node_free(parent);
if (type == isl_schedule_node_set)
return filter_flow(node, data, contraction);
filter = isl_schedule_node_filter_get_filter(node);
space = isl_union_set_get_space(filter);
isl_union_set_free(filter);
before = isl_union_set_empty(space);
after = isl_union_set_copy(before);
before = add_previous_filters(before, node);
after = add_next_filters(after, node);
remove_external_flow(data, before, contraction);
remove_external_flow(data, after, contraction);
return filter_flow(node, data, contraction);
}
/* Update the information in "data" based on the ancestor "node".
*/
static isl_stat update_may_persist_at(__isl_keep isl_schedule_node *node,
void *user)
{
struct ppcg_may_persist_data *data = user;
switch (isl_schedule_node_get_type(node)) {
case isl_schedule_node_error:
return isl_stat_error;
case isl_schedule_node_context:
case isl_schedule_node_domain:
case isl_schedule_node_expansion:
case isl_schedule_node_extension:
case isl_schedule_node_guard:
case isl_schedule_node_leaf:
case isl_schedule_node_mark:
case isl_schedule_node_sequence:
case isl_schedule_node_set:
break;
case isl_schedule_node_band:
if (update_may_persist_at_band(node, data) < 0)
return isl_stat_error;
break;
case isl_schedule_node_filter:
if (update_may_persist_at_filter(node, data) < 0)
return isl_stat_error;
break;
}
return isl_stat_ok;
}
/* Determine the set of array elements that may need to be perserved
* by a kernel constructed from the subtree at "node".
* This includes the set of array elements that may need to be preserved
* by the entire scop (prog->may_persist) and the elements for which
* there is a potential flow dependence that may cross a kernel launch.
*
* To determine the second set, we start from all flow dependences.
* From this set of dependences, we remove those that cannot possibly
* require data to be preserved by a kernel launch.
* In particular, we consider the following sets of dependences.
* - dependences of which the write occurs inside the kernel.
* If the data is needed outside the kernel, then it will
* be copied out immediately after the kernel launch, so there
* is no need for any special care.
* - dependences of which the read occurs inside the kernel and the
* corresponding write occurs inside the same iteration of the
* outer band nodes. This means that the data is needed in
* the first kernel launch after the write, which is already
* taken care of by the standard copy-in. That is, the data
* do not need to be preserved by any intermediate call to
* the same kernel.
* - dependences of which the write and the read either both occur
* before the kernel launch or both occur after the kernel launch,
* within the same iteration of the outer band nodes with respect
* to the sequence that determines the ordering of the dependence
* and the kernel launch. Such flow dependences cannot cross
* any kernel launch.
*
* For the remaining (tagged) dependences, we take the domain
* (i.e., the tagged writes) and apply the tagged access relation
* to obtain the accessed data elements.
* These are then combined with the elements that may need to be
* preserved by the entire scop.
*/
static __isl_give isl_union_set *node_may_persist(
__isl_keep isl_schedule_node *node, struct gpu_prog *prog)
{
struct ppcg_may_persist_data data;
isl_union_pw_multi_aff *contraction;
isl_union_set *domain;
isl_union_set *persist;
isl_union_map *flow, *local_flow;
data.tagger = prog->scop->tagger;
flow = isl_union_map_copy(prog->scop->tagged_dep_flow);
data.local_flow = isl_union_map_copy(flow);
data.inner_band_flow = isl_union_map_copy(flow);
data.may_persist_flow = flow;
if (isl_schedule_node_foreach_ancestor_top_down(node,
&update_may_persist_at, &data) < 0)
data.may_persist_flow =
isl_union_map_free(data.may_persist_flow);
flow = data.may_persist_flow;
isl_union_map_free(data.local_flow);
domain = isl_schedule_node_get_domain(node);
contraction = isl_schedule_node_get_subtree_contraction(node);
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
contraction);
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
isl_union_pw_multi_aff_copy(data.tagger));
flow = isl_union_map_subtract_domain(flow, isl_union_set_copy(domain));
local_flow = data.inner_band_flow;
local_flow = isl_union_map_intersect_range(local_flow, domain);
flow = isl_union_map_subtract(flow, local_flow);
persist = isl_union_map_domain(flow);
persist = isl_union_set_apply(persist,
isl_union_map_copy(prog->scop->tagged_may_writes));
persist = isl_union_set_union(persist,
isl_union_set_copy(prog->may_persist));
return persist;
}
/* Add nodes for copying outer arrays in and out of the device
* before and after the subtree "node", which contains one or more kernels.
* "domain" contains the original statement instances, i.e.,
* those that correspond to the domains of the access relations in "prog".
* In particular, the domain has not been contracted in any way.
* "prefix" contains the prefix schedule at that point, in terms
* of the same original statement instances.
*
* We first compute the sets of outer array elements that need
* to be copied in and out and then graft in the nodes for
* performing this copying.
*
* In particular, for each array that is possibly written anywhere in
* the subtree "node" and that may be used after "node"
* or that may be visible outside the corresponding scop,
* we copy out its entire extent.
*
* Any array elements that is read without first being written inside
* the subtree "node" needs to be copied in.
* Furthermore, if there are any array elements that
* are copied out, but that may not be written inside "node, then
* they also need to be copied in to ensure that the value after execution
* is the same as the value before execution, at least for those array
* elements that may have their values preserved by the scop or that
* may be written before "node" and read after "node".
* In case the array elements are structures, we need to take into
* account that all members of the structures need to be written
* by "node" before we can avoid copying the data structure in.
*
* Note that the may_write relation is intersected with the domain,
* which has been intersected with the context.
* This helps in those cases where the arrays are declared with a fixed size,
* while the accesses are parametric and the context assigns a fixed value
* to the parameters.
*
* If an element from a local array is read without first being written,
* then there is no point in copying it in since it cannot have been
* written prior to the scop. Warn about the uninitialized read instead.
*/
static __isl_give isl_schedule_node *add_to_from_device(
__isl_take isl_schedule_node *node, __isl_take isl_union_set *domain,
__isl_take isl_union_map *prefix, struct gpu_prog *prog)
{
isl_union_set *local;
isl_union_set *may_persist;
isl_union_map *may_write, *must_write, *copy_out, *not_written;
isl_union_map *read, *copy_in;
isl_union_map *tagged;
isl_union_map *local_uninitialized;
isl_schedule_node *graft;
tagged = isl_union_map_copy(prog->scop->tagged_reads);
tagged = isl_union_map_union(tagged,
isl_union_map_copy(prog->scop->tagged_may_writes));
may_write = isl_union_map_copy(prog->may_write);
may_write = isl_union_map_intersect_domain(may_write,
isl_union_set_copy(domain));
may_write = remove_local_accesses(prog,
isl_union_map_copy(tagged), may_write,
isl_union_map_copy(prefix), 0);
may_write = isl_union_map_apply_range(may_write,
isl_union_map_copy(prog->to_outer));
may_write = isl_union_map_apply_domain(may_write,
isl_union_map_copy(prefix));
may_write = approximate_copy_out(may_write, prog);
copy_out = isl_union_map_copy(may_write);
may_write = isl_union_map_apply_range(may_write,
isl_union_map_copy(prog->to_inner));
must_write = isl_union_map_copy(prog->must_write);
must_write = isl_union_map_apply_domain(must_write,
isl_union_map_copy(prefix));
may_persist = node_may_persist(node, prog);
may_write = isl_union_map_intersect_range(may_write, may_persist);
not_written = isl_union_map_subtract(may_write, must_write);
local = extract_local_accesses(prog, domain);
read = isl_union_map_copy(prog->read);
read = isl_union_map_intersect_domain(read, domain);
read = remove_local_accesses(prog, tagged, read,
isl_union_map_copy(prefix), 1);
local = isl_union_set_apply(local, isl_union_map_copy(prog->to_inner));
local_uninitialized = isl_union_map_copy(prog->scop->live_in);
local_uninitialized = isl_union_map_intersect_range(local_uninitialized,
local);
local_uninitialized = isl_union_map_intersect(local_uninitialized,
isl_union_map_copy(read));
if (!isl_union_map_is_empty(local_uninitialized)) {
fprintf(stderr,
"possibly uninitialized reads (not copied in):\n");
isl_union_map_dump(local_uninitialized);
}
read = isl_union_map_subtract(read, local_uninitialized);
read = isl_union_map_apply_domain(read, prefix);
copy_in = isl_union_map_union(read, not_written);
copy_in = isl_union_map_apply_range(copy_in,
isl_union_map_copy(prog->to_outer));
graft = create_copy_device(prog, node, "to_device",
isl_union_map_range(copy_in));
node = isl_schedule_node_graft_before(node, graft);
graft = create_copy_device(prog, node, "from_device",
isl_union_map_range(copy_out));
node = isl_schedule_node_graft_after(node, graft);
return node;
}
/* Add nodes for initializing ("init_device") and clearing ("clear_device")
* the device before and after "node".
*/
static __isl_give isl_schedule_node *add_init_clear_device(
__isl_take isl_schedule_node *node)
{
isl_ctx *ctx;
isl_space *space;
isl_union_set *domain;
isl_schedule_node *graft;
ctx = isl_schedule_node_get_ctx(node);
space = isl_space_set_alloc(ctx, 0, 0);
space = isl_space_set_tuple_name(space, isl_dim_set, "init_device");
domain = isl_union_set_from_set(isl_set_universe(space));
graft = isl_schedule_node_from_domain(domain);
node = isl_schedule_node_graft_before(node, graft);
space = isl_space_set_alloc(ctx, 0, 0);
space = isl_space_set_tuple_name(space, isl_dim_set, "clear_device");
domain = isl_union_set_from_set(isl_set_universe(space));
graft = isl_schedule_node_from_domain(domain);
node = isl_schedule_node_graft_after(node, graft);
return node;
}
/* Update "schedule" for mapping to a GPU device.
*
* In particular, insert a context node, create kernels for
* each outermost tilable band and introduce nodes for copying arrays
* in and out of the device and for initializing and clearing the device.
* If the child of the initial root points to a set node,
* then children of this node that do not contain any tilable bands
* are separated from the other children and are not mapped to
* the device.
*
* The GPU code is generated in a context where at least one
* statement instance is executed. The corresponding guard is inserted
* around the entire schedule.
*/
__isl_give isl_schedule *map_to_device(struct gpu_gen *gen,
__isl_take isl_schedule *schedule, int to_from_device)
{
isl_schedule_node *node;
isl_set *context;
isl_set *guard;
isl_union_set *domain;
isl_union_map *prefix;
isl_union_pw_multi_aff *contraction;
struct gpu_prog *prog;
context = isl_set_copy(gen->prog->context);
context = isl_set_from_params(context);
schedule = isl_schedule_insert_context(schedule, context);
prog = gen->prog;
guard = isl_union_set_params(isl_union_set_copy(prog->scop->domain));
prog->context = isl_set_intersect(prog->context, isl_set_copy(guard));
guard = isl_set_from_params(guard);
node = isl_schedule_get_root(schedule);
isl_schedule_free(schedule);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = isolate_permutable_subtrees(node, gen->prog);
domain = isl_schedule_node_get_domain(node);
contraction = isl_schedule_node_get_subtree_contraction(node);
domain = isl_union_set_preimage_union_pw_multi_aff(domain,
isl_union_pw_multi_aff_copy(contraction));
prefix = isl_schedule_node_get_prefix_schedule_union_map(node);
prefix = isl_union_map_preimage_domain_union_pw_multi_aff(prefix,
contraction);
node = mark_kernels(gen, node);
if (to_from_device) {
node = add_to_from_device(node, domain, prefix, gen->prog);
} else {
isl_union_set_free(domain);
isl_union_map_free(prefix);
}
node = isl_schedule_node_root(node);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_child(node, 0);
node = isl_schedule_node_insert_guard(node, guard);
node = isl_schedule_node_child(node, 0);
node = add_init_clear_device(node);
schedule = isl_schedule_node_get_schedule(node);
isl_schedule_node_free(node);
return schedule;
}
/* Internal data structure for extract_access.
* "next_access" points to the end of a linked list that is extended
* by extract_access.
* "single_expression" is set if the access expressions belong to
* an expression statement (i.e., a statement without internal control).
* "any_to_outer" maps all intermediate arrays to their outer arrays.
*/
struct ppcg_extract_access_data {
struct gpu_stmt_access **next_access;
int single_expression;
isl_union_map *any_to_outer;
};
/* Given a tagged access relation to a single array "tagged", extract it
* as a map, taking into account that the input may be empty.
* If the access relation is empty, then it does not contain
* any space information, so we try to recover it from the index
* expression.
* The space of the index expression is of the form I -> A,
* with I the statement instances and A the array, or [I -> F] -> A,
* with F the filters corresponding to arguments.
* We first drop F, if present, obtaining I -> A.
* Then we construct I -> R, with R the reference tag,
* combine the two into I -> [R -> A] and uncurry to obtain
* the final result [I -> R] -> A.
* Note that the index expression may have a lower dimension
* than that of the array, but this dimension is not used
* if the access relation is empty.
*/
static __isl_give isl_map *extract_single_tagged_access(
__isl_take isl_union_map *tagged, __isl_keep pet_expr *expr)
{
int empty;
isl_id *id;
isl_space *space, *space2;
isl_multi_pw_aff *index;
empty = isl_union_map_is_empty(tagged);
if (empty < 0)
goto error;
if (!empty)
return isl_map_from_union_map(tagged);
isl_union_map_free(tagged);
index = pet_expr_access_get_index(expr);
space = isl_multi_pw_aff_get_space(index);
isl_multi_pw_aff_free(index);
if (isl_space_domain_is_wrapping(space))
space = isl_space_domain_factor_domain(space);
space2 = isl_space_copy(space);
space2 = isl_space_from_domain(isl_space_domain(space));
id = pet_expr_access_get_ref_id(expr);
space2 = isl_space_set_tuple_id(space2, isl_dim_out, id);
space = isl_space_range_product(space2, space);
space = isl_space_uncurry(space);
return isl_map_empty(space);
error:
isl_union_map_free(tagged);
return NULL;
}
/* Does the index expression "index" of "expr" represent an access
* to a single element?
* That is, is "index" completely specified?
*
* If "expr" accesses elements from different spaces (i.e., fields
* of a structure), then it does not access a single element.
* Otherwise, if the single space of the access matches the space
* of "index", then the index expression is completely specified
* (no pointer to a lower-dimensional slice of the accessed array)
* and a single element is being accessed.
*/
static isl_bool complete_index(__isl_keep pet_expr *expr,
__isl_keep isl_multi_pw_aff *index)
{
isl_union_map *read, *write, *all;
isl_map *map;
isl_space *space1, *space2;
isl_bool complete;
read = pet_expr_access_get_may_read(expr);
write = pet_expr_access_get_may_write(expr);
all = isl_union_map_union(read, write);
if (!all)
return isl_bool_error;
if (isl_union_map_n_map(all) != 1) {
isl_union_map_free(all);
return isl_bool_false;
}
map = isl_map_from_union_map(all);
space1 = isl_map_get_space(map);
isl_map_free(map);
space2 = isl_multi_pw_aff_get_space(index);
complete = isl_space_tuple_is_equal(space1, isl_dim_out,
space2, isl_dim_out);
isl_space_free(space1);
isl_space_free(space2);
return complete;
}
/* Does "expr" access a single, fixed element (independently of the statement
* instance)?
* That is, does it have a completely specified constant index expression?
*
* Note that it is not sufficient for the index expression to be
* piecewise constant. isl_multi_pw_aff_is_cst can therefore not be used.
*/
static isl_bool accesses_fixed_element(__isl_keep pet_expr *expr)
{
int i, n;
isl_multi_pw_aff *index;
isl_bool fixed = isl_bool_true;
index = pet_expr_access_get_index(expr);
if (index < 0)
return isl_bool_error;
n = isl_multi_pw_aff_dim(index, isl_dim_out);
for (i = 0; i < n; ++i) {
isl_pw_aff *pa;
pa = isl_multi_pw_aff_get_pw_aff(index, 0);
fixed = isl_pw_aff_n_piece(pa) == 1;
if (fixed)
fixed = isl_pw_aff_is_cst(pa);
isl_pw_aff_free(pa);
if (fixed < 0 || !fixed)
break;
}
if (fixed >= 0 && fixed)
fixed = complete_index(expr, index);
isl_multi_pw_aff_free(index);
return fixed;
}
/* Extract a gpu_stmt_access from "expr", append it to the list
* that ends in *data->next_access and update the end of the list.
* If the access expression performs a write, then it is considered
* exact only if it appears in a single expression statement and
* if its may access relation is equal to its must access relation.
*
* The combined set of may accesses may be a union if member accesses
* are involved, but the entire set is derived from a single reference and
* therefore from a single index expression. These accesses therefore
* all map to the same outer array.
*/
static int extract_access(__isl_keep pet_expr *expr, void *user)
{
struct ppcg_extract_access_data *data = user;
isl_union_map *tagged;
struct gpu_stmt_access *access;
isl_ctx *ctx = pet_expr_get_ctx(expr);
isl_multi_pw_aff *index;
access = isl_alloc_type(ctx, struct gpu_stmt_access);
assert(access);
access->next = NULL;
access->read = pet_expr_access_is_read(expr);
access->write = pet_expr_access_is_write(expr);
tagged = pet_expr_access_get_tagged_may_read(expr);
tagged = isl_union_map_union(tagged,
pet_expr_access_get_tagged_may_write(expr));
tagged = isl_union_map_apply_range(tagged,
isl_union_map_copy(data->any_to_outer));
if (!access->write) {
access->exact_write = 1;
} else if (!data->single_expression) {
access->exact_write = 0;
} else {
isl_union_map *must, *may;
may = isl_union_map_copy(tagged);
may = isl_union_map_domain_factor_domain(may);
must = pet_expr_access_get_must_write(expr);
access->exact_write = isl_union_map_is_equal(must, may);
isl_union_map_free(must);
isl_union_map_free(may);
}
index = pet_expr_access_get_index(expr);
access->n_index = isl_multi_pw_aff_dim(index, isl_dim_out);
isl_multi_pw_aff_free(index);
access->ref_id = pet_expr_access_get_ref_id(expr);
access->tagged_access = extract_single_tagged_access(tagged, expr);
access->access = isl_map_copy(access->tagged_access);
access->access = isl_map_domain_factor_domain(access->access);
access->fixed_element = accesses_fixed_element(expr);
*data->next_access = access;
data->next_access = &(*data->next_access)->next;
if (!access->access || access->fixed_element < 0)
return -1;
return 0;
}
/* Construct a linked list of gpu_stmt_access objects,
* one for each access expression in the statement body.
* "any_to_outer" maps all intermediate arrays to their outer arrays.
*/
static int pet_stmt_extract_accesses(struct gpu_stmt *stmt,
__isl_keep isl_union_map *any_to_outer)
{
struct ppcg_extract_access_data data;
stmt->accesses = NULL;
data.next_access = &stmt->accesses;
data.single_expression =
pet_tree_get_type(stmt->stmt->body) == pet_tree_expr;
data.any_to_outer = any_to_outer;
return pet_tree_foreach_access_expr(stmt->stmt->body,
&extract_access, &data);
}
/* Has statement "stmt" been killed from "scop"?
* That is, is the instance set of "scop" free from any
* instances of "stmt"?
*/
static isl_bool is_stmt_killed(struct ppcg_scop *scop, struct pet_stmt *stmt)
{
isl_space *space;
isl_set *left;
isl_bool empty;
if (!scop || !stmt)
return isl_bool_error;
space = isl_set_get_space(stmt->domain);
left = isl_union_set_extract_set(scop->domain, space);
empty = isl_set_plain_is_empty(left);
isl_set_free(left);
return empty;
}
/* Return an array of gpu_stmt representing the statements in "scop".
* Do not collect array accesses for statements that have been killed.
*/
static struct gpu_stmt *extract_stmts(isl_ctx *ctx, struct ppcg_scop *scop,
__isl_keep isl_union_map *any_to_outer)
{
int i;
struct gpu_stmt *stmts;
stmts = isl_calloc_array(ctx, struct gpu_stmt, scop->pet->n_stmt);
if (!stmts)
return NULL;
for (i = 0; i < scop->pet->n_stmt; ++i) {
struct gpu_stmt *s = &stmts[i];
isl_bool killed;
s->id = isl_set_get_tuple_id(scop->pet->stmts[i]->domain);
s->stmt = scop->pet->stmts[i];
killed = is_stmt_killed(scop, scop->pet->stmts[i]);
if (killed < 0)
return free_stmts(stmts, i + 1);
if (killed)
continue;
if (pet_stmt_extract_accesses(s, any_to_outer) < 0)
return free_stmts(stmts, i + 1);
}
return stmts;
}
/* Generate CUDA code for "scop" and print it to "p".
* After generating an AST for the transformed scop as explained below,
* we call "gen->print" to print the AST in the desired output format
* to "p".
*
* If it turns out that it does not make sense to generate GPU code,
* then we generate CPU code instead.
*
* The declarations of the arrays that are visible outside of the scop
* are printed outside of the code generated from the schedule,
* because the generated code may involve a guard around the entire code.
*
* We first compute a schedule that respects the dependences
* of the original program and select the outermost bands
* of tilable dimensions that have at least one parallel loop.
* If the --load-schedule is specified, then the loaded schedule
* is used instead of a computed schedule.
*
* Each of these bands B is then tiled according to "tile" sizes, resulting
* in two nested bands, with a kernel marker on top
*
* K
* |
* T
* |
* P
*
* We then split off at most 2 parallel dimensions from the T band and
* at most 3 parallel dimension from the P band
*
* K
* |
* T
* T1
* |
* T2
* |
* P1
* |
* P2
*
* A filter is introduced in front of T1 that maps the domain instances
* to block identifiers. Similarly, a filter is introduced in front of P1
* that maps the domain instances to thread identifiers.
*
* For each iteration of the T2 band and for each array, we compute
* the array elements accessed by that iteration, construct a rectangular
* box around it and shift it to the origin. The result is used
* as shared memory for the array.
*
* Copying and synchronization statements are added to this schedule tree.
* In principle, these are added in front of the P1 band, but some of
* them may get hoisted up to higher levels.
*
* The entire AST is then generated from the single resulting schedule tree.
* During the generation the subtrees at kernel nodes (K) are saved
* aside and replaced by kernel calls. The result is printed as host code
* while the saved subtrees are printed as device code.
*/
static __isl_give isl_printer *generate(__isl_take isl_printer *p,
struct gpu_gen *gen, struct ppcg_scop *scop,
struct ppcg_options *options)
{
struct gpu_prog *prog;
isl_ctx *ctx;
isl_schedule *schedule;
int any_permutable;
if (!scop)
return isl_printer_free(p);
ctx = isl_printer_get_ctx(p);
prog = gpu_prog_alloc(ctx, scop);
if (!prog)
return isl_printer_free(p);
gen->prog = prog;
schedule = get_schedule(gen);
any_permutable = has_any_permutable_node(schedule);
if (any_permutable < 0 || !any_permutable) {
if (any_permutable < 0)
p = isl_printer_free(p);
else
p = print_cpu(p, scop, options);
isl_schedule_free(schedule);
} else {
const int create_to_from_device = 1;
schedule = map_to_device(gen, schedule, create_to_from_device);
gen->tree = generate_code(gen, schedule);
p = ppcg_set_macro_names(p);
p = ppcg_print_exposed_declarations(p, prog->scop);
p = gen->print(p, gen->prog, gen->tree, &gen->types,
gen->print_user);
isl_ast_node_free(gen->tree);
}
gpu_prog_free(prog);
return p;
}
/* Wrapper around generate for use as a ppcg_transform callback.
*/
static __isl_give isl_printer *generate_wrap(__isl_take isl_printer *p,
struct ppcg_scop *scop, void *user)
{
struct gpu_gen *gen = user;
return generate(p, gen, scop, gen->options);
}
/* Transform the code in the file called "input" by replacing
* all scops by corresponding GPU code and write the results to "out".
*/
int generate_gpu(isl_ctx *ctx, const char *input, FILE *out,
struct ppcg_options *options,
__isl_give isl_printer *(*print)(__isl_take isl_printer *p,
struct gpu_prog *prog, __isl_keep isl_ast_node *tree,
struct gpu_types *types, void *user), void *user)
{
struct gpu_gen gen;
int r;
int i;
gen.ctx = ctx;
gen.sizes = extract_sizes_from_str(ctx, options->sizes);
gen.options = options;
gen.kernel_id = 0;
gen.print = print;
gen.print_user = user;
gen.types.n = 0;
gen.types.name = NULL;
if (options->debug->dump_sizes) {
isl_space *space = isl_space_params_alloc(ctx, 0);
gen.used_sizes = isl_union_map_empty(space);
}
r = ppcg_transform(ctx, input, out, options, &generate_wrap, &gen);
if (options->debug->dump_sizes) {
isl_union_map_dump(gen.used_sizes);
isl_union_map_free(gen.used_sizes);
}
isl_union_map_free(gen.sizes);
for (i = 0; i < gen.types.n; ++i)
free(gen.types.name[i]);
free(gen.types.name);
return r;
}
/* Compute the set of inner array elements that may have their values
* preserved by "prog". In particular, collect the array elements of
* arrays that are not local to "prog" and remove those elements that
* are definitely killed or definitely written by "prog".
*/
__isl_give isl_union_set *compute_may_persist(struct gpu_prog *prog)
{
int i;
isl_union_set *may_persist, *killed;
isl_union_map *must_kill;
may_persist = isl_union_set_empty(isl_set_get_space(prog->context));
for (i = 0; i < prog->n_array; ++i) {
isl_set *extent;
if (prog->array[i].local)
continue;
extent = isl_set_copy(prog->array[i].extent);
may_persist = isl_union_set_add_set(may_persist, extent);
}
may_persist = isl_union_set_intersect_params(may_persist,
isl_set_copy(prog->context));
may_persist = isl_union_set_apply(may_persist,
isl_union_map_copy(prog->to_inner));
must_kill = isl_union_map_copy(prog->tagged_must_kill);
killed = isl_union_map_range(must_kill);
must_kill = isl_union_map_copy(prog->must_write);
killed = isl_union_set_union(killed, isl_union_map_range(must_kill));
may_persist = isl_union_set_subtract(may_persist, killed);
return may_persist;
}
struct gpu_prog *gpu_prog_alloc(isl_ctx *ctx, struct ppcg_scop *scop)
{
struct gpu_prog *prog;
isl_space *space;
isl_map *id;
if (!scop)
return NULL;
prog = isl_calloc_type(ctx, struct gpu_prog);
assert(prog);
prog->ctx = ctx;
prog->scop = scop;
prog->context = isl_set_copy(scop->context);
prog->n_stmts = scop->pet->n_stmt;
prog->any_to_outer = pet_scop_compute_outer_to_any(scop->pet);
prog->any_to_outer = isl_union_map_reverse(prog->any_to_outer);
space = isl_union_map_get_space(prog->any_to_outer);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, 1);
space = isl_space_map_from_set(space);
id = isl_map_identity(space);
prog->any_to_outer = isl_union_map_add_map(prog->any_to_outer, id);
prog->stmts = extract_stmts(ctx, scop, prog->any_to_outer);
prog->read = isl_union_map_copy(scop->reads);
prog->may_write = isl_union_map_copy(scop->may_writes);
prog->must_write = isl_union_map_copy(scop->must_writes);
prog->tagged_must_kill = isl_union_map_copy(scop->tagged_must_kills);
prog->to_inner = pet_scop_compute_outer_to_inner(scop->pet);
prog->to_outer = isl_union_map_copy(prog->to_inner);
prog->to_outer = isl_union_map_reverse(prog->to_outer);
if (!prog->stmts)
return gpu_prog_free(prog);
if (collect_array_info(prog) < 0)
return gpu_prog_free(prog);
prog->may_persist = compute_may_persist(prog);
return prog;
}
void *gpu_prog_free(struct gpu_prog *prog)
{
if (!prog)
return NULL;
free_array_info(prog);
free_stmts(prog->stmts, prog->n_stmts);
isl_union_map_free(prog->any_to_outer);
isl_union_map_free(prog->to_outer);
isl_union_map_free(prog->to_inner);
isl_union_map_free(prog->read);
isl_union_map_free(prog->may_write);
isl_union_map_free(prog->must_write);
isl_union_map_free(prog->tagged_must_kill);
isl_union_map_free(prog->array_order);
isl_union_set_free(prog->may_persist);
isl_set_free(prog->context);
free(prog);
return NULL;
}