forked from OSchip/llvm-project
5570 lines
206 KiB
C++
5570 lines
206 KiB
C++
//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PowerPC implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCInstrInfo.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPC.h"
|
|
#include "PPCHazardRecognizers.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/CodeGen/StackMaps.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "ppc-instr-info"
|
|
|
|
#define GET_INSTRMAP_INFO
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#include "PPCGenInstrInfo.inc"
|
|
|
|
STATISTIC(NumStoreSPILLVSRRCAsVec,
|
|
"Number of spillvsrrc spilled to stack as vec");
|
|
STATISTIC(NumStoreSPILLVSRRCAsGpr,
|
|
"Number of spillvsrrc spilled to stack as gpr");
|
|
STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
|
|
STATISTIC(CmpIselsConverted,
|
|
"Number of ISELs that depend on comparison of constants converted");
|
|
STATISTIC(MissedConvertibleImmediateInstrs,
|
|
"Number of compare-immediate instructions fed by constants");
|
|
STATISTIC(NumRcRotatesConvertedToRcAnd,
|
|
"Number of record-form rotates converted to record-form andi");
|
|
|
|
static cl::
|
|
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
|
|
cl::desc("Disable analysis for CTR loops"));
|
|
|
|
static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
|
|
cl::desc("Disable compare instruction optimization"), cl::Hidden);
|
|
|
|
static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
|
|
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool>
|
|
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
|
|
cl::desc("Use the old (incorrect) instruction latency calculation"));
|
|
|
|
static cl::opt<float>
|
|
FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
|
|
cl::desc("register pressure factor for the transformations."));
|
|
|
|
static cl::opt<bool> EnableFMARegPressureReduction(
|
|
"ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
|
|
cl::desc("enable register pressure reduce in machine combiner pass."));
|
|
|
|
// Pin the vtable to this file.
|
|
void PPCInstrInfo::anchor() {}
|
|
|
|
PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
|
|
: PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
|
|
/* CatchRetOpcode */ -1,
|
|
STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
|
|
Subtarget(STI), RI(STI.getTargetMachine()) {}
|
|
|
|
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
|
|
/// this target when scheduling the DAG.
|
|
ScheduleHazardRecognizer *
|
|
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
|
|
const ScheduleDAG *DAG) const {
|
|
unsigned Directive =
|
|
static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
|
|
if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
|
|
Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
|
|
const InstrItineraryData *II =
|
|
static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
|
|
return new ScoreboardHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
|
|
}
|
|
|
|
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
|
|
/// to use for this target when scheduling the DAG.
|
|
ScheduleHazardRecognizer *
|
|
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
unsigned Directive =
|
|
DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
|
|
|
|
// FIXME: Leaving this as-is until we have POWER9 scheduling info
|
|
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
|
|
return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
|
|
|
|
// Most subtargets use a PPC970 recognizer.
|
|
if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
|
|
Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
|
|
assert(DAG->TII && "No InstrInfo?");
|
|
|
|
return new PPCHazardRecognizer970(*DAG);
|
|
}
|
|
|
|
return new ScoreboardHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &MI,
|
|
unsigned *PredCost) const {
|
|
if (!ItinData || UseOldLatencyCalc)
|
|
return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
|
|
|
|
// The default implementation of getInstrLatency calls getStageLatency, but
|
|
// getStageLatency does not do the right thing for us. While we have
|
|
// itinerary, most cores are fully pipelined, and so the itineraries only
|
|
// express the first part of the pipeline, not every stage. Instead, we need
|
|
// to use the listed output operand cycle number (using operand 0 here, which
|
|
// is an output).
|
|
|
|
unsigned Latency = 1;
|
|
unsigned DefClass = MI.getDesc().getSchedClass();
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
|
|
continue;
|
|
|
|
int Cycle = ItinData->getOperandCycle(DefClass, i);
|
|
if (Cycle < 0)
|
|
continue;
|
|
|
|
Latency = std::max(Latency, (unsigned) Cycle);
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr &DefMI, unsigned DefIdx,
|
|
const MachineInstr &UseMI,
|
|
unsigned UseIdx) const {
|
|
int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
|
|
UseMI, UseIdx);
|
|
|
|
if (!DefMI.getParent())
|
|
return Latency;
|
|
|
|
const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
|
|
Register Reg = DefMO.getReg();
|
|
|
|
bool IsRegCR;
|
|
if (Register::isVirtualRegister(Reg)) {
|
|
const MachineRegisterInfo *MRI =
|
|
&DefMI.getParent()->getParent()->getRegInfo();
|
|
IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
|
|
MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
|
|
} else {
|
|
IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
|
|
PPC::CRBITRCRegClass.contains(Reg);
|
|
}
|
|
|
|
if (UseMI.isBranch() && IsRegCR) {
|
|
if (Latency < 0)
|
|
Latency = getInstrLatency(ItinData, DefMI);
|
|
|
|
// On some cores, there is an additional delay between writing to a condition
|
|
// register, and using it from a branch.
|
|
unsigned Directive = Subtarget.getCPUDirective();
|
|
switch (Directive) {
|
|
default: break;
|
|
case PPC::DIR_7400:
|
|
case PPC::DIR_750:
|
|
case PPC::DIR_970:
|
|
case PPC::DIR_E5500:
|
|
case PPC::DIR_PWR4:
|
|
case PPC::DIR_PWR5:
|
|
case PPC::DIR_PWR5X:
|
|
case PPC::DIR_PWR6:
|
|
case PPC::DIR_PWR6X:
|
|
case PPC::DIR_PWR7:
|
|
case PPC::DIR_PWR8:
|
|
// FIXME: Is this needed for POWER9?
|
|
Latency += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return Latency;
|
|
}
|
|
|
|
/// This is an architecture-specific helper function of reassociateOps.
|
|
/// Set special operand attributes for new instructions after reassociation.
|
|
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
|
|
MachineInstr &OldMI2,
|
|
MachineInstr &NewMI1,
|
|
MachineInstr &NewMI2) const {
|
|
// Propagate FP flags from the original instructions.
|
|
// But clear poison-generating flags because those may not be valid now.
|
|
uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
|
|
NewMI1.setFlags(IntersectedFlags);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
|
|
NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
|
|
|
|
NewMI2.setFlags(IntersectedFlags);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
|
|
NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
|
|
}
|
|
|
|
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
|
|
uint16_t Flags) const {
|
|
MI.setFlags(Flags);
|
|
MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
|
|
MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
|
|
MI.clearFlag(MachineInstr::MIFlag::IsExact);
|
|
}
|
|
|
|
// This function does not list all associative and commutative operations, but
|
|
// only those worth feeding through the machine combiner in an attempt to
|
|
// reduce the critical path. Mostly, this means floating-point operations,
|
|
// because they have high latencies(>=5) (compared to other operations, such as
|
|
// and/or, which are also associative and commutative, but have low latencies).
|
|
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
|
|
switch (Inst.getOpcode()) {
|
|
// Floating point:
|
|
// FP Add:
|
|
case PPC::FADD:
|
|
case PPC::FADDS:
|
|
// FP Multiply:
|
|
case PPC::FMUL:
|
|
case PPC::FMULS:
|
|
// Altivec Add:
|
|
case PPC::VADDFP:
|
|
// VSX Add:
|
|
case PPC::XSADDDP:
|
|
case PPC::XVADDDP:
|
|
case PPC::XVADDSP:
|
|
case PPC::XSADDSP:
|
|
// VSX Multiply:
|
|
case PPC::XSMULDP:
|
|
case PPC::XVMULDP:
|
|
case PPC::XVMULSP:
|
|
case PPC::XSMULSP:
|
|
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
|
|
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
|
|
// Fixed point:
|
|
// Multiply:
|
|
case PPC::MULHD:
|
|
case PPC::MULLD:
|
|
case PPC::MULHW:
|
|
case PPC::MULLW:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#define InfoArrayIdxFMAInst 0
|
|
#define InfoArrayIdxFAddInst 1
|
|
#define InfoArrayIdxFMULInst 2
|
|
#define InfoArrayIdxAddOpIdx 3
|
|
#define InfoArrayIdxMULOpIdx 4
|
|
#define InfoArrayIdxFSubInst 5
|
|
// Array keeps info for FMA instructions:
|
|
// Index 0(InfoArrayIdxFMAInst): FMA instruction;
|
|
// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
|
|
// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
|
|
// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
|
|
// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
|
|
// second MUL operand index is plus 1;
|
|
// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
|
|
static const uint16_t FMAOpIdxInfo[][6] = {
|
|
// FIXME: Add more FMA instructions like XSNMADDADP and so on.
|
|
{PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
|
|
{PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
|
|
{PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
|
|
{PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
|
|
{PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
|
|
{PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
|
|
|
|
// Check if an opcode is a FMA instruction. If it is, return the index in array
|
|
// FMAOpIdxInfo. Otherwise, return -1.
|
|
int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
|
|
for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
|
|
if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
|
|
return I;
|
|
return -1;
|
|
}
|
|
|
|
// On PowerPC target, we have two kinds of patterns related to FMA:
|
|
// 1: Improve ILP.
|
|
// Try to reassociate FMA chains like below:
|
|
//
|
|
// Pattern 1:
|
|
// A = FADD X, Y (Leaf)
|
|
// B = FMA A, M21, M22 (Prev)
|
|
// C = FMA B, M31, M32 (Root)
|
|
// -->
|
|
// A = FMA X, M21, M22
|
|
// B = FMA Y, M31, M32
|
|
// C = FADD A, B
|
|
//
|
|
// Pattern 2:
|
|
// A = FMA X, M11, M12 (Leaf)
|
|
// B = FMA A, M21, M22 (Prev)
|
|
// C = FMA B, M31, M32 (Root)
|
|
// -->
|
|
// A = FMUL M11, M12
|
|
// B = FMA X, M21, M22
|
|
// D = FMA A, M31, M32
|
|
// C = FADD B, D
|
|
//
|
|
// breaking the dependency between A and B, allowing FMA to be executed in
|
|
// parallel (or back-to-back in a pipeline) instead of depending on each other.
|
|
//
|
|
// 2: Reduce register pressure.
|
|
// Try to reassociate FMA with FSUB and a constant like below:
|
|
// C is a floating point const.
|
|
//
|
|
// Pattern 1:
|
|
// A = FSUB X, Y (Leaf)
|
|
// D = FMA B, C, A (Root)
|
|
// -->
|
|
// A = FMA B, Y, -C
|
|
// D = FMA A, X, C
|
|
//
|
|
// Pattern 2:
|
|
// A = FSUB X, Y (Leaf)
|
|
// D = FMA B, A, C (Root)
|
|
// -->
|
|
// A = FMA B, Y, -C
|
|
// D = FMA A, X, C
|
|
//
|
|
// Before the transformation, A must be assigned with different hardware
|
|
// register with D. After the transformation, A and D must be assigned with
|
|
// same hardware register due to TIE attribute of FMA instructions.
|
|
//
|
|
bool PPCInstrInfo::getFMAPatterns(
|
|
MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
|
|
bool DoRegPressureReduce) const {
|
|
MachineBasicBlock *MBB = Root.getParent();
|
|
const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
|
|
auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
|
|
for (const auto &MO : Instr.explicit_operands())
|
|
if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
|
|
unsigned OpType) {
|
|
if (Instr.getOpcode() !=
|
|
FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
|
|
return false;
|
|
|
|
// Instruction can be reassociated.
|
|
// fast math flags may prohibit reassociation.
|
|
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
|
|
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
|
|
return false;
|
|
|
|
// Instruction operands are virtual registers for reassociation.
|
|
if (!IsAllOpsVirtualReg(Instr))
|
|
return false;
|
|
|
|
// For register pressure reassociation, the FSub must have only one use as
|
|
// we want to delete the sub to save its def.
|
|
if (OpType == InfoArrayIdxFSubInst &&
|
|
!MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
|
|
int16_t &MulOpIdx, bool IsLeaf) {
|
|
int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
|
|
if (Idx < 0)
|
|
return false;
|
|
|
|
// Instruction can be reassociated.
|
|
// fast math flags may prohibit reassociation.
|
|
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
|
|
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
|
|
return false;
|
|
|
|
// Instruction operands are virtual registers for reassociation.
|
|
if (!IsAllOpsVirtualReg(Instr))
|
|
return false;
|
|
|
|
MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
|
|
if (IsLeaf)
|
|
return true;
|
|
|
|
AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
|
|
|
|
const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
|
|
MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
|
|
// If 'add' operand's def is not in current block, don't do ILP related opt.
|
|
if (!MIAdd || MIAdd->getParent() != MBB)
|
|
return false;
|
|
|
|
// If this is not Leaf FMA Instr, its 'add' operand should only have one use
|
|
// as this fma will be changed later.
|
|
return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
|
|
};
|
|
|
|
int16_t AddOpIdx = -1;
|
|
int16_t MulOpIdx = -1;
|
|
|
|
bool IsUsedOnceL = false;
|
|
bool IsUsedOnceR = false;
|
|
MachineInstr *MULInstrL = nullptr;
|
|
MachineInstr *MULInstrR = nullptr;
|
|
|
|
auto IsRPReductionCandidate = [&]() {
|
|
// Currently, we only support float and double.
|
|
// FIXME: add support for other types.
|
|
unsigned Opcode = Root.getOpcode();
|
|
if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
|
|
return false;
|
|
|
|
// Root must be a valid FMA like instruction.
|
|
// Treat it as leaf as we don't care its add operand.
|
|
if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
|
|
assert((MulOpIdx >= 0) && "mul operand index not right!");
|
|
Register MULRegL = TRI->lookThruSingleUseCopyChain(
|
|
Root.getOperand(MulOpIdx).getReg(), MRI);
|
|
Register MULRegR = TRI->lookThruSingleUseCopyChain(
|
|
Root.getOperand(MulOpIdx + 1).getReg(), MRI);
|
|
if (!MULRegL && !MULRegR)
|
|
return false;
|
|
|
|
if (MULRegL && !MULRegR) {
|
|
MULRegR =
|
|
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
|
|
IsUsedOnceL = true;
|
|
} else if (!MULRegL && MULRegR) {
|
|
MULRegL =
|
|
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
|
|
IsUsedOnceR = true;
|
|
} else {
|
|
IsUsedOnceL = true;
|
|
IsUsedOnceR = true;
|
|
}
|
|
|
|
if (!Register::isVirtualRegister(MULRegL) ||
|
|
!Register::isVirtualRegister(MULRegR))
|
|
return false;
|
|
|
|
MULInstrL = MRI->getVRegDef(MULRegL);
|
|
MULInstrR = MRI->getVRegDef(MULRegR);
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Register pressure fma reassociation patterns.
|
|
if (DoRegPressureReduce && IsRPReductionCandidate()) {
|
|
assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
|
|
// Register pressure pattern 1
|
|
if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
|
|
IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
|
|
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
|
|
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
|
|
return true;
|
|
}
|
|
|
|
// Register pressure pattern 2
|
|
if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
|
|
IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
|
|
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
|
|
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// ILP fma reassociation patterns.
|
|
// Root must be a valid FMA like instruction.
|
|
AddOpIdx = -1;
|
|
if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
|
|
return false;
|
|
|
|
assert((AddOpIdx >= 0) && "add operand index not right!");
|
|
|
|
Register RegB = Root.getOperand(AddOpIdx).getReg();
|
|
MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
|
|
|
|
// Prev must be a valid FMA like instruction.
|
|
AddOpIdx = -1;
|
|
if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
|
|
return false;
|
|
|
|
assert((AddOpIdx >= 0) && "add operand index not right!");
|
|
|
|
Register RegA = Prev->getOperand(AddOpIdx).getReg();
|
|
MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
|
|
AddOpIdx = -1;
|
|
if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
|
|
Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
|
|
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
|
|
return true;
|
|
}
|
|
if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
|
|
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
|
|
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void PPCInstrInfo::finalizeInsInstrs(
|
|
MachineInstr &Root, MachineCombinerPattern &P,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
|
|
assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
|
|
|
|
MachineFunction *MF = Root.getMF();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
MachineConstantPool *MCP = MF->getConstantPool();
|
|
|
|
int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
|
|
if (Idx < 0)
|
|
return;
|
|
|
|
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
|
|
|
|
// For now we only need to fix up placeholder for register pressure reduce
|
|
// patterns.
|
|
Register ConstReg = 0;
|
|
switch (P) {
|
|
case MachineCombinerPattern::REASSOC_XY_BCA:
|
|
ConstReg =
|
|
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
|
|
break;
|
|
case MachineCombinerPattern::REASSOC_XY_BAC:
|
|
ConstReg =
|
|
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
|
|
break;
|
|
default:
|
|
// Not register pressure reduce patterns.
|
|
return;
|
|
}
|
|
|
|
MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
|
|
// Get const value from const pool.
|
|
const Constant *C = getConstantFromConstantPool(ConstDefInstr);
|
|
assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
|
|
|
|
// Get negative fp const.
|
|
APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
|
|
F1.changeSign();
|
|
Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
|
|
Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
|
|
|
|
// Put negative fp const into constant pool.
|
|
unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
|
|
|
|
MachineOperand *Placeholder = nullptr;
|
|
// Record the placeholder PPC::ZERO8 we add in reassociateFMA.
|
|
for (auto *Inst : InsInstrs) {
|
|
for (MachineOperand &Operand : Inst->explicit_operands()) {
|
|
assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
|
|
if (Operand.getReg() == PPC::ZERO8) {
|
|
Placeholder = &Operand;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(Placeholder && "Placeholder does not exist!");
|
|
|
|
// Generate instructions to load the const fp from constant pool.
|
|
// We only support PPC64 and medium code model.
|
|
Register LoadNewConst =
|
|
generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
|
|
|
|
// Fill the placeholder with the new load from constant pool.
|
|
Placeholder->setReg(LoadNewConst);
|
|
}
|
|
|
|
bool PPCInstrInfo::shouldReduceRegisterPressure(
|
|
MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
|
|
|
|
if (!EnableFMARegPressureReduction)
|
|
return false;
|
|
|
|
// Currently, we only enable register pressure reducing in machine combiner
|
|
// for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
|
|
// support.
|
|
//
|
|
// So we need following instructions to access a TOC entry:
|
|
//
|
|
// %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
|
|
// %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
|
|
// killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
|
|
//
|
|
// FIXME: add more supported targets, like Small and Large code model, PPC32,
|
|
// AIX.
|
|
if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
|
|
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
|
|
return false;
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
|
|
RegionPressure Pressure;
|
|
RegPressureTracker RPTracker(Pressure);
|
|
|
|
// Initialize the register pressure tracker.
|
|
RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
|
|
/*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
|
|
|
|
for (MachineBasicBlock::iterator MII = MBB->instr_end(),
|
|
MIE = MBB->instr_begin();
|
|
MII != MIE; --MII) {
|
|
MachineInstr &MI = *std::prev(MII);
|
|
if (MI.isDebugValue() || MI.isDebugLabel())
|
|
continue;
|
|
RegisterOperands RegOpers;
|
|
RegOpers.collect(MI, *TRI, *MRI, false, false);
|
|
RPTracker.recedeSkipDebugValues();
|
|
assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
|
|
RPTracker.recede(RegOpers);
|
|
}
|
|
|
|
// Close the RPTracker to finalize live ins.
|
|
RPTracker.closeRegion();
|
|
|
|
return RPTracker.getPressure().MaxSetPressure;
|
|
};
|
|
|
|
// For now we only care about float and double type fma.
|
|
unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
|
|
*MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
|
|
|
|
// Only reduce register pressure when pressure is high.
|
|
return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
|
|
(float)VSSRCLimit * FMARPFactor;
|
|
}
|
|
|
|
bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
|
|
// I has only one memory operand which is load from constant pool.
|
|
if (!I->hasOneMemOperand())
|
|
return false;
|
|
|
|
MachineMemOperand *Op = I->memoperands()[0];
|
|
return Op->isLoad() && Op->getPseudoValue() &&
|
|
Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
|
|
}
|
|
|
|
Register PPCInstrInfo::generateLoadForNewConst(
|
|
unsigned Idx, MachineInstr *MI, Type *Ty,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
|
|
// Now we only support PPC64, Medium code model and P9 with vector.
|
|
// We have immutable pattern to access const pool. See function
|
|
// shouldReduceRegisterPressure.
|
|
assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
|
|
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
|
|
"Target not supported!\n");
|
|
|
|
MachineFunction *MF = MI->getMF();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
// Generate ADDIStocHA8
|
|
Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
|
|
MachineInstrBuilder TOCOffset =
|
|
BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
|
|
.addReg(PPC::X2)
|
|
.addConstantPoolIndex(Idx);
|
|
|
|
assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
|
|
"Only float and double are supported!");
|
|
|
|
unsigned LoadOpcode;
|
|
// Should be float type or double type.
|
|
if (Ty->isFloatTy())
|
|
LoadOpcode = PPC::DFLOADf32;
|
|
else
|
|
LoadOpcode = PPC::DFLOADf64;
|
|
|
|
const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
|
|
Register VReg2 = MRI->createVirtualRegister(RC);
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
|
|
Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
|
|
|
|
// Generate Load from constant pool.
|
|
MachineInstrBuilder Load =
|
|
BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
|
|
.addConstantPoolIndex(Idx)
|
|
.addReg(VReg1, getKillRegState(true))
|
|
.addMemOperand(MMO);
|
|
|
|
Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
|
|
|
|
// Insert the toc load instructions into InsInstrs.
|
|
InsInstrs.insert(InsInstrs.begin(), Load);
|
|
InsInstrs.insert(InsInstrs.begin(), TOCOffset);
|
|
return VReg2;
|
|
}
|
|
|
|
// This function returns the const value in constant pool if the \p I is a load
|
|
// from constant pool.
|
|
const Constant *
|
|
PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
|
|
MachineFunction *MF = I->getMF();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
MachineConstantPool *MCP = MF->getConstantPool();
|
|
assert(I->mayLoad() && "Should be a load instruction.\n");
|
|
for (auto MO : I->uses()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (Reg == 0 || !Register::isVirtualRegister(Reg))
|
|
continue;
|
|
// Find the toc address.
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
for (auto MO2 : DefMI->uses())
|
|
if (MO2.isCPI())
|
|
return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool PPCInstrInfo::getMachineCombinerPatterns(
|
|
MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
|
|
bool DoRegPressureReduce) const {
|
|
// Using the machine combiner in this way is potentially expensive, so
|
|
// restrict to when aggressive optimizations are desired.
|
|
if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
|
|
return false;
|
|
|
|
if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
|
|
return true;
|
|
|
|
return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
|
|
DoRegPressureReduce);
|
|
}
|
|
|
|
void PPCInstrInfo::genAlternativeCodeSequence(
|
|
MachineInstr &Root, MachineCombinerPattern Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
|
|
switch (Pattern) {
|
|
case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
|
|
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
|
|
case MachineCombinerPattern::REASSOC_XY_BCA:
|
|
case MachineCombinerPattern::REASSOC_XY_BAC:
|
|
reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
|
|
break;
|
|
default:
|
|
// Reassociate default patterns.
|
|
TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
|
|
DelInstrs, InstrIdxForVirtReg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void PPCInstrInfo::reassociateFMA(
|
|
MachineInstr &Root, MachineCombinerPattern Pattern,
|
|
SmallVectorImpl<MachineInstr *> &InsInstrs,
|
|
SmallVectorImpl<MachineInstr *> &DelInstrs,
|
|
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
|
|
MachineFunction *MF = Root.getMF();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
MachineOperand &OpC = Root.getOperand(0);
|
|
Register RegC = OpC.getReg();
|
|
const TargetRegisterClass *RC = MRI.getRegClass(RegC);
|
|
MRI.constrainRegClass(RegC, RC);
|
|
|
|
unsigned FmaOp = Root.getOpcode();
|
|
int16_t Idx = getFMAOpIdxInfo(FmaOp);
|
|
assert(Idx >= 0 && "Root must be a FMA instruction");
|
|
|
|
bool IsILPReassociate =
|
|
(Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
|
|
(Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
|
|
|
|
uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
|
|
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
|
|
|
|
MachineInstr *Prev = nullptr;
|
|
MachineInstr *Leaf = nullptr;
|
|
switch (Pattern) {
|
|
default:
|
|
llvm_unreachable("not recognized pattern!");
|
|
case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
|
|
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
|
|
Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
|
|
Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
|
|
break;
|
|
case MachineCombinerPattern::REASSOC_XY_BAC: {
|
|
Register MULReg =
|
|
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
|
|
Leaf = MRI.getVRegDef(MULReg);
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::REASSOC_XY_BCA: {
|
|
Register MULReg = TRI->lookThruCopyLike(
|
|
Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
|
|
Leaf = MRI.getVRegDef(MULReg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
uint16_t IntersectedFlags = 0;
|
|
if (IsILPReassociate)
|
|
IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
|
|
else
|
|
IntersectedFlags = Root.getFlags() & Leaf->getFlags();
|
|
|
|
auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
|
|
bool &KillFlag) {
|
|
Reg = Operand.getReg();
|
|
MRI.constrainRegClass(Reg, RC);
|
|
KillFlag = Operand.isKill();
|
|
};
|
|
|
|
auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
|
|
Register &MulOp2, Register &AddOp,
|
|
bool &MulOp1KillFlag, bool &MulOp2KillFlag,
|
|
bool &AddOpKillFlag) {
|
|
GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
|
|
GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
|
|
GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
|
|
};
|
|
|
|
Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
|
|
RegA21, RegB;
|
|
bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
|
|
KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
|
|
KillA11 = false, KillA21 = false, KillB = false;
|
|
|
|
GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
|
|
|
|
if (IsILPReassociate)
|
|
GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
|
|
|
|
if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
|
|
GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
|
|
GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
|
|
} else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
|
|
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
|
|
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
|
|
} else {
|
|
// Get FSUB instruction info.
|
|
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
|
|
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
|
|
}
|
|
|
|
// Create new virtual registers for the new results instead of
|
|
// recycling legacy ones because the MachineCombiner's computation of the
|
|
// critical path requires a new register definition rather than an existing
|
|
// one.
|
|
// For register pressure reassociation, we only need create one virtual
|
|
// register for the new fma.
|
|
Register NewVRA = MRI.createVirtualRegister(RC);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
|
|
|
|
Register NewVRB = 0;
|
|
if (IsILPReassociate) {
|
|
NewVRB = MRI.createVirtualRegister(RC);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
|
|
}
|
|
|
|
Register NewVRD = 0;
|
|
if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
|
|
NewVRD = MRI.createVirtualRegister(RC);
|
|
InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
|
|
}
|
|
|
|
auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
|
|
Register RegMul1, bool KillRegMul1,
|
|
Register RegMul2, bool KillRegMul2) {
|
|
MI->getOperand(AddOpIdx).setReg(RegAdd);
|
|
MI->getOperand(AddOpIdx).setIsKill(KillAdd);
|
|
MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
|
|
MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
|
|
MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
|
|
MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
|
|
};
|
|
|
|
MachineInstrBuilder NewARegPressure, NewCRegPressure;
|
|
switch (Pattern) {
|
|
default:
|
|
llvm_unreachable("not recognized pattern!");
|
|
case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
|
|
// Create new instructions for insertion.
|
|
MachineInstrBuilder MINewB =
|
|
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
|
|
.addReg(RegX, getKillRegState(KillX))
|
|
.addReg(RegM21, getKillRegState(KillM21))
|
|
.addReg(RegM22, getKillRegState(KillM22));
|
|
MachineInstrBuilder MINewA =
|
|
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
|
|
.addReg(RegY, getKillRegState(KillY))
|
|
.addReg(RegM31, getKillRegState(KillM31))
|
|
.addReg(RegM32, getKillRegState(KillM32));
|
|
// If AddOpIdx is not 1, adjust the order.
|
|
if (AddOpIdx != 1) {
|
|
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
|
|
AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
|
|
}
|
|
|
|
MachineInstrBuilder MINewC =
|
|
BuildMI(*MF, Root.getDebugLoc(),
|
|
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
|
|
.addReg(NewVRB, getKillRegState(true))
|
|
.addReg(NewVRA, getKillRegState(true));
|
|
|
|
// Update flags for newly created instructions.
|
|
setSpecialOperandAttr(*MINewA, IntersectedFlags);
|
|
setSpecialOperandAttr(*MINewB, IntersectedFlags);
|
|
setSpecialOperandAttr(*MINewC, IntersectedFlags);
|
|
|
|
// Record new instructions for insertion.
|
|
InsInstrs.push_back(MINewA);
|
|
InsInstrs.push_back(MINewB);
|
|
InsInstrs.push_back(MINewC);
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
|
|
assert(NewVRD && "new FMA register not created!");
|
|
// Create new instructions for insertion.
|
|
MachineInstrBuilder MINewA =
|
|
BuildMI(*MF, Leaf->getDebugLoc(),
|
|
get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
|
|
.addReg(RegM11, getKillRegState(KillM11))
|
|
.addReg(RegM12, getKillRegState(KillM12));
|
|
MachineInstrBuilder MINewB =
|
|
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
|
|
.addReg(RegX, getKillRegState(KillX))
|
|
.addReg(RegM21, getKillRegState(KillM21))
|
|
.addReg(RegM22, getKillRegState(KillM22));
|
|
MachineInstrBuilder MINewD =
|
|
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
|
|
.addReg(NewVRA, getKillRegState(true))
|
|
.addReg(RegM31, getKillRegState(KillM31))
|
|
.addReg(RegM32, getKillRegState(KillM32));
|
|
// If AddOpIdx is not 1, adjust the order.
|
|
if (AddOpIdx != 1) {
|
|
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
|
|
AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
|
|
KillM32);
|
|
}
|
|
|
|
MachineInstrBuilder MINewC =
|
|
BuildMI(*MF, Root.getDebugLoc(),
|
|
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
|
|
.addReg(NewVRB, getKillRegState(true))
|
|
.addReg(NewVRD, getKillRegState(true));
|
|
|
|
// Update flags for newly created instructions.
|
|
setSpecialOperandAttr(*MINewA, IntersectedFlags);
|
|
setSpecialOperandAttr(*MINewB, IntersectedFlags);
|
|
setSpecialOperandAttr(*MINewD, IntersectedFlags);
|
|
setSpecialOperandAttr(*MINewC, IntersectedFlags);
|
|
|
|
// Record new instructions for insertion.
|
|
InsInstrs.push_back(MINewA);
|
|
InsInstrs.push_back(MINewB);
|
|
InsInstrs.push_back(MINewD);
|
|
InsInstrs.push_back(MINewC);
|
|
break;
|
|
}
|
|
case MachineCombinerPattern::REASSOC_XY_BAC:
|
|
case MachineCombinerPattern::REASSOC_XY_BCA: {
|
|
Register VarReg;
|
|
bool KillVarReg = false;
|
|
if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
|
|
VarReg = RegM31;
|
|
KillVarReg = KillM31;
|
|
} else {
|
|
VarReg = RegM32;
|
|
KillVarReg = KillM32;
|
|
}
|
|
// We don't want to get negative const from memory pool too early, as the
|
|
// created entry will not be deleted even if it has no users. Since all
|
|
// operand of Leaf and Root are virtual register, we use zero register
|
|
// here as a placeholder. When the InsInstrs is selected in
|
|
// MachineCombiner, we call finalizeInsInstrs to replace the zero register
|
|
// with a virtual register which is a load from constant pool.
|
|
NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
|
|
.addReg(RegB, getKillRegState(RegB))
|
|
.addReg(RegY, getKillRegState(KillY))
|
|
.addReg(PPC::ZERO8);
|
|
NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
|
|
.addReg(NewVRA, getKillRegState(true))
|
|
.addReg(RegX, getKillRegState(KillX))
|
|
.addReg(VarReg, getKillRegState(KillVarReg));
|
|
// For now, we only support xsmaddadp/xsmaddasp, their add operand are
|
|
// both at index 1, no need to adjust.
|
|
// FIXME: when add more fma instructions support, like fma/fmas, adjust
|
|
// the operand index here.
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!IsILPReassociate) {
|
|
setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
|
|
setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
|
|
|
|
InsInstrs.push_back(NewARegPressure);
|
|
InsInstrs.push_back(NewCRegPressure);
|
|
}
|
|
|
|
assert(!InsInstrs.empty() &&
|
|
"Insertion instructions set should not be empty!");
|
|
|
|
// Record old instructions for deletion.
|
|
DelInstrs.push_back(Leaf);
|
|
if (IsILPReassociate)
|
|
DelInstrs.push_back(Prev);
|
|
DelInstrs.push_back(&Root);
|
|
}
|
|
|
|
// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
|
|
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
Register &SrcReg, Register &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default: return false;
|
|
case PPC::EXTSW:
|
|
case PPC::EXTSW_32:
|
|
case PPC::EXTSW_32_64:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
SubIdx = PPC::sub_32;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
|
|
const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
|
|
|
|
if (End != std::find(OpcodesForSpill, End, Opcode)) {
|
|
// Check for the operands added by addFrameReference (the immediate is the
|
|
// offset which defaults to 0).
|
|
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
|
|
MI.getOperand(2).isFI()) {
|
|
FrameIndex = MI.getOperand(2).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// For opcodes with the ReMaterializable flag set, this function is called to
|
|
// verify the instruction is really rematable.
|
|
bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AliasAnalysis *AA) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// This function should only be called for opcodes with the ReMaterializable
|
|
// flag set.
|
|
llvm_unreachable("Unknown rematerializable operation!");
|
|
break;
|
|
case PPC::LI:
|
|
case PPC::LI8:
|
|
case PPC::PLI:
|
|
case PPC::PLI8:
|
|
case PPC::LIS:
|
|
case PPC::LIS8:
|
|
case PPC::ADDIStocHA:
|
|
case PPC::ADDIStocHA8:
|
|
case PPC::ADDItocL:
|
|
case PPC::LOAD_STACK_GUARD:
|
|
case PPC::XXLXORz:
|
|
case PPC::XXLXORspz:
|
|
case PPC::XXLXORdpz:
|
|
case PPC::XXLEQVOnes:
|
|
case PPC::XXSPLTI32DX:
|
|
case PPC::XXSPLTIW:
|
|
case PPC::XXSPLTIDP:
|
|
case PPC::V_SET0B:
|
|
case PPC::V_SET0H:
|
|
case PPC::V_SET0:
|
|
case PPC::V_SETALLONESB:
|
|
case PPC::V_SETALLONESH:
|
|
case PPC::V_SETALLONES:
|
|
case PPC::CRSET:
|
|
case PPC::CRUNSET:
|
|
case PPC::XXSETACCZ:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
|
|
int &FrameIndex) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
|
|
const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
|
|
|
|
if (End != std::find(OpcodesForSpill, End, Opcode)) {
|
|
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
|
|
MI.getOperand(2).isFI()) {
|
|
FrameIndex = MI.getOperand(2).getIndex();
|
|
return MI.getOperand(0).getReg();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned OpIdx1,
|
|
unsigned OpIdx2) const {
|
|
MachineFunction &MF = *MI.getParent()->getParent();
|
|
|
|
// Normal instructions can be commuted the obvious way.
|
|
if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
|
|
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
|
|
// Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
|
|
// 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
|
|
// changing the relative order of the mask operands might change what happens
|
|
// to the high-bits of the mask (and, thus, the result).
|
|
|
|
// Cannot commute if it has a non-zero rotate count.
|
|
if (MI.getOperand(3).getImm() != 0)
|
|
return nullptr;
|
|
|
|
// If we have a zero rotate count, we have:
|
|
// M = mask(MB,ME)
|
|
// Op0 = (Op1 & ~M) | (Op2 & M)
|
|
// Change this to:
|
|
// M = mask((ME+1)&31, (MB-1)&31)
|
|
// Op0 = (Op2 & ~M) | (Op1 & M)
|
|
|
|
// Swap op1/op2
|
|
assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
|
|
"Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
|
|
Register Reg0 = MI.getOperand(0).getReg();
|
|
Register Reg1 = MI.getOperand(1).getReg();
|
|
Register Reg2 = MI.getOperand(2).getReg();
|
|
unsigned SubReg1 = MI.getOperand(1).getSubReg();
|
|
unsigned SubReg2 = MI.getOperand(2).getSubReg();
|
|
bool Reg1IsKill = MI.getOperand(1).isKill();
|
|
bool Reg2IsKill = MI.getOperand(2).isKill();
|
|
bool ChangeReg0 = false;
|
|
// If machine instrs are no longer in two-address forms, update
|
|
// destination register as well.
|
|
if (Reg0 == Reg1) {
|
|
// Must be two address instruction!
|
|
assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
|
|
"Expecting a two-address instruction!");
|
|
assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
|
|
Reg2IsKill = false;
|
|
ChangeReg0 = true;
|
|
}
|
|
|
|
// Masks.
|
|
unsigned MB = MI.getOperand(4).getImm();
|
|
unsigned ME = MI.getOperand(5).getImm();
|
|
|
|
// We can't commute a trivial mask (there is no way to represent an all-zero
|
|
// mask).
|
|
if (MB == 0 && ME == 31)
|
|
return nullptr;
|
|
|
|
if (NewMI) {
|
|
// Create a new instruction.
|
|
Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
|
|
bool Reg0IsDead = MI.getOperand(0).isDead();
|
|
return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
|
|
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
|
|
.addReg(Reg2, getKillRegState(Reg2IsKill))
|
|
.addReg(Reg1, getKillRegState(Reg1IsKill))
|
|
.addImm((ME + 1) & 31)
|
|
.addImm((MB - 1) & 31);
|
|
}
|
|
|
|
if (ChangeReg0) {
|
|
MI.getOperand(0).setReg(Reg2);
|
|
MI.getOperand(0).setSubReg(SubReg2);
|
|
}
|
|
MI.getOperand(2).setReg(Reg1);
|
|
MI.getOperand(1).setReg(Reg2);
|
|
MI.getOperand(2).setSubReg(SubReg1);
|
|
MI.getOperand(1).setSubReg(SubReg2);
|
|
MI.getOperand(2).setIsKill(Reg1IsKill);
|
|
MI.getOperand(1).setIsKill(Reg2IsKill);
|
|
|
|
// Swap the mask around.
|
|
MI.getOperand(4).setImm((ME + 1) & 31);
|
|
MI.getOperand(5).setImm((MB - 1) & 31);
|
|
return &MI;
|
|
}
|
|
|
|
bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
|
|
unsigned &SrcOpIdx1,
|
|
unsigned &SrcOpIdx2) const {
|
|
// For VSX A-Type FMA instructions, it is the first two operands that can be
|
|
// commuted, however, because the non-encoded tied input operand is listed
|
|
// first, the operands to swap are actually the second and third.
|
|
|
|
int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
|
|
if (AltOpc == -1)
|
|
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
|
|
|
|
// The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
|
|
// and SrcOpIdx2.
|
|
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
|
|
}
|
|
|
|
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
// This function is used for scheduling, and the nop wanted here is the type
|
|
// that terminates dispatch groups on the POWER cores.
|
|
unsigned Directive = Subtarget.getCPUDirective();
|
|
unsigned Opcode;
|
|
switch (Directive) {
|
|
default: Opcode = PPC::NOP; break;
|
|
case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
|
|
case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
|
|
case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
|
|
// FIXME: Update when POWER9 scheduling model is ready.
|
|
case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
|
|
}
|
|
|
|
DebugLoc DL;
|
|
BuildMI(MBB, MI, DL, get(Opcode));
|
|
}
|
|
|
|
/// Return the noop instruction to use for a noop.
|
|
MCInst PPCInstrInfo::getNop() const {
|
|
MCInst Nop;
|
|
Nop.setOpcode(PPC::NOP);
|
|
return Nop;
|
|
}
|
|
|
|
// Branch analysis.
|
|
// Note: If the condition register is set to CTR or CTR8 then this is a
|
|
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
|
|
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return false;
|
|
|
|
if (!isUnpredicatedTerminator(*I))
|
|
return false;
|
|
|
|
if (AllowModify) {
|
|
// If the BB ends with an unconditional branch to the fallthrough BB,
|
|
// we eliminate the branch instruction.
|
|
if (I->getOpcode() == PPC::B &&
|
|
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
|
|
I->eraseFromParent();
|
|
|
|
// We update iterator after deleting the last branch.
|
|
I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr &LastInst = *I;
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
|
|
if (LastInst.getOpcode() == PPC::B) {
|
|
if (!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
TBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
} else if (LastInst.getOpcode() == PPC::BCC) {
|
|
if (!LastInst.getOperand(2).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst.getOperand(2).getMBB();
|
|
Cond.push_back(LastInst.getOperand(0));
|
|
Cond.push_back(LastInst.getOperand(1));
|
|
return false;
|
|
} else if (LastInst.getOpcode() == PPC::BC) {
|
|
if (!LastInst.getOperand(1).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst.getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
|
Cond.push_back(LastInst.getOperand(0));
|
|
return false;
|
|
} else if (LastInst.getOpcode() == PPC::BCn) {
|
|
if (!LastInst.getOperand(1).isMBB())
|
|
return true;
|
|
// Block ends with fall-through condbranch.
|
|
TBB = LastInst.getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
|
|
Cond.push_back(LastInst.getOperand(0));
|
|
return false;
|
|
} else if (LastInst.getOpcode() == PPC::BDNZ8 ||
|
|
LastInst.getOpcode() == PPC::BDNZ) {
|
|
if (!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = LastInst.getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(1));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
return false;
|
|
} else if (LastInst.getOpcode() == PPC::BDZ8 ||
|
|
LastInst.getOpcode() == PPC::BDZ) {
|
|
if (!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = LastInst.getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, don't know what this is.
|
|
return true;
|
|
}
|
|
|
|
// Get the instruction before it if it's a terminator.
|
|
MachineInstr &SecondLastInst = *I;
|
|
|
|
// If there are three terminators, we don't know what sort of block this is.
|
|
if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
|
|
return true;
|
|
|
|
// If the block ends with PPC::B and PPC:BCC, handle it.
|
|
if (SecondLastInst.getOpcode() == PPC::BCC &&
|
|
LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(2).isMBB() ||
|
|
!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(2).getMBB();
|
|
Cond.push_back(SecondLastInst.getOperand(0));
|
|
Cond.push_back(SecondLastInst.getOperand(1));
|
|
FBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
} else if (SecondLastInst.getOpcode() == PPC::BC &&
|
|
LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(1).isMBB() ||
|
|
!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
|
|
Cond.push_back(SecondLastInst.getOperand(0));
|
|
FBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
} else if (SecondLastInst.getOpcode() == PPC::BCn &&
|
|
LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(1).isMBB() ||
|
|
!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
|
|
Cond.push_back(SecondLastInst.getOperand(0));
|
|
FBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
} else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
|
|
SecondLastInst.getOpcode() == PPC::BDNZ) &&
|
|
LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(0).isMBB() ||
|
|
!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(1));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
FBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
} else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
|
|
SecondLastInst.getOpcode() == PPC::BDZ) &&
|
|
LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(0).isMBB() ||
|
|
!LastInst.getOperand(0).isMBB())
|
|
return true;
|
|
if (DisableCTRLoopAnal)
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
FBB = LastInst.getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two PPC:Bs, handle it. The second one is not
|
|
// executed, so remove it.
|
|
if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
|
|
if (!SecondLastInst.getOperand(0).isMBB())
|
|
return true;
|
|
TBB = SecondLastInst.getOperand(0).getMBB();
|
|
I = LastInst;
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
|
|
int *BytesRemoved) const {
|
|
assert(!BytesRemoved && "code size not handled");
|
|
|
|
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
|
|
if (I == MBB.end())
|
|
return 0;
|
|
|
|
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
|
|
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
|
|
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
|
|
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
|
|
return 0;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
|
|
I = MBB.end();
|
|
|
|
if (I == MBB.begin()) return 1;
|
|
--I;
|
|
if (I->getOpcode() != PPC::BCC &&
|
|
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
|
|
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
|
|
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
|
|
return 1;
|
|
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
return 2;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL,
|
|
int *BytesAdded) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "insertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 2 || Cond.size() == 0) &&
|
|
"PPC branch conditions have two components!");
|
|
assert(!BytesAdded && "code size not handled");
|
|
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
// One-way branch.
|
|
if (!FBB) {
|
|
if (Cond.empty()) // Unconditional branch
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
|
|
else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
|
|
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
|
|
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
|
|
else // Conditional branch
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm())
|
|
.add(Cond[1])
|
|
.addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Two-way Conditional Branch.
|
|
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
|
|
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
|
|
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
|
|
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
|
|
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
|
|
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
|
|
else
|
|
BuildMI(&MBB, DL, get(PPC::BCC))
|
|
.addImm(Cond[0].getImm())
|
|
.add(Cond[1])
|
|
.addMBB(TBB);
|
|
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
|
|
return 2;
|
|
}
|
|
|
|
// Select analysis.
|
|
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
Register DstReg, Register TrueReg,
|
|
Register FalseReg, int &CondCycles,
|
|
int &TrueCycles, int &FalseCycles) const {
|
|
if (Cond.size() != 2)
|
|
return false;
|
|
|
|
// If this is really a bdnz-like condition, then it cannot be turned into a
|
|
// select.
|
|
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
|
|
return false;
|
|
|
|
// If the conditional branch uses a physical register, then it cannot be
|
|
// turned into a select.
|
|
if (Register::isPhysicalRegister(Cond[1].getReg()))
|
|
return false;
|
|
|
|
// Check register classes.
|
|
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
if (!RC)
|
|
return false;
|
|
|
|
// isel is for regular integer GPRs only.
|
|
if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
|
|
!PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
|
|
!PPC::G8RCRegClass.hasSubClassEq(RC) &&
|
|
!PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
|
|
return false;
|
|
|
|
// FIXME: These numbers are for the A2, how well they work for other cores is
|
|
// an open question. On the A2, the isel instruction has a 2-cycle latency
|
|
// but single-cycle throughput. These numbers are used in combination with
|
|
// the MispredictPenalty setting from the active SchedMachineModel.
|
|
CondCycles = 1;
|
|
TrueCycles = 1;
|
|
FalseCycles = 1;
|
|
|
|
return true;
|
|
}
|
|
|
|
void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &dl, Register DestReg,
|
|
ArrayRef<MachineOperand> Cond, Register TrueReg,
|
|
Register FalseReg) const {
|
|
assert(Cond.size() == 2 &&
|
|
"PPC branch conditions have two components!");
|
|
|
|
// Get the register classes.
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
const TargetRegisterClass *RC =
|
|
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
|
|
assert(RC && "TrueReg and FalseReg must have overlapping register classes");
|
|
|
|
bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
|
|
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
|
|
assert((Is64Bit ||
|
|
PPC::GPRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
|
|
"isel is for regular integer GPRs only");
|
|
|
|
unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
|
|
auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
|
|
|
|
unsigned SubIdx = 0;
|
|
bool SwapOps = false;
|
|
switch (SelectPred) {
|
|
case PPC::PRED_EQ:
|
|
case PPC::PRED_EQ_MINUS:
|
|
case PPC::PRED_EQ_PLUS:
|
|
SubIdx = PPC::sub_eq; SwapOps = false; break;
|
|
case PPC::PRED_NE:
|
|
case PPC::PRED_NE_MINUS:
|
|
case PPC::PRED_NE_PLUS:
|
|
SubIdx = PPC::sub_eq; SwapOps = true; break;
|
|
case PPC::PRED_LT:
|
|
case PPC::PRED_LT_MINUS:
|
|
case PPC::PRED_LT_PLUS:
|
|
SubIdx = PPC::sub_lt; SwapOps = false; break;
|
|
case PPC::PRED_GE:
|
|
case PPC::PRED_GE_MINUS:
|
|
case PPC::PRED_GE_PLUS:
|
|
SubIdx = PPC::sub_lt; SwapOps = true; break;
|
|
case PPC::PRED_GT:
|
|
case PPC::PRED_GT_MINUS:
|
|
case PPC::PRED_GT_PLUS:
|
|
SubIdx = PPC::sub_gt; SwapOps = false; break;
|
|
case PPC::PRED_LE:
|
|
case PPC::PRED_LE_MINUS:
|
|
case PPC::PRED_LE_PLUS:
|
|
SubIdx = PPC::sub_gt; SwapOps = true; break;
|
|
case PPC::PRED_UN:
|
|
case PPC::PRED_UN_MINUS:
|
|
case PPC::PRED_UN_PLUS:
|
|
SubIdx = PPC::sub_un; SwapOps = false; break;
|
|
case PPC::PRED_NU:
|
|
case PPC::PRED_NU_MINUS:
|
|
case PPC::PRED_NU_PLUS:
|
|
SubIdx = PPC::sub_un; SwapOps = true; break;
|
|
case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
|
|
case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
|
|
}
|
|
|
|
Register FirstReg = SwapOps ? FalseReg : TrueReg,
|
|
SecondReg = SwapOps ? TrueReg : FalseReg;
|
|
|
|
// The first input register of isel cannot be r0. If it is a member
|
|
// of a register class that can be r0, then copy it first (the
|
|
// register allocator should eliminate the copy).
|
|
if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
|
|
MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
|
|
const TargetRegisterClass *FirstRC =
|
|
MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
|
|
&PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
|
|
Register OldFirstReg = FirstReg;
|
|
FirstReg = MRI.createVirtualRegister(FirstRC);
|
|
BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
|
|
.addReg(OldFirstReg);
|
|
}
|
|
|
|
BuildMI(MBB, MI, dl, get(OpCode), DestReg)
|
|
.addReg(FirstReg).addReg(SecondReg)
|
|
.addReg(Cond[1].getReg(), 0, SubIdx);
|
|
}
|
|
|
|
static unsigned getCRBitValue(unsigned CRBit) {
|
|
unsigned Ret = 4;
|
|
if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
|
|
CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
|
|
CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
|
|
CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
|
|
Ret = 3;
|
|
if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
|
|
CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
|
|
CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
|
|
CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
|
|
Ret = 2;
|
|
if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
|
|
CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
|
|
CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
|
|
CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
|
|
Ret = 1;
|
|
if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
|
|
CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
|
|
CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
|
|
CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
|
|
Ret = 0;
|
|
|
|
assert(Ret != 4 && "Invalid CR bit register");
|
|
return Ret;
|
|
}
|
|
|
|
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
const DebugLoc &DL, MCRegister DestReg,
|
|
MCRegister SrcReg, bool KillSrc) const {
|
|
// We can end up with self copies and similar things as a result of VSX copy
|
|
// legalization. Promote them here.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
if (PPC::F8RCRegClass.contains(DestReg) &&
|
|
PPC::VSRCRegClass.contains(SrcReg)) {
|
|
MCRegister SuperReg =
|
|
TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && SrcReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
DestReg = SuperReg;
|
|
} else if (PPC::F8RCRegClass.contains(SrcReg) &&
|
|
PPC::VSRCRegClass.contains(DestReg)) {
|
|
MCRegister SuperReg =
|
|
TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
|
|
|
|
if (VSXSelfCopyCrash && DestReg == SuperReg)
|
|
llvm_unreachable("nop VSX copy");
|
|
|
|
SrcReg = SuperReg;
|
|
}
|
|
|
|
// Different class register copy
|
|
if (PPC::CRBITRCRegClass.contains(SrcReg) &&
|
|
PPC::GPRCRegClass.contains(DestReg)) {
|
|
MCRegister CRReg = getCRFromCRBit(SrcReg);
|
|
BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
|
|
getKillRegState(KillSrc);
|
|
// Rotate the CR bit in the CR fields to be the least significant bit and
|
|
// then mask with 0x1 (MB = ME = 31).
|
|
BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
|
|
.addImm(31)
|
|
.addImm(31);
|
|
return;
|
|
} else if (PPC::CRRCRegClass.contains(SrcReg) &&
|
|
(PPC::G8RCRegClass.contains(DestReg) ||
|
|
PPC::GPRCRegClass.contains(DestReg))) {
|
|
bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
|
|
unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
|
|
unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
|
|
unsigned CRNum = TRI->getEncodingValue(SrcReg);
|
|
BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
|
|
getKillRegState(KillSrc);
|
|
if (CRNum == 7)
|
|
return;
|
|
// Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
|
|
BuildMI(MBB, I, DL, get(ShCode), DestReg)
|
|
.addReg(DestReg, RegState::Kill)
|
|
.addImm(CRNum * 4 + 4)
|
|
.addImm(28)
|
|
.addImm(31);
|
|
return;
|
|
} else if (PPC::G8RCRegClass.contains(SrcReg) &&
|
|
PPC::VSFRCRegClass.contains(DestReg)) {
|
|
assert(Subtarget.hasDirectMove() &&
|
|
"Subtarget doesn't support directmove, don't know how to copy.");
|
|
BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
|
|
NumGPRtoVSRSpill++;
|
|
getKillRegState(KillSrc);
|
|
return;
|
|
} else if (PPC::VSFRCRegClass.contains(SrcReg) &&
|
|
PPC::G8RCRegClass.contains(DestReg)) {
|
|
assert(Subtarget.hasDirectMove() &&
|
|
"Subtarget doesn't support directmove, don't know how to copy.");
|
|
BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
|
|
getKillRegState(KillSrc);
|
|
return;
|
|
} else if (PPC::SPERCRegClass.contains(SrcReg) &&
|
|
PPC::GPRCRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
|
|
getKillRegState(KillSrc);
|
|
return;
|
|
} else if (PPC::GPRCRegClass.contains(SrcReg) &&
|
|
PPC::SPERCRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
|
|
getKillRegState(KillSrc);
|
|
return;
|
|
}
|
|
|
|
unsigned Opc;
|
|
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR;
|
|
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::OR8;
|
|
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::FMR;
|
|
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::MCRF;
|
|
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::VOR;
|
|
else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
|
|
// There are two different ways this can be done:
|
|
// 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
|
|
// issue in VSU pipeline 0.
|
|
// 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
|
|
// can go to either pipeline.
|
|
// We'll always use xxlor here, because in practically all cases where
|
|
// copies are generated, they are close enough to some use that the
|
|
// lower-latency form is preferable.
|
|
Opc = PPC::XXLOR;
|
|
else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
|
|
PPC::VSSRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
|
|
else if (Subtarget.pairedVectorMemops() &&
|
|
PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
|
|
if (SrcReg > PPC::VSRp15)
|
|
SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
|
|
else
|
|
SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
|
|
if (DestReg > PPC::VSRp15)
|
|
DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
|
|
else
|
|
DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
|
|
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
|
|
addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
|
|
addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::CROR;
|
|
else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
|
|
Opc = PPC::EVOR;
|
|
else if ((PPC::ACCRCRegClass.contains(DestReg) ||
|
|
PPC::UACCRCRegClass.contains(DestReg)) &&
|
|
(PPC::ACCRCRegClass.contains(SrcReg) ||
|
|
PPC::UACCRCRegClass.contains(SrcReg))) {
|
|
// If primed, de-prime the source register, copy the individual registers
|
|
// and prime the destination if needed. The vector subregisters are
|
|
// vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
|
|
// source is primed, we need to re-prime it after the copy as well.
|
|
PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
|
|
bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
|
|
bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
|
|
MCRegister VSLSrcReg =
|
|
PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
|
|
MCRegister VSLDestReg =
|
|
PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
|
|
if (SrcPrimed)
|
|
BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
|
|
for (unsigned Idx = 0; Idx < 4; Idx++)
|
|
BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
|
|
.addReg(VSLSrcReg + Idx)
|
|
.addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
|
|
if (DestPrimed)
|
|
BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
|
|
if (SrcPrimed && !KillSrc)
|
|
BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
|
|
return;
|
|
} else if (PPC::G8pRCRegClass.contains(DestReg) &&
|
|
PPC::G8pRCRegClass.contains(SrcReg)) {
|
|
// TODO: Handle G8RC to G8pRC (and vice versa) copy.
|
|
unsigned DestRegIdx = DestReg - PPC::G8p0;
|
|
MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
|
|
MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
|
|
unsigned SrcRegIdx = SrcReg - PPC::G8p0;
|
|
MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
|
|
MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
|
|
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
|
|
.addReg(SrcRegSub0)
|
|
.addReg(SrcRegSub0, getKillRegState(KillSrc));
|
|
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
|
|
.addReg(SrcRegSub1)
|
|
.addReg(SrcRegSub1, getKillRegState(KillSrc));
|
|
return;
|
|
} else
|
|
llvm_unreachable("Impossible reg-to-reg copy");
|
|
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
if (MCID.getNumOperands() == 3)
|
|
BuildMI(MBB, I, DL, MCID, DestReg)
|
|
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
else
|
|
BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
|
|
int OpcodeIndex = 0;
|
|
|
|
if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_Int4Spill;
|
|
} else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
|
|
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_Int8Spill;
|
|
} else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_Float8Spill;
|
|
} else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_Float4Spill;
|
|
} else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_SPESpill;
|
|
} else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_CRSpill;
|
|
} else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_CRBitSpill;
|
|
} else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_VRVectorSpill;
|
|
} else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_VSXVectorSpill;
|
|
} else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_VectorFloat8Spill;
|
|
} else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_VectorFloat4Spill;
|
|
} else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_SpillToVSR;
|
|
} else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.pairedVectorMemops() &&
|
|
"Register unexpected when paired memops are disabled.");
|
|
OpcodeIndex = SOK_AccumulatorSpill;
|
|
} else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.pairedVectorMemops() &&
|
|
"Register unexpected when paired memops are disabled.");
|
|
OpcodeIndex = SOK_UAccumulatorSpill;
|
|
} else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
|
|
assert(Subtarget.pairedVectorMemops() &&
|
|
"Register unexpected when paired memops are disabled.");
|
|
OpcodeIndex = SOK_PairedVecSpill;
|
|
} else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
|
|
OpcodeIndex = SOK_PairedG8Spill;
|
|
} else {
|
|
llvm_unreachable("Unknown regclass!");
|
|
}
|
|
return OpcodeIndex;
|
|
}
|
|
|
|
unsigned
|
|
PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
|
|
const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
|
|
return OpcodesForSpill[getSpillIndex(RC)];
|
|
}
|
|
|
|
unsigned
|
|
PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
|
|
const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
|
|
return OpcodesForSpill[getSpillIndex(RC)];
|
|
}
|
|
|
|
void PPCInstrInfo::StoreRegToStackSlot(
|
|
MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs) const {
|
|
unsigned Opcode = getStoreOpcodeForSpill(RC);
|
|
DebugLoc DL;
|
|
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setHasSpills();
|
|
|
|
NewMIs.push_back(addFrameReference(
|
|
BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
|
|
FrameIdx));
|
|
|
|
if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::CRBITRCRegClass.hasSubClassEq(RC))
|
|
FuncInfo->setSpillsCR();
|
|
|
|
if (isXFormMemOp(Opcode))
|
|
FuncInfo->setHasNonRISpills();
|
|
}
|
|
|
|
void PPCInstrInfo::storeRegToStackSlotNoUpd(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
|
|
bool isKill, int FrameIdx, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr *, 4> NewMIs;
|
|
|
|
StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
|
|
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdx),
|
|
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlign(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register SrcReg, bool isKill,
|
|
int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
// We need to avoid a situation in which the value from a VRRC register is
|
|
// spilled using an Altivec instruction and reloaded into a VSRC register
|
|
// using a VSX instruction. The issue with this is that the VSX
|
|
// load/store instructions swap the doublewords in the vector and the Altivec
|
|
// ones don't. The register classes on the spill/reload may be different if
|
|
// the register is defined using an Altivec instruction and is then used by a
|
|
// VSX instruction.
|
|
RC = updatedRC(RC);
|
|
storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
|
|
}
|
|
|
|
void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<MachineInstr *> &NewMIs)
|
|
const {
|
|
unsigned Opcode = getLoadOpcodeForSpill(RC);
|
|
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
|
|
FrameIdx));
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
|
|
PPC::CRBITRCRegClass.hasSubClassEq(RC))
|
|
FuncInfo->setSpillsCR();
|
|
|
|
if (isXFormMemOp(Opcode))
|
|
FuncInfo->setHasNonRISpills();
|
|
}
|
|
|
|
void PPCInstrInfo::loadRegFromStackSlotNoUpd(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
|
|
int FrameIdx, const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
SmallVector<MachineInstr*, 4> NewMIs;
|
|
DebugLoc DL;
|
|
if (MI != MBB.end()) DL = MI->getDebugLoc();
|
|
|
|
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
FuncInfo->setHasSpills();
|
|
|
|
LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
|
|
|
|
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
|
|
MBB.insert(MI, NewMIs[i]);
|
|
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FrameIdx),
|
|
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
|
|
MFI.getObjectAlign(FrameIdx));
|
|
NewMIs.back()->addMemOperand(MF, MMO);
|
|
}
|
|
|
|
void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
Register DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
// We need to avoid a situation in which the value from a VRRC register is
|
|
// spilled using an Altivec instruction and reloaded into a VSRC register
|
|
// using a VSX instruction. The issue with this is that the VSX
|
|
// load/store instructions swap the doublewords in the vector and the Altivec
|
|
// ones don't. The register classes on the spill/reload may be different if
|
|
// the register is defined using an Altivec instruction and is then used by a
|
|
// VSX instruction.
|
|
RC = updatedRC(RC);
|
|
|
|
loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
|
|
}
|
|
|
|
bool PPCInstrInfo::
|
|
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
|
|
if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
|
|
Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
|
|
else
|
|
// Leave the CR# the same, but invert the condition.
|
|
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
|
|
return false;
|
|
}
|
|
|
|
// For some instructions, it is legal to fold ZERO into the RA register field.
|
|
// This function performs that fold by replacing the operand with PPC::ZERO,
|
|
// it does not consider whether the load immediate zero is no longer in use.
|
|
bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
Register Reg) const {
|
|
// A zero immediate should always be loaded with a single li.
|
|
unsigned DefOpc = DefMI.getOpcode();
|
|
if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
|
|
return false;
|
|
if (!DefMI.getOperand(1).isImm())
|
|
return false;
|
|
if (DefMI.getOperand(1).getImm() != 0)
|
|
return false;
|
|
|
|
// Note that we cannot here invert the arguments of an isel in order to fold
|
|
// a ZERO into what is presented as the second argument. All we have here
|
|
// is the condition bit, and that might come from a CR-logical bit operation.
|
|
|
|
const MCInstrDesc &UseMCID = UseMI.getDesc();
|
|
|
|
// Only fold into real machine instructions.
|
|
if (UseMCID.isPseudo())
|
|
return false;
|
|
|
|
// We need to find which of the User's operands is to be folded, that will be
|
|
// the operand that matches the given register ID.
|
|
unsigned UseIdx;
|
|
for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
|
|
if (UseMI.getOperand(UseIdx).isReg() &&
|
|
UseMI.getOperand(UseIdx).getReg() == Reg)
|
|
break;
|
|
|
|
assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
|
|
assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
|
|
|
|
const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
|
|
|
|
// We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
|
|
// register (which might also be specified as a pointer class kind).
|
|
if (UseInfo->isLookupPtrRegClass()) {
|
|
if (UseInfo->RegClass /* Kind */ != 1)
|
|
return false;
|
|
} else {
|
|
if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
|
|
UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
|
|
return false;
|
|
}
|
|
|
|
// Make sure this is not tied to an output register (or otherwise
|
|
// constrained). This is true for ST?UX registers, for example, which
|
|
// are tied to their output registers.
|
|
if (UseInfo->Constraints != 0)
|
|
return false;
|
|
|
|
MCRegister ZeroReg;
|
|
if (UseInfo->isLookupPtrRegClass()) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
|
|
} else {
|
|
ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
|
|
PPC::ZERO8 : PPC::ZERO;
|
|
}
|
|
|
|
UseMI.getOperand(UseIdx).setReg(ZeroReg);
|
|
return true;
|
|
}
|
|
|
|
// Folds zero into instructions which have a load immediate zero as an operand
|
|
// but also recognize zero as immediate zero. If the definition of the load
|
|
// has no more users it is deleted.
|
|
bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
Register Reg, MachineRegisterInfo *MRI) const {
|
|
bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
|
|
if (MRI->use_nodbg_empty(Reg))
|
|
DefMI.eraseFromParent();
|
|
return Changed;
|
|
}
|
|
|
|
static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
|
|
for (MachineInstr &MI : MBB)
|
|
if (MI.definesRegister(PPC::CTR) || MI.definesRegister(PPC::CTR8))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// We should make sure that, if we're going to predicate both sides of a
|
|
// condition (a diamond), that both sides don't define the counter register. We
|
|
// can predicate counter-decrement-based branches, but while that predicates
|
|
// the branching, it does not predicate the counter decrement. If we tried to
|
|
// merge the triangle into one predicated block, we'd decrement the counter
|
|
// twice.
|
|
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumT, unsigned ExtraT,
|
|
MachineBasicBlock &FMBB,
|
|
unsigned NumF, unsigned ExtraF,
|
|
BranchProbability Probability) const {
|
|
return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
|
|
}
|
|
|
|
|
|
bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
|
|
// The predicated branches are identified by their type, not really by the
|
|
// explicit presence of a predicate. Furthermore, some of them can be
|
|
// predicated more than once. Because if conversion won't try to predicate
|
|
// any instruction which already claims to be predicated (by returning true
|
|
// here), always return false. In doing so, we let isPredicable() be the
|
|
// final word on whether not the instruction can be (further) predicated.
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
// Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
|
|
// across them, since some FP operations may change content of FPSCR.
|
|
// TODO: Model FPSCR in PPC instruction definitions and remove the workaround
|
|
if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
|
|
return true;
|
|
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
|
|
}
|
|
|
|
bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
|
|
ArrayRef<MachineOperand> Pred) const {
|
|
unsigned OpC = MI.getOpcode();
|
|
if (OpC == PPC::BLR || OpC == PPC::BLR8) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
|
|
: (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
|
|
// Need add Def and Use for CTR implicit operand.
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg(), RegState::Implicit)
|
|
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MI.setDesc(get(PPC::BCLR));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MI.setDesc(get(PPC::BCLRn));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
|
|
} else {
|
|
MI.setDesc(get(PPC::BCCLR));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.add(Pred[1]);
|
|
}
|
|
|
|
return true;
|
|
} else if (OpC == PPC::B) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
|
|
: (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
|
|
// Need add Def and Use for CTR implicit operand.
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addReg(Pred[1].getReg(), RegState::Implicit)
|
|
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
|
|
MI.removeOperand(0);
|
|
|
|
MI.setDesc(get(PPC::BC));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.add(Pred[1])
|
|
.addMBB(MBB);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
|
|
MI.removeOperand(0);
|
|
|
|
MI.setDesc(get(PPC::BCn));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.add(Pred[1])
|
|
.addMBB(MBB);
|
|
} else {
|
|
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
|
|
MI.removeOperand(0);
|
|
|
|
MI.setDesc(get(PPC::BCC));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.add(Pred[1])
|
|
.addMBB(MBB);
|
|
}
|
|
|
|
return true;
|
|
} else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
|
|
OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
|
|
OpC == PPC::BCTRL8_RM) {
|
|
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
|
|
llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
|
|
|
|
bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
|
|
OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
|
|
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
|
|
: (setLR ? PPC::BCCTRL : PPC::BCCTR)));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
|
|
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
|
|
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
|
|
: (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
|
|
} else {
|
|
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
|
|
: (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(Pred[0].getImm())
|
|
.add(Pred[1]);
|
|
}
|
|
|
|
// Need add Def and Use for LR implicit operand.
|
|
if (setLR)
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
|
|
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
|
|
if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addReg(PPC::RM, RegState::ImplicitDefine);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
ArrayRef<MachineOperand> Pred2) const {
|
|
assert(Pred1.size() == 2 && "Invalid PPC first predicate");
|
|
assert(Pred2.size() == 2 && "Invalid PPC second predicate");
|
|
|
|
if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
|
|
return false;
|
|
if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
|
|
return false;
|
|
|
|
// P1 can only subsume P2 if they test the same condition register.
|
|
if (Pred1[1].getReg() != Pred2[1].getReg())
|
|
return false;
|
|
|
|
PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
|
|
PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
|
|
|
|
if (P1 == P2)
|
|
return true;
|
|
|
|
// Does P1 subsume P2, e.g. GE subsumes GT.
|
|
if (P1 == PPC::PRED_LE &&
|
|
(P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
|
|
return true;
|
|
if (P1 == PPC::PRED_GE &&
|
|
(P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
|
|
std::vector<MachineOperand> &Pred,
|
|
bool SkipDead) const {
|
|
// Note: At the present time, the contents of Pred from this function is
|
|
// unused by IfConversion. This implementation follows ARM by pushing the
|
|
// CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
|
|
// predicate, instructions defining CTR or CTR8 are also included as
|
|
// predicate-defining instructions.
|
|
|
|
const TargetRegisterClass *RCs[] =
|
|
{ &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
|
|
&PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
|
|
|
|
bool Found = false;
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
|
|
const TargetRegisterClass *RC = RCs[c];
|
|
if (MO.isReg()) {
|
|
if (MO.isDef() && RC->contains(MO.getReg())) {
|
|
Pred.push_back(MO);
|
|
Found = true;
|
|
}
|
|
} else if (MO.isRegMask()) {
|
|
for (MCPhysReg R : *RC)
|
|
if (MO.clobbersPhysReg(R)) {
|
|
Pred.push_back(MO);
|
|
Found = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Found;
|
|
}
|
|
|
|
bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
|
|
Register &SrcReg2, int64_t &Mask,
|
|
int64_t &Value) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
switch (Opc) {
|
|
default: return false;
|
|
case PPC::CMPWI:
|
|
case PPC::CMPLWI:
|
|
case PPC::CMPDI:
|
|
case PPC::CMPLDI:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = 0;
|
|
Value = MI.getOperand(2).getImm();
|
|
Mask = 0xFFFF;
|
|
return true;
|
|
case PPC::CMPW:
|
|
case PPC::CMPLW:
|
|
case PPC::CMPD:
|
|
case PPC::CMPLD:
|
|
case PPC::FCMPUS:
|
|
case PPC::FCMPUD:
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
SrcReg2 = MI.getOperand(2).getReg();
|
|
Value = 0;
|
|
Mask = 0;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
|
|
Register SrcReg2, int64_t Mask,
|
|
int64_t Value,
|
|
const MachineRegisterInfo *MRI) const {
|
|
if (DisableCmpOpt)
|
|
return false;
|
|
|
|
int OpC = CmpInstr.getOpcode();
|
|
Register CRReg = CmpInstr.getOperand(0).getReg();
|
|
|
|
// FP record forms set CR1 based on the exception status bits, not a
|
|
// comparison with zero.
|
|
if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
|
|
return false;
|
|
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
// The record forms set the condition register based on a signed comparison
|
|
// with zero (so says the ISA manual). This is not as straightforward as it
|
|
// seems, however, because this is always a 64-bit comparison on PPC64, even
|
|
// for instructions that are 32-bit in nature (like slw for example).
|
|
// So, on PPC32, for unsigned comparisons, we can use the record forms only
|
|
// for equality checks (as those don't depend on the sign). On PPC64,
|
|
// we are restricted to equality for unsigned 64-bit comparisons and for
|
|
// signed 32-bit comparisons the applicability is more restricted.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
|
|
bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
|
|
bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
|
|
|
|
// Look through copies unless that gets us to a physical register.
|
|
Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
|
|
if (ActualSrc.isVirtual())
|
|
SrcReg = ActualSrc;
|
|
|
|
// Get the unique definition of SrcReg.
|
|
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
|
|
if (!MI) return false;
|
|
|
|
bool equalityOnly = false;
|
|
bool noSub = false;
|
|
if (isPPC64) {
|
|
if (is32BitSignedCompare) {
|
|
// We can perform this optimization only if MI is sign-extending.
|
|
if (isSignExtended(*MI))
|
|
noSub = true;
|
|
else
|
|
return false;
|
|
} else if (is32BitUnsignedCompare) {
|
|
// We can perform this optimization, equality only, if MI is
|
|
// zero-extending.
|
|
if (isZeroExtended(*MI)) {
|
|
noSub = true;
|
|
equalityOnly = true;
|
|
} else
|
|
return false;
|
|
} else
|
|
equalityOnly = is64BitUnsignedCompare;
|
|
} else
|
|
equalityOnly = is32BitUnsignedCompare;
|
|
|
|
if (equalityOnly) {
|
|
// We need to check the uses of the condition register in order to reject
|
|
// non-equality comparisons.
|
|
for (MachineRegisterInfo::use_instr_iterator
|
|
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
|
|
I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if (UseMI->getOpcode() == PPC::BCC) {
|
|
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
// We ignore hint bits when checking for non-equality comparisons.
|
|
if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
|
|
return false;
|
|
} else if (UseMI->getOpcode() == PPC::ISEL ||
|
|
UseMI->getOpcode() == PPC::ISEL8) {
|
|
unsigned SubIdx = UseMI->getOperand(3).getSubReg();
|
|
if (SubIdx != PPC::sub_eq)
|
|
return false;
|
|
} else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator I = CmpInstr;
|
|
|
|
// Scan forward to find the first use of the compare.
|
|
for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
|
|
++I) {
|
|
bool FoundUse = false;
|
|
for (MachineRegisterInfo::use_instr_iterator
|
|
J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
|
|
J != JE; ++J)
|
|
if (&*J == &*I) {
|
|
FoundUse = true;
|
|
break;
|
|
}
|
|
|
|
if (FoundUse)
|
|
break;
|
|
}
|
|
|
|
SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
|
|
SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
|
|
|
|
// There are two possible candidates which can be changed to set CR[01].
|
|
// One is MI, the other is a SUB instruction.
|
|
// For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
|
|
MachineInstr *Sub = nullptr;
|
|
if (SrcReg2 != 0)
|
|
// MI is not a candidate for CMPrr.
|
|
MI = nullptr;
|
|
// FIXME: Conservatively refuse to convert an instruction which isn't in the
|
|
// same BB as the comparison. This is to allow the check below to avoid calls
|
|
// (and other explicit clobbers); instead we should really check for these
|
|
// more explicitly (in at least a few predecessors).
|
|
else if (MI->getParent() != CmpInstr.getParent())
|
|
return false;
|
|
else if (Value != 0) {
|
|
// The record-form instructions set CR bit based on signed comparison
|
|
// against 0. We try to convert a compare against 1 or -1 into a compare
|
|
// against 0 to exploit record-form instructions. For example, we change
|
|
// the condition "greater than -1" into "greater than or equal to 0"
|
|
// and "less than 1" into "less than or equal to 0".
|
|
|
|
// Since we optimize comparison based on a specific branch condition,
|
|
// we don't optimize if condition code is used by more than once.
|
|
if (equalityOnly || !MRI->hasOneUse(CRReg))
|
|
return false;
|
|
|
|
MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
|
|
if (UseMI->getOpcode() != PPC::BCC)
|
|
return false;
|
|
|
|
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
unsigned PredHint = PPC::getPredicateHint(Pred);
|
|
int16_t Immed = (int16_t)Value;
|
|
|
|
// When modifying the condition in the predicate, we propagate hint bits
|
|
// from the original predicate to the new one.
|
|
if (Immed == -1 && PredCond == PPC::PRED_GT)
|
|
// We convert "greater than -1" into "greater than or equal to 0",
|
|
// since we are assuming signed comparison by !equalityOnly
|
|
Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
|
|
else if (Immed == -1 && PredCond == PPC::PRED_LE)
|
|
// We convert "less than or equal to -1" into "less than 0".
|
|
Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
|
|
else if (Immed == 1 && PredCond == PPC::PRED_LT)
|
|
// We convert "less than 1" into "less than or equal to 0".
|
|
Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
|
|
else if (Immed == 1 && PredCond == PPC::PRED_GE)
|
|
// We convert "greater than or equal to 1" into "greater than 0".
|
|
Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
|
|
else
|
|
return false;
|
|
|
|
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
|
|
}
|
|
|
|
// Search for Sub.
|
|
--I;
|
|
|
|
// Get ready to iterate backward from CmpInstr.
|
|
MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
|
|
|
|
for (; I != E && !noSub; --I) {
|
|
const MachineInstr &Instr = *I;
|
|
unsigned IOpC = Instr.getOpcode();
|
|
|
|
if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
|
|
Instr.readsRegister(PPC::CR0, TRI)))
|
|
// This instruction modifies or uses the record condition register after
|
|
// the one we want to change. While we could do this transformation, it
|
|
// would likely not be profitable. This transformation removes one
|
|
// instruction, and so even forcing RA to generate one move probably
|
|
// makes it unprofitable.
|
|
return false;
|
|
|
|
// Check whether CmpInstr can be made redundant by the current instruction.
|
|
if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
|
|
OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
|
|
(IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
|
|
((Instr.getOperand(1).getReg() == SrcReg &&
|
|
Instr.getOperand(2).getReg() == SrcReg2) ||
|
|
(Instr.getOperand(1).getReg() == SrcReg2 &&
|
|
Instr.getOperand(2).getReg() == SrcReg))) {
|
|
Sub = &*I;
|
|
break;
|
|
}
|
|
|
|
if (I == B)
|
|
// The 'and' is below the comparison instruction.
|
|
return false;
|
|
}
|
|
|
|
// Return false if no candidates exist.
|
|
if (!MI && !Sub)
|
|
return false;
|
|
|
|
// The single candidate is called MI.
|
|
if (!MI) MI = Sub;
|
|
|
|
int NewOpC = -1;
|
|
int MIOpC = MI->getOpcode();
|
|
if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
|
|
MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
|
|
NewOpC = MIOpC;
|
|
else {
|
|
NewOpC = PPC::getRecordFormOpcode(MIOpC);
|
|
if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
|
|
NewOpC = MIOpC;
|
|
}
|
|
|
|
// FIXME: On the non-embedded POWER architectures, only some of the record
|
|
// forms are fast, and we should use only the fast ones.
|
|
|
|
// The defining instruction has a record form (or is already a record
|
|
// form). It is possible, however, that we'll need to reverse the condition
|
|
// code of the users.
|
|
if (NewOpC == -1)
|
|
return false;
|
|
|
|
// This transformation should not be performed if `nsw` is missing and is not
|
|
// `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
|
|
// CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
|
|
// CRReg can reflect if compared values are equal, this optz is still valid.
|
|
if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
|
|
Sub && !Sub->getFlag(MachineInstr::NoSWrap))
|
|
return false;
|
|
|
|
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
|
|
// needs to be updated to be based on SUB. Push the condition code
|
|
// operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
|
|
// condition code of these operands will be modified.
|
|
// Here, Value == 0 means we haven't converted comparison against 1 or -1 to
|
|
// comparison against 0, which may modify predicate.
|
|
bool ShouldSwap = false;
|
|
if (Sub && Value == 0) {
|
|
ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
|
|
Sub->getOperand(2).getReg() == SrcReg;
|
|
|
|
// The operands to subf are the opposite of sub, so only in the fixed-point
|
|
// case, invert the order.
|
|
ShouldSwap = !ShouldSwap;
|
|
}
|
|
|
|
if (ShouldSwap)
|
|
for (MachineRegisterInfo::use_instr_iterator
|
|
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
|
|
I != IE; ++I) {
|
|
MachineInstr *UseMI = &*I;
|
|
if (UseMI->getOpcode() == PPC::BCC) {
|
|
PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
|
|
unsigned PredCond = PPC::getPredicateCondition(Pred);
|
|
assert((!equalityOnly ||
|
|
PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
|
|
"Invalid predicate for equality-only optimization");
|
|
(void)PredCond; // To suppress warning in release build.
|
|
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
|
|
PPC::getSwappedPredicate(Pred)));
|
|
} else if (UseMI->getOpcode() == PPC::ISEL ||
|
|
UseMI->getOpcode() == PPC::ISEL8) {
|
|
unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
|
|
assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
|
|
"Invalid CR bit for equality-only optimization");
|
|
|
|
if (NewSubReg == PPC::sub_lt)
|
|
NewSubReg = PPC::sub_gt;
|
|
else if (NewSubReg == PPC::sub_gt)
|
|
NewSubReg = PPC::sub_lt;
|
|
|
|
SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
|
|
NewSubReg));
|
|
} else // We need to abort on a user we don't understand.
|
|
return false;
|
|
}
|
|
assert(!(Value != 0 && ShouldSwap) &&
|
|
"Non-zero immediate support and ShouldSwap"
|
|
"may conflict in updating predicate");
|
|
|
|
// Create a new virtual register to hold the value of the CR set by the
|
|
// record-form instruction. If the instruction was not previously in
|
|
// record form, then set the kill flag on the CR.
|
|
CmpInstr.eraseFromParent();
|
|
|
|
MachineBasicBlock::iterator MII = MI;
|
|
BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
|
|
get(TargetOpcode::COPY), CRReg)
|
|
.addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
|
|
|
|
// Even if CR0 register were dead before, it is alive now since the
|
|
// instruction we just built uses it.
|
|
MI->clearRegisterDeads(PPC::CR0);
|
|
|
|
if (MIOpC != NewOpC) {
|
|
// We need to be careful here: we're replacing one instruction with
|
|
// another, and we need to make sure that we get all of the right
|
|
// implicit uses and defs. On the other hand, the caller may be holding
|
|
// an iterator to this instruction, and so we can't delete it (this is
|
|
// specifically the case if this is the instruction directly after the
|
|
// compare).
|
|
|
|
// Rotates are expensive instructions. If we're emitting a record-form
|
|
// rotate that can just be an andi/andis, we should just emit that.
|
|
if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
|
|
Register GPRRes = MI->getOperand(0).getReg();
|
|
int64_t SH = MI->getOperand(2).getImm();
|
|
int64_t MB = MI->getOperand(3).getImm();
|
|
int64_t ME = MI->getOperand(4).getImm();
|
|
// We can only do this if both the start and end of the mask are in the
|
|
// same halfword.
|
|
bool MBInLoHWord = MB >= 16;
|
|
bool MEInLoHWord = ME >= 16;
|
|
uint64_t Mask = ~0LLU;
|
|
|
|
if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
|
|
Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
|
|
// The mask value needs to shift right 16 if we're emitting andis.
|
|
Mask >>= MBInLoHWord ? 0 : 16;
|
|
NewOpC = MIOpC == PPC::RLWINM
|
|
? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
|
|
: (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
|
|
} else if (MRI->use_empty(GPRRes) && (ME == 31) &&
|
|
(ME - MB + 1 == SH) && (MB >= 16)) {
|
|
// If we are rotating by the exact number of bits as are in the mask
|
|
// and the mask is in the least significant bits of the register,
|
|
// that's just an andis. (as long as the GPR result has no uses).
|
|
Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
|
|
Mask >>= 16;
|
|
NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
|
|
}
|
|
// If we've set the mask, we can transform.
|
|
if (Mask != ~0LLU) {
|
|
MI->removeOperand(4);
|
|
MI->removeOperand(3);
|
|
MI->getOperand(2).setImm(Mask);
|
|
NumRcRotatesConvertedToRcAnd++;
|
|
}
|
|
} else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
|
|
int64_t MB = MI->getOperand(3).getImm();
|
|
if (MB >= 48) {
|
|
uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
|
|
NewOpC = PPC::ANDI8_rec;
|
|
MI->removeOperand(3);
|
|
MI->getOperand(2).setImm(Mask);
|
|
NumRcRotatesConvertedToRcAnd++;
|
|
}
|
|
}
|
|
|
|
const MCInstrDesc &NewDesc = get(NewOpC);
|
|
MI->setDesc(NewDesc);
|
|
|
|
if (NewDesc.ImplicitDefs)
|
|
for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
|
|
*ImpDefs; ++ImpDefs)
|
|
if (!MI->definesRegister(*ImpDefs))
|
|
MI->addOperand(*MI->getParent()->getParent(),
|
|
MachineOperand::CreateReg(*ImpDefs, true, true));
|
|
if (NewDesc.ImplicitUses)
|
|
for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
|
|
*ImpUses; ++ImpUses)
|
|
if (!MI->readsRegister(*ImpUses))
|
|
MI->addOperand(*MI->getParent()->getParent(),
|
|
MachineOperand::CreateReg(*ImpUses, false, true));
|
|
}
|
|
assert(MI->definesRegister(PPC::CR0) &&
|
|
"Record-form instruction does not define cr0?");
|
|
|
|
// Modify the condition code of operands in OperandsToUpdate.
|
|
// Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
|
|
// be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
|
|
for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
|
|
PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
|
|
|
|
for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
|
|
SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
|
|
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
|
|
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineOperand *BaseOp;
|
|
OffsetIsScalable = false;
|
|
if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
|
|
return false;
|
|
BaseOps.push_back(BaseOp);
|
|
return true;
|
|
}
|
|
|
|
static bool isLdStSafeToCluster(const MachineInstr &LdSt,
|
|
const TargetRegisterInfo *TRI) {
|
|
// If this is a volatile load/store, don't mess with it.
|
|
if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
|
|
return false;
|
|
|
|
if (LdSt.getOperand(2).isFI())
|
|
return true;
|
|
|
|
assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
|
|
// Can't cluster if the instruction modifies the base register
|
|
// or it is update form. e.g. ld r2,3(r2)
|
|
if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Only cluster instruction pair that have the same opcode, and they are
|
|
// clusterable according to PowerPC specification.
|
|
static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
|
|
const PPCSubtarget &Subtarget) {
|
|
switch (FirstOpc) {
|
|
default:
|
|
return false;
|
|
case PPC::STD:
|
|
case PPC::STFD:
|
|
case PPC::STXSD:
|
|
case PPC::DFSTOREf64:
|
|
return FirstOpc == SecondOpc;
|
|
// PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
|
|
// 32bit and 64bit instruction selection. They are clusterable pair though
|
|
// they are different opcode.
|
|
case PPC::STW:
|
|
case PPC::STW8:
|
|
return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
|
|
}
|
|
}
|
|
|
|
bool PPCInstrInfo::shouldClusterMemOps(
|
|
ArrayRef<const MachineOperand *> BaseOps1,
|
|
ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
|
|
unsigned NumBytes) const {
|
|
|
|
assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
|
|
const MachineOperand &BaseOp1 = *BaseOps1.front();
|
|
const MachineOperand &BaseOp2 = *BaseOps2.front();
|
|
assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
|
|
"Only base registers and frame indices are supported.");
|
|
|
|
// The NumLoads means the number of loads that has been clustered.
|
|
// Don't cluster memory op if there are already two ops clustered at least.
|
|
if (NumLoads > 2)
|
|
return false;
|
|
|
|
// Cluster the load/store only when they have the same base
|
|
// register or FI.
|
|
if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
|
|
(BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
|
|
(BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
|
|
return false;
|
|
|
|
// Check if the load/store are clusterable according to the PowerPC
|
|
// specification.
|
|
const MachineInstr &FirstLdSt = *BaseOp1.getParent();
|
|
const MachineInstr &SecondLdSt = *BaseOp2.getParent();
|
|
unsigned FirstOpc = FirstLdSt.getOpcode();
|
|
unsigned SecondOpc = SecondLdSt.getOpcode();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
// Cluster the load/store only when they have the same opcode, and they are
|
|
// clusterable opcode according to PowerPC specification.
|
|
if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
|
|
return false;
|
|
|
|
// Can't cluster load/store that have ordered or volatile memory reference.
|
|
if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
|
|
!isLdStSafeToCluster(SecondLdSt, TRI))
|
|
return false;
|
|
|
|
int64_t Offset1 = 0, Offset2 = 0;
|
|
unsigned Width1 = 0, Width2 = 0;
|
|
const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
|
|
if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
|
|
!getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
|
|
Width1 != Width2)
|
|
return false;
|
|
|
|
assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
|
|
"getMemOperandWithOffsetWidth return incorrect base op");
|
|
// The caller should already have ordered FirstMemOp/SecondMemOp by offset.
|
|
assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
|
|
return Offset1 + Width1 == Offset2;
|
|
}
|
|
|
|
/// GetInstSize - Return the number of bytes of code the specified
|
|
/// instruction may be. This returns the maximum number of bytes.
|
|
///
|
|
unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const char *AsmStr = MI.getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
} else if (Opcode == TargetOpcode::STACKMAP) {
|
|
StackMapOpers Opers(&MI);
|
|
return Opers.getNumPatchBytes();
|
|
} else if (Opcode == TargetOpcode::PATCHPOINT) {
|
|
PatchPointOpers Opers(&MI);
|
|
return Opers.getNumPatchBytes();
|
|
} else {
|
|
return get(Opcode).getSize();
|
|
}
|
|
}
|
|
|
|
std::pair<unsigned, unsigned>
|
|
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
|
|
const unsigned Mask = PPCII::MO_ACCESS_MASK;
|
|
return std::make_pair(TF & Mask, TF & ~Mask);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
|
|
using namespace PPCII;
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_LO, "ppc-lo"},
|
|
{MO_HA, "ppc-ha"},
|
|
{MO_TPREL_LO, "ppc-tprel-lo"},
|
|
{MO_TPREL_HA, "ppc-tprel-ha"},
|
|
{MO_DTPREL_LO, "ppc-dtprel-lo"},
|
|
{MO_TLSLD_LO, "ppc-tlsld-lo"},
|
|
{MO_TOC_LO, "ppc-toc-lo"},
|
|
{MO_TLS, "ppc-tls"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
ArrayRef<std::pair<unsigned, const char *>>
|
|
PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
|
|
using namespace PPCII;
|
|
static const std::pair<unsigned, const char *> TargetFlags[] = {
|
|
{MO_PLT, "ppc-plt"},
|
|
{MO_PIC_FLAG, "ppc-pic"},
|
|
{MO_PCREL_FLAG, "ppc-pcrel"},
|
|
{MO_GOT_FLAG, "ppc-got"},
|
|
{MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
|
|
{MO_TLSGD_FLAG, "ppc-tlsgd"},
|
|
{MO_TLSLD_FLAG, "ppc-tlsld"},
|
|
{MO_TPREL_FLAG, "ppc-tprel"},
|
|
{MO_TLSGDM_FLAG, "ppc-tlsgdm"},
|
|
{MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
|
|
{MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
|
|
{MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
|
|
return makeArrayRef(TargetFlags);
|
|
}
|
|
|
|
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
|
|
// The VSX versions have the advantage of a full 64-register target whereas
|
|
// the FP ones have the advantage of lower latency and higher throughput. So
|
|
// what we are after is using the faster instructions in low register pressure
|
|
// situations and using the larger register file in high register pressure
|
|
// situations.
|
|
bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
|
|
unsigned UpperOpcode, LowerOpcode;
|
|
switch (MI.getOpcode()) {
|
|
case PPC::DFLOADf32:
|
|
UpperOpcode = PPC::LXSSP;
|
|
LowerOpcode = PPC::LFS;
|
|
break;
|
|
case PPC::DFLOADf64:
|
|
UpperOpcode = PPC::LXSD;
|
|
LowerOpcode = PPC::LFD;
|
|
break;
|
|
case PPC::DFSTOREf32:
|
|
UpperOpcode = PPC::STXSSP;
|
|
LowerOpcode = PPC::STFS;
|
|
break;
|
|
case PPC::DFSTOREf64:
|
|
UpperOpcode = PPC::STXSD;
|
|
LowerOpcode = PPC::STFD;
|
|
break;
|
|
case PPC::XFLOADf32:
|
|
UpperOpcode = PPC::LXSSPX;
|
|
LowerOpcode = PPC::LFSX;
|
|
break;
|
|
case PPC::XFLOADf64:
|
|
UpperOpcode = PPC::LXSDX;
|
|
LowerOpcode = PPC::LFDX;
|
|
break;
|
|
case PPC::XFSTOREf32:
|
|
UpperOpcode = PPC::STXSSPX;
|
|
LowerOpcode = PPC::STFSX;
|
|
break;
|
|
case PPC::XFSTOREf64:
|
|
UpperOpcode = PPC::STXSDX;
|
|
LowerOpcode = PPC::STFDX;
|
|
break;
|
|
case PPC::LIWAX:
|
|
UpperOpcode = PPC::LXSIWAX;
|
|
LowerOpcode = PPC::LFIWAX;
|
|
break;
|
|
case PPC::LIWZX:
|
|
UpperOpcode = PPC::LXSIWZX;
|
|
LowerOpcode = PPC::LFIWZX;
|
|
break;
|
|
case PPC::STIWX:
|
|
UpperOpcode = PPC::STXSIWX;
|
|
LowerOpcode = PPC::STFIWX;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown Operation!");
|
|
}
|
|
|
|
Register TargetReg = MI.getOperand(0).getReg();
|
|
unsigned Opcode;
|
|
if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
|
|
(TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
|
|
Opcode = LowerOpcode;
|
|
else
|
|
Opcode = UpperOpcode;
|
|
MI.setDesc(get(Opcode));
|
|
return true;
|
|
}
|
|
|
|
static bool isAnImmediateOperand(const MachineOperand &MO) {
|
|
return MO.isCPI() || MO.isGlobal() || MO.isImm();
|
|
}
|
|
|
|
bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
auto &MBB = *MI.getParent();
|
|
auto DL = MI.getDebugLoc();
|
|
|
|
switch (MI.getOpcode()) {
|
|
case PPC::BUILD_UACC: {
|
|
MCRegister ACC = MI.getOperand(0).getReg();
|
|
MCRegister UACC = MI.getOperand(1).getReg();
|
|
if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
|
|
MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
|
|
MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
|
|
// FIXME: This can easily be improved to look up to the top of the MBB
|
|
// to see if the inputs are XXLOR's. If they are and SrcReg is killed,
|
|
// we can just re-target any such XXLOR's to DstVSR + offset.
|
|
for (int VecNo = 0; VecNo < 4; VecNo++)
|
|
BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
|
|
.addReg(SrcVSR + VecNo)
|
|
.addReg(SrcVSR + VecNo);
|
|
}
|
|
// BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
|
|
// So after building the 4 copies, we can replace the BUILD_UACC instruction
|
|
// with a NOP.
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case PPC::KILL_PAIR: {
|
|
MI.setDesc(get(PPC::UNENCODED_NOP));
|
|
MI.removeOperand(1);
|
|
MI.removeOperand(0);
|
|
return true;
|
|
}
|
|
case TargetOpcode::LOAD_STACK_GUARD: {
|
|
assert(Subtarget.isTargetLinux() &&
|
|
"Only Linux target is expected to contain LOAD_STACK_GUARD");
|
|
const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
|
|
const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
|
|
MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(Offset)
|
|
.addReg(Reg);
|
|
return true;
|
|
}
|
|
case PPC::DFLOADf32:
|
|
case PPC::DFLOADf64:
|
|
case PPC::DFSTOREf32:
|
|
case PPC::DFSTOREf64: {
|
|
assert(Subtarget.hasP9Vector() &&
|
|
"Invalid D-Form Pseudo-ops on Pre-P9 target.");
|
|
assert(MI.getOperand(2).isReg() &&
|
|
isAnImmediateOperand(MI.getOperand(1)) &&
|
|
"D-form op must have register and immediate operands");
|
|
return expandVSXMemPseudo(MI);
|
|
}
|
|
case PPC::XFLOADf32:
|
|
case PPC::XFSTOREf32:
|
|
case PPC::LIWAX:
|
|
case PPC::LIWZX:
|
|
case PPC::STIWX: {
|
|
assert(Subtarget.hasP8Vector() &&
|
|
"Invalid X-Form Pseudo-ops on Pre-P8 target.");
|
|
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
|
|
"X-form op must have register and register operands");
|
|
return expandVSXMemPseudo(MI);
|
|
}
|
|
case PPC::XFLOADf64:
|
|
case PPC::XFSTOREf64: {
|
|
assert(Subtarget.hasVSX() &&
|
|
"Invalid X-Form Pseudo-ops on target that has no VSX.");
|
|
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
|
|
"X-form op must have register and register operands");
|
|
return expandVSXMemPseudo(MI);
|
|
}
|
|
case PPC::SPILLTOVSR_LD: {
|
|
Register TargetReg = MI.getOperand(0).getReg();
|
|
if (PPC::VSFRCRegClass.contains(TargetReg)) {
|
|
MI.setDesc(get(PPC::DFLOADf64));
|
|
return expandPostRAPseudo(MI);
|
|
}
|
|
else
|
|
MI.setDesc(get(PPC::LD));
|
|
return true;
|
|
}
|
|
case PPC::SPILLTOVSR_ST: {
|
|
Register SrcReg = MI.getOperand(0).getReg();
|
|
if (PPC::VSFRCRegClass.contains(SrcReg)) {
|
|
NumStoreSPILLVSRRCAsVec++;
|
|
MI.setDesc(get(PPC::DFSTOREf64));
|
|
return expandPostRAPseudo(MI);
|
|
} else {
|
|
NumStoreSPILLVSRRCAsGpr++;
|
|
MI.setDesc(get(PPC::STD));
|
|
}
|
|
return true;
|
|
}
|
|
case PPC::SPILLTOVSR_LDX: {
|
|
Register TargetReg = MI.getOperand(0).getReg();
|
|
if (PPC::VSFRCRegClass.contains(TargetReg))
|
|
MI.setDesc(get(PPC::LXSDX));
|
|
else
|
|
MI.setDesc(get(PPC::LDX));
|
|
return true;
|
|
}
|
|
case PPC::SPILLTOVSR_STX: {
|
|
Register SrcReg = MI.getOperand(0).getReg();
|
|
if (PPC::VSFRCRegClass.contains(SrcReg)) {
|
|
NumStoreSPILLVSRRCAsVec++;
|
|
MI.setDesc(get(PPC::STXSDX));
|
|
} else {
|
|
NumStoreSPILLVSRRCAsGpr++;
|
|
MI.setDesc(get(PPC::STDX));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
|
|
case PPC::CFENCE8: {
|
|
auto Val = MI.getOperand(0).getReg();
|
|
BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
|
|
BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
|
|
.addImm(PPC::PRED_NE_MINUS)
|
|
.addReg(PPC::CR7)
|
|
.addImm(1);
|
|
MI.setDesc(get(PPC::ISYNC));
|
|
MI.removeOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Essentially a compile-time implementation of a compare->isel sequence.
|
|
// It takes two constants to compare, along with the true/false registers
|
|
// and the comparison type (as a subreg to a CR field) and returns one
|
|
// of the true/false registers, depending on the comparison results.
|
|
static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
|
|
unsigned TrueReg, unsigned FalseReg,
|
|
unsigned CRSubReg) {
|
|
// Signed comparisons. The immediates are assumed to be sign-extended.
|
|
if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
|
|
switch (CRSubReg) {
|
|
default: llvm_unreachable("Unknown integer comparison type.");
|
|
case PPC::sub_lt:
|
|
return Imm1 < Imm2 ? TrueReg : FalseReg;
|
|
case PPC::sub_gt:
|
|
return Imm1 > Imm2 ? TrueReg : FalseReg;
|
|
case PPC::sub_eq:
|
|
return Imm1 == Imm2 ? TrueReg : FalseReg;
|
|
}
|
|
}
|
|
// Unsigned comparisons.
|
|
else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
|
|
switch (CRSubReg) {
|
|
default: llvm_unreachable("Unknown integer comparison type.");
|
|
case PPC::sub_lt:
|
|
return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
|
|
case PPC::sub_gt:
|
|
return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
|
|
case PPC::sub_eq:
|
|
return Imm1 == Imm2 ? TrueReg : FalseReg;
|
|
}
|
|
}
|
|
return PPC::NoRegister;
|
|
}
|
|
|
|
void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
|
|
unsigned OpNo,
|
|
int64_t Imm) const {
|
|
assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
|
|
// Replace the REG with the Immediate.
|
|
Register InUseReg = MI.getOperand(OpNo).getReg();
|
|
MI.getOperand(OpNo).ChangeToImmediate(Imm);
|
|
|
|
// We need to make sure that the MI didn't have any implicit use
|
|
// of this REG any more. We don't call MI.implicit_operands().empty() to
|
|
// return early, since MI's MCID might be changed in calling context, as a
|
|
// result its number of explicit operands may be changed, thus the begin of
|
|
// implicit operand is changed.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
|
|
if (UseOpIdx >= 0) {
|
|
MachineOperand &MO = MI.getOperand(UseOpIdx);
|
|
if (MO.isImplicit())
|
|
// The operands must always be in the following order:
|
|
// - explicit reg defs,
|
|
// - other explicit operands (reg uses, immediates, etc.),
|
|
// - implicit reg defs
|
|
// - implicit reg uses
|
|
// Therefore, removing the implicit operand won't change the explicit
|
|
// operands layout.
|
|
MI.removeOperand(UseOpIdx);
|
|
}
|
|
}
|
|
|
|
// Replace an instruction with one that materializes a constant (and sets
|
|
// CR0 if the original instruction was a record-form instruction).
|
|
void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
|
|
const LoadImmediateInfo &LII) const {
|
|
// Remove existing operands.
|
|
int OperandToKeep = LII.SetCR ? 1 : 0;
|
|
for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
|
|
MI.removeOperand(i);
|
|
|
|
// Replace the instruction.
|
|
if (LII.SetCR) {
|
|
MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
|
|
// Set the immediate.
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
|
|
return;
|
|
}
|
|
else
|
|
MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
|
|
|
|
// Set the immediate.
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
|
|
.addImm(LII.Imm);
|
|
}
|
|
|
|
MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
|
|
bool &SeenIntermediateUse) const {
|
|
assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
|
|
"Should be called after register allocation.");
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
|
|
It++;
|
|
SeenIntermediateUse = false;
|
|
for (; It != E; ++It) {
|
|
if (It->modifiesRegister(Reg, TRI))
|
|
return &*It;
|
|
if (It->readsRegister(Reg, TRI))
|
|
SeenIntermediateUse = true;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
const DebugLoc &DL, Register Reg,
|
|
int64_t Imm) const {
|
|
assert(!MBB.getParent()->getRegInfo().isSSA() &&
|
|
"Register should be in non-SSA form after RA");
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
// FIXME: Materialization here is not optimal.
|
|
// For some special bit patterns we can use less instructions.
|
|
// See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp.
|
|
if (isInt<16>(Imm)) {
|
|
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm);
|
|
} else if (isInt<32>(Imm)) {
|
|
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg)
|
|
.addImm(Imm >> 16);
|
|
if (Imm & 0xFFFF)
|
|
BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(Imm & 0xFFFF);
|
|
} else {
|
|
assert(isPPC64 && "Materializing 64-bit immediate to single register is "
|
|
"only supported in PPC64");
|
|
BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48);
|
|
if ((Imm >> 32) & 0xFFFF)
|
|
BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm((Imm >> 32) & 0xFFFF);
|
|
BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(32)
|
|
.addImm(31);
|
|
BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm((Imm >> 16) & 0xFFFF);
|
|
if (Imm & 0xFFFF)
|
|
BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
|
|
.addReg(Reg, RegState::Kill)
|
|
.addImm(Imm & 0xFFFF);
|
|
}
|
|
}
|
|
|
|
MachineInstr *PPCInstrInfo::getForwardingDefMI(
|
|
MachineInstr &MI,
|
|
unsigned &OpNoForForwarding,
|
|
bool &SeenIntermediateUse) const {
|
|
OpNoForForwarding = ~0U;
|
|
MachineInstr *DefMI = nullptr;
|
|
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
// If we're in SSA, get the defs through the MRI. Otherwise, only look
|
|
// within the basic block to see if the register is defined using an
|
|
// LI/LI8/ADDI/ADDI8.
|
|
if (MRI->isSSA()) {
|
|
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
|
|
if (!MI.getOperand(i).isReg())
|
|
continue;
|
|
Register Reg = MI.getOperand(i).getReg();
|
|
if (!Register::isVirtualRegister(Reg))
|
|
continue;
|
|
Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
|
|
if (Register::isVirtualRegister(TrueReg)) {
|
|
DefMI = MRI->getVRegDef(TrueReg);
|
|
if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
|
|
DefMI->getOpcode() == PPC::ADDI ||
|
|
DefMI->getOpcode() == PPC::ADDI8) {
|
|
OpNoForForwarding = i;
|
|
// The ADDI and LI operand maybe exist in one instruction at same
|
|
// time. we prefer to fold LI operand as LI only has one Imm operand
|
|
// and is more possible to be converted. So if current DefMI is
|
|
// ADDI/ADDI8, we continue to find possible LI/LI8.
|
|
if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Looking back through the definition for each operand could be expensive,
|
|
// so exit early if this isn't an instruction that either has an immediate
|
|
// form or is already an immediate form that we can handle.
|
|
ImmInstrInfo III;
|
|
unsigned Opc = MI.getOpcode();
|
|
bool ConvertibleImmForm =
|
|
Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
|
|
Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
|
|
Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
|
|
Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
|
|
Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
|
|
Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
|
|
Opc == PPC::RLWINM8_rec;
|
|
bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
|
|
? isVFRegister(MI.getOperand(0).getReg())
|
|
: false;
|
|
if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
|
|
return nullptr;
|
|
|
|
// Don't convert or %X, %Y, %Y since that's just a register move.
|
|
if ((Opc == PPC::OR || Opc == PPC::OR8) &&
|
|
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
|
|
return nullptr;
|
|
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
|
|
MachineOperand &MO = MI.getOperand(i);
|
|
SeenIntermediateUse = false;
|
|
if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
|
|
Register Reg = MI.getOperand(i).getReg();
|
|
// If we see another use of this reg between the def and the MI,
|
|
// we want to flat it so the def isn't deleted.
|
|
MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
|
|
if (DefMI) {
|
|
// Is this register defined by some form of add-immediate (including
|
|
// load-immediate) within this basic block?
|
|
switch (DefMI->getOpcode()) {
|
|
default:
|
|
break;
|
|
case PPC::LI:
|
|
case PPC::LI8:
|
|
case PPC::ADDItocL:
|
|
case PPC::ADDI:
|
|
case PPC::ADDI8:
|
|
OpNoForForwarding = i;
|
|
return DefMI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return OpNoForForwarding == ~0U ? nullptr : DefMI;
|
|
}
|
|
|
|
unsigned PPCInstrInfo::getSpillTarget() const {
|
|
// With P10, we may need to spill paired vector registers or accumulator
|
|
// registers. MMA implies paired vectors, so we can just check that.
|
|
bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
|
|
return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
|
|
}
|
|
|
|
const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
|
|
return StoreSpillOpcodesArray[getSpillTarget()];
|
|
}
|
|
|
|
const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
|
|
return LoadSpillOpcodesArray[getSpillTarget()];
|
|
}
|
|
|
|
void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
|
|
unsigned RegNo) const {
|
|
// Conservatively clear kill flag for the register if the instructions are in
|
|
// different basic blocks and in SSA form, because the kill flag may no longer
|
|
// be right. There is no need to bother with dead flags since defs with no
|
|
// uses will be handled by DCE.
|
|
MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
|
|
if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
|
|
MRI.clearKillFlags(RegNo);
|
|
return;
|
|
}
|
|
|
|
// Instructions between [StartMI, EndMI] should be in same basic block.
|
|
assert((StartMI->getParent() == EndMI->getParent()) &&
|
|
"Instructions are not in same basic block");
|
|
|
|
// If before RA, StartMI may be def through COPY, we need to adjust it to the
|
|
// real def. See function getForwardingDefMI.
|
|
if (MRI.isSSA()) {
|
|
bool Reads, Writes;
|
|
std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
|
|
if (!Reads && !Writes) {
|
|
assert(Register::isVirtualRegister(RegNo) &&
|
|
"Must be a virtual register");
|
|
// Get real def and ignore copies.
|
|
StartMI = MRI.getVRegDef(RegNo);
|
|
}
|
|
}
|
|
|
|
bool IsKillSet = false;
|
|
|
|
auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
|
|
MachineOperand &MO = MI.getOperand(Index);
|
|
if (MO.isReg() && MO.isUse() && MO.isKill() &&
|
|
getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
|
|
MO.setIsKill(false);
|
|
};
|
|
|
|
// Set killed flag for EndMI.
|
|
// No need to do anything if EndMI defines RegNo.
|
|
int UseIndex =
|
|
EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
|
|
if (UseIndex != -1) {
|
|
EndMI->getOperand(UseIndex).setIsKill(true);
|
|
IsKillSet = true;
|
|
// Clear killed flag for other EndMI operands related to RegNo. In some
|
|
// upexpected cases, killed may be set multiple times for same register
|
|
// operand in same MI.
|
|
for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
|
|
if (i != UseIndex)
|
|
clearOperandKillInfo(*EndMI, i);
|
|
}
|
|
|
|
// Walking the inst in reverse order (EndMI -> StartMI].
|
|
MachineBasicBlock::reverse_iterator It = *EndMI;
|
|
MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
|
|
// EndMI has been handled above, skip it here.
|
|
It++;
|
|
MachineOperand *MO = nullptr;
|
|
for (; It != E; ++It) {
|
|
// Skip insturctions which could not be a def/use of RegNo.
|
|
if (It->isDebugInstr() || It->isPosition())
|
|
continue;
|
|
|
|
// Clear killed flag for all It operands related to RegNo. In some
|
|
// upexpected cases, killed may be set multiple times for same register
|
|
// operand in same MI.
|
|
for (int i = 0, e = It->getNumOperands(); i != e; ++i)
|
|
clearOperandKillInfo(*It, i);
|
|
|
|
// If killed is not set, set killed for its last use or set dead for its def
|
|
// if no use found.
|
|
if (!IsKillSet) {
|
|
if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
|
|
// Use found, set it killed.
|
|
IsKillSet = true;
|
|
MO->setIsKill(true);
|
|
continue;
|
|
} else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
|
|
&getRegisterInfo()))) {
|
|
// No use found, set dead for its def.
|
|
assert(&*It == StartMI && "No new def between StartMI and EndMI.");
|
|
MO->setIsDead(true);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((&*It) == StartMI)
|
|
break;
|
|
}
|
|
// Ensure RegMo liveness is killed after EndMI.
|
|
assert((IsKillSet || (MO && MO->isDead())) &&
|
|
"RegNo should be killed or dead");
|
|
}
|
|
|
|
// This opt tries to convert the following imm form to an index form to save an
|
|
// add for stack variables.
|
|
// Return false if no such pattern found.
|
|
//
|
|
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
|
|
// ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
|
|
// Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
|
|
//
|
|
// can be converted to:
|
|
//
|
|
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
|
|
// Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
|
|
//
|
|
// In order to eliminate ADD instr, make sure that:
|
|
// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
|
|
// new ADDI instr and ADDI can only take int16 Imm.
|
|
// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
|
|
// between ADDI and ADD instr since its original def in ADDI will be changed
|
|
// in new ADDI instr. And also there should be no new def for it between
|
|
// ADD and Imm instr as ToBeChangedReg will be used in Index instr.
|
|
// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
|
|
// between ADD and Imm instr since ADD instr will be eliminated.
|
|
// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
|
|
// moved to Index instr.
|
|
bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
bool PostRA = !MRI->isSSA();
|
|
// Do this opt after PEI which is after RA. The reason is stack slot expansion
|
|
// in PEI may expose such opportunities since in PEI, stack slot offsets to
|
|
// frame base(OffsetAddi) are determined.
|
|
if (!PostRA)
|
|
return false;
|
|
unsigned ToBeDeletedReg = 0;
|
|
int64_t OffsetImm = 0;
|
|
unsigned XFormOpcode = 0;
|
|
ImmInstrInfo III;
|
|
|
|
// Check if Imm instr meets requirement.
|
|
if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
|
|
III))
|
|
return false;
|
|
|
|
bool OtherIntermediateUse = false;
|
|
MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
|
|
|
|
// Exit if there is other use between ADD and Imm instr or no def found.
|
|
if (OtherIntermediateUse || !ADDMI)
|
|
return false;
|
|
|
|
// Check if ADD instr meets requirement.
|
|
if (!isADDInstrEligibleForFolding(*ADDMI))
|
|
return false;
|
|
|
|
unsigned ScaleRegIdx = 0;
|
|
int64_t OffsetAddi = 0;
|
|
MachineInstr *ADDIMI = nullptr;
|
|
|
|
// Check if there is a valid ToBeChangedReg in ADDMI.
|
|
// 1: It must be killed.
|
|
// 2: Its definition must be a valid ADDIMI.
|
|
// 3: It must satify int16 offset requirement.
|
|
if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
|
|
ScaleRegIdx = 2;
|
|
else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
|
|
ScaleRegIdx = 1;
|
|
else
|
|
return false;
|
|
|
|
assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
|
|
Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
|
|
Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
|
|
auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
|
|
MachineBasicBlock::iterator End) {
|
|
for (auto It = ++Start; It != End; It++)
|
|
if (It->modifiesRegister(Reg, &getRegisterInfo()))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
// We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
|
|
// treated as special zero when ScaleReg is R0/X0 register.
|
|
if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
|
|
(ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
|
|
return false;
|
|
|
|
// Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
|
|
// and Imm Instr.
|
|
if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
|
|
return false;
|
|
|
|
// Now start to do the transformation.
|
|
LLVM_DEBUG(dbgs() << "Replace instruction: "
|
|
<< "\n");
|
|
LLVM_DEBUG(ADDIMI->dump());
|
|
LLVM_DEBUG(ADDMI->dump());
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "with: "
|
|
<< "\n");
|
|
|
|
// Update ADDI instr.
|
|
ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
|
|
|
|
// Update Imm instr.
|
|
MI.setDesc(get(XFormOpcode));
|
|
MI.getOperand(III.ImmOpNo)
|
|
.ChangeToRegister(ScaleReg, false, false,
|
|
ADDMI->getOperand(ScaleRegIdx).isKill());
|
|
|
|
MI.getOperand(III.OpNoForForwarding)
|
|
.ChangeToRegister(ToBeChangedReg, false, false, true);
|
|
|
|
// Eliminate ADD instr.
|
|
ADDMI->eraseFromParent();
|
|
|
|
LLVM_DEBUG(ADDIMI->dump());
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
|
|
int64_t &Imm) const {
|
|
unsigned Opc = ADDIMI.getOpcode();
|
|
|
|
// Exit if the instruction is not ADDI.
|
|
if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
|
|
return false;
|
|
|
|
// The operand may not necessarily be an immediate - it could be a relocation.
|
|
if (!ADDIMI.getOperand(2).isImm())
|
|
return false;
|
|
|
|
Imm = ADDIMI.getOperand(2).getImm();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
|
|
unsigned Opc = ADDMI.getOpcode();
|
|
|
|
// Exit if the instruction is not ADD.
|
|
return Opc == PPC::ADD4 || Opc == PPC::ADD8;
|
|
}
|
|
|
|
bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
|
|
unsigned &ToBeDeletedReg,
|
|
unsigned &XFormOpcode,
|
|
int64_t &OffsetImm,
|
|
ImmInstrInfo &III) const {
|
|
// Only handle load/store.
|
|
if (!MI.mayLoadOrStore())
|
|
return false;
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
|
|
|
|
// Exit if instruction has no index form.
|
|
if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
|
|
return false;
|
|
|
|
// TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
|
|
if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
|
|
III, true))
|
|
return false;
|
|
|
|
if (!III.IsSummingOperands)
|
|
return false;
|
|
|
|
MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
|
|
MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
|
|
// Only support imm operands, not relocation slots or others.
|
|
if (!ImmOperand.isImm())
|
|
return false;
|
|
|
|
assert(RegOperand.isReg() && "Instruction format is not right");
|
|
|
|
// There are other use for ToBeDeletedReg after Imm instr, can not delete it.
|
|
if (!RegOperand.isKill())
|
|
return false;
|
|
|
|
ToBeDeletedReg = RegOperand.getReg();
|
|
OffsetImm = ImmOperand.getImm();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
|
|
MachineInstr *&ADDIMI,
|
|
int64_t &OffsetAddi,
|
|
int64_t OffsetImm) const {
|
|
assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
|
|
MachineOperand &MO = ADDMI->getOperand(Index);
|
|
|
|
if (!MO.isKill())
|
|
return false;
|
|
|
|
bool OtherIntermediateUse = false;
|
|
|
|
ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
|
|
// Currently handle only one "add + Imminstr" pair case, exit if other
|
|
// intermediate use for ToBeChangedReg found.
|
|
// TODO: handle the cases where there are other "add + Imminstr" pairs
|
|
// with same offset in Imminstr which is like:
|
|
//
|
|
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
|
|
// ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
|
|
// Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
|
|
// ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
|
|
// Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
|
|
//
|
|
// can be converted to:
|
|
//
|
|
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
|
|
// (OffsetAddi + OffsetImm)
|
|
// Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
|
|
// Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
|
|
|
|
if (OtherIntermediateUse || !ADDIMI)
|
|
return false;
|
|
// Check if ADDI instr meets requirement.
|
|
if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
|
|
return false;
|
|
|
|
if (isInt<16>(OffsetAddi + OffsetImm))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// If this instruction has an immediate form and one of its operands is a
|
|
// result of a load-immediate or an add-immediate, convert it to
|
|
// the immediate form if the constant is in range.
|
|
bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
|
|
MachineInstr **KilledDef) const {
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
bool PostRA = !MRI->isSSA();
|
|
bool SeenIntermediateUse = true;
|
|
unsigned ForwardingOperand = ~0U;
|
|
MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
|
|
SeenIntermediateUse);
|
|
if (!DefMI)
|
|
return false;
|
|
assert(ForwardingOperand < MI.getNumOperands() &&
|
|
"The forwarding operand needs to be valid at this point");
|
|
bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
|
|
bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
|
|
if (KilledDef && KillFwdDefMI)
|
|
*KilledDef = DefMI;
|
|
|
|
// If this is a imm instruction and its register operands is produced by ADDI,
|
|
// put the imm into imm inst directly.
|
|
if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
|
|
PPC::INSTRUCTION_LIST_END &&
|
|
transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
|
|
return true;
|
|
|
|
ImmInstrInfo III;
|
|
bool IsVFReg = MI.getOperand(0).isReg()
|
|
? isVFRegister(MI.getOperand(0).getReg())
|
|
: false;
|
|
bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
|
|
// If this is a reg+reg instruction that has a reg+imm form,
|
|
// and one of the operands is produced by an add-immediate,
|
|
// try to convert it.
|
|
if (HasImmForm &&
|
|
transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
|
|
KillFwdDefMI))
|
|
return true;
|
|
|
|
// If this is a reg+reg instruction that has a reg+imm form,
|
|
// and one of the operands is produced by LI, convert it now.
|
|
if (HasImmForm &&
|
|
transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
|
|
return true;
|
|
|
|
// If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
|
|
// can be simpified to LI.
|
|
if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
|
|
MachineInstr **ToErase) const {
|
|
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
|
|
Register FoldingReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(FoldingReg))
|
|
return false;
|
|
MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
|
|
if (SrcMI->getOpcode() != PPC::RLWINM &&
|
|
SrcMI->getOpcode() != PPC::RLWINM_rec &&
|
|
SrcMI->getOpcode() != PPC::RLWINM8 &&
|
|
SrcMI->getOpcode() != PPC::RLWINM8_rec)
|
|
return false;
|
|
assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
|
|
MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
|
|
SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
|
|
"Invalid PPC::RLWINM Instruction!");
|
|
uint64_t SHSrc = SrcMI->getOperand(2).getImm();
|
|
uint64_t SHMI = MI.getOperand(2).getImm();
|
|
uint64_t MBSrc = SrcMI->getOperand(3).getImm();
|
|
uint64_t MBMI = MI.getOperand(3).getImm();
|
|
uint64_t MESrc = SrcMI->getOperand(4).getImm();
|
|
uint64_t MEMI = MI.getOperand(4).getImm();
|
|
|
|
assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
|
|
"Invalid PPC::RLWINM Instruction!");
|
|
// If MBMI is bigger than MEMI, we always can not get run of ones.
|
|
// RotatedSrcMask non-wrap:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: B---E B---E
|
|
// MaskMI: -----------|--E B------
|
|
// Result: ----- --- (Bad candidate)
|
|
//
|
|
// RotatedSrcMask wrap:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: --E B----|--E B----
|
|
// MaskMI: -----------|--E B------
|
|
// Result: --- -----|--- ----- (Bad candidate)
|
|
//
|
|
// One special case is RotatedSrcMask is a full set mask.
|
|
// RotatedSrcMask full:
|
|
// 0........31|32........63
|
|
// RotatedSrcMask: ------EB---|-------EB---
|
|
// MaskMI: -----------|--E B------
|
|
// Result: -----------|--- ------- (Good candidate)
|
|
|
|
// Mark special case.
|
|
bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
|
|
|
|
// For other MBMI > MEMI cases, just return.
|
|
if ((MBMI > MEMI) && !SrcMaskFull)
|
|
return false;
|
|
|
|
// Handle MBMI <= MEMI cases.
|
|
APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
|
|
// In MI, we only need low 32 bits of SrcMI, just consider about low 32
|
|
// bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
|
|
// while in PowerPC ISA, lowerest bit is at index 63.
|
|
APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
|
|
|
|
APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
|
|
APInt FinalMask = RotatedSrcMask & MaskMI;
|
|
uint32_t NewMB, NewME;
|
|
bool Simplified = false;
|
|
|
|
// If final mask is 0, MI result should be 0 too.
|
|
if (FinalMask.isZero()) {
|
|
bool Is64Bit =
|
|
(MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
|
|
Simplified = true;
|
|
LLVM_DEBUG(dbgs() << "Replace Instr: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
|
|
// Replace MI with "LI 0"
|
|
MI.removeOperand(4);
|
|
MI.removeOperand(3);
|
|
MI.removeOperand(2);
|
|
MI.getOperand(1).ChangeToImmediate(0);
|
|
MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
|
|
} else {
|
|
// Replace MI with "ANDI_rec reg, 0"
|
|
MI.removeOperand(4);
|
|
MI.removeOperand(3);
|
|
MI.getOperand(2).setImm(0);
|
|
MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
|
|
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
|
|
if (SrcMI->getOperand(1).isKill()) {
|
|
MI.getOperand(1).setIsKill(true);
|
|
SrcMI->getOperand(1).setIsKill(false);
|
|
} else
|
|
// About to replace MI.getOperand(1), clear its kill flag.
|
|
MI.getOperand(1).setIsKill(false);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "With: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
} else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
|
|
NewMB <= NewME) ||
|
|
SrcMaskFull) {
|
|
// Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
|
|
// than NewME. Otherwise we get a 64 bit value after folding, but MI
|
|
// return a 32 bit value.
|
|
Simplified = true;
|
|
LLVM_DEBUG(dbgs() << "Converting Instr: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
uint16_t NewSH = (SHSrc + SHMI) % 32;
|
|
MI.getOperand(2).setImm(NewSH);
|
|
// If SrcMI mask is full, no need to update MBMI and MEMI.
|
|
if (!SrcMaskFull) {
|
|
MI.getOperand(3).setImm(NewMB);
|
|
MI.getOperand(4).setImm(NewME);
|
|
}
|
|
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
|
|
if (SrcMI->getOperand(1).isKill()) {
|
|
MI.getOperand(1).setIsKill(true);
|
|
SrcMI->getOperand(1).setIsKill(false);
|
|
} else
|
|
// About to replace MI.getOperand(1), clear its kill flag.
|
|
MI.getOperand(1).setIsKill(false);
|
|
|
|
LLVM_DEBUG(dbgs() << "To: ");
|
|
LLVM_DEBUG(MI.dump());
|
|
}
|
|
if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
|
|
!SrcMI->hasImplicitDef()) {
|
|
// If FoldingReg has no non-debug use and it has no implicit def (it
|
|
// is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
|
|
// Otherwise keep it.
|
|
*ToErase = SrcMI;
|
|
LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
|
|
LLVM_DEBUG(SrcMI->dump());
|
|
}
|
|
return Simplified;
|
|
}
|
|
|
|
bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
|
|
ImmInstrInfo &III, bool PostRA) const {
|
|
// The vast majority of the instructions would need their operand 2 replaced
|
|
// with an immediate when switching to the reg+imm form. A marked exception
|
|
// are the update form loads/stores for which a constant operand 2 would need
|
|
// to turn into a displacement and move operand 1 to the operand 2 position.
|
|
III.ImmOpNo = 2;
|
|
III.OpNoForForwarding = 2;
|
|
III.ImmWidth = 16;
|
|
III.ImmMustBeMultipleOf = 1;
|
|
III.TruncateImmTo = 0;
|
|
III.IsSummingOperands = false;
|
|
switch (Opc) {
|
|
default: return false;
|
|
case PPC::ADD4:
|
|
case PPC::ADD8:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 1;
|
|
III.IsCommutative = true;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
|
|
break;
|
|
case PPC::ADDC:
|
|
case PPC::ADDC8:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = true;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
|
|
break;
|
|
case PPC::ADDC_rec:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = true;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpcode = PPC::ADDIC_rec;
|
|
break;
|
|
case PPC::SUBFC:
|
|
case PPC::SUBFC8:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = false;
|
|
III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
|
|
break;
|
|
case PPC::CMPW:
|
|
case PPC::CMPD:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = false;
|
|
III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
|
|
break;
|
|
case PPC::CMPLW:
|
|
case PPC::CMPLD:
|
|
III.SignedImm = false;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = false;
|
|
III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
|
|
break;
|
|
case PPC::AND_rec:
|
|
case PPC::AND8_rec:
|
|
case PPC::OR:
|
|
case PPC::OR8:
|
|
case PPC::XOR:
|
|
case PPC::XOR8:
|
|
III.SignedImm = false;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = true;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::AND_rec:
|
|
III.ImmOpcode = PPC::ANDI_rec;
|
|
break;
|
|
case PPC::AND8_rec:
|
|
III.ImmOpcode = PPC::ANDI8_rec;
|
|
break;
|
|
case PPC::OR: III.ImmOpcode = PPC::ORI; break;
|
|
case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
|
|
case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
|
|
case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
|
|
}
|
|
break;
|
|
case PPC::RLWNM:
|
|
case PPC::RLWNM8:
|
|
case PPC::RLWNM_rec:
|
|
case PPC::RLWNM8_rec:
|
|
case PPC::SLW:
|
|
case PPC::SLW8:
|
|
case PPC::SLW_rec:
|
|
case PPC::SLW8_rec:
|
|
case PPC::SRW:
|
|
case PPC::SRW8:
|
|
case PPC::SRW_rec:
|
|
case PPC::SRW8_rec:
|
|
case PPC::SRAW:
|
|
case PPC::SRAW_rec:
|
|
III.SignedImm = false;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = false;
|
|
// This isn't actually true, but the instructions ignore any of the
|
|
// upper bits, so any immediate loaded with an LI is acceptable.
|
|
// This does not apply to shift right algebraic because a value
|
|
// out of range will produce a -1/0.
|
|
III.ImmWidth = 16;
|
|
if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
|
|
Opc == PPC::RLWNM8_rec)
|
|
III.TruncateImmTo = 5;
|
|
else
|
|
III.TruncateImmTo = 6;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
|
|
case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
|
|
case PPC::RLWNM_rec:
|
|
III.ImmOpcode = PPC::RLWINM_rec;
|
|
break;
|
|
case PPC::RLWNM8_rec:
|
|
III.ImmOpcode = PPC::RLWINM8_rec;
|
|
break;
|
|
case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
|
|
case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
|
|
case PPC::SLW_rec:
|
|
III.ImmOpcode = PPC::RLWINM_rec;
|
|
break;
|
|
case PPC::SLW8_rec:
|
|
III.ImmOpcode = PPC::RLWINM8_rec;
|
|
break;
|
|
case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
|
|
case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
|
|
case PPC::SRW_rec:
|
|
III.ImmOpcode = PPC::RLWINM_rec;
|
|
break;
|
|
case PPC::SRW8_rec:
|
|
III.ImmOpcode = PPC::RLWINM8_rec;
|
|
break;
|
|
case PPC::SRAW:
|
|
III.ImmWidth = 5;
|
|
III.TruncateImmTo = 0;
|
|
III.ImmOpcode = PPC::SRAWI;
|
|
break;
|
|
case PPC::SRAW_rec:
|
|
III.ImmWidth = 5;
|
|
III.TruncateImmTo = 0;
|
|
III.ImmOpcode = PPC::SRAWI_rec;
|
|
break;
|
|
}
|
|
break;
|
|
case PPC::RLDCL:
|
|
case PPC::RLDCL_rec:
|
|
case PPC::RLDCR:
|
|
case PPC::RLDCR_rec:
|
|
case PPC::SLD:
|
|
case PPC::SLD_rec:
|
|
case PPC::SRD:
|
|
case PPC::SRD_rec:
|
|
case PPC::SRAD:
|
|
case PPC::SRAD_rec:
|
|
III.SignedImm = false;
|
|
III.ZeroIsSpecialOrig = 0;
|
|
III.ZeroIsSpecialNew = 0;
|
|
III.IsCommutative = false;
|
|
// This isn't actually true, but the instructions ignore any of the
|
|
// upper bits, so any immediate loaded with an LI is acceptable.
|
|
// This does not apply to shift right algebraic because a value
|
|
// out of range will produce a -1/0.
|
|
III.ImmWidth = 16;
|
|
if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
|
|
Opc == PPC::RLDCR_rec)
|
|
III.TruncateImmTo = 6;
|
|
else
|
|
III.TruncateImmTo = 7;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
|
|
case PPC::RLDCL_rec:
|
|
III.ImmOpcode = PPC::RLDICL_rec;
|
|
break;
|
|
case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
|
|
case PPC::RLDCR_rec:
|
|
III.ImmOpcode = PPC::RLDICR_rec;
|
|
break;
|
|
case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
|
|
case PPC::SLD_rec:
|
|
III.ImmOpcode = PPC::RLDICR_rec;
|
|
break;
|
|
case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
|
|
case PPC::SRD_rec:
|
|
III.ImmOpcode = PPC::RLDICL_rec;
|
|
break;
|
|
case PPC::SRAD:
|
|
III.ImmWidth = 6;
|
|
III.TruncateImmTo = 0;
|
|
III.ImmOpcode = PPC::SRADI;
|
|
break;
|
|
case PPC::SRAD_rec:
|
|
III.ImmWidth = 6;
|
|
III.TruncateImmTo = 0;
|
|
III.ImmOpcode = PPC::SRADI_rec;
|
|
break;
|
|
}
|
|
break;
|
|
// Loads and stores:
|
|
case PPC::LBZX:
|
|
case PPC::LBZX8:
|
|
case PPC::LHZX:
|
|
case PPC::LHZX8:
|
|
case PPC::LHAX:
|
|
case PPC::LHAX8:
|
|
case PPC::LWZX:
|
|
case PPC::LWZX8:
|
|
case PPC::LWAX:
|
|
case PPC::LDX:
|
|
case PPC::LFSX:
|
|
case PPC::LFDX:
|
|
case PPC::STBX:
|
|
case PPC::STBX8:
|
|
case PPC::STHX:
|
|
case PPC::STHX8:
|
|
case PPC::STWX:
|
|
case PPC::STWX8:
|
|
case PPC::STDX:
|
|
case PPC::STFSX:
|
|
case PPC::STFDX:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 1;
|
|
III.ZeroIsSpecialNew = 2;
|
|
III.IsCommutative = true;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpNo = 1;
|
|
III.OpNoForForwarding = 2;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
|
|
case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
|
|
case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
|
|
case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
|
|
case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
|
|
case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
|
|
case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
|
|
case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
|
|
case PPC::LWAX:
|
|
III.ImmOpcode = PPC::LWA;
|
|
III.ImmMustBeMultipleOf = 4;
|
|
break;
|
|
case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
|
|
case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
|
|
case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
|
|
case PPC::STBX: III.ImmOpcode = PPC::STB; break;
|
|
case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
|
|
case PPC::STHX: III.ImmOpcode = PPC::STH; break;
|
|
case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
|
|
case PPC::STWX: III.ImmOpcode = PPC::STW; break;
|
|
case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
|
|
case PPC::STDX:
|
|
III.ImmOpcode = PPC::STD;
|
|
III.ImmMustBeMultipleOf = 4;
|
|
break;
|
|
case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
|
|
case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
|
|
}
|
|
break;
|
|
case PPC::LBZUX:
|
|
case PPC::LBZUX8:
|
|
case PPC::LHZUX:
|
|
case PPC::LHZUX8:
|
|
case PPC::LHAUX:
|
|
case PPC::LHAUX8:
|
|
case PPC::LWZUX:
|
|
case PPC::LWZUX8:
|
|
case PPC::LDUX:
|
|
case PPC::LFSUX:
|
|
case PPC::LFDUX:
|
|
case PPC::STBUX:
|
|
case PPC::STBUX8:
|
|
case PPC::STHUX:
|
|
case PPC::STHUX8:
|
|
case PPC::STWUX:
|
|
case PPC::STWUX8:
|
|
case PPC::STDUX:
|
|
case PPC::STFSUX:
|
|
case PPC::STFDUX:
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 2;
|
|
III.ZeroIsSpecialNew = 3;
|
|
III.IsCommutative = false;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpNo = 2;
|
|
III.OpNoForForwarding = 3;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
|
|
case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
|
|
case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
|
|
case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
|
|
case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
|
|
case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
|
|
case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
|
|
case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
|
|
case PPC::LDUX:
|
|
III.ImmOpcode = PPC::LDU;
|
|
III.ImmMustBeMultipleOf = 4;
|
|
break;
|
|
case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
|
|
case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
|
|
case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
|
|
case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
|
|
case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
|
|
case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
|
|
case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
|
|
case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
|
|
case PPC::STDUX:
|
|
III.ImmOpcode = PPC::STDU;
|
|
III.ImmMustBeMultipleOf = 4;
|
|
break;
|
|
case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
|
|
case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
|
|
}
|
|
break;
|
|
// Power9 and up only. For some of these, the X-Form version has access to all
|
|
// 64 VSR's whereas the D-Form only has access to the VR's. We replace those
|
|
// with pseudo-ops pre-ra and for post-ra, we check that the register loaded
|
|
// into or stored from is one of the VR registers.
|
|
case PPC::LXVX:
|
|
case PPC::LXSSPX:
|
|
case PPC::LXSDX:
|
|
case PPC::STXVX:
|
|
case PPC::STXSSPX:
|
|
case PPC::STXSDX:
|
|
case PPC::XFLOADf32:
|
|
case PPC::XFLOADf64:
|
|
case PPC::XFSTOREf32:
|
|
case PPC::XFSTOREf64:
|
|
if (!Subtarget.hasP9Vector())
|
|
return false;
|
|
III.SignedImm = true;
|
|
III.ZeroIsSpecialOrig = 1;
|
|
III.ZeroIsSpecialNew = 2;
|
|
III.IsCommutative = true;
|
|
III.IsSummingOperands = true;
|
|
III.ImmOpNo = 1;
|
|
III.OpNoForForwarding = 2;
|
|
III.ImmMustBeMultipleOf = 4;
|
|
switch(Opc) {
|
|
default: llvm_unreachable("Unknown opcode");
|
|
case PPC::LXVX:
|
|
III.ImmOpcode = PPC::LXV;
|
|
III.ImmMustBeMultipleOf = 16;
|
|
break;
|
|
case PPC::LXSSPX:
|
|
if (PostRA) {
|
|
if (IsVFReg)
|
|
III.ImmOpcode = PPC::LXSSP;
|
|
else {
|
|
III.ImmOpcode = PPC::LFS;
|
|
III.ImmMustBeMultipleOf = 1;
|
|
}
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case PPC::XFLOADf32:
|
|
III.ImmOpcode = PPC::DFLOADf32;
|
|
break;
|
|
case PPC::LXSDX:
|
|
if (PostRA) {
|
|
if (IsVFReg)
|
|
III.ImmOpcode = PPC::LXSD;
|
|
else {
|
|
III.ImmOpcode = PPC::LFD;
|
|
III.ImmMustBeMultipleOf = 1;
|
|
}
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case PPC::XFLOADf64:
|
|
III.ImmOpcode = PPC::DFLOADf64;
|
|
break;
|
|
case PPC::STXVX:
|
|
III.ImmOpcode = PPC::STXV;
|
|
III.ImmMustBeMultipleOf = 16;
|
|
break;
|
|
case PPC::STXSSPX:
|
|
if (PostRA) {
|
|
if (IsVFReg)
|
|
III.ImmOpcode = PPC::STXSSP;
|
|
else {
|
|
III.ImmOpcode = PPC::STFS;
|
|
III.ImmMustBeMultipleOf = 1;
|
|
}
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case PPC::XFSTOREf32:
|
|
III.ImmOpcode = PPC::DFSTOREf32;
|
|
break;
|
|
case PPC::STXSDX:
|
|
if (PostRA) {
|
|
if (IsVFReg)
|
|
III.ImmOpcode = PPC::STXSD;
|
|
else {
|
|
III.ImmOpcode = PPC::STFD;
|
|
III.ImmMustBeMultipleOf = 1;
|
|
}
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case PPC::XFSTOREf64:
|
|
III.ImmOpcode = PPC::DFSTOREf64;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Utility function for swaping two arbitrary operands of an instruction.
|
|
static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
|
|
assert(Op1 != Op2 && "Cannot swap operand with itself.");
|
|
|
|
unsigned MaxOp = std::max(Op1, Op2);
|
|
unsigned MinOp = std::min(Op1, Op2);
|
|
MachineOperand MOp1 = MI.getOperand(MinOp);
|
|
MachineOperand MOp2 = MI.getOperand(MaxOp);
|
|
MI.removeOperand(std::max(Op1, Op2));
|
|
MI.removeOperand(std::min(Op1, Op2));
|
|
|
|
// If the operands we are swapping are the two at the end (the common case)
|
|
// we can just remove both and add them in the opposite order.
|
|
if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
|
|
MI.addOperand(MOp2);
|
|
MI.addOperand(MOp1);
|
|
} else {
|
|
// Store all operands in a temporary vector, remove them and re-add in the
|
|
// right order.
|
|
SmallVector<MachineOperand, 2> MOps;
|
|
unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
|
|
for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
|
|
MOps.push_back(MI.getOperand(i));
|
|
MI.removeOperand(i);
|
|
}
|
|
// MOp2 needs to be added next.
|
|
MI.addOperand(MOp2);
|
|
// Now add the rest.
|
|
for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
|
|
if (i == MaxOp)
|
|
MI.addOperand(MOp1);
|
|
else {
|
|
MI.addOperand(MOps.back());
|
|
MOps.pop_back();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if the 'MI' that has the index OpNoForForwarding
|
|
// meets the requirement described in the ImmInstrInfo.
|
|
bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
|
|
const ImmInstrInfo &III,
|
|
unsigned OpNoForForwarding
|
|
) const {
|
|
// As the algorithm of checking for PPC::ZERO/PPC::ZERO8
|
|
// would not work pre-RA, we can only do the check post RA.
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
if (MRI.isSSA())
|
|
return false;
|
|
|
|
// Cannot do the transform if MI isn't summing the operands.
|
|
if (!III.IsSummingOperands)
|
|
return false;
|
|
|
|
// The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
|
|
if (!III.ZeroIsSpecialOrig)
|
|
return false;
|
|
|
|
// We cannot do the transform if the operand we are trying to replace
|
|
// isn't the same as the operand the instruction allows.
|
|
if (OpNoForForwarding != III.OpNoForForwarding)
|
|
return false;
|
|
|
|
// Check if the instruction we are trying to transform really has
|
|
// the special zero register as its operand.
|
|
if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
|
|
MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
|
|
return false;
|
|
|
|
// This machine instruction is convertible if it is,
|
|
// 1. summing the operands.
|
|
// 2. one of the operands is special zero register.
|
|
// 3. the operand we are trying to replace is allowed by the MI.
|
|
return true;
|
|
}
|
|
|
|
// Check if the DefMI is the add inst and set the ImmMO and RegMO
|
|
// accordingly.
|
|
bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
|
|
const ImmInstrInfo &III,
|
|
MachineOperand *&ImmMO,
|
|
MachineOperand *&RegMO) const {
|
|
unsigned Opc = DefMI.getOpcode();
|
|
if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
|
|
return false;
|
|
|
|
assert(DefMI.getNumOperands() >= 3 &&
|
|
"Add inst must have at least three operands");
|
|
RegMO = &DefMI.getOperand(1);
|
|
ImmMO = &DefMI.getOperand(2);
|
|
|
|
// Before RA, ADDI first operand could be a frame index.
|
|
if (!RegMO->isReg())
|
|
return false;
|
|
|
|
// This DefMI is elgible for forwarding if it is:
|
|
// 1. add inst
|
|
// 2. one of the operands is Imm/CPI/Global.
|
|
return isAnImmediateOperand(*ImmMO);
|
|
}
|
|
|
|
bool PPCInstrInfo::isRegElgibleForForwarding(
|
|
const MachineOperand &RegMO, const MachineInstr &DefMI,
|
|
const MachineInstr &MI, bool KillDefMI,
|
|
bool &IsFwdFeederRegKilled) const {
|
|
// x = addi y, imm
|
|
// ...
|
|
// z = lfdx 0, x -> z = lfd imm(y)
|
|
// The Reg "y" can be forwarded to the MI(z) only when there is no DEF
|
|
// of "y" between the DEF of "x" and "z".
|
|
// The query is only valid post RA.
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
if (MRI.isSSA())
|
|
return false;
|
|
|
|
Register Reg = RegMO.getReg();
|
|
|
|
// Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
|
|
MachineBasicBlock::const_reverse_iterator It = MI;
|
|
MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
|
|
It++;
|
|
for (; It != E; ++It) {
|
|
if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
|
|
return false;
|
|
else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
|
|
IsFwdFeederRegKilled = true;
|
|
// Made it to DefMI without encountering a clobber.
|
|
if ((&*It) == &DefMI)
|
|
break;
|
|
}
|
|
assert((&*It) == &DefMI && "DefMI is missing");
|
|
|
|
// If DefMI also defines the register to be forwarded, we can only forward it
|
|
// if DefMI is being erased.
|
|
if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
|
|
return KillDefMI;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
|
|
const MachineInstr &DefMI,
|
|
const ImmInstrInfo &III,
|
|
int64_t &Imm,
|
|
int64_t BaseImm) const {
|
|
assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
|
|
if (DefMI.getOpcode() == PPC::ADDItocL) {
|
|
// The operand for ADDItocL is CPI, which isn't imm at compiling time,
|
|
// However, we know that, it is 16-bit width, and has the alignment of 4.
|
|
// Check if the instruction met the requirement.
|
|
if (III.ImmMustBeMultipleOf > 4 ||
|
|
III.TruncateImmTo || III.ImmWidth != 16)
|
|
return false;
|
|
|
|
// Going from XForm to DForm loads means that the displacement needs to be
|
|
// not just an immediate but also a multiple of 4, or 16 depending on the
|
|
// load. A DForm load cannot be represented if it is a multiple of say 2.
|
|
// XForm loads do not have this restriction.
|
|
if (ImmMO.isGlobal()) {
|
|
const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
|
|
if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (ImmMO.isImm()) {
|
|
// It is Imm, we need to check if the Imm fit the range.
|
|
// Sign-extend to 64-bits.
|
|
// DefMI may be folded with another imm form instruction, the result Imm is
|
|
// the sum of Imm of DefMI and BaseImm which is from imm form instruction.
|
|
APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
|
|
if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
|
|
return false;
|
|
if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
|
|
return false;
|
|
Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
|
|
|
|
if (Imm % III.ImmMustBeMultipleOf)
|
|
return false;
|
|
if (III.TruncateImmTo)
|
|
Imm &= ((1 << III.TruncateImmTo) - 1);
|
|
}
|
|
else
|
|
return false;
|
|
|
|
// This ImmMO is forwarded if it meets the requriement describle
|
|
// in ImmInstrInfo
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
|
|
unsigned OpNoForForwarding,
|
|
MachineInstr **KilledDef) const {
|
|
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
|
|
!DefMI.getOperand(1).isImm())
|
|
return false;
|
|
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
bool PostRA = !MRI->isSSA();
|
|
|
|
int64_t Immediate = DefMI.getOperand(1).getImm();
|
|
// Sign-extend to 64-bits.
|
|
int64_t SExtImm = SignExtend64<16>(Immediate);
|
|
|
|
bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
|
|
Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
|
|
|
|
bool ReplaceWithLI = false;
|
|
bool Is64BitLI = false;
|
|
int64_t NewImm = 0;
|
|
bool SetCR = false;
|
|
unsigned Opc = MI.getOpcode();
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
|
|
// FIXME: Any branches conditional on such a comparison can be made
|
|
// unconditional. At this time, this happens too infrequently to be worth
|
|
// the implementation effort, but if that ever changes, we could convert
|
|
// such a pattern here.
|
|
case PPC::CMPWI:
|
|
case PPC::CMPLWI:
|
|
case PPC::CMPDI:
|
|
case PPC::CMPLDI: {
|
|
// Doing this post-RA would require dataflow analysis to reliably find uses
|
|
// of the CR register set by the compare.
|
|
// No need to fixup killed/dead flag since this transformation is only valid
|
|
// before RA.
|
|
if (PostRA)
|
|
return false;
|
|
// If a compare-immediate is fed by an immediate and is itself an input of
|
|
// an ISEL (the most common case) into a COPY of the correct register.
|
|
bool Changed = false;
|
|
Register DefReg = MI.getOperand(0).getReg();
|
|
int64_t Comparand = MI.getOperand(2).getImm();
|
|
int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
|
|
? (Comparand | 0xFFFFFFFFFFFF0000)
|
|
: Comparand;
|
|
|
|
for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
|
|
unsigned UseOpc = CompareUseMI.getOpcode();
|
|
if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
|
|
continue;
|
|
unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
|
|
Register TrueReg = CompareUseMI.getOperand(1).getReg();
|
|
Register FalseReg = CompareUseMI.getOperand(2).getReg();
|
|
unsigned RegToCopy =
|
|
selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
|
|
if (RegToCopy == PPC::NoRegister)
|
|
continue;
|
|
// Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
|
|
if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
|
|
CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
|
|
replaceInstrOperandWithImm(CompareUseMI, 1, 0);
|
|
CompareUseMI.removeOperand(3);
|
|
CompareUseMI.removeOperand(2);
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
|
|
LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
|
|
LLVM_DEBUG(dbgs() << "Is converted to:\n");
|
|
// Convert to copy and remove unneeded operands.
|
|
CompareUseMI.setDesc(get(PPC::COPY));
|
|
CompareUseMI.removeOperand(3);
|
|
CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1);
|
|
CmpIselsConverted++;
|
|
Changed = true;
|
|
LLVM_DEBUG(CompareUseMI.dump());
|
|
}
|
|
if (Changed)
|
|
return true;
|
|
// This may end up incremented multiple times since this function is called
|
|
// during a fixed-point transformation, but it is only meant to indicate the
|
|
// presence of this opportunity.
|
|
MissedConvertibleImmediateInstrs++;
|
|
return false;
|
|
}
|
|
|
|
// Immediate forms - may simply be convertable to an LI.
|
|
case PPC::ADDI:
|
|
case PPC::ADDI8: {
|
|
// Does the sum fit in a 16-bit signed field?
|
|
int64_t Addend = MI.getOperand(2).getImm();
|
|
if (isInt<16>(Addend + SExtImm)) {
|
|
ReplaceWithLI = true;
|
|
Is64BitLI = Opc == PPC::ADDI8;
|
|
NewImm = Addend + SExtImm;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
case PPC::SUBFIC:
|
|
case PPC::SUBFIC8: {
|
|
// Only transform this if the CARRY implicit operand is dead.
|
|
if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
|
|
return false;
|
|
int64_t Minuend = MI.getOperand(2).getImm();
|
|
if (isInt<16>(Minuend - SExtImm)) {
|
|
ReplaceWithLI = true;
|
|
Is64BitLI = Opc == PPC::SUBFIC8;
|
|
NewImm = Minuend - SExtImm;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
case PPC::RLDICL:
|
|
case PPC::RLDICL_rec:
|
|
case PPC::RLDICL_32:
|
|
case PPC::RLDICL_32_64: {
|
|
// Use APInt's rotate function.
|
|
int64_t SH = MI.getOperand(2).getImm();
|
|
int64_t MB = MI.getOperand(3).getImm();
|
|
APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
|
|
SExtImm, true);
|
|
InVal = InVal.rotl(SH);
|
|
uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
|
|
InVal &= Mask;
|
|
// Can't replace negative values with an LI as that will sign-extend
|
|
// and not clear the left bits. If we're setting the CR bit, we will use
|
|
// ANDI_rec which won't sign extend, so that's safe.
|
|
if (isUInt<15>(InVal.getSExtValue()) ||
|
|
(Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
|
|
ReplaceWithLI = true;
|
|
Is64BitLI = Opc != PPC::RLDICL_32;
|
|
NewImm = InVal.getSExtValue();
|
|
SetCR = Opc == PPC::RLDICL_rec;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
case PPC::RLWINM:
|
|
case PPC::RLWINM8:
|
|
case PPC::RLWINM_rec:
|
|
case PPC::RLWINM8_rec: {
|
|
int64_t SH = MI.getOperand(2).getImm();
|
|
int64_t MB = MI.getOperand(3).getImm();
|
|
int64_t ME = MI.getOperand(4).getImm();
|
|
APInt InVal(32, SExtImm, true);
|
|
InVal = InVal.rotl(SH);
|
|
APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
|
|
InVal &= Mask;
|
|
// Can't replace negative values with an LI as that will sign-extend
|
|
// and not clear the left bits. If we're setting the CR bit, we will use
|
|
// ANDI_rec which won't sign extend, so that's safe.
|
|
bool ValueFits = isUInt<15>(InVal.getSExtValue());
|
|
ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
|
|
isUInt<16>(InVal.getSExtValue()));
|
|
if (ValueFits) {
|
|
ReplaceWithLI = true;
|
|
Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
|
|
NewImm = InVal.getSExtValue();
|
|
SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
case PPC::ORI:
|
|
case PPC::ORI8:
|
|
case PPC::XORI:
|
|
case PPC::XORI8: {
|
|
int64_t LogicalImm = MI.getOperand(2).getImm();
|
|
int64_t Result = 0;
|
|
if (Opc == PPC::ORI || Opc == PPC::ORI8)
|
|
Result = LogicalImm | SExtImm;
|
|
else
|
|
Result = LogicalImm ^ SExtImm;
|
|
if (isInt<16>(Result)) {
|
|
ReplaceWithLI = true;
|
|
Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
|
|
NewImm = Result;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ReplaceWithLI) {
|
|
// We need to be careful with CR-setting instructions we're replacing.
|
|
if (SetCR) {
|
|
// We don't know anything about uses when we're out of SSA, so only
|
|
// replace if the new immediate will be reproduced.
|
|
bool ImmChanged = (SExtImm & NewImm) != NewImm;
|
|
if (PostRA && ImmChanged)
|
|
return false;
|
|
|
|
if (!PostRA) {
|
|
// If the defining load-immediate has no other uses, we can just replace
|
|
// the immediate with the new immediate.
|
|
if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
|
|
DefMI.getOperand(1).setImm(NewImm);
|
|
|
|
// If we're not using the GPR result of the CR-setting instruction, we
|
|
// just need to and with zero/non-zero depending on the new immediate.
|
|
else if (MRI->use_empty(MI.getOperand(0).getReg())) {
|
|
if (NewImm) {
|
|
assert(Immediate && "Transformation converted zero to non-zero?");
|
|
NewImm = Immediate;
|
|
}
|
|
} else if (ImmChanged)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "Fed by:\n");
|
|
LLVM_DEBUG(DefMI.dump());
|
|
LoadImmediateInfo LII;
|
|
LII.Imm = NewImm;
|
|
LII.Is64Bit = Is64BitLI;
|
|
LII.SetCR = SetCR;
|
|
// If we're setting the CR, the original load-immediate must be kept (as an
|
|
// operand to ANDI_rec/ANDI8_rec).
|
|
if (KilledDef && SetCR)
|
|
*KilledDef = nullptr;
|
|
replaceInstrWithLI(MI, LII);
|
|
|
|
// Fixup killed/dead flag after transformation.
|
|
// Pattern:
|
|
// ForwardingOperandReg = LI imm1
|
|
// y = op2 imm2, ForwardingOperandReg(killed)
|
|
if (IsForwardingOperandKilled)
|
|
fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
|
|
|
|
LLVM_DEBUG(dbgs() << "With:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::transformToNewImmFormFedByAdd(
|
|
MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
|
|
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
|
|
bool PostRA = !MRI->isSSA();
|
|
// FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
|
|
// for post-ra.
|
|
if (PostRA)
|
|
return false;
|
|
|
|
// Only handle load/store.
|
|
if (!MI.mayLoadOrStore())
|
|
return false;
|
|
|
|
unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
|
|
|
|
assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
|
|
"MI must have x-form opcode");
|
|
|
|
// get Imm Form info.
|
|
ImmInstrInfo III;
|
|
bool IsVFReg = MI.getOperand(0).isReg()
|
|
? isVFRegister(MI.getOperand(0).getReg())
|
|
: false;
|
|
|
|
if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
|
|
return false;
|
|
|
|
if (!III.IsSummingOperands)
|
|
return false;
|
|
|
|
if (OpNoForForwarding != III.OpNoForForwarding)
|
|
return false;
|
|
|
|
MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
|
|
if (!ImmOperandMI.isImm())
|
|
return false;
|
|
|
|
// Check DefMI.
|
|
MachineOperand *ImmMO = nullptr;
|
|
MachineOperand *RegMO = nullptr;
|
|
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
|
|
return false;
|
|
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
|
|
|
|
// Check Imm.
|
|
// Set ImmBase from imm instruction as base and get new Imm inside
|
|
// isImmElgibleForForwarding.
|
|
int64_t ImmBase = ImmOperandMI.getImm();
|
|
int64_t Imm = 0;
|
|
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
|
|
return false;
|
|
|
|
// Get killed info in case fixup needed after transformation.
|
|
unsigned ForwardKilledOperandReg = ~0U;
|
|
if (MI.getOperand(III.OpNoForForwarding).isKill())
|
|
ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
|
|
|
|
// Do the transform
|
|
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "Fed by:\n");
|
|
LLVM_DEBUG(DefMI.dump());
|
|
|
|
MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
|
|
if (RegMO->isKill()) {
|
|
MI.getOperand(III.OpNoForForwarding).setIsKill(true);
|
|
// Clear the killed flag in RegMO. Doing this here can handle some cases
|
|
// that DefMI and MI are not in same basic block.
|
|
RegMO->setIsKill(false);
|
|
}
|
|
MI.getOperand(III.ImmOpNo).setImm(Imm);
|
|
|
|
// FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
|
|
if (DefMI.getParent() == MI.getParent()) {
|
|
// Check if reg is killed between MI and DefMI.
|
|
auto IsKilledFor = [&](unsigned Reg) {
|
|
MachineBasicBlock::const_reverse_iterator It = MI;
|
|
MachineBasicBlock::const_reverse_iterator E = DefMI;
|
|
It++;
|
|
for (; It != E; ++It) {
|
|
if (It->killsRegister(Reg))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// Update kill flag
|
|
if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
|
|
fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
|
|
if (ForwardKilledOperandReg != ~0U)
|
|
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "With:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
return true;
|
|
}
|
|
|
|
// If an X-Form instruction is fed by an add-immediate and one of its operands
|
|
// is the literal zero, attempt to forward the source of the add-immediate to
|
|
// the corresponding D-Form instruction with the displacement coming from
|
|
// the immediate being added.
|
|
bool PPCInstrInfo::transformToImmFormFedByAdd(
|
|
MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
|
|
MachineInstr &DefMI, bool KillDefMI) const {
|
|
// RegMO ImmMO
|
|
// | |
|
|
// x = addi reg, imm <----- DefMI
|
|
// y = op 0 , x <----- MI
|
|
// |
|
|
// OpNoForForwarding
|
|
// Check if the MI meet the requirement described in the III.
|
|
if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
|
|
return false;
|
|
|
|
// Check if the DefMI meet the requirement
|
|
// described in the III. If yes, set the ImmMO and RegMO accordingly.
|
|
MachineOperand *ImmMO = nullptr;
|
|
MachineOperand *RegMO = nullptr;
|
|
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
|
|
return false;
|
|
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
|
|
|
|
// As we get the Imm operand now, we need to check if the ImmMO meet
|
|
// the requirement described in the III. If yes set the Imm.
|
|
int64_t Imm = 0;
|
|
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
|
|
return false;
|
|
|
|
bool IsFwdFeederRegKilled = false;
|
|
// Check if the RegMO can be forwarded to MI.
|
|
if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
|
|
IsFwdFeederRegKilled))
|
|
return false;
|
|
|
|
// Get killed info in case fixup needed after transformation.
|
|
unsigned ForwardKilledOperandReg = ~0U;
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
bool PostRA = !MRI.isSSA();
|
|
if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
|
|
ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
|
|
|
|
// We know that, the MI and DefMI both meet the pattern, and
|
|
// the Imm also meet the requirement with the new Imm-form.
|
|
// It is safe to do the transformation now.
|
|
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
LLVM_DEBUG(dbgs() << "Fed by:\n");
|
|
LLVM_DEBUG(DefMI.dump());
|
|
|
|
// Update the base reg first.
|
|
MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
|
|
false, false,
|
|
RegMO->isKill());
|
|
|
|
// Then, update the imm.
|
|
if (ImmMO->isImm()) {
|
|
// If the ImmMO is Imm, change the operand that has ZERO to that Imm
|
|
// directly.
|
|
replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
|
|
}
|
|
else {
|
|
// Otherwise, it is Constant Pool Index(CPI) or Global,
|
|
// which is relocation in fact. We need to replace the special zero
|
|
// register with ImmMO.
|
|
// Before that, we need to fixup the target flags for imm.
|
|
// For some reason, we miss to set the flag for the ImmMO if it is CPI.
|
|
if (DefMI.getOpcode() == PPC::ADDItocL)
|
|
ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
|
|
|
|
// MI didn't have the interface such as MI.setOperand(i) though
|
|
// it has MI.getOperand(i). To repalce the ZERO MachineOperand with
|
|
// ImmMO, we need to remove ZERO operand and all the operands behind it,
|
|
// and, add the ImmMO, then, move back all the operands behind ZERO.
|
|
SmallVector<MachineOperand, 2> MOps;
|
|
for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
|
|
MOps.push_back(MI.getOperand(i));
|
|
MI.removeOperand(i);
|
|
}
|
|
|
|
// Remove the last MO in the list, which is ZERO operand in fact.
|
|
MOps.pop_back();
|
|
// Add the imm operand.
|
|
MI.addOperand(*ImmMO);
|
|
// Now add the rest back.
|
|
for (auto &MO : MOps)
|
|
MI.addOperand(MO);
|
|
}
|
|
|
|
// Update the opcode.
|
|
MI.setDesc(get(III.ImmOpcode));
|
|
|
|
// Fix up killed/dead flag after transformation.
|
|
// Pattern 1:
|
|
// x = ADD KilledFwdFeederReg, imm
|
|
// n = opn KilledFwdFeederReg(killed), regn
|
|
// y = XOP 0, x
|
|
// Pattern 2:
|
|
// x = ADD reg(killed), imm
|
|
// y = XOP 0, x
|
|
if (IsFwdFeederRegKilled || RegMO->isKill())
|
|
fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
|
|
// Pattern 3:
|
|
// ForwardKilledOperandReg = ADD reg, imm
|
|
// y = XOP 0, ForwardKilledOperandReg(killed)
|
|
if (ForwardKilledOperandReg != ~0U)
|
|
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
|
|
|
|
LLVM_DEBUG(dbgs() << "With:\n");
|
|
LLVM_DEBUG(MI.dump());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
|
|
const ImmInstrInfo &III,
|
|
unsigned ConstantOpNo,
|
|
MachineInstr &DefMI) const {
|
|
// DefMI must be LI or LI8.
|
|
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
|
|
!DefMI.getOperand(1).isImm())
|
|
return false;
|
|
|
|
// Get Imm operand and Sign-extend to 64-bits.
|
|
int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
|
|
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
bool PostRA = !MRI.isSSA();
|
|
// Exit early if we can't convert this.
|
|
if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
|
|
return false;
|
|
if (Imm % III.ImmMustBeMultipleOf)
|
|
return false;
|
|
if (III.TruncateImmTo)
|
|
Imm &= ((1 << III.TruncateImmTo) - 1);
|
|
if (III.SignedImm) {
|
|
APInt ActualValue(64, Imm, true);
|
|
if (!ActualValue.isSignedIntN(III.ImmWidth))
|
|
return false;
|
|
} else {
|
|
uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
|
|
if ((uint64_t)Imm > UnsignedMax)
|
|
return false;
|
|
}
|
|
|
|
// If we're post-RA, the instructions don't agree on whether register zero is
|
|
// special, we can transform this as long as the register operand that will
|
|
// end up in the location where zero is special isn't R0.
|
|
if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
|
|
unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
|
|
III.ZeroIsSpecialNew + 1;
|
|
Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
|
|
Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
|
|
// If R0 is in the operand where zero is special for the new instruction,
|
|
// it is unsafe to transform if the constant operand isn't that operand.
|
|
if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
|
|
ConstantOpNo != III.ZeroIsSpecialNew)
|
|
return false;
|
|
if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
|
|
ConstantOpNo != PosForOrigZero)
|
|
return false;
|
|
}
|
|
|
|
// Get killed info in case fixup needed after transformation.
|
|
unsigned ForwardKilledOperandReg = ~0U;
|
|
if (PostRA && MI.getOperand(ConstantOpNo).isKill())
|
|
ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
|
|
Opc == PPC::SRW || Opc == PPC::SRW_rec ||
|
|
Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
|
|
Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
|
|
bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
|
|
Opc == PPC::SRD || Opc == PPC::SRD_rec;
|
|
bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
|
|
Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
|
|
bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
|
|
Opc == PPC::SRD_rec;
|
|
|
|
MI.setDesc(get(III.ImmOpcode));
|
|
if (ConstantOpNo == III.OpNoForForwarding) {
|
|
// Converting shifts to immediate form is a bit tricky since they may do
|
|
// one of three things:
|
|
// 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
|
|
// 2. If the shift amount is zero, the result is unchanged (save for maybe
|
|
// setting CR0)
|
|
// 3. If the shift amount is in [1, OpSize), it's just a shift
|
|
if (SpecialShift32 || SpecialShift64) {
|
|
LoadImmediateInfo LII;
|
|
LII.Imm = 0;
|
|
LII.SetCR = SetCR;
|
|
LII.Is64Bit = SpecialShift64;
|
|
uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
|
|
if (Imm & (SpecialShift32 ? 0x20 : 0x40))
|
|
replaceInstrWithLI(MI, LII);
|
|
// Shifts by zero don't change the value. If we don't need to set CR0,
|
|
// just convert this to a COPY. Can't do this post-RA since we've already
|
|
// cleaned up the copies.
|
|
else if (!SetCR && ShAmt == 0 && !PostRA) {
|
|
MI.removeOperand(2);
|
|
MI.setDesc(get(PPC::COPY));
|
|
} else {
|
|
// The 32 bit and 64 bit instructions are quite different.
|
|
if (SpecialShift32) {
|
|
// Left shifts use (N, 0, 31-N).
|
|
// Right shifts use (32-N, N, 31) if 0 < N < 32.
|
|
// use (0, 0, 31) if N == 0.
|
|
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
|
|
uint64_t MB = RightShift ? ShAmt : 0;
|
|
uint64_t ME = RightShift ? 31 : 31 - ShAmt;
|
|
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
|
|
.addImm(ME);
|
|
} else {
|
|
// Left shifts use (N, 63-N).
|
|
// Right shifts use (64-N, N) if 0 < N < 64.
|
|
// use (0, 0) if N == 0.
|
|
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
|
|
uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
|
|
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
|
|
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
|
|
}
|
|
}
|
|
} else
|
|
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
|
|
}
|
|
// Convert commutative instructions (switch the operands and convert the
|
|
// desired one to an immediate.
|
|
else if (III.IsCommutative) {
|
|
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
|
|
swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
|
|
} else
|
|
llvm_unreachable("Should have exited early!");
|
|
|
|
// For instructions for which the constant register replaces a different
|
|
// operand than where the immediate goes, we need to swap them.
|
|
if (III.OpNoForForwarding != III.ImmOpNo)
|
|
swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
|
|
|
|
// If the special R0/X0 register index are different for original instruction
|
|
// and new instruction, we need to fix up the register class in new
|
|
// instruction.
|
|
if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
|
|
if (III.ZeroIsSpecialNew) {
|
|
// If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
|
|
// need to fix up register class.
|
|
Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
|
|
if (Register::isVirtualRegister(RegToModify)) {
|
|
const TargetRegisterClass *NewRC =
|
|
MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
|
|
&PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
|
|
MRI.setRegClass(RegToModify, NewRC);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fix up killed/dead flag after transformation.
|
|
// Pattern:
|
|
// ForwardKilledOperandReg = LI imm
|
|
// y = XOP reg, ForwardKilledOperandReg(killed)
|
|
if (ForwardKilledOperandReg != ~0U)
|
|
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
|
|
return true;
|
|
}
|
|
|
|
const TargetRegisterClass *
|
|
PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
|
|
if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
|
|
return &PPC::VSRCRegClass;
|
|
return RC;
|
|
}
|
|
|
|
int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
|
|
return PPC::getRecordFormOpcode(Opcode);
|
|
}
|
|
|
|
// This function returns true if the machine instruction
|
|
// always outputs a value by sign-extending a 32 bit value,
|
|
// i.e. 0 to 31-th bits are same as 32-th bit.
|
|
static bool isSignExtendingOp(const MachineInstr &MI) {
|
|
int Opcode = MI.getOpcode();
|
|
if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
|
|
Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
|
|
Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
|
|
Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
|
|
Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
|
|
Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
|
|
Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
|
|
Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
|
|
Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
|
|
Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
|
|
Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
|
|
Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
|
|
Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
|
|
Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
|
|
Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
|
|
Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
|
|
Opcode == PPC::EXTSB8_32_64)
|
|
return true;
|
|
|
|
if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
|
|
return true;
|
|
|
|
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
|
|
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
|
|
MI.getOperand(3).getImm() > 0 &&
|
|
MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// This function returns true if the machine instruction
|
|
// always outputs zeros in higher 32 bits.
|
|
static bool isZeroExtendingOp(const MachineInstr &MI) {
|
|
int Opcode = MI.getOpcode();
|
|
// The 16-bit immediate is sign-extended in li/lis.
|
|
// If the most significant bit is zero, all higher bits are zero.
|
|
if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
|
|
Opcode == PPC::LIS || Opcode == PPC::LIS8) {
|
|
int64_t Imm = MI.getOperand(1).getImm();
|
|
if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
|
|
return true;
|
|
}
|
|
|
|
// We have some variations of rotate-and-mask instructions
|
|
// that clear higher 32-bits.
|
|
if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
|
|
Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
|
|
Opcode == PPC::RLDICL_32_64) &&
|
|
MI.getOperand(3).getImm() >= 32)
|
|
return true;
|
|
|
|
if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
|
|
MI.getOperand(3).getImm() >= 32 &&
|
|
MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
|
|
return true;
|
|
|
|
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
|
|
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
|
|
Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
|
|
MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
|
|
return true;
|
|
|
|
// There are other instructions that clear higher 32-bits.
|
|
if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
|
|
Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
|
|
Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
|
|
Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
|
|
Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
|
|
Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
|
|
Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
|
|
Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
|
|
Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
|
|
Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
|
|
Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
|
|
Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
|
|
Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
|
|
Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
|
|
Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
|
|
Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
|
|
Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
|
|
Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
|
|
Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
|
|
Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
|
|
Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
|
|
Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
|
|
Opcode == PPC::MFVSRWZ)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// This function returns true if the input MachineInstr is a TOC save
|
|
// instruction.
|
|
bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
|
|
if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
|
|
return false;
|
|
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
|
|
unsigned StackOffset = MI.getOperand(1).getImm();
|
|
Register StackReg = MI.getOperand(2).getReg();
|
|
Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
|
|
if (StackReg == SPReg && StackOffset == TOCSaveOffset)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// We limit the max depth to track incoming values of PHIs or binary ops
|
|
// (e.g. AND) to avoid excessive cost.
|
|
const unsigned MAX_DEPTH = 1;
|
|
|
|
bool
|
|
PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
|
|
const unsigned Depth) const {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
|
|
// If we know this instruction returns sign- or zero-extended result,
|
|
// return true.
|
|
if (SignExt ? isSignExtendingOp(MI):
|
|
isZeroExtendingOp(MI))
|
|
return true;
|
|
|
|
switch (MI.getOpcode()) {
|
|
case PPC::COPY: {
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
|
|
// In both ELFv1 and v2 ABI, method parameters and the return value
|
|
// are sign- or zero-extended.
|
|
if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
|
|
const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
|
|
// We check the ZExt/SExt flags for a method parameter.
|
|
if (MI.getParent()->getBasicBlock() ==
|
|
&MF->getFunction().getEntryBlock()) {
|
|
Register VReg = MI.getOperand(0).getReg();
|
|
if (MF->getRegInfo().isLiveIn(VReg))
|
|
return SignExt ? FuncInfo->isLiveInSExt(VReg) :
|
|
FuncInfo->isLiveInZExt(VReg);
|
|
}
|
|
|
|
// For a method return value, we check the ZExt/SExt flags in attribute.
|
|
// We assume the following code sequence for method call.
|
|
// ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
|
|
// BL8_NOP @func,...
|
|
// ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
|
|
// %5 = COPY %x3; G8RC:%5
|
|
if (SrcReg == PPC::X3) {
|
|
const MachineBasicBlock *MBB = MI.getParent();
|
|
MachineBasicBlock::const_instr_iterator II =
|
|
MachineBasicBlock::const_instr_iterator(&MI);
|
|
if (II != MBB->instr_begin() &&
|
|
(--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
|
|
const MachineInstr &CallMI = *(--II);
|
|
if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
|
|
const Function *CalleeFn =
|
|
dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
|
|
if (!CalleeFn)
|
|
return false;
|
|
const IntegerType *IntTy =
|
|
dyn_cast<IntegerType>(CalleeFn->getReturnType());
|
|
const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
|
|
if (IntTy && IntTy->getBitWidth() <= 32)
|
|
return Attrs.hasAttribute(SignExt ? Attribute::SExt :
|
|
Attribute::ZExt);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a copy from another register, we recursively check source.
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return false;
|
|
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (SrcMI != nullptr)
|
|
return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
|
|
|
|
return false;
|
|
}
|
|
|
|
case PPC::ANDI_rec:
|
|
case PPC::ANDIS_rec:
|
|
case PPC::ORI:
|
|
case PPC::ORIS:
|
|
case PPC::XORI:
|
|
case PPC::XORIS:
|
|
case PPC::ANDI8_rec:
|
|
case PPC::ANDIS8_rec:
|
|
case PPC::ORI8:
|
|
case PPC::ORIS8:
|
|
case PPC::XORI8:
|
|
case PPC::XORIS8: {
|
|
// logical operation with 16-bit immediate does not change the upper bits.
|
|
// So, we track the operand register as we do for register copy.
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return false;
|
|
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (SrcMI != nullptr)
|
|
return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
|
|
|
|
return false;
|
|
}
|
|
|
|
// If all incoming values are sign-/zero-extended,
|
|
// the output of OR, ISEL or PHI is also sign-/zero-extended.
|
|
case PPC::OR:
|
|
case PPC::OR8:
|
|
case PPC::ISEL:
|
|
case PPC::PHI: {
|
|
if (Depth >= MAX_DEPTH)
|
|
return false;
|
|
|
|
// The input registers for PHI are operand 1, 3, ...
|
|
// The input registers for others are operand 1 and 2.
|
|
unsigned E = 3, D = 1;
|
|
if (MI.getOpcode() == PPC::PHI) {
|
|
E = MI.getNumOperands();
|
|
D = 2;
|
|
}
|
|
|
|
for (unsigned I = 1; I != E; I += D) {
|
|
if (MI.getOperand(I).isReg()) {
|
|
Register SrcReg = MI.getOperand(I).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
return false;
|
|
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
|
|
if (SrcMI == nullptr ||
|
|
!isSignOrZeroExtended(*SrcMI, SignExt, Depth + 1))
|
|
return false;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If at least one of the incoming values of an AND is zero extended
|
|
// then the output is also zero-extended. If both of the incoming values
|
|
// are sign-extended then the output is also sign extended.
|
|
case PPC::AND:
|
|
case PPC::AND8: {
|
|
if (Depth >= MAX_DEPTH)
|
|
return false;
|
|
|
|
assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
|
|
|
|
Register SrcReg1 = MI.getOperand(1).getReg();
|
|
Register SrcReg2 = MI.getOperand(2).getReg();
|
|
|
|
if (!Register::isVirtualRegister(SrcReg1) ||
|
|
!Register::isVirtualRegister(SrcReg2))
|
|
return false;
|
|
|
|
const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
|
|
const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
|
|
if (!MISrc1 || !MISrc2)
|
|
return false;
|
|
|
|
if(SignExt)
|
|
return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
|
|
isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
|
|
else
|
|
return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
|
|
isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
|
|
return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
|
|
}
|
|
|
|
namespace {
|
|
class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
|
|
MachineInstr *Loop, *EndLoop, *LoopCount;
|
|
MachineFunction *MF;
|
|
const TargetInstrInfo *TII;
|
|
int64_t TripCount;
|
|
|
|
public:
|
|
PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
|
|
MachineInstr *LoopCount)
|
|
: Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
|
|
MF(Loop->getParent()->getParent()),
|
|
TII(MF->getSubtarget().getInstrInfo()) {
|
|
// Inspect the Loop instruction up-front, as it may be deleted when we call
|
|
// createTripCountGreaterCondition.
|
|
if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
|
|
TripCount = LoopCount->getOperand(1).getImm();
|
|
else
|
|
TripCount = -1;
|
|
}
|
|
|
|
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
|
|
// Only ignore the terminator.
|
|
return MI == EndLoop;
|
|
}
|
|
|
|
Optional<bool>
|
|
createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineOperand> &Cond) override {
|
|
if (TripCount == -1) {
|
|
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
|
|
// so we don't need to generate any thing here.
|
|
Cond.push_back(MachineOperand::CreateImm(0));
|
|
Cond.push_back(MachineOperand::CreateReg(
|
|
MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
|
|
true));
|
|
return {};
|
|
}
|
|
|
|
return TripCount > TC;
|
|
}
|
|
|
|
void setPreheader(MachineBasicBlock *NewPreheader) override {
|
|
// Do nothing. We want the LOOP setup instruction to stay in the *old*
|
|
// preheader, so we can use BDZ in the prologs to adapt the loop trip count.
|
|
}
|
|
|
|
void adjustTripCount(int TripCountAdjust) override {
|
|
// If the loop trip count is a compile-time value, then just change the
|
|
// value.
|
|
if (LoopCount->getOpcode() == PPC::LI8 ||
|
|
LoopCount->getOpcode() == PPC::LI) {
|
|
int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
|
|
LoopCount->getOperand(1).setImm(TripCount);
|
|
return;
|
|
}
|
|
|
|
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
|
|
// so we don't need to generate any thing here.
|
|
}
|
|
|
|
void disposed() override {
|
|
Loop->eraseFromParent();
|
|
// Ensure the loop setup instruction is deleted too.
|
|
LoopCount->eraseFromParent();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
|
|
PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
|
|
// We really "analyze" only hardware loops right now.
|
|
MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
|
|
MachineBasicBlock *Preheader = *LoopBB->pred_begin();
|
|
if (Preheader == LoopBB)
|
|
Preheader = *std::next(LoopBB->pred_begin());
|
|
MachineFunction *MF = Preheader->getParent();
|
|
|
|
if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
|
|
SmallPtrSet<MachineBasicBlock *, 8> Visited;
|
|
if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
|
|
Register LoopCountReg = LoopInst->getOperand(0).getReg();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
|
|
return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
MachineInstr *PPCInstrInfo::findLoopInstr(
|
|
MachineBasicBlock &PreHeader,
|
|
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
|
|
|
|
unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
|
|
|
|
// The loop set-up instruction should be in preheader
|
|
for (auto &I : PreHeader.instrs())
|
|
if (I.getOpcode() == LOOPi)
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
// Return true if get the base operand, byte offset of an instruction and the
|
|
// memory width. Width is the size of memory that is being loaded/stored.
|
|
bool PPCInstrInfo::getMemOperandWithOffsetWidth(
|
|
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
|
|
unsigned &Width, const TargetRegisterInfo *TRI) const {
|
|
if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
|
|
return false;
|
|
|
|
// Handle only loads/stores with base register followed by immediate offset.
|
|
if (!LdSt.getOperand(1).isImm() ||
|
|
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
|
|
return false;
|
|
if (!LdSt.getOperand(1).isImm() ||
|
|
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
|
|
return false;
|
|
|
|
if (!LdSt.hasOneMemOperand())
|
|
return false;
|
|
|
|
Width = (*LdSt.memoperands_begin())->getSize();
|
|
Offset = LdSt.getOperand(1).getImm();
|
|
BaseReg = &LdSt.getOperand(2);
|
|
return true;
|
|
}
|
|
|
|
bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
|
|
const MachineInstr &MIa, const MachineInstr &MIb) const {
|
|
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
|
|
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
|
|
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Retrieve the base register, offset from the base register and width. Width
|
|
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
|
|
// base registers are identical, and the offset of a lower memory access +
|
|
// the width doesn't overlap the offset of a higher memory access,
|
|
// then the memory accesses are different.
|
|
const TargetRegisterInfo *TRI = &getRegisterInfo();
|
|
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
|
|
int64_t OffsetA = 0, OffsetB = 0;
|
|
unsigned int WidthA = 0, WidthB = 0;
|
|
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
|
|
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
|
|
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
|
|
int LowOffset = std::min(OffsetA, OffsetB);
|
|
int HighOffset = std::max(OffsetA, OffsetB);
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
if (LowOffset + LowWidth <= HighOffset)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|