forked from OSchip/llvm-project
2695 lines
103 KiB
C++
2695 lines
103 KiB
C++
//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the PPC implementation of TargetFrameLowering class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PPCFrameLowering.h"
|
|
#include "MCTargetDesc/PPCPredicates.h"
|
|
#include "PPCInstrBuilder.h"
|
|
#include "PPCInstrInfo.h"
|
|
#include "PPCMachineFunctionInfo.h"
|
|
#include "PPCSubtarget.h"
|
|
#include "PPCTargetMachine.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "framelowering"
|
|
STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
|
|
STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
|
|
STATISTIC(NumPrologProbed, "Number of prologues probed");
|
|
|
|
static cl::opt<bool>
|
|
EnablePEVectorSpills("ppc-enable-pe-vector-spills",
|
|
cl::desc("Enable spills in prologue to vector registers."),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
|
|
if (STI.isAIXABI())
|
|
return STI.isPPC64() ? 16 : 8;
|
|
// SVR4 ABI:
|
|
return STI.isPPC64() ? 16 : 4;
|
|
}
|
|
|
|
static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
|
|
if (STI.isAIXABI())
|
|
return STI.isPPC64() ? 40 : 20;
|
|
return STI.isELFv2ABI() ? 24 : 40;
|
|
}
|
|
|
|
static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
|
|
// First slot in the general register save area.
|
|
return STI.isPPC64() ? -8U : -4U;
|
|
}
|
|
|
|
static unsigned computeLinkageSize(const PPCSubtarget &STI) {
|
|
if (STI.isAIXABI() || STI.isPPC64())
|
|
return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
|
|
|
|
// 32-bit SVR4 ABI:
|
|
return 8;
|
|
}
|
|
|
|
static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
|
|
// Third slot in the general purpose register save area.
|
|
if (STI.is32BitELFABI() && STI.getTargetMachine().isPositionIndependent())
|
|
return -12U;
|
|
|
|
// Second slot in the general purpose register save area.
|
|
return STI.isPPC64() ? -16U : -8U;
|
|
}
|
|
|
|
static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
|
|
return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
|
|
}
|
|
|
|
PPCFrameLowering::PPCFrameLowering(const PPCSubtarget &STI)
|
|
: TargetFrameLowering(TargetFrameLowering::StackGrowsDown,
|
|
STI.getPlatformStackAlignment(), 0),
|
|
Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
|
|
TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
|
|
FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
|
|
LinkageSize(computeLinkageSize(Subtarget)),
|
|
BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
|
|
CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
|
|
|
|
// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
|
|
const PPCFrameLowering::SpillSlot *PPCFrameLowering::getCalleeSavedSpillSlots(
|
|
unsigned &NumEntries) const {
|
|
|
|
// Floating-point register save area offsets.
|
|
#define CALLEE_SAVED_FPRS \
|
|
{PPC::F31, -8}, \
|
|
{PPC::F30, -16}, \
|
|
{PPC::F29, -24}, \
|
|
{PPC::F28, -32}, \
|
|
{PPC::F27, -40}, \
|
|
{PPC::F26, -48}, \
|
|
{PPC::F25, -56}, \
|
|
{PPC::F24, -64}, \
|
|
{PPC::F23, -72}, \
|
|
{PPC::F22, -80}, \
|
|
{PPC::F21, -88}, \
|
|
{PPC::F20, -96}, \
|
|
{PPC::F19, -104}, \
|
|
{PPC::F18, -112}, \
|
|
{PPC::F17, -120}, \
|
|
{PPC::F16, -128}, \
|
|
{PPC::F15, -136}, \
|
|
{PPC::F14, -144}
|
|
|
|
// 32-bit general purpose register save area offsets shared by ELF and
|
|
// AIX. AIX has an extra CSR with r13.
|
|
#define CALLEE_SAVED_GPRS32 \
|
|
{PPC::R31, -4}, \
|
|
{PPC::R30, -8}, \
|
|
{PPC::R29, -12}, \
|
|
{PPC::R28, -16}, \
|
|
{PPC::R27, -20}, \
|
|
{PPC::R26, -24}, \
|
|
{PPC::R25, -28}, \
|
|
{PPC::R24, -32}, \
|
|
{PPC::R23, -36}, \
|
|
{PPC::R22, -40}, \
|
|
{PPC::R21, -44}, \
|
|
{PPC::R20, -48}, \
|
|
{PPC::R19, -52}, \
|
|
{PPC::R18, -56}, \
|
|
{PPC::R17, -60}, \
|
|
{PPC::R16, -64}, \
|
|
{PPC::R15, -68}, \
|
|
{PPC::R14, -72}
|
|
|
|
// 64-bit general purpose register save area offsets.
|
|
#define CALLEE_SAVED_GPRS64 \
|
|
{PPC::X31, -8}, \
|
|
{PPC::X30, -16}, \
|
|
{PPC::X29, -24}, \
|
|
{PPC::X28, -32}, \
|
|
{PPC::X27, -40}, \
|
|
{PPC::X26, -48}, \
|
|
{PPC::X25, -56}, \
|
|
{PPC::X24, -64}, \
|
|
{PPC::X23, -72}, \
|
|
{PPC::X22, -80}, \
|
|
{PPC::X21, -88}, \
|
|
{PPC::X20, -96}, \
|
|
{PPC::X19, -104}, \
|
|
{PPC::X18, -112}, \
|
|
{PPC::X17, -120}, \
|
|
{PPC::X16, -128}, \
|
|
{PPC::X15, -136}, \
|
|
{PPC::X14, -144}
|
|
|
|
// Vector register save area offsets.
|
|
#define CALLEE_SAVED_VRS \
|
|
{PPC::V31, -16}, \
|
|
{PPC::V30, -32}, \
|
|
{PPC::V29, -48}, \
|
|
{PPC::V28, -64}, \
|
|
{PPC::V27, -80}, \
|
|
{PPC::V26, -96}, \
|
|
{PPC::V25, -112}, \
|
|
{PPC::V24, -128}, \
|
|
{PPC::V23, -144}, \
|
|
{PPC::V22, -160}, \
|
|
{PPC::V21, -176}, \
|
|
{PPC::V20, -192}
|
|
|
|
// Note that the offsets here overlap, but this is fixed up in
|
|
// processFunctionBeforeFrameFinalized.
|
|
|
|
static const SpillSlot ELFOffsets32[] = {
|
|
CALLEE_SAVED_FPRS,
|
|
CALLEE_SAVED_GPRS32,
|
|
|
|
// CR save area offset. We map each of the nonvolatile CR fields
|
|
// to the slot for CR2, which is the first of the nonvolatile CR
|
|
// fields to be assigned, so that we only allocate one save slot.
|
|
// See PPCRegisterInfo::hasReservedSpillSlot() for more information.
|
|
{PPC::CR2, -4},
|
|
|
|
// VRSAVE save area offset.
|
|
{PPC::VRSAVE, -4},
|
|
|
|
CALLEE_SAVED_VRS,
|
|
|
|
// SPE register save area (overlaps Vector save area).
|
|
{PPC::S31, -8},
|
|
{PPC::S30, -16},
|
|
{PPC::S29, -24},
|
|
{PPC::S28, -32},
|
|
{PPC::S27, -40},
|
|
{PPC::S26, -48},
|
|
{PPC::S25, -56},
|
|
{PPC::S24, -64},
|
|
{PPC::S23, -72},
|
|
{PPC::S22, -80},
|
|
{PPC::S21, -88},
|
|
{PPC::S20, -96},
|
|
{PPC::S19, -104},
|
|
{PPC::S18, -112},
|
|
{PPC::S17, -120},
|
|
{PPC::S16, -128},
|
|
{PPC::S15, -136},
|
|
{PPC::S14, -144}};
|
|
|
|
static const SpillSlot ELFOffsets64[] = {
|
|
CALLEE_SAVED_FPRS,
|
|
CALLEE_SAVED_GPRS64,
|
|
|
|
// VRSAVE save area offset.
|
|
{PPC::VRSAVE, -4},
|
|
CALLEE_SAVED_VRS
|
|
};
|
|
|
|
static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
|
|
CALLEE_SAVED_GPRS32,
|
|
// Add AIX's extra CSR.
|
|
{PPC::R13, -76},
|
|
CALLEE_SAVED_VRS};
|
|
|
|
static const SpillSlot AIXOffsets64[] = {
|
|
CALLEE_SAVED_FPRS, CALLEE_SAVED_GPRS64, CALLEE_SAVED_VRS};
|
|
|
|
if (Subtarget.is64BitELFABI()) {
|
|
NumEntries = array_lengthof(ELFOffsets64);
|
|
return ELFOffsets64;
|
|
}
|
|
|
|
if (Subtarget.is32BitELFABI()) {
|
|
NumEntries = array_lengthof(ELFOffsets32);
|
|
return ELFOffsets32;
|
|
}
|
|
|
|
assert(Subtarget.isAIXABI() && "Unexpected ABI.");
|
|
|
|
if (Subtarget.isPPC64()) {
|
|
NumEntries = array_lengthof(AIXOffsets64);
|
|
return AIXOffsets64;
|
|
}
|
|
|
|
NumEntries = array_lengthof(AIXOffsets32);
|
|
return AIXOffsets32;
|
|
}
|
|
|
|
static bool spillsCR(const MachineFunction &MF) {
|
|
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
return FuncInfo->isCRSpilled();
|
|
}
|
|
|
|
static bool hasSpills(const MachineFunction &MF) {
|
|
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
return FuncInfo->hasSpills();
|
|
}
|
|
|
|
static bool hasNonRISpills(const MachineFunction &MF) {
|
|
const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
|
|
return FuncInfo->hasNonRISpills();
|
|
}
|
|
|
|
/// MustSaveLR - Return true if this function requires that we save the LR
|
|
/// register onto the stack in the prolog and restore it in the epilog of the
|
|
/// function.
|
|
static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
|
|
const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
// We need a save/restore of LR if there is any def of LR (which is
|
|
// defined by calls, including the PIC setup sequence), or if there is
|
|
// some use of the LR stack slot (e.g. for builtin_return_address).
|
|
// (LR comes in 32 and 64 bit versions.)
|
|
MachineRegisterInfo::def_iterator RI = MF.getRegInfo().def_begin(LR);
|
|
return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
|
|
}
|
|
|
|
/// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
|
|
/// call frame size. Update the MachineFunction object with the stack size.
|
|
uint64_t
|
|
PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction &MF,
|
|
bool UseEstimate) const {
|
|
unsigned NewMaxCallFrameSize = 0;
|
|
uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
|
|
&NewMaxCallFrameSize);
|
|
MF.getFrameInfo().setStackSize(FrameSize);
|
|
MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
|
|
return FrameSize;
|
|
}
|
|
|
|
/// determineFrameLayout - Determine the size of the frame and maximum call
|
|
/// frame size.
|
|
uint64_t
|
|
PPCFrameLowering::determineFrameLayout(const MachineFunction &MF,
|
|
bool UseEstimate,
|
|
unsigned *NewMaxCallFrameSize) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo
|
|
uint64_t FrameSize =
|
|
UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
|
|
|
|
// Get stack alignments. The frame must be aligned to the greatest of these:
|
|
Align TargetAlign = getStackAlign(); // alignment required per the ABI
|
|
Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame
|
|
Align Alignment = std::max(TargetAlign, MaxAlign);
|
|
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
unsigned LR = RegInfo->getRARegister();
|
|
bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
|
|
bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
|
|
!MFI.adjustsStack() && // No calls.
|
|
!MustSaveLR(MF, LR) && // No need to save LR.
|
|
!FI->mustSaveTOC() && // No need to save TOC.
|
|
!RegInfo->hasBasePointer(MF); // No special alignment.
|
|
|
|
// Note: for PPC32 SVR4ABI, we can still generate stackless
|
|
// code if all local vars are reg-allocated.
|
|
bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
|
|
|
|
// Check whether we can skip adjusting the stack pointer (by using red zone)
|
|
if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
|
|
// No need for frame
|
|
return 0;
|
|
}
|
|
|
|
// Get the maximum call frame size of all the calls.
|
|
unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
|
|
|
|
// Maximum call frame needs to be at least big enough for linkage area.
|
|
unsigned minCallFrameSize = getLinkageSize();
|
|
maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
|
|
|
|
// If we have dynamic alloca then maxCallFrameSize needs to be aligned so
|
|
// that allocations will be aligned.
|
|
if (MFI.hasVarSizedObjects())
|
|
maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
|
|
|
|
// Update the new max call frame size if the caller passes in a valid pointer.
|
|
if (NewMaxCallFrameSize)
|
|
*NewMaxCallFrameSize = maxCallFrameSize;
|
|
|
|
// Include call frame size in total.
|
|
FrameSize += maxCallFrameSize;
|
|
|
|
// Make sure the frame is aligned.
|
|
FrameSize = alignTo(FrameSize, Alignment);
|
|
|
|
return FrameSize;
|
|
}
|
|
|
|
// hasFP - Return true if the specified function actually has a dedicated frame
|
|
// pointer register.
|
|
bool PPCFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
// FIXME: This is pretty much broken by design: hasFP() might be called really
|
|
// early, before the stack layout was calculated and thus hasFP() might return
|
|
// true or false here depending on the time of call.
|
|
return (MFI.getStackSize()) && needsFP(MF);
|
|
}
|
|
|
|
// needsFP - Return true if the specified function should have a dedicated frame
|
|
// pointer register. This is true if the function has variable sized allocas or
|
|
// if frame pointer elimination is disabled.
|
|
bool PPCFrameLowering::needsFP(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// Naked functions have no stack frame pushed, so we don't have a frame
|
|
// pointer.
|
|
if (MF.getFunction().hasFnAttribute(Attribute::Naked))
|
|
return false;
|
|
|
|
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
|
|
MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
|
|
MF.exposesReturnsTwice() ||
|
|
(MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
MF.getInfo<PPCFunctionInfo>()->hasFastCall());
|
|
}
|
|
|
|
void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
|
|
bool is31 = needsFP(MF);
|
|
unsigned FPReg = is31 ? PPC::R31 : PPC::R1;
|
|
unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
|
|
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
bool HasBP = RegInfo->hasBasePointer(MF);
|
|
unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
|
|
unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
|
|
|
|
for (MachineBasicBlock &MBB : MF)
|
|
for (MachineBasicBlock::iterator MBBI = MBB.end(); MBBI != MBB.begin();) {
|
|
--MBBI;
|
|
for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
|
|
MachineOperand &MO = MBBI->getOperand(I);
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
switch (MO.getReg()) {
|
|
case PPC::FP:
|
|
MO.setReg(FPReg);
|
|
break;
|
|
case PPC::FP8:
|
|
MO.setReg(FP8Reg);
|
|
break;
|
|
case PPC::BP:
|
|
MO.setReg(BPReg);
|
|
break;
|
|
case PPC::BP8:
|
|
MO.setReg(BP8Reg);
|
|
break;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function will do the following:
|
|
- If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
|
|
respectively (defaults recommended by the ABI) and return true
|
|
- If MBB is not an entry block, initialize the register scavenger and look
|
|
for available registers.
|
|
- If the defaults (R0/R12) are available, return true
|
|
- If TwoUniqueRegsRequired is set to true, it looks for two unique
|
|
registers. Otherwise, look for a single available register.
|
|
- If the required registers are found, set SR1 and SR2 and return true.
|
|
- If the required registers are not found, set SR2 or both SR1 and SR2 to
|
|
PPC::NoRegister and return false.
|
|
|
|
Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
|
|
is not set, this function will attempt to find two different registers, but
|
|
still return true if only one register is available (and set SR1 == SR2).
|
|
*/
|
|
bool
|
|
PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
|
|
bool UseAtEnd,
|
|
bool TwoUniqueRegsRequired,
|
|
Register *SR1,
|
|
Register *SR2) const {
|
|
RegScavenger RS;
|
|
Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
|
|
Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
|
|
|
|
// Set the defaults for the two scratch registers.
|
|
if (SR1)
|
|
*SR1 = R0;
|
|
|
|
if (SR2) {
|
|
assert (SR1 && "Asking for the second scratch register but not the first?");
|
|
*SR2 = R12;
|
|
}
|
|
|
|
// If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
|
|
if ((UseAtEnd && MBB->isReturnBlock()) ||
|
|
(!UseAtEnd && (&MBB->getParent()->front() == MBB)))
|
|
return true;
|
|
|
|
RS.enterBasicBlock(*MBB);
|
|
|
|
if (UseAtEnd && !MBB->empty()) {
|
|
// The scratch register will be used at the end of the block, so must
|
|
// consider all registers used within the block
|
|
|
|
MachineBasicBlock::iterator MBBI = MBB->getFirstTerminator();
|
|
// If no terminator, back iterator up to previous instruction.
|
|
if (MBBI == MBB->end())
|
|
MBBI = std::prev(MBBI);
|
|
|
|
if (MBBI != MBB->begin())
|
|
RS.forward(MBBI);
|
|
}
|
|
|
|
// If the two registers are available, we're all good.
|
|
// Note that we only return here if both R0 and R12 are available because
|
|
// although the function may not require two unique registers, it may benefit
|
|
// from having two so we should try to provide them.
|
|
if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
|
|
return true;
|
|
|
|
// Get the list of callee-saved registers for the target.
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
|
|
|
|
// Get all the available registers in the block.
|
|
BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
|
|
&PPC::GPRCRegClass);
|
|
|
|
// We shouldn't use callee-saved registers as scratch registers as they may be
|
|
// available when looking for a candidate block for shrink wrapping but not
|
|
// available when the actual prologue/epilogue is being emitted because they
|
|
// were added as live-in to the prologue block by PrologueEpilogueInserter.
|
|
for (int i = 0; CSRegs[i]; ++i)
|
|
BV.reset(CSRegs[i]);
|
|
|
|
// Set the first scratch register to the first available one.
|
|
if (SR1) {
|
|
int FirstScratchReg = BV.find_first();
|
|
*SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
|
|
}
|
|
|
|
// If there is another one available, set the second scratch register to that.
|
|
// Otherwise, set it to either PPC::NoRegister if this function requires two
|
|
// or to whatever SR1 is set to if this function doesn't require two.
|
|
if (SR2) {
|
|
int SecondScratchReg = BV.find_next(*SR1);
|
|
if (SecondScratchReg != -1)
|
|
*SR2 = SecondScratchReg;
|
|
else
|
|
*SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
|
|
}
|
|
|
|
// Now that we've done our best to provide both registers, double check
|
|
// whether we were unable to provide enough.
|
|
if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// We need a scratch register for spilling LR and for spilling CR. By default,
|
|
// we use two scratch registers to hide latency. However, if only one scratch
|
|
// register is available, we can adjust for that by not overlapping the spill
|
|
// code. However, if we need to realign the stack (i.e. have a base pointer)
|
|
// and the stack frame is large, we need two scratch registers.
|
|
// Also, stack probe requires two scratch registers, one for old sp, one for
|
|
// large frame and large probe size.
|
|
bool
|
|
PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = *(MBB->getParent());
|
|
bool HasBP = RegInfo->hasBasePointer(MF);
|
|
unsigned FrameSize = determineFrameLayout(MF);
|
|
int NegFrameSize = -FrameSize;
|
|
bool IsLargeFrame = !isInt<16>(NegFrameSize);
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
Align MaxAlign = MFI.getMaxAlign();
|
|
bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
|
|
const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
|
|
|
|
return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
|
|
TLI.hasInlineStackProbe(MF);
|
|
}
|
|
|
|
bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
|
|
|
|
return findScratchRegister(TmpMBB, false,
|
|
twoUniqueScratchRegsRequired(TmpMBB));
|
|
}
|
|
|
|
bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
|
|
|
|
return findScratchRegister(TmpMBB, true);
|
|
}
|
|
|
|
bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
|
|
// Abort if there is no register info or function info.
|
|
if (!RegInfo || !FI)
|
|
return false;
|
|
|
|
// Only move the stack update on ELFv2 ABI and PPC64.
|
|
if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
|
|
return false;
|
|
|
|
// Check the frame size first and return false if it does not fit the
|
|
// requirements.
|
|
// We need a non-zero frame size as well as a frame that will fit in the red
|
|
// zone. This is because by moving the stack pointer update we are now storing
|
|
// to the red zone until the stack pointer is updated. If we get an interrupt
|
|
// inside the prologue but before the stack update we now have a number of
|
|
// stores to the red zone and those stores must all fit.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
unsigned FrameSize = MFI.getStackSize();
|
|
if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
|
|
return false;
|
|
|
|
// Frame pointers and base pointers complicate matters so don't do anything
|
|
// if we have them. For example having a frame pointer will sometimes require
|
|
// a copy of r1 into r31 and that makes keeping track of updates to r1 more
|
|
// difficult. Similar situation exists with setjmp.
|
|
if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
|
|
return false;
|
|
|
|
// Calls to fast_cc functions use different rules for passing parameters on
|
|
// the stack from the ABI and using PIC base in the function imposes
|
|
// similar restrictions to using the base pointer. It is not generally safe
|
|
// to move the stack pointer update in these situations.
|
|
if (FI->hasFastCall() || FI->usesPICBase())
|
|
return false;
|
|
|
|
// Finally we can move the stack update if we do not require register
|
|
// scavenging. Register scavenging can introduce more spills and so
|
|
// may make the frame size larger than we have computed.
|
|
return !RegInfo->requiresFrameIndexScavenging(MF);
|
|
}
|
|
|
|
void PPCFrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.begin();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
|
|
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
|
|
DebugLoc dl;
|
|
// AIX assembler does not support cfi directives.
|
|
const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
|
|
|
|
// Get processor type.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
// Get the ABI.
|
|
bool isSVR4ABI = Subtarget.isSVR4ABI();
|
|
bool isELFv2ABI = Subtarget.isELFv2ABI();
|
|
assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
|
|
|
|
// Work out frame sizes.
|
|
uint64_t FrameSize = determineFrameLayoutAndUpdate(MF);
|
|
int64_t NegFrameSize = -FrameSize;
|
|
if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)))
|
|
llvm_unreachable("Unhandled stack size!");
|
|
|
|
if (MFI.isFrameAddressTaken())
|
|
replaceFPWithRealFP(MF);
|
|
|
|
// Check if the link register (LR) must be saved.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
bool MustSaveLR = FI->mustSaveLR();
|
|
bool MustSaveTOC = FI->mustSaveTOC();
|
|
const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
|
|
bool MustSaveCR = !MustSaveCRs.empty();
|
|
// Do we have a frame pointer and/or base pointer for this function?
|
|
bool HasFP = hasFP(MF);
|
|
bool HasBP = RegInfo->hasBasePointer(MF);
|
|
bool HasRedZone = isPPC64 || !isSVR4ABI;
|
|
bool HasROPProtect = Subtarget.hasROPProtect();
|
|
bool HasPrivileged = Subtarget.hasPrivileged();
|
|
|
|
Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
|
|
Register BPReg = RegInfo->getBaseRegister(MF);
|
|
Register FPReg = isPPC64 ? PPC::X31 : PPC::R31;
|
|
Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR;
|
|
Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2;
|
|
Register ScratchReg;
|
|
Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
|
|
// ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
|
|
const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
|
|
: PPC::MFLR );
|
|
const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
|
|
: PPC::STW );
|
|
const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
|
|
: PPC::STWU );
|
|
const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
|
|
: PPC::STWUX);
|
|
const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
|
|
: PPC::OR );
|
|
const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
|
|
: PPC::SUBFC);
|
|
const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
|
|
: PPC::SUBFIC);
|
|
const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
|
|
: PPC::MFCR);
|
|
const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
|
|
const MCInstrDesc &HashST =
|
|
TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
|
|
: (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
|
|
|
|
// Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
|
|
// LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
|
|
// Red Zone, an asynchronous event (a form of "callee") could claim a frame &
|
|
// overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
|
|
assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
|
|
"FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
|
|
|
|
// Using the same bool variable as below to suppress compiler warnings.
|
|
bool SingleScratchReg = findScratchRegister(
|
|
&MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
|
|
assert(SingleScratchReg &&
|
|
"Required number of registers not available in this block");
|
|
|
|
SingleScratchReg = ScratchReg == TempReg;
|
|
|
|
int64_t LROffset = getReturnSaveOffset();
|
|
|
|
int64_t FPOffset = 0;
|
|
if (HasFP) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int FPIndex = FI->getFramePointerSaveIndex();
|
|
assert(FPIndex && "No Frame Pointer Save Slot!");
|
|
FPOffset = MFI.getObjectOffset(FPIndex);
|
|
}
|
|
|
|
int64_t BPOffset = 0;
|
|
if (HasBP) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int BPIndex = FI->getBasePointerSaveIndex();
|
|
assert(BPIndex && "No Base Pointer Save Slot!");
|
|
BPOffset = MFI.getObjectOffset(BPIndex);
|
|
}
|
|
|
|
int64_t PBPOffset = 0;
|
|
if (FI->usesPICBase()) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
int PBPIndex = FI->getPICBasePointerSaveIndex();
|
|
assert(PBPIndex && "No PIC Base Pointer Save Slot!");
|
|
PBPOffset = MFI.getObjectOffset(PBPIndex);
|
|
}
|
|
|
|
// Get stack alignments.
|
|
Align MaxAlign = MFI.getMaxAlign();
|
|
if (HasBP && MaxAlign > 1)
|
|
assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
|
|
|
|
// Frames of 32KB & larger require special handling because they cannot be
|
|
// indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
|
|
bool isLargeFrame = !isInt<16>(NegFrameSize);
|
|
|
|
// Check if we can move the stack update instruction (stdu) down the prologue
|
|
// past the callee saves. Hopefully this will avoid the situation where the
|
|
// saves are waiting for the update on the store with update to complete.
|
|
MachineBasicBlock::iterator StackUpdateLoc = MBBI;
|
|
bool MovingStackUpdateDown = false;
|
|
|
|
// Check if we can move the stack update.
|
|
if (stackUpdateCanBeMoved(MF)) {
|
|
const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
|
|
for (CalleeSavedInfo CSI : Info) {
|
|
// If the callee saved register is spilled to a register instead of the
|
|
// stack then the spill no longer uses the stack pointer.
|
|
// This can lead to two consequences:
|
|
// 1) We no longer need to update the stack because the function does not
|
|
// spill any callee saved registers to stack.
|
|
// 2) We have a situation where we still have to update the stack pointer
|
|
// even though some registers are spilled to other registers. In
|
|
// this case the current code moves the stack update to an incorrect
|
|
// position.
|
|
// In either case we should abort moving the stack update operation.
|
|
if (CSI.isSpilledToReg()) {
|
|
StackUpdateLoc = MBBI;
|
|
MovingStackUpdateDown = false;
|
|
break;
|
|
}
|
|
|
|
int FrIdx = CSI.getFrameIdx();
|
|
// If the frame index is not negative the callee saved info belongs to a
|
|
// stack object that is not a fixed stack object. We ignore non-fixed
|
|
// stack objects because we won't move the stack update pointer past them.
|
|
if (FrIdx >= 0)
|
|
continue;
|
|
|
|
if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
|
|
StackUpdateLoc++;
|
|
MovingStackUpdateDown = true;
|
|
} else {
|
|
// We need all of the Frame Indices to meet these conditions.
|
|
// If they do not, abort the whole operation.
|
|
StackUpdateLoc = MBBI;
|
|
MovingStackUpdateDown = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the operation was not aborted then update the object offset.
|
|
if (MovingStackUpdateDown) {
|
|
for (CalleeSavedInfo CSI : Info) {
|
|
int FrIdx = CSI.getFrameIdx();
|
|
if (FrIdx < 0)
|
|
MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Where in the prologue we move the CR fields depends on how many scratch
|
|
// registers we have, and if we need to save the link register or not. This
|
|
// lambda is to avoid duplicating the logic in 2 places.
|
|
auto BuildMoveFromCR = [&]() {
|
|
if (isELFv2ABI && MustSaveCRs.size() == 1) {
|
|
// In the ELFv2 ABI, we are not required to save all CR fields.
|
|
// If only one CR field is clobbered, it is more efficient to use
|
|
// mfocrf to selectively save just that field, because mfocrf has short
|
|
// latency compares to mfcr.
|
|
assert(isPPC64 && "V2 ABI is 64-bit only.");
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
|
|
MIB.addReg(MustSaveCRs[0], RegState::Kill);
|
|
} else {
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
|
|
for (unsigned CRfield : MustSaveCRs)
|
|
MIB.addReg(CRfield, RegState::ImplicitKill);
|
|
}
|
|
};
|
|
|
|
// If we need to spill the CR and the LR but we don't have two separate
|
|
// registers available, we must spill them one at a time
|
|
if (MustSaveCR && SingleScratchReg && MustSaveLR) {
|
|
BuildMoveFromCR();
|
|
BuildMI(MBB, MBBI, dl, StoreWordInst)
|
|
.addReg(TempReg, getKillRegState(true))
|
|
.addImm(CRSaveOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
if (MustSaveLR)
|
|
BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
|
|
|
|
if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
|
|
BuildMoveFromCR();
|
|
|
|
if (HasRedZone) {
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(FPReg)
|
|
.addImm(FPOffset)
|
|
.addReg(SPReg);
|
|
if (FI->usesPICBase())
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(PPC::R30)
|
|
.addImm(PBPOffset)
|
|
.addReg(SPReg);
|
|
if (HasBP)
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(BPReg)
|
|
.addImm(BPOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
// Generate the instruction to store the LR. In the case where ROP protection
|
|
// is required the register holding the LR should not be killed as it will be
|
|
// used by the hash store instruction.
|
|
if (MustSaveLR) {
|
|
BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
|
|
.addReg(ScratchReg, getKillRegState(!HasROPProtect))
|
|
.addImm(LROffset)
|
|
.addReg(SPReg);
|
|
|
|
// Add the ROP protection Hash Store instruction.
|
|
// NOTE: This is technically a violation of the ABI. The hash can be saved
|
|
// up to 512 bytes into the Protected Zone. This can be outside of the
|
|
// initial 288 byte volatile program storage region in the Protected Zone.
|
|
// However, this restriction will be removed in an upcoming revision of the
|
|
// ABI.
|
|
if (HasROPProtect) {
|
|
const int SaveIndex = FI->getROPProtectionHashSaveIndex();
|
|
const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
|
|
assert((ImmOffset <= -8 && ImmOffset >= -512) &&
|
|
"ROP hash save offset out of range.");
|
|
assert(((ImmOffset & 0x7) == 0) &&
|
|
"ROP hash save offset must be 8 byte aligned.");
|
|
BuildMI(MBB, StackUpdateLoc, dl, HashST)
|
|
.addReg(ScratchReg, getKillRegState(true))
|
|
.addImm(ImmOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
}
|
|
|
|
if (MustSaveCR &&
|
|
!(SingleScratchReg && MustSaveLR)) {
|
|
assert(HasRedZone && "A red zone is always available on PPC64");
|
|
BuildMI(MBB, MBBI, dl, StoreWordInst)
|
|
.addReg(TempReg, getKillRegState(true))
|
|
.addImm(CRSaveOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
// Skip the rest if this is a leaf function & all spills fit in the Red Zone.
|
|
if (!FrameSize)
|
|
return;
|
|
|
|
// Adjust stack pointer: r1 += NegFrameSize.
|
|
// If there is a preferred stack alignment, align R1 now
|
|
|
|
if (HasBP && HasRedZone) {
|
|
// Save a copy of r1 as the base pointer.
|
|
BuildMI(MBB, MBBI, dl, OrInst, BPReg)
|
|
.addReg(SPReg)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
// Have we generated a STUX instruction to claim stack frame? If so,
|
|
// the negated frame size will be placed in ScratchReg.
|
|
bool HasSTUX = false;
|
|
|
|
// If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
|
|
// pointer is always stored at SP, we will get a free probe due to an essential
|
|
// STU(X) instruction.
|
|
if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
|
|
// To be consistent with other targets, a pseudo instruction is emitted and
|
|
// will be later expanded in `inlineStackProbe`.
|
|
BuildMI(MBB, MBBI, dl,
|
|
TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
|
|
: PPC::PROBED_STACKALLOC_32))
|
|
.addDef(TempReg)
|
|
.addDef(ScratchReg) // ScratchReg stores the old sp.
|
|
.addImm(NegFrameSize);
|
|
// FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
|
|
// update the ScratchReg to meet the assumption that ScratchReg contains
|
|
// the NegFrameSize. This solution is rather tricky.
|
|
if (!HasRedZone) {
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addReg(SPReg);
|
|
HasSTUX = true;
|
|
}
|
|
} else {
|
|
// This condition must be kept in sync with canUseAsPrologue.
|
|
if (HasBP && MaxAlign > 1) {
|
|
if (isPPC64)
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
|
|
.addReg(SPReg)
|
|
.addImm(0)
|
|
.addImm(64 - Log2(MaxAlign));
|
|
else // PPC32...
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
|
|
.addReg(SPReg)
|
|
.addImm(0)
|
|
.addImm(32 - Log2(MaxAlign))
|
|
.addImm(31);
|
|
if (!isLargeFrame) {
|
|
BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addImm(NegFrameSize);
|
|
} else {
|
|
assert(!SingleScratchReg && "Only a single scratch reg available");
|
|
TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize);
|
|
BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addReg(TempReg, RegState::Kill);
|
|
}
|
|
|
|
BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
|
|
.addReg(SPReg, RegState::Kill)
|
|
.addReg(SPReg)
|
|
.addReg(ScratchReg);
|
|
HasSTUX = true;
|
|
|
|
} else if (!isLargeFrame) {
|
|
BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
|
|
.addReg(SPReg)
|
|
.addImm(NegFrameSize)
|
|
.addReg(SPReg);
|
|
|
|
} else {
|
|
TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize);
|
|
BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
|
|
.addReg(SPReg, RegState::Kill)
|
|
.addReg(SPReg)
|
|
.addReg(ScratchReg);
|
|
HasSTUX = true;
|
|
}
|
|
}
|
|
|
|
// Save the TOC register after the stack pointer update if a prologue TOC
|
|
// save is required for the function.
|
|
if (MustSaveTOC) {
|
|
assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
|
|
BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
|
|
.addReg(TOCReg, getKillRegState(true))
|
|
.addImm(TOCSaveOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
if (!HasRedZone) {
|
|
assert(!isPPC64 && "A red zone is always available on PPC64");
|
|
if (HasSTUX) {
|
|
// The negated frame size is in ScratchReg, and the SPReg has been
|
|
// decremented by the frame size: SPReg = old SPReg + ScratchReg.
|
|
// Since FPOffset, PBPOffset, etc. are relative to the beginning of
|
|
// the stack frame (i.e. the old SP), ideally, we would put the old
|
|
// SP into a register and use it as the base for the stores. The
|
|
// problem is that the only available register may be ScratchReg,
|
|
// which could be R0, and R0 cannot be used as a base address.
|
|
|
|
// First, set ScratchReg to the old SP. This may need to be modified
|
|
// later.
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addReg(SPReg);
|
|
|
|
if (ScratchReg == PPC::R0) {
|
|
// R0 cannot be used as a base register, but it can be used as an
|
|
// index in a store-indexed.
|
|
int LastOffset = 0;
|
|
if (HasFP) {
|
|
// R0 += (FPOffset-LastOffset).
|
|
// Need addic, since addi treats R0 as 0.
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(FPOffset-LastOffset);
|
|
LastOffset = FPOffset;
|
|
// Store FP into *R0.
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
|
|
.addReg(FPReg, RegState::Kill) // Save FP.
|
|
.addReg(PPC::ZERO)
|
|
.addReg(ScratchReg); // This will be the index (R0 is ok here).
|
|
}
|
|
if (FI->usesPICBase()) {
|
|
// R0 += (PBPOffset-LastOffset).
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(PBPOffset-LastOffset);
|
|
LastOffset = PBPOffset;
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
|
|
.addReg(PPC::R30, RegState::Kill) // Save PIC base pointer.
|
|
.addReg(PPC::ZERO)
|
|
.addReg(ScratchReg); // This will be the index (R0 is ok here).
|
|
}
|
|
if (HasBP) {
|
|
// R0 += (BPOffset-LastOffset).
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(BPOffset-LastOffset);
|
|
LastOffset = BPOffset;
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
|
|
.addReg(BPReg, RegState::Kill) // Save BP.
|
|
.addReg(PPC::ZERO)
|
|
.addReg(ScratchReg); // This will be the index (R0 is ok here).
|
|
// BP = R0-LastOffset
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addImm(-LastOffset);
|
|
}
|
|
} else {
|
|
// ScratchReg is not R0, so use it as the base register. It is
|
|
// already set to the old SP, so we can use the offsets directly.
|
|
|
|
// Now that the stack frame has been allocated, save all the necessary
|
|
// registers using ScratchReg as the base address.
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(FPReg)
|
|
.addImm(FPOffset)
|
|
.addReg(ScratchReg);
|
|
if (FI->usesPICBase())
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(PPC::R30)
|
|
.addImm(PBPOffset)
|
|
.addReg(ScratchReg);
|
|
if (HasBP) {
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(BPReg)
|
|
.addImm(BPOffset)
|
|
.addReg(ScratchReg);
|
|
BuildMI(MBB, MBBI, dl, OrInst, BPReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addReg(ScratchReg);
|
|
}
|
|
}
|
|
} else {
|
|
// The frame size is a known 16-bit constant (fitting in the immediate
|
|
// field of STWU). To be here we have to be compiling for PPC32.
|
|
// Since the SPReg has been decreased by FrameSize, add it back to each
|
|
// offset.
|
|
if (HasFP)
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(FPReg)
|
|
.addImm(FrameSize + FPOffset)
|
|
.addReg(SPReg);
|
|
if (FI->usesPICBase())
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(PPC::R30)
|
|
.addImm(FrameSize + PBPOffset)
|
|
.addReg(SPReg);
|
|
if (HasBP) {
|
|
BuildMI(MBB, MBBI, dl, StoreInst)
|
|
.addReg(BPReg)
|
|
.addImm(FrameSize + BPOffset)
|
|
.addReg(SPReg);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
|
|
.addReg(SPReg)
|
|
.addImm(FrameSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add Call Frame Information for the instructions we generated above.
|
|
if (needsCFI) {
|
|
unsigned CFIIndex;
|
|
|
|
if (HasBP) {
|
|
// Define CFA in terms of BP. Do this in preference to using FP/SP,
|
|
// because if the stack needed aligning then CFA won't be at a fixed
|
|
// offset from FP/SP.
|
|
unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
|
|
} else {
|
|
// Adjust the definition of CFA to account for the change in SP.
|
|
assert(NegFrameSize);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
|
|
}
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
|
|
if (HasFP) {
|
|
// Describe where FP was saved, at a fixed offset from CFA.
|
|
unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
|
|
if (FI->usesPICBase()) {
|
|
// Describe where FP was saved, at a fixed offset from CFA.
|
|
unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
|
|
if (HasBP) {
|
|
// Describe where BP was saved, at a fixed offset from CFA.
|
|
unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
|
|
if (MustSaveLR) {
|
|
// Describe where LR was saved, at a fixed offset from CFA.
|
|
unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
|
|
CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
}
|
|
|
|
// If there is a frame pointer, copy R1 into R31
|
|
if (HasFP) {
|
|
BuildMI(MBB, MBBI, dl, OrInst, FPReg)
|
|
.addReg(SPReg)
|
|
.addReg(SPReg);
|
|
|
|
if (!HasBP && needsCFI) {
|
|
// Change the definition of CFA from SP+offset to FP+offset, because SP
|
|
// will change at every alloca.
|
|
unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
|
|
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
}
|
|
|
|
if (needsCFI) {
|
|
// Describe where callee saved registers were saved, at fixed offsets from
|
|
// CFA.
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
for (const CalleeSavedInfo &I : CSI) {
|
|
Register Reg = I.getReg();
|
|
if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
|
|
|
|
// This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
|
|
// subregisters of CR2. We just need to emit a move of CR2.
|
|
if (PPC::CRBITRCRegClass.contains(Reg))
|
|
continue;
|
|
|
|
if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
|
|
continue;
|
|
|
|
// For SVR4, don't emit a move for the CR spill slot if we haven't
|
|
// spilled CRs.
|
|
if (isSVR4ABI && (PPC::CR2 <= Reg && Reg <= PPC::CR4)
|
|
&& !MustSaveCR)
|
|
continue;
|
|
|
|
// For 64-bit SVR4 when we have spilled CRs, the spill location
|
|
// is SP+8, not a frame-relative slot.
|
|
if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
|
|
// In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
|
|
// the whole CR word. In the ELFv2 ABI, every CR that was
|
|
// actually saved gets its own CFI record.
|
|
Register CRReg = isELFv2ABI? Reg : PPC::CR2;
|
|
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
continue;
|
|
}
|
|
|
|
if (I.isSpilledToReg()) {
|
|
unsigned SpilledReg = I.getDstReg();
|
|
unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
|
|
nullptr, MRI->getDwarfRegNum(Reg, true),
|
|
MRI->getDwarfRegNum(SpilledReg, true)));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIRegister);
|
|
} else {
|
|
int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
|
|
// We have changed the object offset above but we do not want to change
|
|
// the actual offsets in the CFI instruction so we have to undo the
|
|
// offset change here.
|
|
if (MovingStackUpdateDown)
|
|
Offset -= NegFrameSize;
|
|
|
|
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
|
|
nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
|
|
BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::inlineStackProbe(MachineFunction &MF,
|
|
MachineBasicBlock &PrologMBB) const {
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
|
|
// AIX assembler does not support cfi directives.
|
|
const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
|
|
auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
|
|
int Opc = MI.getOpcode();
|
|
return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
|
|
});
|
|
if (StackAllocMIPos == PrologMBB.end())
|
|
return;
|
|
const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
|
|
MachineBasicBlock *CurrentMBB = &PrologMBB;
|
|
DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
|
|
MachineInstr &MI = *StackAllocMIPos;
|
|
int64_t NegFrameSize = MI.getOperand(2).getImm();
|
|
unsigned ProbeSize = TLI.getStackProbeSize(MF);
|
|
int64_t NegProbeSize = -(int64_t)ProbeSize;
|
|
assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
|
|
int64_t NumBlocks = NegFrameSize / NegProbeSize;
|
|
int64_t NegResidualSize = NegFrameSize % NegProbeSize;
|
|
Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
|
|
Register ScratchReg = MI.getOperand(0).getReg();
|
|
Register FPReg = MI.getOperand(1).getReg();
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
bool HasBP = RegInfo->hasBasePointer(MF);
|
|
Register BPReg = RegInfo->getBaseRegister(MF);
|
|
Align MaxAlign = MFI.getMaxAlign();
|
|
bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
|
|
const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
|
|
// Subroutines to generate .cfi_* directives.
|
|
auto buildDefCFAReg = [&](MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, Register Reg) {
|
|
unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
|
|
unsigned CFIIndex = MF.addFrameInst(
|
|
MCCFIInstruction::createDefCfaRegister(nullptr, RegNum));
|
|
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
};
|
|
auto buildDefCFA = [&](MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, Register Reg,
|
|
int Offset) {
|
|
unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
|
|
unsigned CFIIndex = MBB.getParent()->addFrameInst(
|
|
MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
|
|
BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(CFIIndex);
|
|
};
|
|
// Subroutine to determine if we can use the Imm as part of d-form.
|
|
auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
|
|
// Subroutine to materialize the Imm into TempReg.
|
|
auto MaterializeImm = [&](MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, int64_t Imm,
|
|
Register &TempReg) {
|
|
assert(isInt<32>(Imm) && "Unhandled imm");
|
|
if (isInt<16>(Imm))
|
|
BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
|
|
.addImm(Imm);
|
|
else {
|
|
BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
|
|
.addImm(Imm >> 16);
|
|
BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
|
|
.addReg(TempReg)
|
|
.addImm(Imm & 0xFFFF);
|
|
}
|
|
};
|
|
// Subroutine to store frame pointer and decrease stack pointer by probe size.
|
|
auto allocateAndProbe = [&](MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI, int64_t NegSize,
|
|
Register NegSizeReg, bool UseDForm,
|
|
Register StoreReg) {
|
|
if (UseDForm)
|
|
BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
|
|
.addReg(StoreReg)
|
|
.addImm(NegSize)
|
|
.addReg(SPReg);
|
|
else
|
|
BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
|
|
.addReg(StoreReg)
|
|
.addReg(SPReg)
|
|
.addReg(NegSizeReg);
|
|
};
|
|
// Used to probe stack when realignment is required.
|
|
// Note that, according to ABI's requirement, *sp must always equals the
|
|
// value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
|
|
// Following is pseudo code:
|
|
// final_sp = (sp & align) + negframesize;
|
|
// neg_gap = final_sp - sp;
|
|
// while (neg_gap < negprobesize) {
|
|
// stdu fp, negprobesize(sp);
|
|
// neg_gap -= negprobesize;
|
|
// }
|
|
// stdux fp, sp, neg_gap
|
|
//
|
|
// When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
|
|
// before probe code, we don't need to save it, so we get one additional reg
|
|
// that can be used to materialize the probeside if needed to use xform.
|
|
// Otherwise, we can NOT materialize probeside, so we can only use Dform for
|
|
// now.
|
|
//
|
|
// The allocations are:
|
|
// if (HasBP && HasRedzone) {
|
|
// r0: materialize the probesize if needed so that we can use xform.
|
|
// r12: `neg_gap`
|
|
// } else {
|
|
// r0: back-chain pointer
|
|
// r12: `neg_gap`.
|
|
// }
|
|
auto probeRealignedStack = [&](MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Register ScratchReg, Register TempReg) {
|
|
assert(HasBP && "The function is supposed to have base pointer when its "
|
|
"stack is realigned.");
|
|
assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
|
|
|
|
// FIXME: We can eliminate this limitation if we get more infomation about
|
|
// which part of redzone are already used. Used redzone can be treated
|
|
// probed. But there might be `holes' in redzone probed, this could
|
|
// complicate the implementation.
|
|
assert(ProbeSize >= Subtarget.getRedZoneSize() &&
|
|
"Probe size should be larger or equal to the size of red-zone so "
|
|
"that red-zone is not clobbered by probing.");
|
|
|
|
Register &FinalStackPtr = TempReg;
|
|
// FIXME: We only support NegProbeSize materializable by DForm currently.
|
|
// When HasBP && HasRedzone, we can use xform if we have an additional idle
|
|
// register.
|
|
NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
|
|
assert(isInt<16>(NegProbeSize) &&
|
|
"NegProbeSize should be materializable by DForm");
|
|
Register CRReg = PPC::CR0;
|
|
// Layout of output assembly kinda like:
|
|
// bb.0:
|
|
// ...
|
|
// sub $scratchreg, $finalsp, r1
|
|
// cmpdi $scratchreg, <negprobesize>
|
|
// bge bb.2
|
|
// bb.1:
|
|
// stdu <backchain>, <negprobesize>(r1)
|
|
// sub $scratchreg, $scratchreg, negprobesize
|
|
// cmpdi $scratchreg, <negprobesize>
|
|
// blt bb.1
|
|
// bb.2:
|
|
// stdux <backchain>, r1, $scratchreg
|
|
MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
|
|
MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
|
|
MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
|
|
MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
|
|
MF.insert(MBBInsertPoint, ProbeExitMBB);
|
|
// bb.2
|
|
{
|
|
Register BackChainPointer = HasRedZone ? BPReg : TempReg;
|
|
allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
|
|
BackChainPointer);
|
|
if (HasRedZone)
|
|
// PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
|
|
// to TempReg to satisfy it.
|
|
BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
|
|
.addReg(BPReg)
|
|
.addReg(BPReg);
|
|
ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
|
|
ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
|
|
}
|
|
// bb.0
|
|
{
|
|
BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
|
|
.addReg(SPReg)
|
|
.addReg(FinalStackPtr);
|
|
if (!HasRedZone)
|
|
BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
|
|
BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(NegProbeSize);
|
|
BuildMI(&MBB, DL, TII.get(PPC::BCC))
|
|
.addImm(PPC::PRED_GE)
|
|
.addReg(CRReg)
|
|
.addMBB(ProbeExitMBB);
|
|
MBB.addSuccessor(ProbeLoopBodyMBB);
|
|
MBB.addSuccessor(ProbeExitMBB);
|
|
}
|
|
// bb.1
|
|
{
|
|
Register BackChainPointer = HasRedZone ? BPReg : TempReg;
|
|
allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
|
|
0, true /*UseDForm*/, BackChainPointer);
|
|
BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
|
|
ScratchReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(-NegProbeSize);
|
|
BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
|
|
CRReg)
|
|
.addReg(ScratchReg)
|
|
.addImm(NegProbeSize);
|
|
BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
|
|
.addImm(PPC::PRED_LT)
|
|
.addReg(CRReg)
|
|
.addMBB(ProbeLoopBodyMBB);
|
|
ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
|
|
ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
|
|
}
|
|
// Update liveins.
|
|
recomputeLiveIns(*ProbeLoopBodyMBB);
|
|
recomputeLiveIns(*ProbeExitMBB);
|
|
return ProbeExitMBB;
|
|
};
|
|
// For case HasBP && MaxAlign > 1, we have to realign the SP by performing
|
|
// SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
|
|
// the offset subtracted from SP is determined by SP's runtime value.
|
|
if (HasBP && MaxAlign > 1) {
|
|
// Calculate final stack pointer.
|
|
if (isPPC64)
|
|
BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
|
|
.addReg(SPReg)
|
|
.addImm(0)
|
|
.addImm(64 - Log2(MaxAlign));
|
|
else
|
|
BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
|
|
.addReg(SPReg)
|
|
.addImm(0)
|
|
.addImm(32 - Log2(MaxAlign))
|
|
.addImm(31);
|
|
BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
|
|
FPReg)
|
|
.addReg(ScratchReg)
|
|
.addReg(SPReg);
|
|
MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
|
|
BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
|
|
FPReg)
|
|
.addReg(ScratchReg)
|
|
.addReg(FPReg);
|
|
CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
|
|
if (needsCFI)
|
|
buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
|
|
} else {
|
|
// Initialize current frame pointer.
|
|
BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
|
|
// Use FPReg to calculate CFA.
|
|
if (needsCFI)
|
|
buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
|
|
// Probe residual part.
|
|
if (NegResidualSize) {
|
|
bool ResidualUseDForm = CanUseDForm(NegResidualSize);
|
|
if (!ResidualUseDForm)
|
|
MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
|
|
allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
|
|
ResidualUseDForm, FPReg);
|
|
}
|
|
bool UseDForm = CanUseDForm(NegProbeSize);
|
|
// If number of blocks is small, just probe them directly.
|
|
if (NumBlocks < 3) {
|
|
if (!UseDForm)
|
|
MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
|
|
for (int i = 0; i < NumBlocks; ++i)
|
|
allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
|
|
FPReg);
|
|
if (needsCFI) {
|
|
// Restore using SPReg to calculate CFA.
|
|
buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
|
|
}
|
|
} else {
|
|
// Since CTR is a volatile register and current shrinkwrap implementation
|
|
// won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
|
|
// CTR loop to probe.
|
|
// Calculate trip count and stores it in CTRReg.
|
|
MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
|
|
BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
|
|
.addReg(ScratchReg, RegState::Kill);
|
|
if (!UseDForm)
|
|
MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
|
|
// Create MBBs of the loop.
|
|
MachineFunction::iterator MBBInsertPoint =
|
|
std::next(CurrentMBB->getIterator());
|
|
MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
|
|
MF.insert(MBBInsertPoint, LoopMBB);
|
|
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
|
|
MF.insert(MBBInsertPoint, ExitMBB);
|
|
// Synthesize the loop body.
|
|
allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
|
|
UseDForm, FPReg);
|
|
BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
|
|
.addMBB(LoopMBB);
|
|
LoopMBB->addSuccessor(ExitMBB);
|
|
LoopMBB->addSuccessor(LoopMBB);
|
|
// Synthesize the exit MBB.
|
|
ExitMBB->splice(ExitMBB->end(), CurrentMBB,
|
|
std::next(MachineBasicBlock::iterator(MI)),
|
|
CurrentMBB->end());
|
|
ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
|
|
CurrentMBB->addSuccessor(LoopMBB);
|
|
if (needsCFI) {
|
|
// Restore using SPReg to calculate CFA.
|
|
buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
|
|
}
|
|
// Update liveins.
|
|
recomputeLiveIns(*LoopMBB);
|
|
recomputeLiveIns(*ExitMBB);
|
|
}
|
|
}
|
|
++NumPrologProbed;
|
|
MI.eraseFromParent();
|
|
}
|
|
|
|
void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
|
|
DebugLoc dl;
|
|
|
|
if (MBBI != MBB.end())
|
|
dl = MBBI->getDebugLoc();
|
|
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
// Get alignment info so we know how to restore the SP.
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// Get the number of bytes allocated from the FrameInfo.
|
|
int64_t FrameSize = MFI.getStackSize();
|
|
|
|
// Get processor type.
|
|
bool isPPC64 = Subtarget.isPPC64();
|
|
|
|
// Check if the link register (LR) has been saved.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
bool MustSaveLR = FI->mustSaveLR();
|
|
const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
|
|
bool MustSaveCR = !MustSaveCRs.empty();
|
|
// Do we have a frame pointer and/or base pointer for this function?
|
|
bool HasFP = hasFP(MF);
|
|
bool HasBP = RegInfo->hasBasePointer(MF);
|
|
bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
|
|
bool HasROPProtect = Subtarget.hasROPProtect();
|
|
bool HasPrivileged = Subtarget.hasPrivileged();
|
|
|
|
Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
|
|
Register BPReg = RegInfo->getBaseRegister(MF);
|
|
Register FPReg = isPPC64 ? PPC::X31 : PPC::R31;
|
|
Register ScratchReg;
|
|
Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
|
|
const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
|
|
: PPC::MTLR );
|
|
const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
|
|
: PPC::LWZ );
|
|
const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
|
|
: PPC::LIS );
|
|
const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
|
|
: PPC::OR );
|
|
const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
|
|
: PPC::ORI );
|
|
const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
|
|
: PPC::ADDI );
|
|
const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
|
|
: PPC::ADD4 );
|
|
const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
|
|
: PPC::LWZ);
|
|
const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
|
|
: PPC::MTOCRF);
|
|
const MCInstrDesc &HashChk =
|
|
TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
|
|
: (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
|
|
int64_t LROffset = getReturnSaveOffset();
|
|
|
|
int64_t FPOffset = 0;
|
|
|
|
// Using the same bool variable as below to suppress compiler warnings.
|
|
bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
|
|
&TempReg);
|
|
assert(SingleScratchReg &&
|
|
"Could not find an available scratch register");
|
|
|
|
SingleScratchReg = ScratchReg == TempReg;
|
|
|
|
if (HasFP) {
|
|
int FPIndex = FI->getFramePointerSaveIndex();
|
|
assert(FPIndex && "No Frame Pointer Save Slot!");
|
|
FPOffset = MFI.getObjectOffset(FPIndex);
|
|
}
|
|
|
|
int64_t BPOffset = 0;
|
|
if (HasBP) {
|
|
int BPIndex = FI->getBasePointerSaveIndex();
|
|
assert(BPIndex && "No Base Pointer Save Slot!");
|
|
BPOffset = MFI.getObjectOffset(BPIndex);
|
|
}
|
|
|
|
int64_t PBPOffset = 0;
|
|
if (FI->usesPICBase()) {
|
|
int PBPIndex = FI->getPICBasePointerSaveIndex();
|
|
assert(PBPIndex && "No PIC Base Pointer Save Slot!");
|
|
PBPOffset = MFI.getObjectOffset(PBPIndex);
|
|
}
|
|
|
|
bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
|
|
|
|
if (IsReturnBlock) {
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
|
|
RetOpcode == PPC::TCRETURNdi ||
|
|
RetOpcode == PPC::TCRETURNai ||
|
|
RetOpcode == PPC::TCRETURNri8 ||
|
|
RetOpcode == PPC::TCRETURNdi8 ||
|
|
RetOpcode == PPC::TCRETURNai8;
|
|
|
|
if (UsesTCRet) {
|
|
int MaxTCRetDelta = FI->getTailCallSPDelta();
|
|
MachineOperand &StackAdjust = MBBI->getOperand(1);
|
|
assert(StackAdjust.isImm() && "Expecting immediate value.");
|
|
// Adjust stack pointer.
|
|
int StackAdj = StackAdjust.getImm();
|
|
int Delta = StackAdj - MaxTCRetDelta;
|
|
assert((Delta >= 0) && "Delta must be positive");
|
|
if (MaxTCRetDelta>0)
|
|
FrameSize += (StackAdj +Delta);
|
|
else
|
|
FrameSize += StackAdj;
|
|
}
|
|
}
|
|
|
|
// Frames of 32KB & larger require special handling because they cannot be
|
|
// indexed into with a simple LD/LWZ immediate offset operand.
|
|
bool isLargeFrame = !isInt<16>(FrameSize);
|
|
|
|
// On targets without red zone, the SP needs to be restored last, so that
|
|
// all live contents of the stack frame are upwards of the SP. This means
|
|
// that we cannot restore SP just now, since there may be more registers
|
|
// to restore from the stack frame (e.g. R31). If the frame size is not
|
|
// a simple immediate value, we will need a spare register to hold the
|
|
// restored SP. If the frame size is known and small, we can simply adjust
|
|
// the offsets of the registers to be restored, and still use SP to restore
|
|
// them. In such case, the final update of SP will be to add the frame
|
|
// size to it.
|
|
// To simplify the code, set RBReg to the base register used to restore
|
|
// values from the stack, and set SPAdd to the value that needs to be added
|
|
// to the SP at the end. The default values are as if red zone was present.
|
|
unsigned RBReg = SPReg;
|
|
uint64_t SPAdd = 0;
|
|
|
|
// Check if we can move the stack update instruction up the epilogue
|
|
// past the callee saves. This will allow the move to LR instruction
|
|
// to be executed before the restores of the callee saves which means
|
|
// that the callee saves can hide the latency from the MTLR instrcution.
|
|
MachineBasicBlock::iterator StackUpdateLoc = MBBI;
|
|
if (stackUpdateCanBeMoved(MF)) {
|
|
const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
|
|
for (CalleeSavedInfo CSI : Info) {
|
|
// If the callee saved register is spilled to another register abort the
|
|
// stack update movement.
|
|
if (CSI.isSpilledToReg()) {
|
|
StackUpdateLoc = MBBI;
|
|
break;
|
|
}
|
|
int FrIdx = CSI.getFrameIdx();
|
|
// If the frame index is not negative the callee saved info belongs to a
|
|
// stack object that is not a fixed stack object. We ignore non-fixed
|
|
// stack objects because we won't move the update of the stack pointer
|
|
// past them.
|
|
if (FrIdx >= 0)
|
|
continue;
|
|
|
|
if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
|
|
StackUpdateLoc--;
|
|
else {
|
|
// Abort the operation as we can't update all CSR restores.
|
|
StackUpdateLoc = MBBI;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FrameSize) {
|
|
// In the prologue, the loaded (or persistent) stack pointer value is
|
|
// offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
|
|
// zone add this offset back now.
|
|
|
|
// If the function has a base pointer, the stack pointer has been copied
|
|
// to it so we can restore it by copying in the other direction.
|
|
if (HasRedZone && HasBP) {
|
|
BuildMI(MBB, MBBI, dl, OrInst, RBReg).
|
|
addReg(BPReg).
|
|
addReg(BPReg);
|
|
}
|
|
// If this function contained a fastcc call and GuaranteedTailCallOpt is
|
|
// enabled (=> hasFastCall()==true) the fastcc call might contain a tail
|
|
// call which invalidates the stack pointer value in SP(0). So we use the
|
|
// value of R31 in this case. Similar situation exists with setjmp.
|
|
else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
|
|
assert(HasFP && "Expecting a valid frame pointer.");
|
|
if (!HasRedZone)
|
|
RBReg = FPReg;
|
|
if (!isLargeFrame) {
|
|
BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
|
|
.addReg(FPReg).addImm(FrameSize);
|
|
} else {
|
|
TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize);
|
|
BuildMI(MBB, MBBI, dl, AddInst)
|
|
.addReg(RBReg)
|
|
.addReg(FPReg)
|
|
.addReg(ScratchReg);
|
|
}
|
|
} else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
|
|
if (HasRedZone) {
|
|
BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
|
|
.addReg(SPReg)
|
|
.addImm(FrameSize);
|
|
} else {
|
|
// Make sure that adding FrameSize will not overflow the max offset
|
|
// size.
|
|
assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
|
|
"Local offsets should be negative");
|
|
SPAdd = FrameSize;
|
|
FPOffset += FrameSize;
|
|
BPOffset += FrameSize;
|
|
PBPOffset += FrameSize;
|
|
}
|
|
} else {
|
|
// We don't want to use ScratchReg as a base register, because it
|
|
// could happen to be R0. Use FP instead, but make sure to preserve it.
|
|
if (!HasRedZone) {
|
|
// If FP is not saved, copy it to ScratchReg.
|
|
if (!HasFP)
|
|
BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
|
|
.addReg(FPReg)
|
|
.addReg(FPReg);
|
|
RBReg = FPReg;
|
|
}
|
|
BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
|
|
.addImm(0)
|
|
.addReg(SPReg);
|
|
}
|
|
}
|
|
assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
|
|
// If there is no red zone, ScratchReg may be needed for holding a useful
|
|
// value (although not the base register). Make sure it is not overwritten
|
|
// too early.
|
|
|
|
// If we need to restore both the LR and the CR and we only have one
|
|
// available scratch register, we must do them one at a time.
|
|
if (MustSaveCR && SingleScratchReg && MustSaveLR) {
|
|
// Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
|
|
// is live here.
|
|
assert(HasRedZone && "Expecting red zone");
|
|
BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
|
|
.addImm(CRSaveOffset)
|
|
.addReg(SPReg);
|
|
for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
|
|
BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
|
|
.addReg(TempReg, getKillRegState(i == e-1));
|
|
}
|
|
|
|
// Delay restoring of the LR if ScratchReg is needed. This is ok, since
|
|
// LR is stored in the caller's stack frame. ScratchReg will be needed
|
|
// if RBReg is anything other than SP. We shouldn't use ScratchReg as
|
|
// a base register anyway, because it may happen to be R0.
|
|
bool LoadedLR = false;
|
|
if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
|
|
BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
|
|
.addImm(LROffset+SPAdd)
|
|
.addReg(RBReg);
|
|
LoadedLR = true;
|
|
}
|
|
|
|
if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
|
|
assert(RBReg == SPReg && "Should be using SP as a base register");
|
|
BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
|
|
.addImm(CRSaveOffset)
|
|
.addReg(RBReg);
|
|
}
|
|
|
|
if (HasFP) {
|
|
// If there is red zone, restore FP directly, since SP has already been
|
|
// restored. Otherwise, restore the value of FP into ScratchReg.
|
|
if (HasRedZone || RBReg == SPReg)
|
|
BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
|
|
.addImm(FPOffset)
|
|
.addReg(SPReg);
|
|
else
|
|
BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
|
|
.addImm(FPOffset)
|
|
.addReg(RBReg);
|
|
}
|
|
|
|
if (FI->usesPICBase())
|
|
BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
|
|
.addImm(PBPOffset)
|
|
.addReg(RBReg);
|
|
|
|
if (HasBP)
|
|
BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
|
|
.addImm(BPOffset)
|
|
.addReg(RBReg);
|
|
|
|
// There is nothing more to be loaded from the stack, so now we can
|
|
// restore SP: SP = RBReg + SPAdd.
|
|
if (RBReg != SPReg || SPAdd != 0) {
|
|
assert(!HasRedZone && "This should not happen with red zone");
|
|
// If SPAdd is 0, generate a copy.
|
|
if (SPAdd == 0)
|
|
BuildMI(MBB, MBBI, dl, OrInst, SPReg)
|
|
.addReg(RBReg)
|
|
.addReg(RBReg);
|
|
else
|
|
BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
|
|
.addReg(RBReg)
|
|
.addImm(SPAdd);
|
|
|
|
assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
|
|
if (RBReg == FPReg)
|
|
BuildMI(MBB, MBBI, dl, OrInst, FPReg)
|
|
.addReg(ScratchReg)
|
|
.addReg(ScratchReg);
|
|
|
|
// Now load the LR from the caller's stack frame.
|
|
if (MustSaveLR && !LoadedLR)
|
|
BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
|
|
.addImm(LROffset)
|
|
.addReg(SPReg);
|
|
}
|
|
|
|
if (MustSaveCR &&
|
|
!(SingleScratchReg && MustSaveLR))
|
|
for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
|
|
BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
|
|
.addReg(TempReg, getKillRegState(i == e-1));
|
|
|
|
if (MustSaveLR) {
|
|
// If ROP protection is required, an extra instruction is added to compute a
|
|
// hash and then compare it to the hash stored in the prologue.
|
|
if (HasROPProtect) {
|
|
const int SaveIndex = FI->getROPProtectionHashSaveIndex();
|
|
const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
|
|
assert((ImmOffset <= -8 && ImmOffset >= -512) &&
|
|
"ROP hash check location offset out of range.");
|
|
assert(((ImmOffset & 0x7) == 0) &&
|
|
"ROP hash check location offset must be 8 byte aligned.");
|
|
BuildMI(MBB, StackUpdateLoc, dl, HashChk)
|
|
.addReg(ScratchReg)
|
|
.addImm(ImmOffset)
|
|
.addReg(SPReg);
|
|
}
|
|
BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
|
|
}
|
|
|
|
// Callee pop calling convention. Pop parameter/linkage area. Used for tail
|
|
// call optimization
|
|
if (IsReturnBlock) {
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
(RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
|
|
MF.getFunction().getCallingConv() == CallingConv::Fast) {
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
unsigned CallerAllocatedAmt = FI->getMinReservedArea();
|
|
|
|
if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
|
|
BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
|
|
.addReg(SPReg).addImm(CallerAllocatedAmt);
|
|
} else {
|
|
BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
|
|
.addImm(CallerAllocatedAmt >> 16);
|
|
BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
|
|
.addReg(ScratchReg, RegState::Kill)
|
|
.addImm(CallerAllocatedAmt & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, AddInst)
|
|
.addReg(SPReg)
|
|
.addReg(FPReg)
|
|
.addReg(ScratchReg);
|
|
}
|
|
} else {
|
|
createTailCallBranchInstr(MBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
|
|
|
|
// If we got this far a first terminator should exist.
|
|
assert(MBBI != MBB.end() && "Failed to find the first terminator.");
|
|
|
|
DebugLoc dl = MBBI->getDebugLoc();
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
|
|
// Create branch instruction for pseudo tail call return instruction.
|
|
// The TCRETURNdi variants are direct calls. Valid targets for those are
|
|
// MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
|
|
// since we can tail call external functions with PC-Rel (i.e. we don't need
|
|
// to worry about different TOC pointers). Some of the external functions will
|
|
// be MO_GlobalAddress while others like memcpy for example, are going to
|
|
// be MO_ExternalSymbol.
|
|
unsigned RetOpcode = MBBI->getOpcode();
|
|
if (RetOpcode == PPC::TCRETURNdi) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
if (JumpTarget.isGlobal())
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
|
|
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
|
|
else if (JumpTarget.isSymbol())
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
|
|
addExternalSymbol(JumpTarget.getSymbolName());
|
|
else
|
|
llvm_unreachable("Expecting Global or External Symbol");
|
|
} else if (RetOpcode == PPC::TCRETURNri) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
|
|
} else if (RetOpcode == PPC::TCRETURNai) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
|
|
} else if (RetOpcode == PPC::TCRETURNdi8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
if (JumpTarget.isGlobal())
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
|
|
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
|
|
else if (JumpTarget.isSymbol())
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
|
|
addExternalSymbol(JumpTarget.getSymbolName());
|
|
else
|
|
llvm_unreachable("Expecting Global or External Symbol");
|
|
} else if (RetOpcode == PPC::TCRETURNri8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
|
|
} else if (RetOpcode == PPC::TCRETURNai8) {
|
|
MBBI = MBB.getLastNonDebugInstr();
|
|
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
|
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
|
|
// Do not explicitly save the callee saved VSRp registers.
|
|
// The individual VSR subregisters will be saved instead.
|
|
SavedRegs.reset(PPC::VSRp26);
|
|
SavedRegs.reset(PPC::VSRp27);
|
|
SavedRegs.reset(PPC::VSRp28);
|
|
SavedRegs.reset(PPC::VSRp29);
|
|
SavedRegs.reset(PPC::VSRp30);
|
|
SavedRegs.reset(PPC::VSRp31);
|
|
|
|
// Save and clear the LR state.
|
|
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
|
|
unsigned LR = RegInfo->getRARegister();
|
|
FI->setMustSaveLR(MustSaveLR(MF, LR));
|
|
SavedRegs.reset(LR);
|
|
|
|
// Save R31 if necessary
|
|
int FPSI = FI->getFramePointerSaveIndex();
|
|
const bool isPPC64 = Subtarget.isPPC64();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
|
|
// If the frame pointer save index hasn't been defined yet.
|
|
if (!FPSI && needsFP(MF)) {
|
|
// Find out what the fix offset of the frame pointer save area.
|
|
int FPOffset = getFramePointerSaveOffset();
|
|
// Allocate the frame index for frame pointer save area.
|
|
FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
|
|
// Save the result.
|
|
FI->setFramePointerSaveIndex(FPSI);
|
|
}
|
|
|
|
int BPSI = FI->getBasePointerSaveIndex();
|
|
if (!BPSI && RegInfo->hasBasePointer(MF)) {
|
|
int BPOffset = getBasePointerSaveOffset();
|
|
// Allocate the frame index for the base pointer save area.
|
|
BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
|
|
// Save the result.
|
|
FI->setBasePointerSaveIndex(BPSI);
|
|
}
|
|
|
|
// Reserve stack space for the PIC Base register (R30).
|
|
// Only used in SVR4 32-bit.
|
|
if (FI->usesPICBase()) {
|
|
int PBPSI = MFI.CreateFixedObject(4, -8, true);
|
|
FI->setPICBasePointerSaveIndex(PBPSI);
|
|
}
|
|
|
|
// Make sure we don't explicitly spill r31, because, for example, we have
|
|
// some inline asm which explicitly clobbers it, when we otherwise have a
|
|
// frame pointer and are using r31's spill slot for the prologue/epilogue
|
|
// code. Same goes for the base pointer and the PIC base register.
|
|
if (needsFP(MF))
|
|
SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
|
|
if (RegInfo->hasBasePointer(MF))
|
|
SavedRegs.reset(RegInfo->getBaseRegister(MF));
|
|
if (FI->usesPICBase())
|
|
SavedRegs.reset(PPC::R30);
|
|
|
|
// Reserve stack space to move the linkage area to in case of a tail call.
|
|
int TCSPDelta = 0;
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
(TCSPDelta = FI->getTailCallSPDelta()) < 0) {
|
|
MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
|
|
}
|
|
|
|
// Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
|
|
// For 64-bit SVR4, and all flavors of AIX we create a FixedStack
|
|
// object at the offset of the CR-save slot in the linkage area. The actual
|
|
// save and restore of the condition register will be created as part of the
|
|
// prologue and epilogue insertion, but the FixedStack object is needed to
|
|
// keep the CalleSavedInfo valid.
|
|
if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
|
|
SavedRegs.test(PPC::CR4))) {
|
|
const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
|
|
const int64_t SpillOffset =
|
|
Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
|
|
int FrameIdx =
|
|
MFI.CreateFixedObject(SpillSize, SpillOffset,
|
|
/* IsImmutable */ true, /* IsAliased */ false);
|
|
FI->setCRSpillFrameIndex(FrameIdx);
|
|
}
|
|
}
|
|
|
|
void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction &MF,
|
|
RegScavenger *RS) const {
|
|
// Get callee saved register information.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
|
|
// If the function is shrink-wrapped, and if the function has a tail call, the
|
|
// tail call might not be in the new RestoreBlock, so real branch instruction
|
|
// won't be generated by emitEpilogue(), because shrink-wrap has chosen new
|
|
// RestoreBlock. So we handle this case here.
|
|
if (MFI.getSavePoint() && MFI.hasTailCall()) {
|
|
MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
|
|
createTailCallBranchInstr(MBB);
|
|
}
|
|
}
|
|
|
|
// Early exit if no callee saved registers are modified!
|
|
if (CSI.empty() && !needsFP(MF)) {
|
|
addScavengingSpillSlot(MF, RS);
|
|
return;
|
|
}
|
|
|
|
unsigned MinGPR = PPC::R31;
|
|
unsigned MinG8R = PPC::X31;
|
|
unsigned MinFPR = PPC::F31;
|
|
unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
|
|
|
|
bool HasGPSaveArea = false;
|
|
bool HasG8SaveArea = false;
|
|
bool HasFPSaveArea = false;
|
|
bool HasVRSaveArea = false;
|
|
|
|
SmallVector<CalleeSavedInfo, 18> GPRegs;
|
|
SmallVector<CalleeSavedInfo, 18> G8Regs;
|
|
SmallVector<CalleeSavedInfo, 18> FPRegs;
|
|
SmallVector<CalleeSavedInfo, 18> VRegs;
|
|
|
|
for (const CalleeSavedInfo &I : CSI) {
|
|
Register Reg = I.getReg();
|
|
assert((!MF.getInfo<PPCFunctionInfo>()->mustSaveTOC() ||
|
|
(Reg != PPC::X2 && Reg != PPC::R2)) &&
|
|
"Not expecting to try to spill R2 in a function that must save TOC");
|
|
if (PPC::GPRCRegClass.contains(Reg)) {
|
|
HasGPSaveArea = true;
|
|
|
|
GPRegs.push_back(I);
|
|
|
|
if (Reg < MinGPR) {
|
|
MinGPR = Reg;
|
|
}
|
|
} else if (PPC::G8RCRegClass.contains(Reg)) {
|
|
HasG8SaveArea = true;
|
|
|
|
G8Regs.push_back(I);
|
|
|
|
if (Reg < MinG8R) {
|
|
MinG8R = Reg;
|
|
}
|
|
} else if (PPC::F8RCRegClass.contains(Reg)) {
|
|
HasFPSaveArea = true;
|
|
|
|
FPRegs.push_back(I);
|
|
|
|
if (Reg < MinFPR) {
|
|
MinFPR = Reg;
|
|
}
|
|
} else if (PPC::CRBITRCRegClass.contains(Reg) ||
|
|
PPC::CRRCRegClass.contains(Reg)) {
|
|
; // do nothing, as we already know whether CRs are spilled
|
|
} else if (PPC::VRRCRegClass.contains(Reg) ||
|
|
PPC::SPERCRegClass.contains(Reg)) {
|
|
// Altivec and SPE are mutually exclusive, but have the same stack
|
|
// alignment requirements, so overload the save area for both cases.
|
|
HasVRSaveArea = true;
|
|
|
|
VRegs.push_back(I);
|
|
|
|
if (Reg < MinVR) {
|
|
MinVR = Reg;
|
|
}
|
|
} else {
|
|
llvm_unreachable("Unknown RegisterClass!");
|
|
}
|
|
}
|
|
|
|
PPCFunctionInfo *PFI = MF.getInfo<PPCFunctionInfo>();
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
|
|
int64_t LowerBound = 0;
|
|
|
|
// Take into account stack space reserved for tail calls.
|
|
int TCSPDelta = 0;
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
(TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
|
|
LowerBound = TCSPDelta;
|
|
}
|
|
|
|
// The Floating-point register save area is right below the back chain word
|
|
// of the previous stack frame.
|
|
if (HasFPSaveArea) {
|
|
for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
|
|
int FI = FPRegs[i].getFrameIdx();
|
|
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
}
|
|
|
|
LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
|
|
}
|
|
|
|
// Check whether the frame pointer register is allocated. If so, make sure it
|
|
// is spilled to the correct offset.
|
|
if (needsFP(MF)) {
|
|
int FI = PFI->getFramePointerSaveIndex();
|
|
assert(FI && "No Frame Pointer Save Slot!");
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
// FP is R31/X31, so no need to update MinGPR/MinG8R.
|
|
HasGPSaveArea = true;
|
|
}
|
|
|
|
if (PFI->usesPICBase()) {
|
|
int FI = PFI->getPICBasePointerSaveIndex();
|
|
assert(FI && "No PIC Base Pointer Save Slot!");
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
|
|
MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
|
|
HasGPSaveArea = true;
|
|
}
|
|
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
if (RegInfo->hasBasePointer(MF)) {
|
|
int FI = PFI->getBasePointerSaveIndex();
|
|
assert(FI && "No Base Pointer Save Slot!");
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
|
|
Register BP = RegInfo->getBaseRegister(MF);
|
|
if (PPC::G8RCRegClass.contains(BP)) {
|
|
MinG8R = std::min<unsigned>(MinG8R, BP);
|
|
HasG8SaveArea = true;
|
|
} else if (PPC::GPRCRegClass.contains(BP)) {
|
|
MinGPR = std::min<unsigned>(MinGPR, BP);
|
|
HasGPSaveArea = true;
|
|
}
|
|
}
|
|
|
|
// General register save area starts right below the Floating-point
|
|
// register save area.
|
|
if (HasGPSaveArea || HasG8SaveArea) {
|
|
// Move general register save area spill slots down, taking into account
|
|
// the size of the Floating-point register save area.
|
|
for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
|
|
if (!GPRegs[i].isSpilledToReg()) {
|
|
int FI = GPRegs[i].getFrameIdx();
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
}
|
|
}
|
|
|
|
// Move general register save area spill slots down, taking into account
|
|
// the size of the Floating-point register save area.
|
|
for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
|
|
if (!G8Regs[i].isSpilledToReg()) {
|
|
int FI = G8Regs[i].getFrameIdx();
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
}
|
|
}
|
|
|
|
unsigned MinReg =
|
|
std::min<unsigned>(TRI->getEncodingValue(MinGPR),
|
|
TRI->getEncodingValue(MinG8R));
|
|
|
|
const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
|
|
LowerBound -= (31 - MinReg + 1) * GPRegSize;
|
|
}
|
|
|
|
// For 32-bit only, the CR save area is below the general register
|
|
// save area. For 64-bit SVR4, the CR save area is addressed relative
|
|
// to the stack pointer and hence does not need an adjustment here.
|
|
// Only CR2 (the first nonvolatile spilled) has an associated frame
|
|
// index so that we have a single uniform save area.
|
|
if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
|
|
// Adjust the frame index of the CR spill slot.
|
|
for (const auto &CSInfo : CSI) {
|
|
if (CSInfo.getReg() == PPC::CR2) {
|
|
int FI = CSInfo.getFrameIdx();
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
break;
|
|
}
|
|
}
|
|
|
|
LowerBound -= 4; // The CR save area is always 4 bytes long.
|
|
}
|
|
|
|
// Both Altivec and SPE have the same alignment and padding requirements
|
|
// within the stack frame.
|
|
if (HasVRSaveArea) {
|
|
// Insert alignment padding, we need 16-byte alignment. Note: for positive
|
|
// number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
|
|
// we are using negative number here (the stack grows downward). We should
|
|
// use formula : y = x & (~(n-1)). Where x is the size before aligning, n
|
|
// is the alignment size ( n = 16 here) and y is the size after aligning.
|
|
assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
|
|
LowerBound &= ~(15);
|
|
|
|
for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
|
|
int FI = VRegs[i].getFrameIdx();
|
|
|
|
MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
|
|
}
|
|
}
|
|
|
|
addScavengingSpillSlot(MF, RS);
|
|
}
|
|
|
|
void
|
|
PPCFrameLowering::addScavengingSpillSlot(MachineFunction &MF,
|
|
RegScavenger *RS) const {
|
|
// Reserve a slot closest to SP or frame pointer if we have a dynalloc or
|
|
// a large stack, which will require scavenging a register to materialize a
|
|
// large offset.
|
|
|
|
// We need to have a scavenger spill slot for spills if the frame size is
|
|
// large. In case there is no free register for large-offset addressing,
|
|
// this slot is used for the necessary emergency spill. Also, we need the
|
|
// slot for dynamic stack allocations.
|
|
|
|
// The scavenger might be invoked if the frame offset does not fit into
|
|
// the 16-bit immediate. We don't know the complete frame size here
|
|
// because we've not yet computed callee-saved register spills or the
|
|
// needed alignment padding.
|
|
unsigned StackSize = determineFrameLayout(MF, true);
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
|
|
(hasSpills(MF) && !isInt<16>(StackSize))) {
|
|
const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
|
|
const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
|
|
const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
|
|
const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
|
|
unsigned Size = TRI.getSpillSize(RC);
|
|
Align Alignment = TRI.getSpillAlign(RC);
|
|
RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Alignment, false));
|
|
|
|
// Might we have over-aligned allocas?
|
|
bool HasAlVars =
|
|
MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
|
|
|
|
// These kinds of spills might need two registers.
|
|
if (spillsCR(MF) || HasAlVars)
|
|
RS->addScavengingFrameIndex(
|
|
MFI.CreateStackObject(Size, Alignment, false));
|
|
}
|
|
}
|
|
|
|
// This function checks if a callee saved gpr can be spilled to a volatile
|
|
// vector register. This occurs for leaf functions when the option
|
|
// ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
|
|
// which were not spilled to vectors, return false so the target independent
|
|
// code can handle them by assigning a FrameIdx to a stack slot.
|
|
bool PPCFrameLowering::assignCalleeSavedSpillSlots(
|
|
MachineFunction &MF, const TargetRegisterInfo *TRI,
|
|
std::vector<CalleeSavedInfo> &CSI) const {
|
|
|
|
if (CSI.empty())
|
|
return true; // Early exit if no callee saved registers are modified!
|
|
|
|
// Early exit if cannot spill gprs to volatile vector registers.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
|
|
return false;
|
|
|
|
// Build a BitVector of VSRs that can be used for spilling GPRs.
|
|
BitVector BVAllocatable = TRI->getAllocatableSet(MF);
|
|
BitVector BVCalleeSaved(TRI->getNumRegs());
|
|
const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
|
|
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
|
|
for (unsigned i = 0; CSRegs[i]; ++i)
|
|
BVCalleeSaved.set(CSRegs[i]);
|
|
|
|
for (unsigned Reg : BVAllocatable.set_bits()) {
|
|
// Set to 0 if the register is not a volatile VSX register, or if it is
|
|
// used in the function.
|
|
if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
|
|
MF.getRegInfo().isPhysRegUsed(Reg))
|
|
BVAllocatable.reset(Reg);
|
|
}
|
|
|
|
bool AllSpilledToReg = true;
|
|
unsigned LastVSRUsedForSpill = 0;
|
|
for (auto &CS : CSI) {
|
|
if (BVAllocatable.none())
|
|
return false;
|
|
|
|
Register Reg = CS.getReg();
|
|
|
|
if (!PPC::G8RCRegClass.contains(Reg)) {
|
|
AllSpilledToReg = false;
|
|
continue;
|
|
}
|
|
|
|
// For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
|
|
// into one VSR using the mtvsrdd instruction.
|
|
if (LastVSRUsedForSpill != 0) {
|
|
CS.setDstReg(LastVSRUsedForSpill);
|
|
BVAllocatable.reset(LastVSRUsedForSpill);
|
|
LastVSRUsedForSpill = 0;
|
|
continue;
|
|
}
|
|
|
|
unsigned VolatileVFReg = BVAllocatable.find_first();
|
|
if (VolatileVFReg < BVAllocatable.size()) {
|
|
CS.setDstReg(VolatileVFReg);
|
|
LastVSRUsedForSpill = VolatileVFReg;
|
|
} else {
|
|
AllSpilledToReg = false;
|
|
}
|
|
}
|
|
return AllSpilledToReg;
|
|
}
|
|
|
|
bool PPCFrameLowering::spillCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
|
|
bool MustSaveTOC = FI->mustSaveTOC();
|
|
DebugLoc DL;
|
|
bool CRSpilled = false;
|
|
MachineInstrBuilder CRMIB;
|
|
BitVector Spilled(TRI->getNumRegs());
|
|
|
|
VSRContainingGPRs.clear();
|
|
|
|
// Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
|
|
// or two GPRs, so we need table to record information for later save/restore.
|
|
for (const CalleeSavedInfo &Info : CSI) {
|
|
if (Info.isSpilledToReg()) {
|
|
auto &SpilledVSR =
|
|
VSRContainingGPRs.FindAndConstruct(Info.getDstReg()).second;
|
|
assert(SpilledVSR.second == 0 &&
|
|
"Can't spill more than two GPRs into VSR!");
|
|
if (SpilledVSR.first == 0)
|
|
SpilledVSR.first = Info.getReg();
|
|
else
|
|
SpilledVSR.second = Info.getReg();
|
|
}
|
|
}
|
|
|
|
for (const CalleeSavedInfo &I : CSI) {
|
|
Register Reg = I.getReg();
|
|
|
|
// CR2 through CR4 are the nonvolatile CR fields.
|
|
bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
|
|
|
|
// Add the callee-saved register as live-in; it's killed at the spill.
|
|
// Do not do this for callee-saved registers that are live-in to the
|
|
// function because they will already be marked live-in and this will be
|
|
// adding it for a second time. It is an error to add the same register
|
|
// to the set more than once.
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
bool IsLiveIn = MRI.isLiveIn(Reg);
|
|
if (!IsLiveIn)
|
|
MBB.addLiveIn(Reg);
|
|
|
|
if (CRSpilled && IsCRField) {
|
|
CRMIB.addReg(Reg, RegState::ImplicitKill);
|
|
continue;
|
|
}
|
|
|
|
// The actual spill will happen in the prologue.
|
|
if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
|
|
continue;
|
|
|
|
// Insert the spill to the stack frame.
|
|
if (IsCRField) {
|
|
PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
|
|
if (!Subtarget.is32BitELFABI()) {
|
|
// The actual spill will happen at the start of the prologue.
|
|
FuncInfo->addMustSaveCR(Reg);
|
|
} else {
|
|
CRSpilled = true;
|
|
FuncInfo->setSpillsCR();
|
|
|
|
// 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
|
|
// the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
|
|
CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
|
|
.addReg(Reg, RegState::ImplicitKill);
|
|
|
|
MBB.insert(MI, CRMIB);
|
|
MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
|
|
.addReg(PPC::R12,
|
|
getKillRegState(true)),
|
|
I.getFrameIdx()));
|
|
}
|
|
} else {
|
|
if (I.isSpilledToReg()) {
|
|
unsigned Dst = I.getDstReg();
|
|
|
|
if (Spilled[Dst])
|
|
continue;
|
|
|
|
if (VSRContainingGPRs[Dst].second != 0) {
|
|
assert(Subtarget.hasP9Vector() &&
|
|
"mtvsrdd is unavailable on pre-P9 targets.");
|
|
|
|
NumPESpillVSR += 2;
|
|
BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
|
|
.addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
|
|
.addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
|
|
} else if (VSRContainingGPRs[Dst].second == 0) {
|
|
assert(Subtarget.hasP8Vector() &&
|
|
"Can't move GPR to VSR on pre-P8 targets.");
|
|
|
|
++NumPESpillVSR;
|
|
BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
|
|
TRI->getSubReg(Dst, PPC::sub_64))
|
|
.addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
|
|
} else {
|
|
llvm_unreachable("More than two GPRs spilled to a VSR!");
|
|
}
|
|
Spilled.set(Dst);
|
|
} else {
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
// Use !IsLiveIn for the kill flag.
|
|
// We do not want to kill registers that are live in this function
|
|
// before their use because they will become undefined registers.
|
|
// Functions without NoUnwind need to preserve the order of elements in
|
|
// saved vector registers.
|
|
if (Subtarget.needsSwapsForVSXMemOps() &&
|
|
!MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
|
|
TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
|
|
I.getFrameIdx(), RC, TRI);
|
|
else
|
|
TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(),
|
|
RC, TRI);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
|
|
bool CR4Spilled, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
|
|
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
|
|
DebugLoc DL;
|
|
unsigned MoveReg = PPC::R12;
|
|
|
|
// 32-bit: FP-relative
|
|
MBB.insert(MI,
|
|
addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
|
|
CSI[CSIIndex].getFrameIdx()));
|
|
|
|
unsigned RestoreOp = PPC::MTOCRF;
|
|
if (CR2Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
|
|
.addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
|
|
|
|
if (CR3Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
|
|
.addReg(MoveReg, getKillRegState(!CR4Spilled)));
|
|
|
|
if (CR4Spilled)
|
|
MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
|
|
.addReg(MoveReg, getKillRegState(true)));
|
|
}
|
|
|
|
MachineBasicBlock::iterator PPCFrameLowering::
|
|
eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
|
|
I->getOpcode() == PPC::ADJCALLSTACKUP) {
|
|
// Add (actually subtract) back the amount the callee popped on return.
|
|
if (int CalleeAmt = I->getOperand(1).getImm()) {
|
|
bool is64Bit = Subtarget.isPPC64();
|
|
CalleeAmt *= -1;
|
|
unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
|
|
unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
|
|
unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
|
|
unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
|
|
unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
|
|
unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
|
|
const DebugLoc &dl = I->getDebugLoc();
|
|
|
|
if (isInt<16>(CalleeAmt)) {
|
|
BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
|
|
.addReg(StackReg, RegState::Kill)
|
|
.addImm(CalleeAmt);
|
|
} else {
|
|
MachineBasicBlock::iterator MBBI = I;
|
|
BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
|
|
.addImm(CalleeAmt >> 16);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
|
|
.addReg(TmpReg, RegState::Kill)
|
|
.addImm(CalleeAmt & 0xFFFF);
|
|
BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
|
|
.addReg(StackReg, RegState::Kill)
|
|
.addReg(TmpReg);
|
|
}
|
|
}
|
|
}
|
|
// Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
|
|
return MBB.erase(I);
|
|
}
|
|
|
|
static bool isCalleeSavedCR(unsigned Reg) {
|
|
return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
|
|
}
|
|
|
|
bool PPCFrameLowering::restoreCalleeSavedRegisters(
|
|
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
|
|
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
|
|
PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
|
|
bool MustSaveTOC = FI->mustSaveTOC();
|
|
bool CR2Spilled = false;
|
|
bool CR3Spilled = false;
|
|
bool CR4Spilled = false;
|
|
unsigned CSIIndex = 0;
|
|
BitVector Restored(TRI->getNumRegs());
|
|
|
|
// Initialize insertion-point logic; we will be restoring in reverse
|
|
// order of spill.
|
|
MachineBasicBlock::iterator I = MI, BeforeI = I;
|
|
bool AtStart = I == MBB.begin();
|
|
|
|
if (!AtStart)
|
|
--BeforeI;
|
|
|
|
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
|
|
Register Reg = CSI[i].getReg();
|
|
|
|
if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
|
|
continue;
|
|
|
|
// Restore of callee saved condition register field is handled during
|
|
// epilogue insertion.
|
|
if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
|
|
continue;
|
|
|
|
if (Reg == PPC::CR2) {
|
|
CR2Spilled = true;
|
|
// The spill slot is associated only with CR2, which is the
|
|
// first nonvolatile spilled. Save it here.
|
|
CSIIndex = i;
|
|
continue;
|
|
} else if (Reg == PPC::CR3) {
|
|
CR3Spilled = true;
|
|
continue;
|
|
} else if (Reg == PPC::CR4) {
|
|
CR4Spilled = true;
|
|
continue;
|
|
} else {
|
|
// On 32-bit ELF when we first encounter a non-CR register after seeing at
|
|
// least one CR register, restore all spilled CRs together.
|
|
if (CR2Spilled || CR3Spilled || CR4Spilled) {
|
|
bool is31 = needsFP(*MF);
|
|
restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
|
|
CSIIndex);
|
|
CR2Spilled = CR3Spilled = CR4Spilled = false;
|
|
}
|
|
|
|
if (CSI[i].isSpilledToReg()) {
|
|
DebugLoc DL;
|
|
unsigned Dst = CSI[i].getDstReg();
|
|
|
|
if (Restored[Dst])
|
|
continue;
|
|
|
|
if (VSRContainingGPRs[Dst].second != 0) {
|
|
assert(Subtarget.hasP9Vector());
|
|
NumPEReloadVSR += 2;
|
|
BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
|
|
VSRContainingGPRs[Dst].second)
|
|
.addReg(Dst);
|
|
BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
|
|
VSRContainingGPRs[Dst].first)
|
|
.addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
|
|
} else if (VSRContainingGPRs[Dst].second == 0) {
|
|
assert(Subtarget.hasP8Vector());
|
|
++NumPEReloadVSR;
|
|
BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
|
|
VSRContainingGPRs[Dst].first)
|
|
.addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
|
|
} else {
|
|
llvm_unreachable("More than two GPRs spilled to a VSR!");
|
|
}
|
|
|
|
Restored.set(Dst);
|
|
|
|
} else {
|
|
// Default behavior for non-CR saves.
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
|
|
|
|
// Functions without NoUnwind need to preserve the order of elements in
|
|
// saved vector registers.
|
|
if (Subtarget.needsSwapsForVSXMemOps() &&
|
|
!MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
|
|
TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
|
|
TRI);
|
|
else
|
|
TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI);
|
|
|
|
assert(I != MBB.begin() &&
|
|
"loadRegFromStackSlot didn't insert any code!");
|
|
}
|
|
}
|
|
|
|
// Insert in reverse order.
|
|
if (AtStart)
|
|
I = MBB.begin();
|
|
else {
|
|
I = BeforeI;
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// If we haven't yet spilled the CRs, do so now.
|
|
if (CR2Spilled || CR3Spilled || CR4Spilled) {
|
|
assert(Subtarget.is32BitELFABI() &&
|
|
"Only set CR[2|3|4]Spilled on 32-bit SVR4.");
|
|
bool is31 = needsFP(*MF);
|
|
restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
uint64_t PPCFrameLowering::getTOCSaveOffset() const {
|
|
return TOCSaveOffset;
|
|
}
|
|
|
|
uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
|
|
return FramePointerSaveOffset;
|
|
}
|
|
|
|
uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
|
|
return BasePointerSaveOffset;
|
|
}
|
|
|
|
bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
|
|
if (MF.getInfo<PPCFunctionInfo>()->shrinkWrapDisabled())
|
|
return false;
|
|
return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
|
|
}
|