llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cc

380 lines
12 KiB
C++

//===-- hwasan_linux.cc -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
/// FreeBSD-specific code.
///
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
#include "hwasan.h"
#include "hwasan_dynamic_shadow.h"
#include "hwasan_interface_internal.h"
#include "hwasan_mapping.h"
#include "hwasan_thread.h"
#include <elf.h>
#include <link.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <unwind.h>
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_procmaps.h"
namespace __hwasan {
static void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name) {
CHECK_EQ((beg % GetMmapGranularity()), 0);
CHECK_EQ(((end + 1) % GetMmapGranularity()), 0);
uptr size = end - beg + 1;
DecreaseTotalMmap(size); // Don't count the shadow against mmap_limit_mb.
void *res = MmapFixedNoReserve(beg, size, name);
if (res != (void *)beg) {
Report(
"ReserveShadowMemoryRange failed while trying to map 0x%zx bytes. "
"Perhaps you're using ulimit -v\n",
size);
Abort();
}
if (common_flags()->no_huge_pages_for_shadow) NoHugePagesInRegion(beg, size);
if (common_flags()->use_madv_dontdump) DontDumpShadowMemory(beg, size);
}
static void ProtectGap(uptr addr, uptr size) {
if (!size)
return;
void *res = MmapFixedNoAccess(addr, size, "shadow gap");
if (addr == (uptr)res)
return;
// A few pages at the start of the address space can not be protected.
// But we really want to protect as much as possible, to prevent this memory
// being returned as a result of a non-FIXED mmap().
if (addr == 0) {
uptr step = GetMmapGranularity();
while (size > step) {
addr += step;
size -= step;
void *res = MmapFixedNoAccess(addr, size, "shadow gap");
if (addr == (uptr)res)
return;
}
}
Report(
"ERROR: Failed to protect shadow gap [%p, %p]. "
"HWASan cannot proceed correctly. ABORTING.\n", (void *)addr,
(void *)(addr + size));
DumpProcessMap();
Die();
}
static uptr kLowMemStart;
static uptr kLowMemEnd;
static uptr kLowShadowEnd;
static uptr kLowShadowStart;
static uptr kHighShadowStart;
static uptr kHighShadowEnd;
static uptr kHighMemStart;
static uptr kHighMemEnd;
static void PrintRange(uptr start, uptr end, const char *name) {
Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
}
static void PrintAddressSpaceLayout() {
PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
if (kHighShadowEnd + 1 < kHighMemStart)
PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
else
CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
if (SHADOW_OFFSET) {
if (kLowShadowEnd + 1 < kHighShadowStart)
PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
if (kLowMemEnd + 1 < kLowShadowStart)
PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
CHECK_EQ(0, kLowMemStart);
} else {
if (kLowMemEnd + 1 < kHighShadowStart)
PrintRange(kLowMemEnd + 1, kHighShadowStart - 1, "ShadowGap");
else
CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
CHECK_EQ(kLowShadowEnd + 1, kLowMemStart);
PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
PrintRange(0, kLowShadowStart - 1, "ShadowGap");
}
}
static uptr GetHighMemEnd() {
// HighMem covers the upper part of the address space.
uptr max_address = GetMaxUserVirtualAddress();
if (SHADOW_OFFSET)
// Adjust max address to make sure that kHighMemEnd and kHighMemStart are
// properly aligned:
max_address |= SHADOW_GRANULARITY * GetMmapGranularity() - 1;
return max_address;
}
static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
// Set the shadow memory address to uninitialized.
__hwasan_shadow_memory_dynamic_address = kDefaultShadowSentinel;
uptr shadow_start = SHADOW_OFFSET;
// Detect if a dynamic shadow address must be used and find the available
// location when necessary. When dynamic address is used, the macro
// kLowShadowBeg expands to __hwasan_shadow_memory_dynamic_address which
// was just set to kDefaultShadowSentinel.
if (shadow_start == kDefaultShadowSentinel) {
__hwasan_shadow_memory_dynamic_address = 0;
CHECK_EQ(0, SHADOW_OFFSET);
shadow_start = FindDynamicShadowStart(shadow_size_bytes);
}
// Update the shadow memory address (potentially) used by instrumentation.
__hwasan_shadow_memory_dynamic_address = shadow_start;
}
bool InitShadow() {
// Define the entire memory range.
kHighMemEnd = GetHighMemEnd();
// Determine shadow memory base offset.
InitializeShadowBaseAddress(MEM_TO_SHADOW_SIZE(kHighMemEnd));
// Place the low memory first.
if (SHADOW_OFFSET) {
kLowMemEnd = SHADOW_OFFSET - 1;
kLowMemStart = 0;
} else {
// LowMem covers as much of the first 4GB as possible.
kLowMemEnd = (1UL << 32) - 1;
kLowMemStart = MEM_TO_SHADOW(kLowMemEnd) + 1;
}
// Define the low shadow based on the already placed low memory.
kLowShadowEnd = MEM_TO_SHADOW(kLowMemEnd);
kLowShadowStart = SHADOW_OFFSET ? SHADOW_OFFSET : MEM_TO_SHADOW(kLowMemStart);
// High shadow takes whatever memory is left up there (making sure it is not
// interfering with low memory in the fixed case).
kHighShadowEnd = MEM_TO_SHADOW(kHighMemEnd);
kHighShadowStart = Max(kLowMemEnd, MEM_TO_SHADOW(kHighShadowEnd)) + 1;
// High memory starts where allocated shadow allows.
kHighMemStart = SHADOW_TO_MEM(kHighShadowStart);
// Check the sanity of the defined memory ranges (there might be gaps).
CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
CHECK_GT(kHighMemStart, kHighShadowEnd);
CHECK_GT(kHighShadowEnd, kHighShadowStart);
CHECK_GT(kHighShadowStart, kLowMemEnd);
CHECK_GT(kLowMemEnd, kLowMemStart);
CHECK_GT(kLowShadowEnd, kLowShadowStart);
if (SHADOW_OFFSET)
CHECK_GT(kLowShadowStart, kLowMemEnd);
else
CHECK_GT(kLowMemEnd, kLowShadowStart);
if (Verbosity())
PrintAddressSpaceLayout();
// Reserve shadow memory.
ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
// Protect all the gaps.
ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
if (SHADOW_OFFSET) {
if (kLowMemEnd + 1 < kLowShadowStart)
ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
if (kLowShadowEnd + 1 < kHighShadowStart)
ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
} else {
if (kLowMemEnd + 1 < kHighShadowStart)
ProtectGap(kLowMemEnd + 1, kHighShadowStart - kLowMemEnd - 1);
}
if (kHighShadowEnd + 1 < kHighMemStart)
ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
return true;
}
bool MemIsApp(uptr p) {
CHECK(GetTagFromPointer(p) == 0);
return p >= kHighMemStart || (p >= kLowMemStart && p <= kLowMemEnd);
}
static void HwasanAtExit(void) {
if (flags()->print_stats && (flags()->atexit || hwasan_report_count > 0))
ReportStats();
if (hwasan_report_count > 0) {
// ReportAtExitStatistics();
if (common_flags()->exitcode)
internal__exit(common_flags()->exitcode);
}
}
void InstallAtExitHandler() {
atexit(HwasanAtExit);
}
// ---------------------- TSD ---------------- {{{1
static pthread_key_t tsd_key;
static bool tsd_key_inited = false;
void HwasanTSDInit(void (*destructor)(void *tsd)) {
CHECK(!tsd_key_inited);
tsd_key_inited = true;
CHECK_EQ(0, pthread_key_create(&tsd_key, destructor));
}
HwasanThread *GetCurrentThread() {
return (HwasanThread*)pthread_getspecific(tsd_key);
}
void SetCurrentThread(HwasanThread *t) {
// Make sure that HwasanTSDDtor gets called at the end.
CHECK(tsd_key_inited);
// Make sure we do not reset the current HwasanThread.
CHECK_EQ(0, pthread_getspecific(tsd_key));
pthread_setspecific(tsd_key, (void *)t);
}
void HwasanTSDDtor(void *tsd) {
HwasanThread *t = (HwasanThread*)tsd;
if (t->destructor_iterations_ > 1) {
t->destructor_iterations_--;
CHECK_EQ(0, pthread_setspecific(tsd_key, tsd));
return;
}
// Make sure that signal handler can not see a stale current thread pointer.
atomic_signal_fence(memory_order_seq_cst);
HwasanThread::TSDDtor(tsd);
}
struct AccessInfo {
uptr addr;
uptr size;
bool is_store;
bool is_load;
bool recover;
};
static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
// Access type is passed in a platform dependent way (see below) and encoded
// as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
// recoverable. Valid values of Y are 0 to 4, which are interpreted as
// log2(access_size), and 0xF, which means that access size is passed via
// platform dependent register (see below).
#if defined(__aarch64__)
// Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
// access size is stored in X1 register. Access address is always in X0
// register.
uptr pc = (uptr)info->si_addr;
const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
if ((code & 0xff00) != 0x900)
return AccessInfo{}; // Not ours.
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.regs[0];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
#elif defined(__x86_64__)
// Access type is encoded in the instruction following INT3 as
// NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
// RSI register. Access address is always in RDI register.
uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
uint8_t *nop = (uint8_t*)pc;
if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
*(nop + 3) < 0x40)
return AccessInfo{}; // Not ours.
const unsigned code = *(nop + 3);
const bool is_store = code & 0x10;
const bool recover = code & 0x20;
const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
const unsigned size_log = code & 0xf;
if (size_log > 4 && size_log != 0xf)
return AccessInfo{}; // Not ours.
const uptr size =
size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
#else
# error Unsupported architecture
#endif
return AccessInfo{addr, size, is_store, !is_store, recover};
}
static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
AccessInfo ai = GetAccessInfo(info, uc);
if (!ai.is_store && !ai.is_load)
return false;
InternalMmapVector<BufferedStackTrace> stack_buffer(1);
BufferedStackTrace *stack = stack_buffer.data();
stack->Reset();
SignalContext sig{info, uc};
GetStackTrace(stack, kStackTraceMax, sig.pc, sig.bp, uc,
common_flags()->fast_unwind_on_fatal);
ReportTagMismatch(stack, ai.addr, ai.size, ai.is_store);
++hwasan_report_count;
if (flags()->halt_on_error || !ai.recover)
Die();
#if defined(__aarch64__)
uc->uc_mcontext.pc += 4;
#elif defined(__x86_64__)
#else
# error Unsupported architecture
#endif
return true;
}
static void OnStackUnwind(const SignalContext &sig, const void *,
BufferedStackTrace *stack) {
GetStackTrace(stack, kStackTraceMax, sig.pc, sig.bp, sig.context,
common_flags()->fast_unwind_on_fatal);
}
void HwasanOnDeadlySignal(int signo, void *info, void *context) {
// Probably a tag mismatch.
if (signo == SIGTRAP)
if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t*)context))
return;
HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
}
} // namespace __hwasan
#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD