forked from OSchip/llvm-project
884 lines
29 KiB
C++
884 lines
29 KiB
C++
//===----- ScopDetection.cpp - Detect Scops --------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Detect the maximal Scops of a function.
|
|
//
|
|
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
|
|
// that only has statically known control flow and can therefore be described
|
|
// within the polyhedral model.
|
|
//
|
|
// Every Scop fullfills these restrictions:
|
|
//
|
|
// * It is a single entry single exit region
|
|
//
|
|
// * Only affine linear bounds in the loops
|
|
//
|
|
// Every natural loop in a Scop must have a number of loop iterations that can
|
|
// be described as an affine linear function in surrounding loop iterators or
|
|
// parameters. (A parameter is a scalar that does not change its value during
|
|
// execution of the Scop).
|
|
//
|
|
// * Only comparisons of affine linear expressions in conditions
|
|
//
|
|
// * All loops and conditions perfectly nested
|
|
//
|
|
// The control flow needs to be structured such that it could be written using
|
|
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
|
|
// 'continue'.
|
|
//
|
|
// * Side effect free functions call
|
|
//
|
|
// Only function calls and intrinsics that do not have side effects are allowed
|
|
// (readnone).
|
|
//
|
|
// The Scop detection finds the largest Scops by checking if the largest
|
|
// region is a Scop. If this is not the case, its canonical subregions are
|
|
// checked until a region is a Scop. It is now tried to extend this Scop by
|
|
// creating a larger non canonical region.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/LinkAllPasses.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopDetection.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/DebugInfo.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
|
|
#define DEBUG_TYPE "polly-detect"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include <set>
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool>
|
|
DetectScopsWithoutLoops("polly-detect-scops-in-functions-without-loops",
|
|
cl::desc("Detect scops in functions without loops"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool>
|
|
DetectRegionsWithoutLoops("polly-detect-scops-in-regions-without-loops",
|
|
cl::desc("Detect scops in regions without loops"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<std::string>
|
|
OnlyFunction("polly-only-func", cl::desc("Only run on a single function"),
|
|
cl::value_desc("function-name"), cl::ValueRequired, cl::init(""),
|
|
cl::cat(PollyCategory));
|
|
|
|
static cl::opt<std::string>
|
|
OnlyRegion("polly-only-region",
|
|
cl::desc("Only run on certain regions (The provided identifier must "
|
|
"appear in the name of the region's entry block"),
|
|
cl::value_desc("identifier"), cl::ValueRequired, cl::init(""),
|
|
cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool>
|
|
IgnoreAliasing("polly-ignore-aliasing",
|
|
cl::desc("Ignore possible aliasing of the array bases"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool>
|
|
ReportLevel("polly-report",
|
|
cl::desc("Print information about the activities of Polly"),
|
|
cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool>
|
|
AllowNonAffine("polly-allow-nonaffine",
|
|
cl::desc("Allow non affine access functions in arrays"),
|
|
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool, true>
|
|
TrackFailures("polly-detect-track-failures",
|
|
cl::desc("Track failure strings in detecting scop regions"),
|
|
cl::location(PollyTrackFailures), cl::Hidden, cl::init(false),
|
|
cl::cat(PollyCategory));
|
|
|
|
bool polly::PollyTrackFailures = false;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Statistics.
|
|
|
|
STATISTIC(ValidRegion, "Number of regions that a valid part of Scop");
|
|
|
|
#define BADSCOP_STAT(NAME, DESC) \
|
|
STATISTIC(Bad##NAME##ForScop, "Number of bad regions for Scop: " DESC)
|
|
|
|
#define INVALID(NAME, MESSAGE) \
|
|
do { \
|
|
if (PollyTrackFailures) { \
|
|
std::string Buf; \
|
|
raw_string_ostream fmt(Buf); \
|
|
fmt << MESSAGE; \
|
|
fmt.flush(); \
|
|
LastFailure = Buf; \
|
|
} \
|
|
DEBUG(dbgs() << MESSAGE); \
|
|
DEBUG(dbgs() << "\n"); \
|
|
assert(!Context.Verifying && #NAME); \
|
|
if (!Context.Verifying) \
|
|
++Bad##NAME##ForScop; \
|
|
} while (0)
|
|
|
|
#define INVALID_NOVERIFY(NAME, MESSAGE) \
|
|
do { \
|
|
if (PollyTrackFailures) { \
|
|
std::string Buf; \
|
|
raw_string_ostream fmt(Buf); \
|
|
fmt << MESSAGE; \
|
|
fmt.flush(); \
|
|
LastFailure = Buf; \
|
|
} \
|
|
DEBUG(dbgs() << MESSAGE); \
|
|
DEBUG(dbgs() << "\n"); \
|
|
/* DISABLED: assert(!Context.Verifying && #NAME); */ \
|
|
if (!Context.Verifying) \
|
|
++Bad##NAME##ForScop; \
|
|
} while (0)
|
|
|
|
BADSCOP_STAT(CFG, "CFG too complex");
|
|
BADSCOP_STAT(IndVar, "Non canonical induction variable in loop");
|
|
BADSCOP_STAT(IndEdge, "Found invalid region entering edges");
|
|
BADSCOP_STAT(LoopBound, "Loop bounds can not be computed");
|
|
BADSCOP_STAT(FuncCall, "Function call with side effects appeared");
|
|
BADSCOP_STAT(AffFunc, "Expression not affine");
|
|
BADSCOP_STAT(Alias, "Found base address alias");
|
|
BADSCOP_STAT(SimpleLoop, "Loop not in -loop-simplify form");
|
|
BADSCOP_STAT(Other, "Others");
|
|
|
|
class DiagnosticScopFound : public DiagnosticInfo {
|
|
private:
|
|
static int PluginDiagnosticKind;
|
|
|
|
Function &F;
|
|
std::string FileName;
|
|
unsigned EntryLine, ExitLine;
|
|
|
|
public:
|
|
DiagnosticScopFound(Function &F, std::string FileName, unsigned EntryLine,
|
|
unsigned ExitLine)
|
|
: DiagnosticInfo(PluginDiagnosticKind, DS_Note), F(F), FileName(FileName),
|
|
EntryLine(EntryLine), ExitLine(ExitLine) {}
|
|
|
|
virtual void print(DiagnosticPrinter &DP) const;
|
|
|
|
static bool classof(const DiagnosticInfo *DI) {
|
|
return DI->getKind() == PluginDiagnosticKind;
|
|
}
|
|
};
|
|
|
|
int DiagnosticScopFound::PluginDiagnosticKind = 10;
|
|
|
|
void DiagnosticScopFound::print(DiagnosticPrinter &DP) const {
|
|
|
|
DP << "Polly detected an optimizable loop region (scop) in function '" << F
|
|
<< "'\n";
|
|
|
|
if (FileName.empty()) {
|
|
DP << "Scop location is unknown. Compile with debug info "
|
|
"(-g) to get more precise information. ";
|
|
return;
|
|
}
|
|
|
|
DP << FileName << ":" << EntryLine << ": Start of scop\n";
|
|
DP << FileName << ":" << ExitLine << ": End of scop";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ScopDetection.
|
|
bool ScopDetection::isMaxRegionInScop(const Region &R) const {
|
|
// The Region is valid only if it could be found in the set.
|
|
return ValidRegions.count(&R);
|
|
}
|
|
|
|
std::string ScopDetection::regionIsInvalidBecause(const Region *R) const {
|
|
if (!InvalidRegions.count(R))
|
|
return "";
|
|
|
|
return InvalidRegions.find(R)->second;
|
|
}
|
|
|
|
bool ScopDetection::isValidCFG(BasicBlock &BB,
|
|
DetectionContext &Context) const {
|
|
Region &RefRegion = Context.CurRegion;
|
|
TerminatorInst *TI = BB.getTerminator();
|
|
|
|
// Return instructions are only valid if the region is the top level region.
|
|
if (isa<ReturnInst>(TI) && !RefRegion.getExit() && TI->getNumOperands() == 0)
|
|
return true;
|
|
|
|
BranchInst *Br = dyn_cast<BranchInst>(TI);
|
|
|
|
if (!Br) {
|
|
INVALID(CFG, "Non branch instruction terminates BB: " + BB.getName());
|
|
return false;
|
|
}
|
|
|
|
if (Br->isUnconditional())
|
|
return true;
|
|
|
|
Value *Condition = Br->getCondition();
|
|
|
|
// UndefValue is not allowed as condition.
|
|
if (isa<UndefValue>(Condition)) {
|
|
INVALID(AffFunc, "Condition based on 'undef' value in BB: " + BB.getName());
|
|
return false;
|
|
}
|
|
|
|
// Only Constant and ICmpInst are allowed as condition.
|
|
if (!(isa<Constant>(Condition) || isa<ICmpInst>(Condition))) {
|
|
INVALID(AffFunc, "Condition in BB '" + BB.getName() +
|
|
"' neither constant nor an icmp instruction");
|
|
return false;
|
|
}
|
|
|
|
// Allow perfectly nested conditions.
|
|
assert(Br->getNumSuccessors() == 2 && "Unexpected number of successors");
|
|
|
|
if (ICmpInst *ICmp = dyn_cast<ICmpInst>(Condition)) {
|
|
// Unsigned comparisons are not allowed. They trigger overflow problems
|
|
// in the code generation.
|
|
//
|
|
// TODO: This is not sufficient and just hides bugs. However it does pretty
|
|
// well.
|
|
if (ICmp->isUnsigned())
|
|
return false;
|
|
|
|
// Are both operands of the ICmp affine?
|
|
if (isa<UndefValue>(ICmp->getOperand(0)) ||
|
|
isa<UndefValue>(ICmp->getOperand(1))) {
|
|
INVALID(AffFunc, "undef operand in branch at BB: " + BB.getName());
|
|
return false;
|
|
}
|
|
|
|
Loop *L = LI->getLoopFor(ICmp->getParent());
|
|
const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
|
|
const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);
|
|
|
|
if (!isAffineExpr(&Context.CurRegion, LHS, *SE) ||
|
|
!isAffineExpr(&Context.CurRegion, RHS, *SE)) {
|
|
INVALID(AffFunc, "Non affine branch in BB '" << BB.getName()
|
|
<< "' with LHS: " << *LHS
|
|
<< " and RHS: " << *RHS);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Allow loop exit conditions.
|
|
Loop *L = LI->getLoopFor(&BB);
|
|
if (L && L->getExitingBlock() == &BB)
|
|
return true;
|
|
|
|
// Allow perfectly nested conditions.
|
|
Region *R = RI->getRegionFor(&BB);
|
|
if (R->getEntry() != &BB) {
|
|
INVALID(CFG, "Not well structured condition at BB: " + BB.getName());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidCallInst(CallInst &CI) {
|
|
if (CI.mayHaveSideEffects() || CI.doesNotReturn())
|
|
return false;
|
|
|
|
if (CI.doesNotAccessMemory())
|
|
return true;
|
|
|
|
Function *CalledFunction = CI.getCalledFunction();
|
|
|
|
// Indirect calls are not supported.
|
|
if (CalledFunction == 0)
|
|
return false;
|
|
|
|
// TODO: Intrinsics.
|
|
return false;
|
|
}
|
|
|
|
std::string ScopDetection::formatInvalidAlias(AliasSet &AS) const {
|
|
std::string Message;
|
|
raw_string_ostream OS(Message);
|
|
|
|
OS << "Possible aliasing: ";
|
|
|
|
std::vector<Value *> Pointers;
|
|
|
|
for (AliasSet::iterator AI = AS.begin(), AE = AS.end(); AI != AE; ++AI)
|
|
Pointers.push_back(AI.getPointer());
|
|
|
|
std::sort(Pointers.begin(), Pointers.end());
|
|
|
|
for (std::vector<Value *>::iterator PI = Pointers.begin(),
|
|
PE = Pointers.end();
|
|
;) {
|
|
Value *V = *PI;
|
|
|
|
if (V->getName().size() == 0)
|
|
OS << "\"" << *V << "\"";
|
|
else
|
|
OS << "\"" << V->getName() << "\"";
|
|
|
|
++PI;
|
|
|
|
if (PI != PE)
|
|
OS << ", ";
|
|
else
|
|
break;
|
|
}
|
|
|
|
return OS.str();
|
|
}
|
|
|
|
bool ScopDetection::isInvariant(const Value &Val, const Region &Reg) const {
|
|
// A reference to function argument or constant value is invariant.
|
|
if (isa<Argument>(Val) || isa<Constant>(Val))
|
|
return true;
|
|
|
|
const Instruction *I = dyn_cast<Instruction>(&Val);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (!Reg.contains(I))
|
|
return true;
|
|
|
|
if (I->mayHaveSideEffects())
|
|
return false;
|
|
|
|
// When Val is a Phi node, it is likely not invariant. We do not check whether
|
|
// Phi nodes are actually invariant, we assume that Phi nodes are usually not
|
|
// invariant. Recursively checking the operators of Phi nodes would lead to
|
|
// infinite recursion.
|
|
if (isa<PHINode>(*I))
|
|
return false;
|
|
|
|
// Check that all operands of the instruction are
|
|
// themselves invariant.
|
|
const Instruction::const_op_iterator OE = I->op_end();
|
|
for (Instruction::const_op_iterator OI = I->op_begin(); OI != OE; ++OI) {
|
|
if (!isInvariant(**OI, Reg))
|
|
return false;
|
|
}
|
|
|
|
// When the instruction is a load instruction, check that no write to memory
|
|
// in the region aliases with the load.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
AliasAnalysis::Location Loc = AA->getLocation(LI);
|
|
const Region::const_block_iterator BE = Reg.block_end();
|
|
// Check if any basic block in the region can modify the location pointed to
|
|
// by 'Loc'. If so, 'Val' is (likely) not invariant in the region.
|
|
for (Region::const_block_iterator BI = Reg.block_begin(); BI != BE; ++BI) {
|
|
const BasicBlock &BB = **BI;
|
|
if (AA->canBasicBlockModify(BB, Loc))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidMemoryAccess(Instruction &Inst,
|
|
DetectionContext &Context) const {
|
|
Value *Ptr = getPointerOperand(Inst);
|
|
Loop *L = LI->getLoopFor(Inst.getParent());
|
|
const SCEV *AccessFunction = SE->getSCEVAtScope(Ptr, L);
|
|
const SCEVUnknown *BasePointer;
|
|
Value *BaseValue;
|
|
|
|
BasePointer = dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
|
|
|
|
if (!BasePointer) {
|
|
INVALID(AffFunc, "No base pointer");
|
|
return false;
|
|
}
|
|
|
|
BaseValue = BasePointer->getValue();
|
|
|
|
if (isa<UndefValue>(BaseValue)) {
|
|
INVALID(AffFunc, "Undefined base pointer");
|
|
return false;
|
|
}
|
|
|
|
// Check that the base address of the access is invariant in the current
|
|
// region.
|
|
if (!isInvariant(*BaseValue, Context.CurRegion)) {
|
|
// Verification of this property is difficult as the independent blocks
|
|
// pass may introduce aliasing that we did not have when running the
|
|
// scop detection.
|
|
INVALID_NOVERIFY(
|
|
AffFunc, "Base address not invariant in current region:" << *BaseValue);
|
|
return false;
|
|
}
|
|
|
|
AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
|
|
|
|
if (!AllowNonAffine &&
|
|
!isAffineExpr(&Context.CurRegion, AccessFunction, *SE, BaseValue)) {
|
|
INVALID(AffFunc, "Non affine access function: " << *AccessFunction);
|
|
return false;
|
|
}
|
|
|
|
// FIXME: Alias Analysis thinks IntToPtrInst aliases with alloca instructions
|
|
// created by IndependentBlocks Pass.
|
|
if (isa<IntToPtrInst>(BaseValue)) {
|
|
INVALID(Other, "Find bad intToptr prt: " << *BaseValue);
|
|
return false;
|
|
}
|
|
|
|
if (IgnoreAliasing)
|
|
return true;
|
|
|
|
// Check if the base pointer of the memory access does alias with
|
|
// any other pointer. This cannot be handled at the moment.
|
|
AliasSet &AS =
|
|
Context.AST.getAliasSetForPointer(BaseValue, AliasAnalysis::UnknownSize,
|
|
Inst.getMetadata(LLVMContext::MD_tbaa));
|
|
|
|
// INVALID triggers an assertion in verifying mode, if it detects that a
|
|
// SCoP was detected by SCoP detection and that this SCoP was invalidated by
|
|
// a pass that stated it would preserve the SCoPs. We disable this check as
|
|
// the independent blocks pass may create memory references which seem to
|
|
// alias, if -basicaa is not available. They actually do not, but as we can
|
|
// not proof this without -basicaa we would fail. We disable this check to
|
|
// not cause irrelevant verification failures.
|
|
if (!AS.isMustAlias()) {
|
|
INVALID_NOVERIFY(Alias, formatInvalidAlias(AS));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidInstruction(Instruction &Inst,
|
|
DetectionContext &Context) const {
|
|
if (PHINode *PN = dyn_cast<PHINode>(&Inst))
|
|
if (!canSynthesize(PN, LI, SE, &Context.CurRegion)) {
|
|
if (SCEVCodegen) {
|
|
INVALID(IndVar,
|
|
"SCEV of PHI node refers to SSA names in region: " << Inst);
|
|
return false;
|
|
|
|
} else {
|
|
INVALID(IndVar, "Non canonical PHI node: " << Inst);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We only check the call instruction but not invoke instruction.
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Inst)) {
|
|
if (isValidCallInst(*CI))
|
|
return true;
|
|
|
|
INVALID(FuncCall, "Call instruction: " << Inst);
|
|
return false;
|
|
}
|
|
|
|
if (!Inst.mayWriteToMemory() && !Inst.mayReadFromMemory()) {
|
|
if (!isa<AllocaInst>(Inst))
|
|
return true;
|
|
|
|
INVALID(Other, "Alloca instruction: " << Inst);
|
|
return false;
|
|
}
|
|
|
|
// Check the access function.
|
|
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
|
|
return isValidMemoryAccess(Inst, Context);
|
|
|
|
// We do not know this instruction, therefore we assume it is invalid.
|
|
INVALID(Other, "Unknown instruction: " << Inst);
|
|
return false;
|
|
}
|
|
|
|
bool ScopDetection::isValidLoop(Loop *L, DetectionContext &Context) const {
|
|
if (!SCEVCodegen) {
|
|
// If code generation is not in scev based mode, we need to ensure that
|
|
// each loop has a canonical induction variable.
|
|
PHINode *IndVar = L->getCanonicalInductionVariable();
|
|
if (!IndVar) {
|
|
INVALID(IndVar,
|
|
"No canonical IV at loop header: " << L->getHeader()->getName());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Is the loop count affine?
|
|
const SCEV *LoopCount = SE->getBackedgeTakenCount(L);
|
|
if (!isAffineExpr(&Context.CurRegion, LoopCount, *SE)) {
|
|
INVALID(LoopBound, "Non affine loop bound '" << *LoopCount << "' in loop: "
|
|
<< L->getHeader()->getName());
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
Region *ScopDetection::expandRegion(Region &R) {
|
|
// Initial no valid region was found (greater than R)
|
|
Region *LastValidRegion = NULL;
|
|
Region *ExpandedRegion = R.getExpandedRegion();
|
|
|
|
DEBUG(dbgs() << "\tExpanding " << R.getNameStr() << "\n");
|
|
|
|
while (ExpandedRegion) {
|
|
DetectionContext Context(*ExpandedRegion, *AA, false /* verifying */);
|
|
DEBUG(dbgs() << "\t\tTrying " << ExpandedRegion->getNameStr() << "\n");
|
|
|
|
// Check the exit first (cheap)
|
|
if (isValidExit(Context)) {
|
|
// If the exit is valid check all blocks
|
|
// - if true, a valid region was found => store it + keep expanding
|
|
// - if false, .tbd. => stop (should this really end the loop?)
|
|
if (!allBlocksValid(Context))
|
|
break;
|
|
|
|
// Delete unnecessary regions (allocated by getExpandedRegion)
|
|
if (LastValidRegion)
|
|
delete LastValidRegion;
|
|
|
|
// Store this region, because it is the greatest valid (encountered so
|
|
// far).
|
|
LastValidRegion = ExpandedRegion;
|
|
|
|
// Create and test the next greater region (if any)
|
|
ExpandedRegion = ExpandedRegion->getExpandedRegion();
|
|
|
|
} else {
|
|
// Create and test the next greater region (if any)
|
|
Region *TmpRegion = ExpandedRegion->getExpandedRegion();
|
|
|
|
// Delete unnecessary regions (allocated by getExpandedRegion)
|
|
delete ExpandedRegion;
|
|
|
|
ExpandedRegion = TmpRegion;
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
if (LastValidRegion)
|
|
dbgs() << "\tto " << LastValidRegion->getNameStr() << "\n";
|
|
else
|
|
dbgs() << "\tExpanding " << R.getNameStr() << " failed\n";
|
|
});
|
|
|
|
return LastValidRegion;
|
|
}
|
|
static bool regionWithoutLoops(Region &R, LoopInfo *LI) {
|
|
for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
|
|
++I)
|
|
if (R.contains(LI->getLoopFor(*I)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Remove all direct and indirect children of region R from the region set Regs,
|
|
// but do not recurse further if the first child has been found.
|
|
//
|
|
// Return the number of regions erased from Regs.
|
|
static unsigned eraseAllChildren(std::set<const Region *> &Regs,
|
|
const Region *R) {
|
|
unsigned Count = 0;
|
|
for (Region::const_iterator I = R->begin(), E = R->end(); I != E; ++I) {
|
|
if (Regs.find(*I) != Regs.end()) {
|
|
++Count;
|
|
Regs.erase(*I);
|
|
} else {
|
|
Count += eraseAllChildren(Regs, *I);
|
|
}
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
void ScopDetection::findScops(Region &R) {
|
|
|
|
if (!DetectRegionsWithoutLoops && regionWithoutLoops(R, LI))
|
|
return;
|
|
|
|
DetectionContext Context(R, *AA, false /*verifying*/);
|
|
|
|
LastFailure = "";
|
|
|
|
if (isValidRegion(Context)) {
|
|
++ValidRegion;
|
|
ValidRegions.insert(&R);
|
|
return;
|
|
}
|
|
|
|
InvalidRegions[&R] = LastFailure;
|
|
|
|
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
findScops(**I);
|
|
|
|
// Try to expand regions.
|
|
//
|
|
// As the region tree normally only contains canonical regions, non canonical
|
|
// regions that form a Scop are not found. Therefore, those non canonical
|
|
// regions are checked by expanding the canonical ones.
|
|
|
|
std::vector<Region *> ToExpand;
|
|
|
|
for (Region::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
|
ToExpand.push_back(*I);
|
|
|
|
for (std::vector<Region *>::iterator RI = ToExpand.begin(),
|
|
RE = ToExpand.end();
|
|
RI != RE; ++RI) {
|
|
Region *CurrentRegion = *RI;
|
|
|
|
// Skip invalid regions. Regions may become invalid, if they are element of
|
|
// an already expanded region.
|
|
if (ValidRegions.find(CurrentRegion) == ValidRegions.end())
|
|
continue;
|
|
|
|
Region *ExpandedR = expandRegion(*CurrentRegion);
|
|
|
|
if (!ExpandedR)
|
|
continue;
|
|
|
|
R.addSubRegion(ExpandedR, true);
|
|
ValidRegions.insert(ExpandedR);
|
|
ValidRegions.erase(CurrentRegion);
|
|
|
|
// Erase all (direct and indirect) children of ExpandedR from the valid
|
|
// regions and update the number of valid regions.
|
|
ValidRegion -= eraseAllChildren(ValidRegions, ExpandedR);
|
|
}
|
|
}
|
|
|
|
bool ScopDetection::allBlocksValid(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
|
|
++I) {
|
|
Loop *L = LI->getLoopFor(*I);
|
|
if (L && L->getHeader() == *I && !isValidLoop(L, Context))
|
|
return false;
|
|
}
|
|
|
|
for (Region::block_iterator I = R.block_begin(), E = R.block_end(); I != E;
|
|
++I)
|
|
if (!isValidCFG(**I, Context))
|
|
return false;
|
|
|
|
for (Region::block_iterator BI = R.block_begin(), E = R.block_end(); BI != E;
|
|
++BI)
|
|
for (BasicBlock::iterator I = (*BI)->begin(), E = --(*BI)->end(); I != E;
|
|
++I)
|
|
if (!isValidInstruction(*I, Context))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidExit(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
// PHI nodes are not allowed in the exit basic block.
|
|
if (BasicBlock *Exit = R.getExit()) {
|
|
BasicBlock::iterator I = Exit->begin();
|
|
if (I != Exit->end() && isa<PHINode>(*I)) {
|
|
INVALID(Other, "PHI node in exit BB");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidRegion(DetectionContext &Context) const {
|
|
Region &R = Context.CurRegion;
|
|
|
|
DEBUG(dbgs() << "Checking region: " << R.getNameStr() << "\n\t");
|
|
|
|
if (R.isTopLevelRegion()) {
|
|
DEBUG(dbgs() << "Top level region is invalid"; dbgs() << "\n");
|
|
return false;
|
|
}
|
|
|
|
if (!R.getEntry()->getName().count(OnlyRegion)) {
|
|
DEBUG({
|
|
dbgs() << "Region entry does not match -polly-region-only";
|
|
dbgs() << "\n";
|
|
});
|
|
return false;
|
|
}
|
|
|
|
if (!R.getEnteringBlock()) {
|
|
BasicBlock *entry = R.getEntry();
|
|
Loop *L = LI->getLoopFor(entry);
|
|
|
|
if (L) {
|
|
if (!L->isLoopSimplifyForm()) {
|
|
INVALID(SimpleLoop, "Loop not in simplify form is invalid!");
|
|
return false;
|
|
}
|
|
|
|
for (pred_iterator PI = pred_begin(entry), PE = pred_end(entry); PI != PE;
|
|
++PI) {
|
|
// Region entering edges come from the same loop but outside the region
|
|
// are not allowed.
|
|
if (L->contains(*PI) && !R.contains(*PI)) {
|
|
INVALID(IndEdge, "Region has invalid entering edges!");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// SCoP cannot contain the entry block of the function, because we need
|
|
// to insert alloca instruction there when translate scalar to array.
|
|
if (R.getEntry() == &(R.getEntry()->getParent()->getEntryBlock())) {
|
|
INVALID(Other, "Region containing entry block of function is invalid!");
|
|
return false;
|
|
}
|
|
|
|
if (!isValidExit(Context))
|
|
return false;
|
|
|
|
if (!allBlocksValid(Context))
|
|
return false;
|
|
|
|
DEBUG(dbgs() << "OK\n");
|
|
return true;
|
|
}
|
|
|
|
bool ScopDetection::isValidFunction(llvm::Function &F) {
|
|
return !InvalidFunctions.count(&F);
|
|
}
|
|
|
|
void ScopDetection::getDebugLocation(const Region *R, unsigned &LineBegin,
|
|
unsigned &LineEnd, std::string &FileName) {
|
|
LineBegin = -1;
|
|
LineEnd = 0;
|
|
|
|
for (Region::const_block_iterator RI = R->block_begin(), RE = R->block_end();
|
|
RI != RE; ++RI)
|
|
for (BasicBlock::iterator BI = (*RI)->begin(), BE = (*RI)->end(); BI != BE;
|
|
++BI) {
|
|
DebugLoc DL = BI->getDebugLoc();
|
|
if (DL.isUnknown())
|
|
continue;
|
|
|
|
DIScope Scope(DL.getScope(BI->getContext()));
|
|
|
|
if (FileName.empty())
|
|
FileName = Scope.getFilename();
|
|
|
|
unsigned NewLine = DL.getLine();
|
|
|
|
LineBegin = std::min(LineBegin, NewLine);
|
|
LineEnd = std::max(LineEnd, NewLine);
|
|
}
|
|
}
|
|
|
|
void ScopDetection::printLocations(llvm::Function &F) {
|
|
for (iterator RI = begin(), RE = end(); RI != RE; ++RI) {
|
|
unsigned LineEntry, LineExit;
|
|
std::string FileName;
|
|
|
|
getDebugLocation(*RI, LineEntry, LineExit, FileName);
|
|
DiagnosticScopFound Diagnostic(F, FileName, LineEntry, LineExit);
|
|
F.getContext().diagnose(Diagnostic);
|
|
}
|
|
}
|
|
|
|
bool ScopDetection::runOnFunction(llvm::Function &F) {
|
|
LI = &getAnalysis<LoopInfo>();
|
|
RI = &getAnalysis<RegionInfo>();
|
|
if (!DetectScopsWithoutLoops && LI->empty())
|
|
return false;
|
|
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
Region *TopRegion = RI->getTopLevelRegion();
|
|
|
|
releaseMemory();
|
|
|
|
if (OnlyFunction != "" && F.getName() != OnlyFunction)
|
|
return false;
|
|
|
|
if (!isValidFunction(F))
|
|
return false;
|
|
|
|
findScops(*TopRegion);
|
|
|
|
if (ReportLevel >= 1)
|
|
printLocations(F);
|
|
|
|
return false;
|
|
}
|
|
|
|
void polly::ScopDetection::verifyRegion(const Region &R) const {
|
|
assert(isMaxRegionInScop(R) && "Expect R is a valid region.");
|
|
DetectionContext Context(const_cast<Region &>(R), *AA, true /*verifying*/);
|
|
isValidRegion(Context);
|
|
}
|
|
|
|
void polly::ScopDetection::verifyAnalysis() const {
|
|
for (RegionSet::const_iterator I = ValidRegions.begin(),
|
|
E = ValidRegions.end();
|
|
I != E; ++I)
|
|
verifyRegion(**I);
|
|
}
|
|
|
|
void ScopDetection::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTree>();
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
// We also need AA and RegionInfo when we are verifying analysis.
|
|
AU.addRequiredTransitive<AliasAnalysis>();
|
|
AU.addRequiredTransitive<RegionInfo>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
void ScopDetection::print(raw_ostream &OS, const Module *) const {
|
|
for (RegionSet::const_iterator I = ValidRegions.begin(),
|
|
E = ValidRegions.end();
|
|
I != E; ++I)
|
|
OS << "Valid Region for Scop: " << (*I)->getNameStr() << '\n';
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
void ScopDetection::releaseMemory() {
|
|
ValidRegions.clear();
|
|
InvalidRegions.clear();
|
|
// Do not clear the invalid function set.
|
|
}
|
|
|
|
char ScopDetection::ID = 0;
|
|
|
|
Pass *polly::createScopDetectionPass() { return new ScopDetection(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(ScopDetection, "polly-detect",
|
|
"Polly - Detect static control parts (SCoPs)", false,
|
|
false);
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis);
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfo);
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree);
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfo);
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
|
|
INITIALIZE_PASS_END(ScopDetection, "polly-detect",
|
|
"Polly - Detect static control parts (SCoPs)", false, false)
|