forked from OSchip/llvm-project
2009 lines
68 KiB
C++
2009 lines
68 KiB
C++
//===- Target.cpp ---------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Machine-specific things, such as applying relocations, creation of
|
|
// GOT or PLT entries, etc., are handled in this file.
|
|
//
|
|
// Refer the ELF spec for the single letter varaibles, S, A or P, used
|
|
// in this file.
|
|
//
|
|
// Some functions defined in this file has "relaxTls" as part of their names.
|
|
// They do peephole optimization for TLS variables by rewriting instructions.
|
|
// They are not part of the ABI but optional optimization, so you can skip
|
|
// them if you are not interested in how TLS variables are optimized.
|
|
// See the following paper for the details.
|
|
//
|
|
// Ulrich Drepper, ELF Handling For Thread-Local Storage
|
|
// http://www.akkadia.org/drepper/tls.pdf
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Target.h"
|
|
#include "Error.h"
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Symbols.h"
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/ELF.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
|
|
namespace lld {
|
|
namespace elf {
|
|
|
|
TargetInfo *Target;
|
|
|
|
static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); }
|
|
|
|
StringRef getRelName(uint32_t Type) {
|
|
return getELFRelocationTypeName(Config->EMachine, Type);
|
|
}
|
|
|
|
template <unsigned N> static void checkInt(int64_t V, uint32_t Type) {
|
|
if (!isInt<N>(V))
|
|
error("relocation " + getRelName(Type) + " out of range");
|
|
}
|
|
|
|
template <unsigned N> static void checkUInt(uint64_t V, uint32_t Type) {
|
|
if (!isUInt<N>(V))
|
|
error("relocation " + getRelName(Type) + " out of range");
|
|
}
|
|
|
|
template <unsigned N> static void checkIntUInt(uint64_t V, uint32_t Type) {
|
|
if (!isInt<N>(V) && !isUInt<N>(V))
|
|
error("relocation " + getRelName(Type) + " out of range");
|
|
}
|
|
|
|
template <unsigned N> static void checkAlignment(uint64_t V, uint32_t Type) {
|
|
if ((V & (N - 1)) != 0)
|
|
error("improper alignment for relocation " + getRelName(Type));
|
|
}
|
|
|
|
static void errorDynRel(uint32_t Type) {
|
|
error("relocation " + getRelName(Type) +
|
|
" cannot be used against shared object; recompile with -fPIC.");
|
|
}
|
|
|
|
namespace {
|
|
class X86TargetInfo final : public TargetInfo {
|
|
public:
|
|
X86TargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
|
|
void writeGotPltHeader(uint8_t *Buf) const override;
|
|
uint32_t getDynRel(uint32_t Type) const override;
|
|
bool isTlsLocalDynamicRel(uint32_t Type) const override;
|
|
bool isTlsGlobalDynamicRel(uint32_t Type) const override;
|
|
bool isTlsInitialExecRel(uint32_t Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
|
|
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const override;
|
|
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
};
|
|
|
|
class X86_64TargetInfo final : public TargetInfo {
|
|
public:
|
|
X86_64TargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
uint32_t getDynRel(uint32_t Type) const override;
|
|
bool isTlsLocalDynamicRel(uint32_t Type) const override;
|
|
bool isTlsGlobalDynamicRel(uint32_t Type) const override;
|
|
bool isTlsInitialExecRel(uint32_t Type) const override;
|
|
void writeGotPltHeader(uint8_t *Buf) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
|
|
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const override;
|
|
void relaxGot(uint8_t *Loc, uint64_t Val) const override;
|
|
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
|
|
private:
|
|
void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
|
|
uint8_t ModRm) const;
|
|
};
|
|
|
|
class PPCTargetInfo final : public TargetInfo {
|
|
public:
|
|
PPCTargetInfo();
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
};
|
|
|
|
class PPC64TargetInfo final : public TargetInfo {
|
|
public:
|
|
PPC64TargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
};
|
|
|
|
class AArch64TargetInfo final : public TargetInfo {
|
|
public:
|
|
AArch64TargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
uint32_t getDynRel(uint32_t Type) const override;
|
|
bool isTlsInitialExecRel(uint32_t Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
bool usesOnlyLowPageBits(uint32_t Type) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const override;
|
|
void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
};
|
|
|
|
class AMDGPUTargetInfo final : public TargetInfo {
|
|
public:
|
|
AMDGPUTargetInfo() {}
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
};
|
|
|
|
class ARMTargetInfo final : public TargetInfo {
|
|
public:
|
|
ARMTargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
uint32_t getDynRel(uint32_t Type) const override;
|
|
uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
};
|
|
|
|
template <class ELFT> class MipsTargetInfo final : public TargetInfo {
|
|
public:
|
|
MipsTargetInfo();
|
|
RelExpr getRelExpr(uint32_t Type, const SymbolBody &S) const override;
|
|
uint64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
|
|
uint32_t getDynRel(uint32_t Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void writeThunk(uint8_t *Buf, uint64_t S) const override;
|
|
bool needsThunk(uint32_t Type, const InputFile &File,
|
|
const SymbolBody &S) const override;
|
|
void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
|
|
bool usesOnlyLowPageBits(uint32_t Type) const override;
|
|
};
|
|
} // anonymous namespace
|
|
|
|
TargetInfo *createTarget() {
|
|
switch (Config->EMachine) {
|
|
case EM_386:
|
|
return new X86TargetInfo();
|
|
case EM_AARCH64:
|
|
return new AArch64TargetInfo();
|
|
case EM_AMDGPU:
|
|
return new AMDGPUTargetInfo();
|
|
case EM_ARM:
|
|
return new ARMTargetInfo();
|
|
case EM_MIPS:
|
|
switch (Config->EKind) {
|
|
case ELF32LEKind:
|
|
return new MipsTargetInfo<ELF32LE>();
|
|
case ELF32BEKind:
|
|
return new MipsTargetInfo<ELF32BE>();
|
|
case ELF64LEKind:
|
|
return new MipsTargetInfo<ELF64LE>();
|
|
case ELF64BEKind:
|
|
return new MipsTargetInfo<ELF64BE>();
|
|
default:
|
|
fatal("unsupported MIPS target");
|
|
}
|
|
case EM_PPC:
|
|
return new PPCTargetInfo();
|
|
case EM_PPC64:
|
|
return new PPC64TargetInfo();
|
|
case EM_X86_64:
|
|
return new X86_64TargetInfo();
|
|
}
|
|
fatal("unknown target machine");
|
|
}
|
|
|
|
TargetInfo::~TargetInfo() {}
|
|
|
|
uint64_t TargetInfo::getImplicitAddend(const uint8_t *Buf,
|
|
uint32_t Type) const {
|
|
return 0;
|
|
}
|
|
|
|
uint64_t TargetInfo::getVAStart() const { return Config->Pic ? 0 : VAStart; }
|
|
|
|
bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; }
|
|
|
|
bool TargetInfo::needsThunk(uint32_t Type, const InputFile &File,
|
|
const SymbolBody &S) const {
|
|
return false;
|
|
}
|
|
|
|
bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; }
|
|
|
|
bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; }
|
|
|
|
bool TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
|
|
return false;
|
|
}
|
|
|
|
RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const {
|
|
return Expr;
|
|
}
|
|
|
|
void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
|
|
llvm_unreachable("Should not have claimed to be relaxable");
|
|
}
|
|
|
|
void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
llvm_unreachable("Should not have claimed to be relaxable");
|
|
}
|
|
|
|
void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
llvm_unreachable("Should not have claimed to be relaxable");
|
|
}
|
|
|
|
void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
llvm_unreachable("Should not have claimed to be relaxable");
|
|
}
|
|
|
|
void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
llvm_unreachable("Should not have claimed to be relaxable");
|
|
}
|
|
|
|
X86TargetInfo::X86TargetInfo() {
|
|
CopyRel = R_386_COPY;
|
|
GotRel = R_386_GLOB_DAT;
|
|
PltRel = R_386_JUMP_SLOT;
|
|
IRelativeRel = R_386_IRELATIVE;
|
|
RelativeRel = R_386_RELATIVE;
|
|
TlsGotRel = R_386_TLS_TPOFF;
|
|
TlsModuleIndexRel = R_386_TLS_DTPMOD32;
|
|
TlsOffsetRel = R_386_TLS_DTPOFF32;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 16;
|
|
TlsGdRelaxSkip = 2;
|
|
}
|
|
|
|
RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_386_TLS_GD:
|
|
return R_TLSGD;
|
|
case R_386_TLS_LDM:
|
|
return R_TLSLD;
|
|
case R_386_PLT32:
|
|
return R_PLT_PC;
|
|
case R_386_PC32:
|
|
return R_PC;
|
|
case R_386_GOTPC:
|
|
return R_GOTONLY_PC;
|
|
case R_386_TLS_IE:
|
|
return R_GOT;
|
|
case R_386_GOT32:
|
|
case R_386_TLS_GOTIE:
|
|
return R_GOT_FROM_END;
|
|
case R_386_GOTOFF:
|
|
return R_GOTREL;
|
|
case R_386_TLS_LE:
|
|
return R_TLS;
|
|
case R_386_TLS_LE_32:
|
|
return R_NEG_TLS;
|
|
}
|
|
}
|
|
|
|
RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const {
|
|
switch (Expr) {
|
|
default:
|
|
return Expr;
|
|
case R_RELAX_TLS_GD_TO_IE:
|
|
return R_RELAX_TLS_GD_TO_IE_END;
|
|
case R_RELAX_TLS_GD_TO_LE:
|
|
return R_RELAX_TLS_GD_TO_LE_NEG;
|
|
}
|
|
}
|
|
|
|
void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
|
|
write32le(Buf, Out<ELF32LE>::Dynamic->getVA());
|
|
}
|
|
|
|
void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
|
|
// Entries in .got.plt initially points back to the corresponding
|
|
// PLT entries with a fixed offset to skip the first instruction.
|
|
write32le(Buf, S.getPltVA<ELF32LE>() + 6);
|
|
}
|
|
|
|
uint32_t X86TargetInfo::getDynRel(uint32_t Type) const {
|
|
if (Type == R_386_TLS_LE)
|
|
return R_386_TLS_TPOFF;
|
|
if (Type == R_386_TLS_LE_32)
|
|
return R_386_TLS_TPOFF32;
|
|
return Type;
|
|
}
|
|
|
|
bool X86TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
|
|
return Type == R_386_TLS_GD;
|
|
}
|
|
|
|
bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
|
|
return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM;
|
|
}
|
|
|
|
bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
|
|
return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE;
|
|
}
|
|
|
|
void X86TargetInfo::writePltHeader(uint8_t *Buf) const {
|
|
// Executable files and shared object files have
|
|
// separate procedure linkage tables.
|
|
if (Config->Pic) {
|
|
const uint8_t V[] = {
|
|
0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl 4(%ebx)
|
|
0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *8(%ebx)
|
|
0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop
|
|
};
|
|
memcpy(Buf, V, sizeof(V));
|
|
return;
|
|
}
|
|
|
|
const uint8_t PltData[] = {
|
|
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOT+4)
|
|
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOT+8)
|
|
0x90, 0x90, 0x90, 0x90 // nop; nop; nop; nop
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
|
|
write32le(Buf + 2, Got + 4);
|
|
write32le(Buf + 8, Got + 8);
|
|
}
|
|
|
|
void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
const uint8_t Inst[] = {
|
|
0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
|
|
0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset
|
|
0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC
|
|
};
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
|
|
|
// jmp *foo@GOT(%ebx) or jmp *foo_in_GOT
|
|
Buf[1] = Config->Pic ? 0xa3 : 0x25;
|
|
uint32_t Got = Out<ELF32LE>::GotPlt->getVA();
|
|
write32le(Buf + 2, Config->Shared ? GotEntryAddr - Got : GotEntryAddr);
|
|
write32le(Buf + 7, RelOff);
|
|
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
|
|
}
|
|
|
|
uint64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf,
|
|
uint32_t Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return 0;
|
|
case R_386_32:
|
|
case R_386_GOT32:
|
|
case R_386_GOTOFF:
|
|
case R_386_GOTPC:
|
|
case R_386_PC32:
|
|
case R_386_PLT32:
|
|
return read32le(Buf);
|
|
}
|
|
}
|
|
|
|
void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
checkInt<32>(Val, Type);
|
|
write32le(Loc, Val);
|
|
}
|
|
|
|
void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Convert
|
|
// leal x@tlsgd(, %ebx, 1),
|
|
// call __tls_get_addr@plt
|
|
// to
|
|
// movl %gs:0,%eax
|
|
// subl $x@ntpoff,%eax
|
|
const uint8_t Inst[] = {
|
|
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
|
|
0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax
|
|
};
|
|
memcpy(Loc - 3, Inst, sizeof(Inst));
|
|
relocateOne(Loc + 5, R_386_32, Val);
|
|
}
|
|
|
|
void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Convert
|
|
// leal x@tlsgd(, %ebx, 1),
|
|
// call __tls_get_addr@plt
|
|
// to
|
|
// movl %gs:0, %eax
|
|
// addl x@gotntpoff(%ebx), %eax
|
|
const uint8_t Inst[] = {
|
|
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
|
|
0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax
|
|
};
|
|
memcpy(Loc - 3, Inst, sizeof(Inst));
|
|
relocateOne(Loc + 5, R_386_32, Val);
|
|
}
|
|
|
|
// In some conditions, relocations can be optimized to avoid using GOT.
|
|
// This function does that for Initial Exec to Local Exec case.
|
|
void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Ulrich's document section 6.2 says that @gotntpoff can
|
|
// be used with MOVL or ADDL instructions.
|
|
// @indntpoff is similar to @gotntpoff, but for use in
|
|
// position dependent code.
|
|
uint8_t Reg = (Loc[-1] >> 3) & 7;
|
|
|
|
if (Type == R_386_TLS_IE) {
|
|
if (Loc[-1] == 0xa1) {
|
|
// "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
|
|
// This case is different from the generic case below because
|
|
// this is a 5 byte instruction while below is 6 bytes.
|
|
Loc[-1] = 0xb8;
|
|
} else if (Loc[-2] == 0x8b) {
|
|
// "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
|
|
Loc[-2] = 0xc7;
|
|
Loc[-1] = 0xc0 | Reg;
|
|
} else {
|
|
// "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
|
|
Loc[-2] = 0x81;
|
|
Loc[-1] = 0xc0 | Reg;
|
|
}
|
|
} else {
|
|
assert(Type == R_386_TLS_GOTIE);
|
|
if (Loc[-2] == 0x8b) {
|
|
// "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
|
|
Loc[-2] = 0xc7;
|
|
Loc[-1] = 0xc0 | Reg;
|
|
} else {
|
|
// "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
|
|
Loc[-2] = 0x8d;
|
|
Loc[-1] = 0x80 | (Reg << 3) | Reg;
|
|
}
|
|
}
|
|
relocateOne(Loc, R_386_TLS_LE, Val);
|
|
}
|
|
|
|
void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
if (Type == R_386_TLS_LDO_32) {
|
|
relocateOne(Loc, R_386_TLS_LE, Val);
|
|
return;
|
|
}
|
|
|
|
// Convert
|
|
// leal foo(%reg),%eax
|
|
// call ___tls_get_addr
|
|
// to
|
|
// movl %gs:0,%eax
|
|
// nop
|
|
// leal 0(%esi,1),%esi
|
|
const uint8_t Inst[] = {
|
|
0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
|
|
0x90, // nop
|
|
0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi
|
|
};
|
|
memcpy(Loc - 2, Inst, sizeof(Inst));
|
|
}
|
|
|
|
X86_64TargetInfo::X86_64TargetInfo() {
|
|
CopyRel = R_X86_64_COPY;
|
|
GotRel = R_X86_64_GLOB_DAT;
|
|
PltRel = R_X86_64_JUMP_SLOT;
|
|
RelativeRel = R_X86_64_RELATIVE;
|
|
IRelativeRel = R_X86_64_IRELATIVE;
|
|
TlsGotRel = R_X86_64_TPOFF64;
|
|
TlsModuleIndexRel = R_X86_64_DTPMOD64;
|
|
TlsOffsetRel = R_X86_64_DTPOFF64;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 16;
|
|
TlsGdRelaxSkip = 2;
|
|
}
|
|
|
|
RelExpr X86_64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_X86_64_TPOFF32:
|
|
return R_TLS;
|
|
case R_X86_64_TLSLD:
|
|
return R_TLSLD_PC;
|
|
case R_X86_64_TLSGD:
|
|
return R_TLSGD_PC;
|
|
case R_X86_64_SIZE32:
|
|
case R_X86_64_SIZE64:
|
|
return R_SIZE;
|
|
case R_X86_64_PLT32:
|
|
return R_PLT_PC;
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PC64:
|
|
return R_PC;
|
|
case R_X86_64_GOT32:
|
|
return R_GOT_FROM_END;
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_GOTTPOFF:
|
|
return R_GOT_PC;
|
|
}
|
|
}
|
|
|
|
void X86_64TargetInfo::writeGotPltHeader(uint8_t *Buf) const {
|
|
// The first entry holds the value of _DYNAMIC. It is not clear why that is
|
|
// required, but it is documented in the psabi and the glibc dynamic linker
|
|
// seems to use it (note that this is relevant for linking ld.so, not any
|
|
// other program).
|
|
write64le(Buf, Out<ELF64LE>::Dynamic->getVA());
|
|
}
|
|
|
|
void X86_64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
|
|
// See comments in X86TargetInfo::writeGotPlt.
|
|
write32le(Buf, S.getPltVA<ELF64LE>() + 6);
|
|
}
|
|
|
|
void X86_64TargetInfo::writePltHeader(uint8_t *Buf) const {
|
|
const uint8_t PltData[] = {
|
|
0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOT+8(%rip)
|
|
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOT+16(%rip)
|
|
0x0f, 0x1f, 0x40, 0x00 // nopl 0x0(rax)
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
|
|
uint64_t Plt = Out<ELF64LE>::Plt->getVA();
|
|
write32le(Buf + 2, Got - Plt + 2); // GOT+8
|
|
write32le(Buf + 8, Got - Plt + 4); // GOT+16
|
|
}
|
|
|
|
void X86_64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
const uint8_t Inst[] = {
|
|
0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip)
|
|
0x68, 0x00, 0x00, 0x00, 0x00, // pushq <relocation index>
|
|
0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0]
|
|
};
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
|
|
|
write32le(Buf + 2, GotEntryAddr - PltEntryAddr - 6);
|
|
write32le(Buf + 7, Index);
|
|
write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
|
|
}
|
|
|
|
uint32_t X86_64TargetInfo::getDynRel(uint32_t Type) const {
|
|
if (Type == R_X86_64_PC32 || Type == R_X86_64_32)
|
|
errorDynRel(Type);
|
|
return Type;
|
|
}
|
|
|
|
bool X86_64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
|
|
return Type == R_X86_64_GOTTPOFF;
|
|
}
|
|
|
|
bool X86_64TargetInfo::isTlsGlobalDynamicRel(uint32_t Type) const {
|
|
return Type == R_X86_64_TLSGD;
|
|
}
|
|
|
|
bool X86_64TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const {
|
|
return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 ||
|
|
Type == R_X86_64_TLSLD;
|
|
}
|
|
|
|
void X86_64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to
|
|
// mov %fs:0x0,%rax
|
|
// lea x@tpoff,%rax
|
|
const uint8_t Inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax
|
|
};
|
|
memcpy(Loc - 4, Inst, sizeof(Inst));
|
|
// The original code used a pc relative relocation and so we have to
|
|
// compensate for the -4 in had in the addend.
|
|
relocateOne(Loc + 8, R_X86_64_TPOFF32, Val + 4);
|
|
}
|
|
|
|
void X86_64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Convert
|
|
// .byte 0x66
|
|
// leaq x@tlsgd(%rip), %rdi
|
|
// .word 0x6666
|
|
// rex64
|
|
// call __tls_get_addr@plt
|
|
// to
|
|
// mov %fs:0x0,%rax
|
|
// addq x@tpoff,%rax
|
|
const uint8_t Inst[] = {
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax
|
|
0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax
|
|
};
|
|
memcpy(Loc - 4, Inst, sizeof(Inst));
|
|
// Both code sequences are PC relatives, but since we are moving the constant
|
|
// forward by 8 bytes we have to subtract the value by 8.
|
|
relocateOne(Loc + 8, R_X86_64_PC32, Val - 8);
|
|
}
|
|
|
|
// In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to
|
|
// R_X86_64_TPOFF32 so that it does not use GOT.
|
|
void X86_64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
uint8_t *Inst = Loc - 3;
|
|
uint8_t Reg = Loc[-1] >> 3;
|
|
uint8_t *RegSlot = Loc - 1;
|
|
|
|
// Note that ADD with RSP or R12 is converted to ADD instead of LEA
|
|
// because LEA with these registers needs 4 bytes to encode and thus
|
|
// wouldn't fit the space.
|
|
|
|
if (memcmp(Inst, "\x48\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp"
|
|
memcpy(Inst, "\x48\x81\xc4", 3);
|
|
} else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12"
|
|
memcpy(Inst, "\x49\x81\xc4", 3);
|
|
} else if (memcmp(Inst, "\x4c\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]"
|
|
memcpy(Inst, "\x4d\x8d", 2);
|
|
*RegSlot = 0x80 | (Reg << 3) | Reg;
|
|
} else if (memcmp(Inst, "\x48\x03", 2) == 0) {
|
|
// "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg"
|
|
memcpy(Inst, "\x48\x8d", 2);
|
|
*RegSlot = 0x80 | (Reg << 3) | Reg;
|
|
} else if (memcmp(Inst, "\x4c\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]"
|
|
memcpy(Inst, "\x49\xc7", 2);
|
|
*RegSlot = 0xc0 | Reg;
|
|
} else if (memcmp(Inst, "\x48\x8b", 2) == 0) {
|
|
// "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg"
|
|
memcpy(Inst, "\x48\xc7", 2);
|
|
*RegSlot = 0xc0 | Reg;
|
|
} else {
|
|
fatal("R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only");
|
|
}
|
|
|
|
// The original code used a PC relative relocation.
|
|
// Need to compensate for the -4 it had in the addend.
|
|
relocateOne(Loc, R_X86_64_TPOFF32, Val + 4);
|
|
}
|
|
|
|
void X86_64TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// Convert
|
|
// leaq bar@tlsld(%rip), %rdi
|
|
// callq __tls_get_addr@PLT
|
|
// leaq bar@dtpoff(%rax), %rcx
|
|
// to
|
|
// .word 0x6666
|
|
// .byte 0x66
|
|
// mov %fs:0,%rax
|
|
// leaq bar@tpoff(%rax), %rcx
|
|
if (Type == R_X86_64_DTPOFF64) {
|
|
write64le(Loc, Val);
|
|
return;
|
|
}
|
|
if (Type == R_X86_64_DTPOFF32) {
|
|
relocateOne(Loc, R_X86_64_TPOFF32, Val);
|
|
return;
|
|
}
|
|
|
|
const uint8_t Inst[] = {
|
|
0x66, 0x66, // .word 0x6666
|
|
0x66, // .byte 0x66
|
|
0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
|
|
};
|
|
memcpy(Loc - 3, Inst, sizeof(Inst));
|
|
}
|
|
|
|
void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_X86_64_32:
|
|
checkUInt<32>(Val, Type);
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_X86_64_32S:
|
|
case R_X86_64_TPOFF32:
|
|
case R_X86_64_GOT32:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_GOTTPOFF:
|
|
case R_X86_64_PLT32:
|
|
case R_X86_64_TLSGD:
|
|
case R_X86_64_TLSLD:
|
|
case R_X86_64_DTPOFF32:
|
|
case R_X86_64_SIZE32:
|
|
checkInt<32>(Val, Type);
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_X86_64_64:
|
|
case R_X86_64_DTPOFF64:
|
|
case R_X86_64_SIZE64:
|
|
case R_X86_64_PC64:
|
|
write64le(Loc, Val);
|
|
break;
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
RelExpr X86_64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr RelExpr) const {
|
|
if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX)
|
|
return RelExpr;
|
|
const uint8_t Op = Data[-2];
|
|
const uint8_t ModRm = Data[-1];
|
|
// FIXME: When PIC is disabled and foo is defined locally in the
|
|
// lower 32 bit address space, memory operand in mov can be converted into
|
|
// immediate operand. Otherwise, mov must be changed to lea. We support only
|
|
// latter relaxation at this moment.
|
|
if (Op == 0x8b)
|
|
return R_RELAX_GOT_PC;
|
|
// Relax call and jmp.
|
|
if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25))
|
|
return R_RELAX_GOT_PC;
|
|
|
|
// Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor.
|
|
// If PIC then no relaxation is available.
|
|
// We also don't relax test/binop instructions without REX byte,
|
|
// they are 32bit operations and not common to have.
|
|
assert(Type == R_X86_64_REX_GOTPCRELX);
|
|
return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC;
|
|
}
|
|
|
|
// A subset of relaxations can only be applied for no-PIC. This method
|
|
// handles such relaxations. Instructions encoding information was taken from:
|
|
// "Intel 64 and IA-32 Architectures Software Developer's Manual V2"
|
|
// (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
|
|
// 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
|
|
void X86_64TargetInfo::relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op,
|
|
uint8_t ModRm) const {
|
|
const uint8_t Rex = Loc[-3];
|
|
// Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg".
|
|
if (Op == 0x85) {
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B),
|
|
// TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension).
|
|
|
|
// ModR/M byte has form XX YYY ZZZ, where
|
|
// YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1).
|
|
// XX has different meanings:
|
|
// 00: The operand's memory address is in reg1.
|
|
// 01: The operand's memory address is reg1 + a byte-sized displacement.
|
|
// 10: The operand's memory address is reg1 + a word-sized displacement.
|
|
// 11: The operand is reg1 itself.
|
|
// If an instruction requires only one operand, the unused reg2 field
|
|
// holds extra opcode bits rather than a register code
|
|
// 0xC0 == 11 000 000 binary.
|
|
// 0x38 == 00 111 000 binary.
|
|
// We transfer reg2 to reg1 here as operand.
|
|
// See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3).
|
|
Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte.
|
|
|
|
// Change opcode from TEST r/m64, r64 to TEST r/m64, imm32
|
|
// See "TEST-Logical Compare" (4-428 Vol. 2B).
|
|
Loc[-2] = 0xf7;
|
|
|
|
// Move R bit to the B bit in REX byte.
|
|
// REX byte is encoded as 0100WRXB, where
|
|
// 0100 is 4bit fixed pattern.
|
|
// REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the
|
|
// default operand size is used (which is 32-bit for most but not all
|
|
// instructions).
|
|
// REX.R This 1-bit value is an extension to the MODRM.reg field.
|
|
// REX.X This 1-bit value is an extension to the SIB.index field.
|
|
// REX.B This 1-bit value is an extension to the MODRM.rm field or the
|
|
// SIB.base field.
|
|
// See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A).
|
|
Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
|
|
relocateOne(Loc, R_X86_64_PC32, Val);
|
|
return;
|
|
}
|
|
|
|
// If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub
|
|
// or xor operations.
|
|
|
|
// Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg".
|
|
// Logic is close to one for test instruction above, but we also
|
|
// write opcode extension here, see below for details.
|
|
Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte.
|
|
|
|
// Primary opcode is 0x81, opcode extension is one of:
|
|
// 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB,
|
|
// 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP.
|
|
// This value was wrote to MODRM.reg in a line above.
|
|
// See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15),
|
|
// "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for
|
|
// descriptions about each operation.
|
|
Loc[-2] = 0x81;
|
|
Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2;
|
|
relocateOne(Loc, R_X86_64_PC32, Val);
|
|
}
|
|
|
|
void X86_64TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const {
|
|
const uint8_t Op = Loc[-2];
|
|
const uint8_t ModRm = Loc[-1];
|
|
|
|
// Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg".
|
|
if (Op == 0x8b) {
|
|
Loc[-2] = 0x8d;
|
|
relocateOne(Loc, R_X86_64_PC32, Val);
|
|
return;
|
|
}
|
|
|
|
if (Op != 0xff) {
|
|
// We are relaxing a rip relative to an absolute, so compensate
|
|
// for the old -4 addend.
|
|
assert(!Config->Pic);
|
|
relaxGotNoPic(Loc, Val + 4, Op, ModRm);
|
|
return;
|
|
}
|
|
|
|
// Convert call/jmp instructions.
|
|
if (ModRm == 0x15) {
|
|
// ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo".
|
|
// Instead we convert to "addr32 call foo" where addr32 is an instruction
|
|
// prefix. That makes result expression to be a single instruction.
|
|
Loc[-2] = 0x67; // addr32 prefix
|
|
Loc[-1] = 0xe8; // call
|
|
relocateOne(Loc, R_X86_64_PC32, Val);
|
|
return;
|
|
}
|
|
|
|
// Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop".
|
|
// jmp doesn't return, so it is fine to use nop here, it is just a stub.
|
|
assert(ModRm == 0x25);
|
|
Loc[-2] = 0xe9; // jmp
|
|
Loc[3] = 0x90; // nop
|
|
relocateOne(Loc - 1, R_X86_64_PC32, Val + 1);
|
|
}
|
|
|
|
// Relocation masks following the #lo(value), #hi(value), #ha(value),
|
|
// #higher(value), #highera(value), #highest(value), and #highesta(value)
|
|
// macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
|
|
// document.
|
|
static uint16_t applyPPCLo(uint64_t V) { return V; }
|
|
static uint16_t applyPPCHi(uint64_t V) { return V >> 16; }
|
|
static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; }
|
|
static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; }
|
|
static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; }
|
|
static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; }
|
|
static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; }
|
|
|
|
PPCTargetInfo::PPCTargetInfo() {}
|
|
|
|
void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_PPC_ADDR16_HA:
|
|
write16be(Loc, applyPPCHa(Val));
|
|
break;
|
|
case R_PPC_ADDR16_LO:
|
|
write16be(Loc, applyPPCLo(Val));
|
|
break;
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
return R_ABS;
|
|
}
|
|
|
|
PPC64TargetInfo::PPC64TargetInfo() {
|
|
PltRel = GotRel = R_PPC64_GLOB_DAT;
|
|
RelativeRel = R_PPC64_RELATIVE;
|
|
PltEntrySize = 32;
|
|
PltHeaderSize = 0;
|
|
|
|
// We need 64K pages (at least under glibc/Linux, the loader won't
|
|
// set different permissions on a finer granularity than that).
|
|
PageSize = 65536;
|
|
|
|
// The PPC64 ELF ABI v1 spec, says:
|
|
//
|
|
// It is normally desirable to put segments with different characteristics
|
|
// in separate 256 Mbyte portions of the address space, to give the
|
|
// operating system full paging flexibility in the 64-bit address space.
|
|
//
|
|
// And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
|
|
// use 0x10000000 as the starting address.
|
|
VAStart = 0x10000000;
|
|
}
|
|
|
|
static uint64_t PPC64TocOffset = 0x8000;
|
|
|
|
uint64_t getPPC64TocBase() {
|
|
// The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
|
|
// TOC starts where the first of these sections starts. We always create a
|
|
// .got when we see a relocation that uses it, so for us the start is always
|
|
// the .got.
|
|
uint64_t TocVA = Out<ELF64BE>::Got->getVA();
|
|
|
|
// Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
|
|
// thus permitting a full 64 Kbytes segment. Note that the glibc startup
|
|
// code (crt1.o) assumes that you can get from the TOC base to the
|
|
// start of the .toc section with only a single (signed) 16-bit relocation.
|
|
return TocVA + PPC64TocOffset;
|
|
}
|
|
|
|
RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_PPC64_TOC16:
|
|
case R_PPC64_TOC16_DS:
|
|
case R_PPC64_TOC16_HA:
|
|
case R_PPC64_TOC16_HI:
|
|
case R_PPC64_TOC16_LO:
|
|
case R_PPC64_TOC16_LO_DS:
|
|
return R_GOTREL;
|
|
case R_PPC64_TOC:
|
|
return R_PPC_TOC;
|
|
case R_PPC64_REL24:
|
|
return R_PPC_PLT_OPD;
|
|
}
|
|
}
|
|
|
|
void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
uint64_t Off = GotEntryAddr - getPPC64TocBase();
|
|
|
|
// FIXME: What we should do, in theory, is get the offset of the function
|
|
// descriptor in the .opd section, and use that as the offset from %r2 (the
|
|
// TOC-base pointer). Instead, we have the GOT-entry offset, and that will
|
|
// be a pointer to the function descriptor in the .opd section. Using
|
|
// this scheme is simpler, but requires an extra indirection per PLT dispatch.
|
|
|
|
write32be(Buf, 0xf8410028); // std %r2, 40(%r1)
|
|
write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha
|
|
write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11)
|
|
write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12)
|
|
write32be(Buf + 16, 0x7d6903a6); // mtctr %r11
|
|
write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12)
|
|
write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12)
|
|
write32be(Buf + 28, 0x4e800420); // bctr
|
|
}
|
|
|
|
static std::pair<uint32_t, uint64_t> toAddr16Rel(uint32_t Type, uint64_t Val) {
|
|
uint64_t V = Val - PPC64TocOffset;
|
|
switch (Type) {
|
|
case R_PPC64_TOC16: return {R_PPC64_ADDR16, V};
|
|
case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V};
|
|
case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V};
|
|
case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V};
|
|
case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V};
|
|
case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V};
|
|
default: return {Type, Val};
|
|
}
|
|
}
|
|
|
|
void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// For a TOC-relative relocation, proceed in terms of the corresponding
|
|
// ADDR16 relocation type.
|
|
std::tie(Type, Val) = toAddr16Rel(Type, Val);
|
|
|
|
switch (Type) {
|
|
case R_PPC64_ADDR14: {
|
|
checkAlignment<4>(Val, Type);
|
|
// Preserve the AA/LK bits in the branch instruction
|
|
uint8_t AALK = Loc[3];
|
|
write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc));
|
|
break;
|
|
}
|
|
case R_PPC64_ADDR16:
|
|
checkInt<16>(Val, Type);
|
|
write16be(Loc, Val);
|
|
break;
|
|
case R_PPC64_ADDR16_DS:
|
|
checkInt<16>(Val, Type);
|
|
write16be(Loc, (read16be(Loc) & 3) | (Val & ~3));
|
|
break;
|
|
case R_PPC64_ADDR16_HA:
|
|
case R_PPC64_REL16_HA:
|
|
write16be(Loc, applyPPCHa(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_HI:
|
|
case R_PPC64_REL16_HI:
|
|
write16be(Loc, applyPPCHi(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHER:
|
|
write16be(Loc, applyPPCHigher(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHERA:
|
|
write16be(Loc, applyPPCHighera(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHEST:
|
|
write16be(Loc, applyPPCHighest(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_HIGHESTA:
|
|
write16be(Loc, applyPPCHighesta(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_LO:
|
|
write16be(Loc, applyPPCLo(Val));
|
|
break;
|
|
case R_PPC64_ADDR16_LO_DS:
|
|
case R_PPC64_REL16_LO:
|
|
write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3));
|
|
break;
|
|
case R_PPC64_ADDR32:
|
|
case R_PPC64_REL32:
|
|
checkInt<32>(Val, Type);
|
|
write32be(Loc, Val);
|
|
break;
|
|
case R_PPC64_ADDR64:
|
|
case R_PPC64_REL64:
|
|
case R_PPC64_TOC:
|
|
write64be(Loc, Val);
|
|
break;
|
|
case R_PPC64_REL24: {
|
|
uint32_t Mask = 0x03FFFFFC;
|
|
checkInt<24>(Val, Type);
|
|
write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask));
|
|
break;
|
|
}
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
AArch64TargetInfo::AArch64TargetInfo() {
|
|
CopyRel = R_AARCH64_COPY;
|
|
RelativeRel = R_AARCH64_RELATIVE;
|
|
IRelativeRel = R_AARCH64_IRELATIVE;
|
|
GotRel = R_AARCH64_GLOB_DAT;
|
|
PltRel = R_AARCH64_JUMP_SLOT;
|
|
TlsDescRel = R_AARCH64_TLSDESC;
|
|
TlsGotRel = R_AARCH64_TLS_TPREL64;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 32;
|
|
|
|
// It doesn't seem to be documented anywhere, but tls on aarch64 uses variant
|
|
// 1 of the tls structures and the tcb size is 16.
|
|
TcbSize = 16;
|
|
}
|
|
|
|
RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
return R_TLSDESC_PAGE;
|
|
case R_AARCH64_TLSDESC_LD64_LO12_NC:
|
|
case R_AARCH64_TLSDESC_ADD_LO12_NC:
|
|
return R_TLSDESC;
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
return R_HINT;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
|
|
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
|
|
return R_TLS;
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_TSTBR14:
|
|
return R_PLT_PC;
|
|
case R_AARCH64_PREL16:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
return R_PC;
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
return R_PAGE_PC;
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
return R_GOT;
|
|
case R_AARCH64_ADR_GOT_PAGE:
|
|
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
|
|
return R_GOT_PAGE_PC;
|
|
}
|
|
}
|
|
|
|
RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
|
|
RelExpr Expr) const {
|
|
if (Expr == R_RELAX_TLS_GD_TO_IE) {
|
|
if (Type == R_AARCH64_TLSDESC_ADR_PAGE21)
|
|
return R_RELAX_TLS_GD_TO_IE_PAGE_PC;
|
|
return R_RELAX_TLS_GD_TO_IE_ABS;
|
|
}
|
|
return Expr;
|
|
}
|
|
|
|
bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return false;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_TLSDESC_ADD_LO12_NC:
|
|
case R_AARCH64_TLSDESC_LD64_LO12_NC:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const {
|
|
return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 ||
|
|
Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC;
|
|
}
|
|
|
|
uint32_t AArch64TargetInfo::getDynRel(uint32_t Type) const {
|
|
if (Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64)
|
|
return Type;
|
|
// Keep it going with a dummy value so that we can find more reloc errors.
|
|
errorDynRel(Type);
|
|
return R_AARCH64_ABS32;
|
|
}
|
|
|
|
void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
|
|
write64le(Buf, Out<ELF64LE>::Plt->getVA());
|
|
}
|
|
|
|
static uint64_t getAArch64Page(uint64_t Expr) {
|
|
return Expr & (~static_cast<uint64_t>(0xFFF));
|
|
}
|
|
|
|
void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const {
|
|
const uint8_t PltData[] = {
|
|
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))]
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2]))
|
|
0x20, 0x02, 0x1f, 0xd6, // br x17
|
|
0x1f, 0x20, 0x03, 0xd5, // nop
|
|
0x1f, 0x20, 0x03, 0xd5, // nop
|
|
0x1f, 0x20, 0x03, 0xd5 // nop
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
|
|
uint64_t Got = Out<ELF64LE>::GotPlt->getVA();
|
|
uint64_t Plt = Out<ELF64LE>::Plt->getVA();
|
|
relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(Got + 16) - getAArch64Page(Plt + 4));
|
|
relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16);
|
|
relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16);
|
|
}
|
|
|
|
void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
const uint8_t Inst[] = {
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))]
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n]))
|
|
0x20, 0x02, 0x1f, 0xd6 // br x17
|
|
};
|
|
memcpy(Buf, Inst, sizeof(Inst));
|
|
|
|
relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(GotEntryAddr) - getAArch64Page(PltEntryAddr));
|
|
relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotEntryAddr);
|
|
relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotEntryAddr);
|
|
}
|
|
|
|
static void updateAArch64Addr(uint8_t *L, uint64_t Imm) {
|
|
uint32_t ImmLo = (Imm & 0x3) << 29;
|
|
uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
|
|
uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
|
|
write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
|
|
}
|
|
|
|
static inline void updateAArch64Add(uint8_t *L, uint64_t Imm) {
|
|
or32le(L, (Imm & 0xFFF) << 10);
|
|
}
|
|
|
|
void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_AARCH64_ABS16:
|
|
case R_AARCH64_PREL16:
|
|
checkIntUInt<16>(Val, Type);
|
|
write16le(Loc, Val);
|
|
break;
|
|
case R_AARCH64_ABS32:
|
|
case R_AARCH64_PREL32:
|
|
checkIntUInt<32>(Val, Type);
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_AARCH64_ABS64:
|
|
case R_AARCH64_PREL64:
|
|
write64le(Loc, Val);
|
|
break;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
// This relocation stores 12 bits and there's no instruction
|
|
// to do it. Instead, we do a 32 bits store of the value
|
|
// of r_addend bitwise-or'ed Loc. This assumes that the addend
|
|
// bits in Loc are zero.
|
|
or32le(Loc, (Val & 0xFFF) << 10);
|
|
break;
|
|
case R_AARCH64_ADR_GOT_PAGE:
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
checkInt<33>(Val, Type);
|
|
updateAArch64Addr(Loc, Val >> 12);
|
|
break;
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
checkInt<21>(Val, Type);
|
|
updateAArch64Addr(Loc, Val);
|
|
break;
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_JUMP26:
|
|
checkInt<28>(Val, Type);
|
|
or32le(Loc, (Val & 0x0FFFFFFC) >> 2);
|
|
break;
|
|
case R_AARCH64_CONDBR19:
|
|
checkInt<21>(Val, Type);
|
|
or32le(Loc, (Val & 0x1FFFFC) << 3);
|
|
break;
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
case R_AARCH64_TLSDESC_LD64_LO12_NC:
|
|
checkAlignment<8>(Val, Type);
|
|
or32le(Loc, (Val & 0xFF8) << 7);
|
|
break;
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
or32le(Loc, (Val & 0x0FF8) << 6);
|
|
break;
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
or32le(Loc, (Val & 0x0FFC) << 9);
|
|
break;
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
or32le(Loc, (Val & 0xFFF) << 10);
|
|
break;
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
or32le(Loc, (Val & 0xFFC) << 8);
|
|
break;
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
or32le(Loc, (Val & 0xFF8) << 7);
|
|
break;
|
|
case R_AARCH64_TSTBR14:
|
|
checkInt<16>(Val, Type);
|
|
or32le(Loc, (Val & 0xFFFC) << 3);
|
|
break;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
|
|
checkInt<24>(Val, Type);
|
|
updateAArch64Add(Loc, Val >> 12);
|
|
break;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSDESC_ADD_LO12_NC:
|
|
updateAArch64Add(Loc, Val);
|
|
break;
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// TLSDESC Global-Dynamic relocation are in the form:
|
|
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
|
|
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC]
|
|
// add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC]
|
|
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
|
|
// blr x1
|
|
// And it can optimized to:
|
|
// movz x0, #0x0, lsl #16
|
|
// movk x0, #0x10
|
|
// nop
|
|
// nop
|
|
checkUInt<32>(Val, Type);
|
|
|
|
switch (Type) {
|
|
case R_AARCH64_TLSDESC_ADD_LO12_NC:
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
write32le(Loc, 0xd503201f); // nop
|
|
return;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz
|
|
return;
|
|
case R_AARCH64_TLSDESC_LD64_LO12_NC:
|
|
write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk
|
|
return;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
// TLSDESC Global-Dynamic relocation are in the form:
|
|
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
|
|
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC]
|
|
// add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC]
|
|
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
|
|
// blr x1
|
|
// And it can optimized to:
|
|
// adrp x0, :gottprel:v
|
|
// ldr x0, [x0, :gottprel_lo12:v]
|
|
// nop
|
|
// nop
|
|
|
|
switch (Type) {
|
|
case R_AARCH64_TLSDESC_ADD_LO12_NC:
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
write32le(Loc, 0xd503201f); // nop
|
|
break;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
write32le(Loc, 0x90000000); // adrp
|
|
relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val);
|
|
break;
|
|
case R_AARCH64_TLSDESC_LD64_LO12_NC:
|
|
write32le(Loc, 0xf9400000); // ldr
|
|
relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
checkUInt<32>(Val, Type);
|
|
|
|
if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
|
|
// Generate MOVZ.
|
|
uint32_t RegNo = read32le(Loc) & 0x1f;
|
|
write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5));
|
|
return;
|
|
}
|
|
if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
|
|
// Generate MOVK.
|
|
uint32_t RegNo = read32le(Loc) & 0x1f;
|
|
write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5));
|
|
return;
|
|
}
|
|
llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
|
|
}
|
|
|
|
void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
assert(Type == R_AMDGPU_REL32);
|
|
write32le(Loc, Val);
|
|
}
|
|
|
|
RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
if (Type != R_AMDGPU_REL32)
|
|
error("do not know how to handle relocation");
|
|
return R_PC;
|
|
}
|
|
|
|
ARMTargetInfo::ARMTargetInfo() {
|
|
CopyRel = R_ARM_COPY;
|
|
RelativeRel = R_ARM_RELATIVE;
|
|
IRelativeRel = R_ARM_IRELATIVE;
|
|
GotRel = R_ARM_GLOB_DAT;
|
|
PltRel = R_ARM_JUMP_SLOT;
|
|
TlsGotRel = R_ARM_TLS_TPOFF32;
|
|
TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
|
|
TlsOffsetRel = R_ARM_TLS_DTPOFF32;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 20;
|
|
}
|
|
|
|
RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S) const {
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_ARM_THM_JUMP11:
|
|
return R_PC;
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
return R_PLT_PC;
|
|
case R_ARM_GOTOFF32:
|
|
// (S + A) - GOT_ORG
|
|
return R_GOTREL;
|
|
case R_ARM_GOT_BREL:
|
|
// GOT(S) + A - GOT_ORG
|
|
return R_GOT_OFF;
|
|
case R_ARM_GOT_PREL:
|
|
// GOT(S) + - GOT_ORG
|
|
return R_GOT_PC;
|
|
case R_ARM_BASE_PREL:
|
|
// B(S) + A - P
|
|
// FIXME: currently B(S) assumed to be .got, this may not hold for all
|
|
// platforms.
|
|
return R_GOTONLY_PC;
|
|
case R_ARM_PREL31:
|
|
case R_ARM_REL32:
|
|
return R_PC;
|
|
}
|
|
}
|
|
|
|
uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const {
|
|
if (Type == R_ARM_ABS32)
|
|
return Type;
|
|
// Keep it going with a dummy value so that we can find more reloc errors.
|
|
errorDynRel(Type);
|
|
return R_ARM_ABS32;
|
|
}
|
|
|
|
void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
|
|
write32le(Buf, Out<ELF32LE>::Plt->getVA());
|
|
}
|
|
|
|
void ARMTargetInfo::writePltHeader(uint8_t *Buf) const {
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
|
|
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
|
|
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
|
|
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t GotPlt = Out<ELF32LE>::GotPlt->getVA();
|
|
uint64_t L1 = Out<ELF32LE>::Plt->getVA() + 8;
|
|
write32le(Buf + 16, GotPlt - L1 - 8);
|
|
}
|
|
|
|
void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
// FIXME: Using simple code sequence with simple relocations.
|
|
// There is a more optimal sequence but it requires support for the group
|
|
// relocations. See ELF for the ARM Architecture Appendix A.3
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
|
|
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
|
|
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t L1 = PltEntryAddr + 4;
|
|
write32le(Buf + 12, GotEntryAddr - L1 - 8);
|
|
}
|
|
|
|
void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_ARM_NONE:
|
|
break;
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_ARM_PREL31:
|
|
checkInt<31>(Val, Type);
|
|
write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
|
|
break;
|
|
case R_ARM_CALL:
|
|
// R_ARM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if (Val & 1) {
|
|
// If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
|
|
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
|
|
checkInt<26>(Val, Type);
|
|
write32le(Loc, 0xfa000000 | // opcode
|
|
((Val & 2) << 23) | // H
|
|
((Val >> 2) & 0x00ffffff)); // imm24
|
|
break;
|
|
}
|
|
if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
|
|
// BLX (always unconditional) instruction to an ARM Target, select an
|
|
// unconditional BL.
|
|
write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
|
|
// fall through as BL encoding is shared with B
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
checkInt<26>(Val, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
|
|
break;
|
|
case R_ARM_THM_JUMP11:
|
|
checkInt<12>(Val, Type);
|
|
write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
|
|
checkInt<21>(Val, Type);
|
|
write16le(Loc,
|
|
(read16le(Loc) & 0xfbc0) | // opcode cond
|
|
((Val >> 10) & 0x0400) | // S
|
|
((Val >> 12) & 0x003f)); // imm6
|
|
write16le(Loc + 2,
|
|
0x8000 | // opcode
|
|
((Val >> 8) & 0x0800) | // J2
|
|
((Val >> 5) & 0x2000) | // J1
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_THM_CALL:
|
|
// R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if ((Val & 1) == 0) {
|
|
// Ensure BLX destination is 4-byte aligned. As BLX instruction may
|
|
// only be two byte aligned. This must be done before overflow check
|
|
Val = alignTo(Val, 4);
|
|
}
|
|
// Bit 12 is 0 for BLX, 1 for BL
|
|
write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
|
|
// Fall through as rest of encoding is the same as B.W
|
|
case R_ARM_THM_JUMP24:
|
|
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
|
|
// FIXME: Use of I1 and I2 require v6T2ops
|
|
checkInt<25>(Val, Type);
|
|
write16le(Loc,
|
|
0xf000 | // opcode
|
|
((Val >> 14) & 0x0400) | // S
|
|
((Val >> 12) & 0x03ff)); // imm10
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0xd000) | // opcode
|
|
(((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
|
|
(((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_MOVW_ABS_NC:
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
|
|
(Val & 0x0fff));
|
|
break;
|
|
case R_ARM_MOVT_ABS:
|
|
checkUInt<32>(Val, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
|
|
(((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
|
|
break;
|
|
case R_ARM_THM_MOVT_ABS:
|
|
// Encoding T1: A = imm4:i:imm3:imm8
|
|
checkUInt<32>(Val, Type);
|
|
write16le(Loc,
|
|
0xf2c0 | // opcode
|
|
((Val >> 17) & 0x0400) | // i
|
|
((Val >> 28) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val >> 12) & 0x7000) | // imm3
|
|
((Val >> 16) & 0x00ff)); // imm8
|
|
break;
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
write16le(Loc,
|
|
0xf240 | // opcode
|
|
((Val >> 1) & 0x0400) | // i
|
|
((Val >> 12) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val << 4) & 0x7000) | // imm3
|
|
(Val & 0x00ff)); // imm8
|
|
break;
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
uint64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf,
|
|
uint32_t Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return 0;
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
return SignExtend64<32>(read32le(Buf));
|
|
case R_ARM_PREL31:
|
|
return SignExtend64<31>(read32le(Buf));
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
return SignExtend64<26>(read32le(Buf) << 2);
|
|
case R_ARM_THM_JUMP11:
|
|
return SignExtend64<12>(read16le(Buf) << 1);
|
|
case R_ARM_THM_JUMP19: {
|
|
// Encoding T3: A = S:J2:J1:imm10:imm6:0
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
|
|
((Lo & 0x0800) << 8) | // J2
|
|
((Lo & 0x2000) << 5) | // J1
|
|
((Hi & 0x003f) << 12) | // imm6
|
|
((Lo & 0x07ff) << 1)); // imm11:0
|
|
}
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL: {
|
|
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
|
|
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
|
|
// FIXME: I1 and I2 require v6T2ops
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
|
|
(~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
|
|
(~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
|
|
((Hi & 0x003ff) << 12) | // imm0
|
|
((Lo & 0x007ff) << 1)); // imm11:0
|
|
}
|
|
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
|
|
// MOVT is in the range -32768 <= A < 32768
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS: {
|
|
uint64_t Val = read32le(Buf) & 0x000f0fff;
|
|
return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
|
|
}
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS: {
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
|
|
((Hi & 0x0400) << 1) | // i
|
|
((Lo & 0x7000) >> 4) | // imm3
|
|
(Lo & 0x00ff)); // imm8
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class ELFT> MipsTargetInfo<ELFT>::MipsTargetInfo() {
|
|
GotPltHeaderEntriesNum = 2;
|
|
PageSize = 65536;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 32;
|
|
ThunkSize = 16;
|
|
CopyRel = R_MIPS_COPY;
|
|
PltRel = R_MIPS_JUMP_SLOT;
|
|
if (ELFT::Is64Bits)
|
|
RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32;
|
|
else
|
|
RelativeRel = R_MIPS_REL32;
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelExpr MipsTargetInfo<ELFT>::getRelExpr(uint32_t Type,
|
|
const SymbolBody &S) const {
|
|
if (ELFT::Is64Bits)
|
|
// See comment in the calculateMips64RelChain.
|
|
Type &= 0xff;
|
|
switch (Type) {
|
|
default:
|
|
return R_ABS;
|
|
case R_MIPS_JALR:
|
|
return R_HINT;
|
|
case R_MIPS_GPREL16:
|
|
case R_MIPS_GPREL32:
|
|
return R_GOTREL;
|
|
case R_MIPS_26:
|
|
return R_PLT;
|
|
case R_MIPS_HI16:
|
|
case R_MIPS_LO16:
|
|
case R_MIPS_GOT_OFST:
|
|
// MIPS _gp_disp designates offset between start of function and 'gp'
|
|
// pointer into GOT. __gnu_local_gp is equal to the current value of
|
|
// the 'gp'. Therefore any relocations against them do not require
|
|
// dynamic relocation.
|
|
if (&S == ElfSym<ELFT>::MipsGpDisp)
|
|
return R_PC;
|
|
return R_ABS;
|
|
case R_MIPS_PC32:
|
|
case R_MIPS_PC16:
|
|
case R_MIPS_PC19_S2:
|
|
case R_MIPS_PC21_S2:
|
|
case R_MIPS_PC26_S2:
|
|
case R_MIPS_PCHI16:
|
|
case R_MIPS_PCLO16:
|
|
return R_PC;
|
|
case R_MIPS_GOT16:
|
|
if (S.isLocal())
|
|
return R_MIPS_GOT_LOCAL_PAGE;
|
|
// fallthrough
|
|
case R_MIPS_CALL16:
|
|
case R_MIPS_GOT_DISP:
|
|
return R_MIPS_GOT_OFF;
|
|
case R_MIPS_GOT_PAGE:
|
|
return R_MIPS_GOT_LOCAL_PAGE;
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint32_t MipsTargetInfo<ELFT>::getDynRel(uint32_t Type) const {
|
|
if (Type == R_MIPS_32 || Type == R_MIPS_64)
|
|
return RelativeRel;
|
|
// Keep it going with a dummy value so that we can find more reloc errors.
|
|
errorDynRel(Type);
|
|
return R_MIPS_32;
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writeGotPlt(uint8_t *Buf, const SymbolBody &) const {
|
|
write32<ELFT::TargetEndianness>(Buf, Out<ELFT>::Plt->getVA());
|
|
}
|
|
|
|
static uint16_t mipsHigh(uint64_t V) { return (V + 0x8000) >> 16; }
|
|
|
|
template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
|
|
static int64_t getPcRelocAddend(const uint8_t *Loc) {
|
|
uint32_t Instr = read32<E>(Loc);
|
|
uint32_t Mask = 0xffffffff >> (32 - BSIZE);
|
|
return SignExtend64<BSIZE + SHIFT>((Instr & Mask) << SHIFT);
|
|
}
|
|
|
|
template <endianness E, uint8_t BSIZE, uint8_t SHIFT>
|
|
static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) {
|
|
uint32_t Mask = 0xffffffff >> (32 - BSIZE);
|
|
uint32_t Instr = read32<E>(Loc);
|
|
if (SHIFT > 0)
|
|
checkAlignment<(1 << SHIFT)>(V, Type);
|
|
checkInt<BSIZE + SHIFT>(V, Type);
|
|
write32<E>(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask));
|
|
}
|
|
|
|
template <endianness E>
|
|
static void writeMipsHi16(uint8_t *Loc, uint64_t V) {
|
|
uint32_t Instr = read32<E>(Loc);
|
|
write32<E>(Loc, (Instr & 0xffff0000) | mipsHigh(V));
|
|
}
|
|
|
|
template <endianness E>
|
|
static void writeMipsLo16(uint8_t *Loc, uint64_t V) {
|
|
uint32_t Instr = read32<E>(Loc);
|
|
write32<E>(Loc, (Instr & 0xffff0000) | (V & 0xffff));
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writePltHeader(uint8_t *Buf) const {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0])
|
|
write32<E>(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28)
|
|
write32<E>(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0])
|
|
write32<E>(Buf + 12, 0x031cc023); // subu $24, $24, $28
|
|
write32<E>(Buf + 16, 0x03e07825); // move $15, $31
|
|
write32<E>(Buf + 20, 0x0018c082); // srl $24, $24, 2
|
|
write32<E>(Buf + 24, 0x0320f809); // jalr $25
|
|
write32<E>(Buf + 28, 0x2718fffe); // subu $24, $24, 2
|
|
uint64_t Got = Out<ELFT>::GotPlt->getVA();
|
|
writeMipsHi16<E>(Buf, Got);
|
|
writeMipsLo16<E>(Buf + 4, Got);
|
|
writeMipsLo16<E>(Buf + 8, Got);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writePlt(uint8_t *Buf, uint64_t GotEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry)
|
|
write32<E>(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15)
|
|
write32<E>(Buf + 8, 0x03200008); // jr $25
|
|
write32<E>(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry)
|
|
writeMipsHi16<E>(Buf, GotEntryAddr);
|
|
writeMipsLo16<E>(Buf + 4, GotEntryAddr);
|
|
writeMipsLo16<E>(Buf + 12, GotEntryAddr);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::writeThunk(uint8_t *Buf, uint64_t S) const {
|
|
// Write MIPS LA25 thunk code to call PIC function from the non-PIC one.
|
|
// See MipsTargetInfo::writeThunk for details.
|
|
const endianness E = ELFT::TargetEndianness;
|
|
write32<E>(Buf, 0x3c190000); // lui $25, %hi(func)
|
|
write32<E>(Buf + 4, 0x08000000 | (S >> 2)); // j func
|
|
write32<E>(Buf + 8, 0x27390000); // addiu $25, $25, %lo(func)
|
|
write32<E>(Buf + 12, 0x00000000); // nop
|
|
writeMipsHi16<E>(Buf, S);
|
|
writeMipsLo16<E>(Buf + 8, S);
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool MipsTargetInfo<ELFT>::needsThunk(uint32_t Type, const InputFile &File,
|
|
const SymbolBody &S) const {
|
|
// Any MIPS PIC code function is invoked with its address in register $t9.
|
|
// So if we have a branch instruction from non-PIC code to the PIC one
|
|
// we cannot make the jump directly and need to create a small stubs
|
|
// to save the target function address.
|
|
// See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
if (Type != R_MIPS_26)
|
|
return false;
|
|
auto *F = dyn_cast<ELFFileBase<ELFT>>(&File);
|
|
if (!F)
|
|
return false;
|
|
// If current file has PIC code, LA25 stub is not required.
|
|
if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC)
|
|
return false;
|
|
auto *D = dyn_cast<DefinedRegular<ELFT>>(&S);
|
|
if (!D || !D->Section)
|
|
return false;
|
|
// LA25 is required if target file has PIC code
|
|
// or target symbol is a PIC symbol.
|
|
return (D->Section->getFile()->getObj().getHeader()->e_flags & EF_MIPS_PIC) ||
|
|
(D->StOther & STO_MIPS_MIPS16) == STO_MIPS_PIC;
|
|
}
|
|
|
|
template <class ELFT>
|
|
uint64_t MipsTargetInfo<ELFT>::getImplicitAddend(const uint8_t *Buf,
|
|
uint32_t Type) const {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
switch (Type) {
|
|
default:
|
|
return 0;
|
|
case R_MIPS_32:
|
|
case R_MIPS_GPREL32:
|
|
return read32<E>(Buf);
|
|
case R_MIPS_26:
|
|
// FIXME (simon): If the relocation target symbol is not a PLT entry
|
|
// we should use another expression for calculation:
|
|
// ((A << 2) | (P & 0xf0000000)) >> 2
|
|
return SignExtend64<28>(read32<E>(Buf) << 2);
|
|
case R_MIPS_GPREL16:
|
|
case R_MIPS_LO16:
|
|
case R_MIPS_PCLO16:
|
|
case R_MIPS_TLS_DTPREL_HI16:
|
|
case R_MIPS_TLS_DTPREL_LO16:
|
|
case R_MIPS_TLS_TPREL_HI16:
|
|
case R_MIPS_TLS_TPREL_LO16:
|
|
return SignExtend64<16>(read32<E>(Buf));
|
|
case R_MIPS_PC16:
|
|
return getPcRelocAddend<E, 16, 2>(Buf);
|
|
case R_MIPS_PC19_S2:
|
|
return getPcRelocAddend<E, 19, 2>(Buf);
|
|
case R_MIPS_PC21_S2:
|
|
return getPcRelocAddend<E, 21, 2>(Buf);
|
|
case R_MIPS_PC26_S2:
|
|
return getPcRelocAddend<E, 26, 2>(Buf);
|
|
case R_MIPS_PC32:
|
|
return getPcRelocAddend<E, 32, 0>(Buf);
|
|
}
|
|
}
|
|
|
|
static std::pair<uint32_t, uint64_t> calculateMips64RelChain(uint32_t Type,
|
|
uint64_t Val) {
|
|
// MIPS N64 ABI packs multiple relocations into the single relocation
|
|
// record. In general, all up to three relocations can have arbitrary
|
|
// types. In fact, Clang and GCC uses only a few combinations. For now,
|
|
// we support two of them. That is allow to pass at least all LLVM
|
|
// test suite cases.
|
|
// <any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
|
|
// <any relocation> / R_MIPS_64 / R_MIPS_NONE
|
|
// The first relocation is a 'real' relocation which is calculated
|
|
// using the corresponding symbol's value. The second and the third
|
|
// relocations used to modify result of the first one: extend it to
|
|
// 64-bit, extract high or low part etc. For details, see part 2.9 Relocation
|
|
// at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
|
|
uint32_t Type2 = (Type >> 8) & 0xff;
|
|
uint32_t Type3 = (Type >> 16) & 0xff;
|
|
if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE)
|
|
return std::make_pair(Type, Val);
|
|
if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE)
|
|
return std::make_pair(Type2, Val);
|
|
if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16))
|
|
return std::make_pair(Type3, -Val);
|
|
error("unsupported relocations combination " + Twine(Type));
|
|
return std::make_pair(Type & 0xff, Val);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void MipsTargetInfo<ELFT>::relocateOne(uint8_t *Loc, uint32_t Type,
|
|
uint64_t Val) const {
|
|
const endianness E = ELFT::TargetEndianness;
|
|
// Thread pointer and DRP offsets from the start of TLS data area.
|
|
// https://www.linux-mips.org/wiki/NPTL
|
|
if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16)
|
|
Val -= 0x8000;
|
|
else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16)
|
|
Val -= 0x7000;
|
|
if (ELFT::Is64Bits)
|
|
std::tie(Type, Val) = calculateMips64RelChain(Type, Val);
|
|
switch (Type) {
|
|
case R_MIPS_32:
|
|
case R_MIPS_GPREL32:
|
|
write32<E>(Loc, Val);
|
|
break;
|
|
case R_MIPS_64:
|
|
write64<E>(Loc, Val);
|
|
break;
|
|
case R_MIPS_26:
|
|
write32<E>(Loc, (read32<E>(Loc) & ~0x3ffffff) | (Val >> 2));
|
|
break;
|
|
case R_MIPS_GOT_DISP:
|
|
case R_MIPS_GOT_PAGE:
|
|
case R_MIPS_GOT16:
|
|
case R_MIPS_GPREL16:
|
|
checkInt<16>(Val, Type);
|
|
// fallthrough
|
|
case R_MIPS_CALL16:
|
|
case R_MIPS_GOT_OFST:
|
|
case R_MIPS_LO16:
|
|
case R_MIPS_PCLO16:
|
|
case R_MIPS_TLS_DTPREL_LO16:
|
|
case R_MIPS_TLS_TPREL_LO16:
|
|
writeMipsLo16<E>(Loc, Val);
|
|
break;
|
|
case R_MIPS_HI16:
|
|
case R_MIPS_PCHI16:
|
|
case R_MIPS_TLS_DTPREL_HI16:
|
|
case R_MIPS_TLS_TPREL_HI16:
|
|
writeMipsHi16<E>(Loc, Val);
|
|
break;
|
|
case R_MIPS_JALR:
|
|
// Ignore this optimization relocation for now
|
|
break;
|
|
case R_MIPS_PC16:
|
|
applyMipsPcReloc<E, 16, 2>(Loc, Type, Val);
|
|
break;
|
|
case R_MIPS_PC19_S2:
|
|
applyMipsPcReloc<E, 19, 2>(Loc, Type, Val);
|
|
break;
|
|
case R_MIPS_PC21_S2:
|
|
applyMipsPcReloc<E, 21, 2>(Loc, Type, Val);
|
|
break;
|
|
case R_MIPS_PC26_S2:
|
|
applyMipsPcReloc<E, 26, 2>(Loc, Type, Val);
|
|
break;
|
|
case R_MIPS_PC32:
|
|
applyMipsPcReloc<E, 32, 0>(Loc, Type, Val);
|
|
break;
|
|
default:
|
|
fatal("unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
bool MipsTargetInfo<ELFT>::usesOnlyLowPageBits(uint32_t Type) const {
|
|
return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST;
|
|
}
|
|
}
|
|
}
|