forked from OSchip/llvm-project
2984 lines
111 KiB
C++
2984 lines
111 KiB
C++
//===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/Mangle.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "clang/Basic/ABI.h"
|
|
#include "clang/Basic/DiagnosticOptions.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/JamCRC.h"
|
|
|
|
using namespace clang;
|
|
|
|
namespace {
|
|
|
|
/// \brief Retrieve the declaration context that should be used when mangling
|
|
/// the given declaration.
|
|
static const DeclContext *getEffectiveDeclContext(const Decl *D) {
|
|
// The ABI assumes that lambda closure types that occur within
|
|
// default arguments live in the context of the function. However, due to
|
|
// the way in which Clang parses and creates function declarations, this is
|
|
// not the case: the lambda closure type ends up living in the context
|
|
// where the function itself resides, because the function declaration itself
|
|
// had not yet been created. Fix the context here.
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (RD->isLambda())
|
|
if (ParmVarDecl *ContextParam =
|
|
dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
|
|
return ContextParam->getDeclContext();
|
|
}
|
|
|
|
// Perform the same check for block literals.
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
|
|
if (ParmVarDecl *ContextParam =
|
|
dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
|
|
return ContextParam->getDeclContext();
|
|
}
|
|
|
|
const DeclContext *DC = D->getDeclContext();
|
|
if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
|
|
return getEffectiveDeclContext(CD);
|
|
|
|
return DC;
|
|
}
|
|
|
|
static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
|
|
return getEffectiveDeclContext(cast<Decl>(DC));
|
|
}
|
|
|
|
static const FunctionDecl *getStructor(const NamedDecl *ND) {
|
|
if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(ND))
|
|
return FTD->getTemplatedDecl();
|
|
|
|
const auto *FD = cast<FunctionDecl>(ND);
|
|
if (const auto *FTD = FD->getPrimaryTemplate())
|
|
return FTD->getTemplatedDecl();
|
|
|
|
return FD;
|
|
}
|
|
|
|
static bool isLambda(const NamedDecl *ND) {
|
|
const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
|
|
if (!Record)
|
|
return false;
|
|
|
|
return Record->isLambda();
|
|
}
|
|
|
|
/// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
|
|
typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
|
|
llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
|
|
llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
|
|
llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
|
|
llvm::DenseMap<const NamedDecl *, unsigned> SEHFilterIds;
|
|
llvm::DenseMap<const NamedDecl *, unsigned> SEHFinallyIds;
|
|
|
|
public:
|
|
MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
|
|
: MicrosoftMangleContext(Context, Diags) {}
|
|
bool shouldMangleCXXName(const NamedDecl *D) override;
|
|
bool shouldMangleStringLiteral(const StringLiteral *SL) override;
|
|
void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
|
|
void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
|
|
raw_ostream &) override;
|
|
void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
|
|
raw_ostream &) override;
|
|
void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &ThisAdjustment,
|
|
raw_ostream &) override;
|
|
void mangleCXXVFTable(const CXXRecordDecl *Derived,
|
|
ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXVBTable(const CXXRecordDecl *Derived,
|
|
ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
|
|
const CXXRecordDecl *DstRD,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXThrowInfo(QualType T, bool IsConst, bool IsVolatile,
|
|
uint32_t NumEntries, raw_ostream &Out) override;
|
|
void mangleCXXCatchableTypeArray(QualType T, uint32_t NumEntries,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXCatchableType(QualType T, const CXXConstructorDecl *CD,
|
|
CXXCtorType CT, uint32_t Size, uint32_t NVOffset,
|
|
int32_t VBPtrOffset, uint32_t VBIndex,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
|
|
void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
|
|
void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
|
|
uint32_t NVOffset, int32_t VBPtrOffset,
|
|
uint32_t VBTableOffset, uint32_t Flags,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
|
|
raw_ostream &Out) override;
|
|
void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
|
|
raw_ostream &Out) override;
|
|
void
|
|
mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
|
|
ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) override;
|
|
void mangleTypeName(QualType T, raw_ostream &) override;
|
|
void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
|
|
raw_ostream &) override;
|
|
void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
|
|
raw_ostream &) override;
|
|
void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
|
|
raw_ostream &) override;
|
|
void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
|
|
void mangleThreadSafeStaticGuardVariable(const VarDecl *D, unsigned GuardNum,
|
|
raw_ostream &Out) override;
|
|
void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
|
|
void mangleDynamicAtExitDestructor(const VarDecl *D,
|
|
raw_ostream &Out) override;
|
|
void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
|
|
raw_ostream &Out) override;
|
|
void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
|
|
raw_ostream &Out) override;
|
|
void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
|
|
bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
|
|
// Lambda closure types are already numbered.
|
|
if (isLambda(ND))
|
|
return false;
|
|
|
|
const DeclContext *DC = getEffectiveDeclContext(ND);
|
|
if (!DC->isFunctionOrMethod())
|
|
return false;
|
|
|
|
// Use the canonical number for externally visible decls.
|
|
if (ND->isExternallyVisible()) {
|
|
disc = getASTContext().getManglingNumber(ND);
|
|
return true;
|
|
}
|
|
|
|
// Anonymous tags are already numbered.
|
|
if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
|
|
if (!Tag->hasNameForLinkage() &&
|
|
!getASTContext().getDeclaratorForUnnamedTagDecl(Tag) &&
|
|
!getASTContext().getTypedefNameForUnnamedTagDecl(Tag))
|
|
return false;
|
|
}
|
|
|
|
// Make up a reasonable number for internal decls.
|
|
unsigned &discriminator = Uniquifier[ND];
|
|
if (!discriminator)
|
|
discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
|
|
disc = discriminator + 1;
|
|
return true;
|
|
}
|
|
|
|
unsigned getLambdaId(const CXXRecordDecl *RD) {
|
|
assert(RD->isLambda() && "RD must be a lambda!");
|
|
assert(!RD->isExternallyVisible() && "RD must not be visible!");
|
|
assert(RD->getLambdaManglingNumber() == 0 &&
|
|
"RD must not have a mangling number!");
|
|
std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
|
|
Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
|
|
return Result.first->second;
|
|
}
|
|
|
|
private:
|
|
void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
|
|
};
|
|
|
|
/// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
|
|
/// Microsoft Visual C++ ABI.
|
|
class MicrosoftCXXNameMangler {
|
|
MicrosoftMangleContextImpl &Context;
|
|
raw_ostream &Out;
|
|
|
|
/// The "structor" is the top-level declaration being mangled, if
|
|
/// that's not a template specialization; otherwise it's the pattern
|
|
/// for that specialization.
|
|
const NamedDecl *Structor;
|
|
unsigned StructorType;
|
|
|
|
typedef llvm::SmallVector<std::string, 10> BackRefVec;
|
|
BackRefVec NameBackReferences;
|
|
|
|
typedef llvm::DenseMap<const void *, unsigned> ArgBackRefMap;
|
|
ArgBackRefMap TypeBackReferences;
|
|
|
|
typedef std::set<int> PassObjectSizeArgsSet;
|
|
PassObjectSizeArgsSet PassObjectSizeArgs;
|
|
|
|
ASTContext &getASTContext() const { return Context.getASTContext(); }
|
|
|
|
// FIXME: If we add support for __ptr32/64 qualifiers, then we should push
|
|
// this check into mangleQualifiers().
|
|
const bool PointersAre64Bit;
|
|
|
|
public:
|
|
enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
|
|
|
|
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
|
|
: Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
|
|
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
|
|
64) {}
|
|
|
|
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
|
|
const CXXConstructorDecl *D, CXXCtorType Type)
|
|
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
|
|
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
|
|
64) {}
|
|
|
|
MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
|
|
const CXXDestructorDecl *D, CXXDtorType Type)
|
|
: Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
|
|
PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
|
|
64) {}
|
|
|
|
raw_ostream &getStream() const { return Out; }
|
|
|
|
void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
|
|
void mangleName(const NamedDecl *ND);
|
|
void mangleFunctionEncoding(const FunctionDecl *FD, bool ShouldMangle);
|
|
void mangleVariableEncoding(const VarDecl *VD);
|
|
void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
|
|
void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
|
|
const CXXMethodDecl *MD);
|
|
void mangleVirtualMemPtrThunk(
|
|
const CXXMethodDecl *MD,
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML);
|
|
void mangleNumber(int64_t Number);
|
|
void mangleTagTypeKind(TagTypeKind TK);
|
|
void mangleArtificalTagType(TagTypeKind TK, StringRef UnqualifiedName,
|
|
ArrayRef<StringRef> NestedNames = None);
|
|
void mangleType(QualType T, SourceRange Range,
|
|
QualifierMangleMode QMM = QMM_Mangle);
|
|
void mangleFunctionType(const FunctionType *T,
|
|
const FunctionDecl *D = nullptr,
|
|
bool ForceThisQuals = false);
|
|
void mangleNestedName(const NamedDecl *ND);
|
|
|
|
private:
|
|
void mangleUnqualifiedName(const NamedDecl *ND) {
|
|
mangleUnqualifiedName(ND, ND->getDeclName());
|
|
}
|
|
void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
|
|
void mangleSourceName(StringRef Name);
|
|
void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
|
|
void mangleCXXDtorType(CXXDtorType T);
|
|
void mangleQualifiers(Qualifiers Quals, bool IsMember);
|
|
void mangleRefQualifier(RefQualifierKind RefQualifier);
|
|
void manglePointerCVQualifiers(Qualifiers Quals);
|
|
void manglePointerExtQualifiers(Qualifiers Quals, QualType PointeeType);
|
|
|
|
void mangleUnscopedTemplateName(const TemplateDecl *ND);
|
|
void
|
|
mangleTemplateInstantiationName(const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs);
|
|
void mangleObjCMethodName(const ObjCMethodDecl *MD);
|
|
|
|
void mangleArgumentType(QualType T, SourceRange Range);
|
|
void manglePassObjectSizeArg(const PassObjectSizeAttr *POSA);
|
|
|
|
// Declare manglers for every type class.
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT)
|
|
#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
|
|
Qualifiers Quals, \
|
|
SourceRange Range);
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
|
|
void mangleType(const TagDecl *TD);
|
|
void mangleDecayedArrayType(const ArrayType *T);
|
|
void mangleArrayType(const ArrayType *T);
|
|
void mangleFunctionClass(const FunctionDecl *FD);
|
|
void mangleCallingConvention(CallingConv CC);
|
|
void mangleCallingConvention(const FunctionType *T);
|
|
void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
|
|
void mangleExpression(const Expr *E);
|
|
void mangleThrowSpecification(const FunctionProtoType *T);
|
|
|
|
void mangleTemplateArgs(const TemplateDecl *TD,
|
|
const TemplateArgumentList &TemplateArgs);
|
|
void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA,
|
|
const NamedDecl *Parm);
|
|
};
|
|
}
|
|
|
|
bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
LanguageLinkage L = FD->getLanguageLinkage();
|
|
// Overloadable functions need mangling.
|
|
if (FD->hasAttr<OverloadableAttr>())
|
|
return true;
|
|
|
|
// The ABI expects that we would never mangle "typical" user-defined entry
|
|
// points regardless of visibility or freestanding-ness.
|
|
//
|
|
// N.B. This is distinct from asking about "main". "main" has a lot of
|
|
// special rules associated with it in the standard while these
|
|
// user-defined entry points are outside of the purview of the standard.
|
|
// For example, there can be only one definition for "main" in a standards
|
|
// compliant program; however nothing forbids the existence of wmain and
|
|
// WinMain in the same translation unit.
|
|
if (FD->isMSVCRTEntryPoint())
|
|
return false;
|
|
|
|
// C++ functions and those whose names are not a simple identifier need
|
|
// mangling.
|
|
if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
|
|
return true;
|
|
|
|
// C functions are not mangled.
|
|
if (L == CLanguageLinkage)
|
|
return false;
|
|
}
|
|
|
|
// Otherwise, no mangling is done outside C++ mode.
|
|
if (!getASTContext().getLangOpts().CPlusPlus)
|
|
return false;
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// C variables are not mangled.
|
|
if (VD->isExternC())
|
|
return false;
|
|
|
|
// Variables at global scope with non-internal linkage are not mangled.
|
|
const DeclContext *DC = getEffectiveDeclContext(D);
|
|
// Check for extern variable declared locally.
|
|
if (DC->isFunctionOrMethod() && D->hasLinkage())
|
|
while (!DC->isNamespace() && !DC->isTranslationUnit())
|
|
DC = getEffectiveParentContext(DC);
|
|
|
|
if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
|
|
!isa<VarTemplateSpecializationDecl>(D) &&
|
|
D->getIdentifier() != nullptr)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
|
|
return true;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
|
|
// MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
|
|
// Therefore it's really important that we don't decorate the
|
|
// name with leading underscores or leading/trailing at signs. So, by
|
|
// default, we emit an asm marker at the start so we get the name right.
|
|
// Callers can override this with a custom prefix.
|
|
|
|
// <mangled-name> ::= ? <name> <type-encoding>
|
|
Out << Prefix;
|
|
mangleName(D);
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
mangleFunctionEncoding(FD, Context.shouldMangleDeclName(FD));
|
|
else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
|
|
mangleVariableEncoding(VD);
|
|
else
|
|
llvm_unreachable("Tried to mangle unexpected NamedDecl!");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD,
|
|
bool ShouldMangle) {
|
|
// <type-encoding> ::= <function-class> <function-type>
|
|
|
|
// Since MSVC operates on the type as written and not the canonical type, it
|
|
// actually matters which decl we have here. MSVC appears to choose the
|
|
// first, since it is most likely to be the declaration in a header file.
|
|
FD = FD->getFirstDecl();
|
|
|
|
// We should never ever see a FunctionNoProtoType at this point.
|
|
// We don't even know how to mangle their types anyway :).
|
|
const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
|
|
|
|
// extern "C" functions can hold entities that must be mangled.
|
|
// As it stands, these functions still need to get expressed in the full
|
|
// external name. They have their class and type omitted, replaced with '9'.
|
|
if (ShouldMangle) {
|
|
// We would like to mangle all extern "C" functions using this additional
|
|
// component but this would break compatibility with MSVC's behavior.
|
|
// Instead, do this when we know that compatibility isn't important (in
|
|
// other words, when it is an overloaded extern "C" function).
|
|
if (FD->isExternC() && FD->hasAttr<OverloadableAttr>())
|
|
Out << "$$J0";
|
|
|
|
mangleFunctionClass(FD);
|
|
|
|
mangleFunctionType(FT, FD);
|
|
} else {
|
|
Out << '9';
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
|
|
// <type-encoding> ::= <storage-class> <variable-type>
|
|
// <storage-class> ::= 0 # private static member
|
|
// ::= 1 # protected static member
|
|
// ::= 2 # public static member
|
|
// ::= 3 # global
|
|
// ::= 4 # static local
|
|
|
|
// The first character in the encoding (after the name) is the storage class.
|
|
if (VD->isStaticDataMember()) {
|
|
// If it's a static member, it also encodes the access level.
|
|
switch (VD->getAccess()) {
|
|
default:
|
|
case AS_private: Out << '0'; break;
|
|
case AS_protected: Out << '1'; break;
|
|
case AS_public: Out << '2'; break;
|
|
}
|
|
}
|
|
else if (!VD->isStaticLocal())
|
|
Out << '3';
|
|
else
|
|
Out << '4';
|
|
// Now mangle the type.
|
|
// <variable-type> ::= <type> <cvr-qualifiers>
|
|
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
|
|
// Pointers and references are odd. The type of 'int * const foo;' gets
|
|
// mangled as 'QAHA' instead of 'PAHB', for example.
|
|
SourceRange SR = VD->getSourceRange();
|
|
QualType Ty = VD->getType();
|
|
if (Ty->isPointerType() || Ty->isReferenceType() ||
|
|
Ty->isMemberPointerType()) {
|
|
mangleType(Ty, SR, QMM_Drop);
|
|
manglePointerExtQualifiers(
|
|
Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), QualType());
|
|
if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
|
|
mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
|
|
// Member pointers are suffixed with a back reference to the member
|
|
// pointer's class name.
|
|
mangleName(MPT->getClass()->getAsCXXRecordDecl());
|
|
} else
|
|
mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
|
|
} else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
|
|
// Global arrays are funny, too.
|
|
mangleDecayedArrayType(AT);
|
|
if (AT->getElementType()->isArrayType())
|
|
Out << 'A';
|
|
else
|
|
mangleQualifiers(Ty.getQualifiers(), false);
|
|
} else {
|
|
mangleType(Ty, SR, QMM_Drop);
|
|
mangleQualifiers(Ty.getQualifiers(), false);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
|
|
const ValueDecl *VD) {
|
|
// <member-data-pointer> ::= <integer-literal>
|
|
// ::= $F <number> <number>
|
|
// ::= $G <number> <number> <number>
|
|
|
|
int64_t FieldOffset;
|
|
int64_t VBTableOffset;
|
|
MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
|
|
if (VD) {
|
|
FieldOffset = getASTContext().getFieldOffset(VD);
|
|
assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
|
|
"cannot take address of bitfield");
|
|
FieldOffset /= getASTContext().getCharWidth();
|
|
|
|
VBTableOffset = 0;
|
|
|
|
if (IM == MSInheritanceAttr::Keyword_virtual_inheritance)
|
|
FieldOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
|
|
} else {
|
|
FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
|
|
|
|
VBTableOffset = -1;
|
|
}
|
|
|
|
char Code = '\0';
|
|
switch (IM) {
|
|
case MSInheritanceAttr::Keyword_single_inheritance: Code = '0'; break;
|
|
case MSInheritanceAttr::Keyword_multiple_inheritance: Code = '0'; break;
|
|
case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'F'; break;
|
|
case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
|
|
}
|
|
|
|
Out << '$' << Code;
|
|
|
|
mangleNumber(FieldOffset);
|
|
|
|
// The C++ standard doesn't allow base-to-derived member pointer conversions
|
|
// in template parameter contexts, so the vbptr offset of data member pointers
|
|
// is always zero.
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
|
|
mangleNumber(0);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(IM))
|
|
mangleNumber(VBTableOffset);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
|
|
const CXXMethodDecl *MD) {
|
|
// <member-function-pointer> ::= $1? <name>
|
|
// ::= $H? <name> <number>
|
|
// ::= $I? <name> <number> <number>
|
|
// ::= $J? <name> <number> <number> <number>
|
|
|
|
MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
|
|
|
|
char Code = '\0';
|
|
switch (IM) {
|
|
case MSInheritanceAttr::Keyword_single_inheritance: Code = '1'; break;
|
|
case MSInheritanceAttr::Keyword_multiple_inheritance: Code = 'H'; break;
|
|
case MSInheritanceAttr::Keyword_virtual_inheritance: Code = 'I'; break;
|
|
case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
|
|
}
|
|
|
|
// If non-virtual, mangle the name. If virtual, mangle as a virtual memptr
|
|
// thunk.
|
|
uint64_t NVOffset = 0;
|
|
uint64_t VBTableOffset = 0;
|
|
uint64_t VBPtrOffset = 0;
|
|
if (MD) {
|
|
Out << '$' << Code << '?';
|
|
if (MD->isVirtual()) {
|
|
MicrosoftVTableContext *VTContext =
|
|
cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML =
|
|
VTContext->getMethodVFTableLocation(GlobalDecl(MD));
|
|
mangleVirtualMemPtrThunk(MD, ML);
|
|
NVOffset = ML.VFPtrOffset.getQuantity();
|
|
VBTableOffset = ML.VBTableIndex * 4;
|
|
if (ML.VBase) {
|
|
const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
|
|
VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
|
|
}
|
|
} else {
|
|
mangleName(MD);
|
|
mangleFunctionEncoding(MD, /*ShouldMangle=*/true);
|
|
}
|
|
|
|
if (VBTableOffset == 0 &&
|
|
IM == MSInheritanceAttr::Keyword_virtual_inheritance)
|
|
NVOffset -= getASTContext().getOffsetOfBaseWithVBPtr(RD).getQuantity();
|
|
} else {
|
|
// Null single inheritance member functions are encoded as a simple nullptr.
|
|
if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
|
|
Out << "$0A@";
|
|
return;
|
|
}
|
|
if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
|
|
VBTableOffset = -1;
|
|
Out << '$' << Code;
|
|
}
|
|
|
|
if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
|
|
mangleNumber(static_cast<uint32_t>(NVOffset));
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
|
|
mangleNumber(VBPtrOffset);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(IM))
|
|
mangleNumber(VBTableOffset);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
|
|
const CXXMethodDecl *MD,
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML) {
|
|
// Get the vftable offset.
|
|
CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
|
|
getASTContext().getTargetInfo().getPointerWidth(0));
|
|
uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
|
|
|
|
Out << "?_9";
|
|
mangleName(MD->getParent());
|
|
Out << "$B";
|
|
mangleNumber(OffsetInVFTable);
|
|
Out << 'A';
|
|
mangleCallingConvention(MD->getType()->getAs<FunctionProtoType>());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
|
|
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
|
|
|
|
// Always start with the unqualified name.
|
|
mangleUnqualifiedName(ND);
|
|
|
|
mangleNestedName(ND);
|
|
|
|
// Terminate the whole name with an '@'.
|
|
Out << '@';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
|
|
// <non-negative integer> ::= A@ # when Number == 0
|
|
// ::= <decimal digit> # when 1 <= Number <= 10
|
|
// ::= <hex digit>+ @ # when Number >= 10
|
|
//
|
|
// <number> ::= [?] <non-negative integer>
|
|
|
|
uint64_t Value = static_cast<uint64_t>(Number);
|
|
if (Number < 0) {
|
|
Value = -Value;
|
|
Out << '?';
|
|
}
|
|
|
|
if (Value == 0)
|
|
Out << "A@";
|
|
else if (Value >= 1 && Value <= 10)
|
|
Out << (Value - 1);
|
|
else {
|
|
// Numbers that are not encoded as decimal digits are represented as nibbles
|
|
// in the range of ASCII characters 'A' to 'P'.
|
|
// The number 0x123450 would be encoded as 'BCDEFA'
|
|
char EncodedNumberBuffer[sizeof(uint64_t) * 2];
|
|
MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
|
|
MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
|
|
for (; Value != 0; Value >>= 4)
|
|
*I++ = 'A' + (Value & 0xf);
|
|
Out.write(I.base(), I - BufferRef.rbegin());
|
|
Out << '@';
|
|
}
|
|
}
|
|
|
|
static const TemplateDecl *
|
|
isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
|
|
// Check if we have a function template.
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
|
|
TemplateArgs = FD->getTemplateSpecializationArgs();
|
|
return TD;
|
|
}
|
|
}
|
|
|
|
// Check if we have a class template.
|
|
if (const ClassTemplateSpecializationDecl *Spec =
|
|
dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
|
|
TemplateArgs = &Spec->getTemplateArgs();
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
// Check if we have a variable template.
|
|
if (const VarTemplateSpecializationDecl *Spec =
|
|
dyn_cast<VarTemplateSpecializationDecl>(ND)) {
|
|
TemplateArgs = &Spec->getTemplateArgs();
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
|
|
DeclarationName Name) {
|
|
// <unqualified-name> ::= <operator-name>
|
|
// ::= <ctor-dtor-name>
|
|
// ::= <source-name>
|
|
// ::= <template-name>
|
|
|
|
// Check if we have a template.
|
|
const TemplateArgumentList *TemplateArgs = nullptr;
|
|
if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
|
|
// Function templates aren't considered for name back referencing. This
|
|
// makes sense since function templates aren't likely to occur multiple
|
|
// times in a symbol.
|
|
if (isa<FunctionTemplateDecl>(TD)) {
|
|
mangleTemplateInstantiationName(TD, *TemplateArgs);
|
|
Out << '@';
|
|
return;
|
|
}
|
|
|
|
// Here comes the tricky thing: if we need to mangle something like
|
|
// void foo(A::X<Y>, B::X<Y>),
|
|
// the X<Y> part is aliased. However, if you need to mangle
|
|
// void foo(A::X<A::Y>, A::X<B::Y>),
|
|
// the A::X<> part is not aliased.
|
|
// That said, from the mangler's perspective we have a structure like this:
|
|
// namespace[s] -> type[ -> template-parameters]
|
|
// but from the Clang perspective we have
|
|
// type [ -> template-parameters]
|
|
// \-> namespace[s]
|
|
// What we do is we create a new mangler, mangle the same type (without
|
|
// a namespace suffix) to a string using the extra mangler and then use
|
|
// the mangled type name as a key to check the mangling of different types
|
|
// for aliasing.
|
|
|
|
llvm::SmallString<64> TemplateMangling;
|
|
llvm::raw_svector_ostream Stream(TemplateMangling);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
|
|
|
|
mangleSourceName(TemplateMangling);
|
|
return;
|
|
}
|
|
|
|
switch (Name.getNameKind()) {
|
|
case DeclarationName::Identifier: {
|
|
if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
|
|
mangleSourceName(II->getName());
|
|
break;
|
|
}
|
|
|
|
// Otherwise, an anonymous entity. We must have a declaration.
|
|
assert(ND && "mangling empty name without declaration");
|
|
|
|
if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
|
|
if (NS->isAnonymousNamespace()) {
|
|
Out << "?A@";
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
|
|
// We must have an anonymous union or struct declaration.
|
|
const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
|
|
assert(RD && "expected variable decl to have a record type");
|
|
// Anonymous types with no tag or typedef get the name of their
|
|
// declarator mangled in. If they have no declarator, number them with
|
|
// a $S prefix.
|
|
llvm::SmallString<64> Name("$S");
|
|
// Get a unique id for the anonymous struct.
|
|
Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
|
|
mangleSourceName(Name.str());
|
|
break;
|
|
}
|
|
|
|
// We must have an anonymous struct.
|
|
const TagDecl *TD = cast<TagDecl>(ND);
|
|
if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
|
|
assert(TD->getDeclContext() == D->getDeclContext() &&
|
|
"Typedef should not be in another decl context!");
|
|
assert(D->getDeclName().getAsIdentifierInfo() &&
|
|
"Typedef was not named!");
|
|
mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
|
|
break;
|
|
}
|
|
|
|
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
|
|
if (Record->isLambda()) {
|
|
llvm::SmallString<10> Name("<lambda_");
|
|
unsigned LambdaId;
|
|
if (Record->getLambdaManglingNumber())
|
|
LambdaId = Record->getLambdaManglingNumber();
|
|
else
|
|
LambdaId = Context.getLambdaId(Record);
|
|
|
|
Name += llvm::utostr(LambdaId);
|
|
Name += ">";
|
|
|
|
mangleSourceName(Name);
|
|
break;
|
|
}
|
|
}
|
|
|
|
llvm::SmallString<64> Name("<unnamed-type-");
|
|
if (DeclaratorDecl *DD =
|
|
Context.getASTContext().getDeclaratorForUnnamedTagDecl(TD)) {
|
|
// Anonymous types without a name for linkage purposes have their
|
|
// declarator mangled in if they have one.
|
|
Name += DD->getName();
|
|
} else if (TypedefNameDecl *TND =
|
|
Context.getASTContext().getTypedefNameForUnnamedTagDecl(
|
|
TD)) {
|
|
// Anonymous types without a name for linkage purposes have their
|
|
// associate typedef mangled in if they have one.
|
|
Name += TND->getName();
|
|
} else {
|
|
// Otherwise, number the types using a $S prefix.
|
|
Name += "$S";
|
|
Name += llvm::utostr(Context.getAnonymousStructId(TD) + 1);
|
|
}
|
|
Name += ">";
|
|
mangleSourceName(Name.str());
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::ObjCZeroArgSelector:
|
|
case DeclarationName::ObjCOneArgSelector:
|
|
case DeclarationName::ObjCMultiArgSelector:
|
|
llvm_unreachable("Can't mangle Objective-C selector names here!");
|
|
|
|
case DeclarationName::CXXConstructorName:
|
|
if (Structor == getStructor(ND)) {
|
|
if (StructorType == Ctor_CopyingClosure) {
|
|
Out << "?_O";
|
|
return;
|
|
}
|
|
if (StructorType == Ctor_DefaultClosure) {
|
|
Out << "?_F";
|
|
return;
|
|
}
|
|
}
|
|
Out << "?0";
|
|
return;
|
|
|
|
case DeclarationName::CXXDestructorName:
|
|
if (ND == Structor)
|
|
// If the named decl is the C++ destructor we're mangling,
|
|
// use the type we were given.
|
|
mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
|
|
else
|
|
// Otherwise, use the base destructor name. This is relevant if a
|
|
// class with a destructor is declared within a destructor.
|
|
mangleCXXDtorType(Dtor_Base);
|
|
break;
|
|
|
|
case DeclarationName::CXXConversionFunctionName:
|
|
// <operator-name> ::= ?B # (cast)
|
|
// The target type is encoded as the return type.
|
|
Out << "?B";
|
|
break;
|
|
|
|
case DeclarationName::CXXOperatorName:
|
|
mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
|
|
break;
|
|
|
|
case DeclarationName::CXXLiteralOperatorName: {
|
|
Out << "?__K";
|
|
mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
|
|
break;
|
|
}
|
|
|
|
case DeclarationName::CXXUsingDirective:
|
|
llvm_unreachable("Can't mangle a using directive name!");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
|
|
// <postfix> ::= <unqualified-name> [<postfix>]
|
|
// ::= <substitution> [<postfix>]
|
|
const DeclContext *DC = getEffectiveDeclContext(ND);
|
|
|
|
while (!DC->isTranslationUnit()) {
|
|
if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
|
|
unsigned Disc;
|
|
if (Context.getNextDiscriminator(ND, Disc)) {
|
|
Out << '?';
|
|
mangleNumber(Disc);
|
|
Out << '?';
|
|
}
|
|
}
|
|
|
|
if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID =
|
|
Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle a local inside this block yet");
|
|
Diags.Report(BD->getLocation(), DiagID);
|
|
|
|
// FIXME: This is completely, utterly, wrong; see ItaniumMangle
|
|
// for how this should be done.
|
|
Out << "__block_invoke" << Context.getBlockId(BD, false);
|
|
Out << '@';
|
|
continue;
|
|
} else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
|
|
mangleObjCMethodName(Method);
|
|
} else if (isa<NamedDecl>(DC)) {
|
|
ND = cast<NamedDecl>(DC);
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
mangle(FD, "?");
|
|
break;
|
|
} else
|
|
mangleUnqualifiedName(ND);
|
|
}
|
|
DC = DC->getParent();
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
|
|
// Microsoft uses the names on the case labels for these dtor variants. Clang
|
|
// uses the Itanium terminology internally. Everything in this ABI delegates
|
|
// towards the base dtor.
|
|
switch (T) {
|
|
// <operator-name> ::= ?1 # destructor
|
|
case Dtor_Base: Out << "?1"; return;
|
|
// <operator-name> ::= ?_D # vbase destructor
|
|
case Dtor_Complete: Out << "?_D"; return;
|
|
// <operator-name> ::= ?_G # scalar deleting destructor
|
|
case Dtor_Deleting: Out << "?_G"; return;
|
|
// <operator-name> ::= ?_E # vector deleting destructor
|
|
// FIXME: Add a vector deleting dtor type. It goes in the vtable, so we need
|
|
// it.
|
|
case Dtor_Comdat:
|
|
llvm_unreachable("not expecting a COMDAT");
|
|
}
|
|
llvm_unreachable("Unsupported dtor type?");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
|
|
SourceLocation Loc) {
|
|
switch (OO) {
|
|
// ?0 # constructor
|
|
// ?1 # destructor
|
|
// <operator-name> ::= ?2 # new
|
|
case OO_New: Out << "?2"; break;
|
|
// <operator-name> ::= ?3 # delete
|
|
case OO_Delete: Out << "?3"; break;
|
|
// <operator-name> ::= ?4 # =
|
|
case OO_Equal: Out << "?4"; break;
|
|
// <operator-name> ::= ?5 # >>
|
|
case OO_GreaterGreater: Out << "?5"; break;
|
|
// <operator-name> ::= ?6 # <<
|
|
case OO_LessLess: Out << "?6"; break;
|
|
// <operator-name> ::= ?7 # !
|
|
case OO_Exclaim: Out << "?7"; break;
|
|
// <operator-name> ::= ?8 # ==
|
|
case OO_EqualEqual: Out << "?8"; break;
|
|
// <operator-name> ::= ?9 # !=
|
|
case OO_ExclaimEqual: Out << "?9"; break;
|
|
// <operator-name> ::= ?A # []
|
|
case OO_Subscript: Out << "?A"; break;
|
|
// ?B # conversion
|
|
// <operator-name> ::= ?C # ->
|
|
case OO_Arrow: Out << "?C"; break;
|
|
// <operator-name> ::= ?D # *
|
|
case OO_Star: Out << "?D"; break;
|
|
// <operator-name> ::= ?E # ++
|
|
case OO_PlusPlus: Out << "?E"; break;
|
|
// <operator-name> ::= ?F # --
|
|
case OO_MinusMinus: Out << "?F"; break;
|
|
// <operator-name> ::= ?G # -
|
|
case OO_Minus: Out << "?G"; break;
|
|
// <operator-name> ::= ?H # +
|
|
case OO_Plus: Out << "?H"; break;
|
|
// <operator-name> ::= ?I # &
|
|
case OO_Amp: Out << "?I"; break;
|
|
// <operator-name> ::= ?J # ->*
|
|
case OO_ArrowStar: Out << "?J"; break;
|
|
// <operator-name> ::= ?K # /
|
|
case OO_Slash: Out << "?K"; break;
|
|
// <operator-name> ::= ?L # %
|
|
case OO_Percent: Out << "?L"; break;
|
|
// <operator-name> ::= ?M # <
|
|
case OO_Less: Out << "?M"; break;
|
|
// <operator-name> ::= ?N # <=
|
|
case OO_LessEqual: Out << "?N"; break;
|
|
// <operator-name> ::= ?O # >
|
|
case OO_Greater: Out << "?O"; break;
|
|
// <operator-name> ::= ?P # >=
|
|
case OO_GreaterEqual: Out << "?P"; break;
|
|
// <operator-name> ::= ?Q # ,
|
|
case OO_Comma: Out << "?Q"; break;
|
|
// <operator-name> ::= ?R # ()
|
|
case OO_Call: Out << "?R"; break;
|
|
// <operator-name> ::= ?S # ~
|
|
case OO_Tilde: Out << "?S"; break;
|
|
// <operator-name> ::= ?T # ^
|
|
case OO_Caret: Out << "?T"; break;
|
|
// <operator-name> ::= ?U # |
|
|
case OO_Pipe: Out << "?U"; break;
|
|
// <operator-name> ::= ?V # &&
|
|
case OO_AmpAmp: Out << "?V"; break;
|
|
// <operator-name> ::= ?W # ||
|
|
case OO_PipePipe: Out << "?W"; break;
|
|
// <operator-name> ::= ?X # *=
|
|
case OO_StarEqual: Out << "?X"; break;
|
|
// <operator-name> ::= ?Y # +=
|
|
case OO_PlusEqual: Out << "?Y"; break;
|
|
// <operator-name> ::= ?Z # -=
|
|
case OO_MinusEqual: Out << "?Z"; break;
|
|
// <operator-name> ::= ?_0 # /=
|
|
case OO_SlashEqual: Out << "?_0"; break;
|
|
// <operator-name> ::= ?_1 # %=
|
|
case OO_PercentEqual: Out << "?_1"; break;
|
|
// <operator-name> ::= ?_2 # >>=
|
|
case OO_GreaterGreaterEqual: Out << "?_2"; break;
|
|
// <operator-name> ::= ?_3 # <<=
|
|
case OO_LessLessEqual: Out << "?_3"; break;
|
|
// <operator-name> ::= ?_4 # &=
|
|
case OO_AmpEqual: Out << "?_4"; break;
|
|
// <operator-name> ::= ?_5 # |=
|
|
case OO_PipeEqual: Out << "?_5"; break;
|
|
// <operator-name> ::= ?_6 # ^=
|
|
case OO_CaretEqual: Out << "?_6"; break;
|
|
// ?_7 # vftable
|
|
// ?_8 # vbtable
|
|
// ?_9 # vcall
|
|
// ?_A # typeof
|
|
// ?_B # local static guard
|
|
// ?_C # string
|
|
// ?_D # vbase destructor
|
|
// ?_E # vector deleting destructor
|
|
// ?_F # default constructor closure
|
|
// ?_G # scalar deleting destructor
|
|
// ?_H # vector constructor iterator
|
|
// ?_I # vector destructor iterator
|
|
// ?_J # vector vbase constructor iterator
|
|
// ?_K # virtual displacement map
|
|
// ?_L # eh vector constructor iterator
|
|
// ?_M # eh vector destructor iterator
|
|
// ?_N # eh vector vbase constructor iterator
|
|
// ?_O # copy constructor closure
|
|
// ?_P<name> # udt returning <name>
|
|
// ?_Q # <unknown>
|
|
// ?_R0 # RTTI Type Descriptor
|
|
// ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
|
|
// ?_R2 # RTTI Base Class Array
|
|
// ?_R3 # RTTI Class Hierarchy Descriptor
|
|
// ?_R4 # RTTI Complete Object Locator
|
|
// ?_S # local vftable
|
|
// ?_T # local vftable constructor closure
|
|
// <operator-name> ::= ?_U # new[]
|
|
case OO_Array_New: Out << "?_U"; break;
|
|
// <operator-name> ::= ?_V # delete[]
|
|
case OO_Array_Delete: Out << "?_V"; break;
|
|
|
|
case OO_Conditional: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this conditional operator yet");
|
|
Diags.Report(Loc, DiagID);
|
|
break;
|
|
}
|
|
|
|
case OO_Coawait: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this operator co_await yet");
|
|
Diags.Report(Loc, DiagID);
|
|
break;
|
|
}
|
|
|
|
case OO_None:
|
|
case NUM_OVERLOADED_OPERATORS:
|
|
llvm_unreachable("Not an overloaded operator");
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
|
|
// <source name> ::= <identifier> @
|
|
BackRefVec::iterator Found =
|
|
std::find(NameBackReferences.begin(), NameBackReferences.end(), Name);
|
|
if (Found == NameBackReferences.end()) {
|
|
if (NameBackReferences.size() < 10)
|
|
NameBackReferences.push_back(Name);
|
|
Out << Name << '@';
|
|
} else {
|
|
Out << (Found - NameBackReferences.begin());
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
|
|
Context.mangleObjCMethodName(MD, Out);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
|
|
const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
|
|
// <template-name> ::= <unscoped-template-name> <template-args>
|
|
// ::= <substitution>
|
|
// Always start with the unqualified name.
|
|
|
|
// Templates have their own context for back references.
|
|
ArgBackRefMap OuterArgsContext;
|
|
BackRefVec OuterTemplateContext;
|
|
PassObjectSizeArgsSet OuterPassObjectSizeArgs;
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
|
|
|
|
mangleUnscopedTemplateName(TD);
|
|
mangleTemplateArgs(TD, TemplateArgs);
|
|
|
|
// Restore the previous back reference contexts.
|
|
NameBackReferences.swap(OuterTemplateContext);
|
|
TypeBackReferences.swap(OuterArgsContext);
|
|
PassObjectSizeArgs.swap(OuterPassObjectSizeArgs);
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
|
|
// <unscoped-template-name> ::= ?$ <unqualified-name>
|
|
Out << "?$";
|
|
mangleUnqualifiedName(TD);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
|
|
bool IsBoolean) {
|
|
// <integer-literal> ::= $0 <number>
|
|
Out << "$0";
|
|
// Make sure booleans are encoded as 0/1.
|
|
if (IsBoolean && Value.getBoolValue())
|
|
mangleNumber(1);
|
|
else if (Value.isSigned())
|
|
mangleNumber(Value.getSExtValue());
|
|
else
|
|
mangleNumber(Value.getZExtValue());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
|
|
// See if this is a constant expression.
|
|
llvm::APSInt Value;
|
|
if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
|
|
mangleIntegerLiteral(Value, E->getType()->isBooleanType());
|
|
return;
|
|
}
|
|
|
|
// Look through no-op casts like template parameter substitutions.
|
|
E = E->IgnoreParenNoopCasts(Context.getASTContext());
|
|
|
|
const CXXUuidofExpr *UE = nullptr;
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_AddrOf)
|
|
UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
|
|
} else
|
|
UE = dyn_cast<CXXUuidofExpr>(E);
|
|
|
|
if (UE) {
|
|
// If we had to peek through an address-of operator, treat this like we are
|
|
// dealing with a pointer type. Otherwise, treat it like a const reference.
|
|
//
|
|
// N.B. This matches up with the handling of TemplateArgument::Declaration
|
|
// in mangleTemplateArg
|
|
if (UE == E)
|
|
Out << "$E?";
|
|
else
|
|
Out << "$1?";
|
|
|
|
// This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
|
|
// const __s_GUID _GUID_{lower case UUID with underscores}
|
|
StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
|
|
std::string Name = "_GUID_" + Uuid.lower();
|
|
std::replace(Name.begin(), Name.end(), '-', '_');
|
|
|
|
mangleSourceName(Name);
|
|
// Terminate the whole name with an '@'.
|
|
Out << '@';
|
|
// It's a global variable.
|
|
Out << '3';
|
|
// It's a struct called __s_GUID.
|
|
mangleArtificalTagType(TTK_Struct, "__s_GUID");
|
|
// It's const.
|
|
Out << 'B';
|
|
return;
|
|
}
|
|
|
|
// As bad as this diagnostic is, it's better than crashing.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
|
|
Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
|
|
<< E->getSourceRange();
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateArgs(
|
|
const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
|
|
// <template-args> ::= <template-arg>+
|
|
const TemplateParameterList *TPL = TD->getTemplateParameters();
|
|
assert(TPL->size() == TemplateArgs.size() &&
|
|
"size mismatch between args and parms!");
|
|
|
|
unsigned Idx = 0;
|
|
for (const TemplateArgument &TA : TemplateArgs.asArray())
|
|
mangleTemplateArg(TD, TA, TPL->getParam(Idx++));
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
|
|
const TemplateArgument &TA,
|
|
const NamedDecl *Parm) {
|
|
// <template-arg> ::= <type>
|
|
// ::= <integer-literal>
|
|
// ::= <member-data-pointer>
|
|
// ::= <member-function-pointer>
|
|
// ::= $E? <name> <type-encoding>
|
|
// ::= $1? <name> <type-encoding>
|
|
// ::= $0A@
|
|
// ::= <template-args>
|
|
|
|
switch (TA.getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Can't mangle null template arguments!");
|
|
case TemplateArgument::TemplateExpansion:
|
|
llvm_unreachable("Can't mangle template expansion arguments!");
|
|
case TemplateArgument::Type: {
|
|
QualType T = TA.getAsType();
|
|
mangleType(T, SourceRange(), QMM_Escape);
|
|
break;
|
|
}
|
|
case TemplateArgument::Declaration: {
|
|
const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
|
|
if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
|
|
mangleMemberDataPointer(
|
|
cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
|
|
cast<ValueDecl>(ND));
|
|
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (MD && MD->isInstance()) {
|
|
mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
|
|
} else {
|
|
Out << "$1?";
|
|
mangleName(FD);
|
|
mangleFunctionEncoding(FD, /*ShouldMangle=*/true);
|
|
}
|
|
} else {
|
|
mangle(ND, TA.getParamTypeForDecl()->isReferenceType() ? "$E?" : "$1?");
|
|
}
|
|
break;
|
|
}
|
|
case TemplateArgument::Integral:
|
|
mangleIntegerLiteral(TA.getAsIntegral(),
|
|
TA.getIntegralType()->isBooleanType());
|
|
break;
|
|
case TemplateArgument::NullPtr: {
|
|
QualType T = TA.getNullPtrType();
|
|
if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
if (MPT->isMemberFunctionPointerType() &&
|
|
!isa<FunctionTemplateDecl>(TD)) {
|
|
mangleMemberFunctionPointer(RD, nullptr);
|
|
return;
|
|
}
|
|
if (MPT->isMemberDataPointer()) {
|
|
if (!isa<FunctionTemplateDecl>(TD)) {
|
|
mangleMemberDataPointer(RD, nullptr);
|
|
return;
|
|
}
|
|
// nullptr data pointers are always represented with a single field
|
|
// which is initialized with either 0 or -1. Why -1? Well, we need to
|
|
// distinguish the case where the data member is at offset zero in the
|
|
// record.
|
|
// However, we are free to use 0 *if* we would use multiple fields for
|
|
// non-nullptr member pointers.
|
|
if (!RD->nullFieldOffsetIsZero()) {
|
|
mangleIntegerLiteral(llvm::APSInt::get(-1), /*IsBoolean=*/false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
mangleIntegerLiteral(llvm::APSInt::getUnsigned(0), /*IsBoolean=*/false);
|
|
break;
|
|
}
|
|
case TemplateArgument::Expression:
|
|
mangleExpression(TA.getAsExpr());
|
|
break;
|
|
case TemplateArgument::Pack: {
|
|
ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
|
|
if (TemplateArgs.empty()) {
|
|
if (isa<TemplateTypeParmDecl>(Parm) ||
|
|
isa<TemplateTemplateParmDecl>(Parm))
|
|
// MSVC 2015 changed the mangling for empty expanded template packs,
|
|
// use the old mangling for link compatibility for old versions.
|
|
Out << (Context.getASTContext().getLangOpts().isCompatibleWithMSVC(
|
|
LangOptions::MSVC2015)
|
|
? "$$V"
|
|
: "$$$V");
|
|
else if (isa<NonTypeTemplateParmDecl>(Parm))
|
|
Out << "$S";
|
|
else
|
|
llvm_unreachable("unexpected template parameter decl!");
|
|
} else {
|
|
for (const TemplateArgument &PA : TemplateArgs)
|
|
mangleTemplateArg(TD, PA, Parm);
|
|
}
|
|
break;
|
|
}
|
|
case TemplateArgument::Template: {
|
|
const NamedDecl *ND =
|
|
TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl();
|
|
if (const auto *TD = dyn_cast<TagDecl>(ND)) {
|
|
mangleType(TD);
|
|
} else if (isa<TypeAliasDecl>(ND)) {
|
|
Out << "$$Y";
|
|
mangleName(ND);
|
|
} else {
|
|
llvm_unreachable("unexpected template template NamedDecl!");
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
|
|
bool IsMember) {
|
|
// <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
|
|
// 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
|
|
// 'I' means __restrict (32/64-bit).
|
|
// Note that the MSVC __restrict keyword isn't the same as the C99 restrict
|
|
// keyword!
|
|
// <base-cvr-qualifiers> ::= A # near
|
|
// ::= B # near const
|
|
// ::= C # near volatile
|
|
// ::= D # near const volatile
|
|
// ::= E # far (16-bit)
|
|
// ::= F # far const (16-bit)
|
|
// ::= G # far volatile (16-bit)
|
|
// ::= H # far const volatile (16-bit)
|
|
// ::= I # huge (16-bit)
|
|
// ::= J # huge const (16-bit)
|
|
// ::= K # huge volatile (16-bit)
|
|
// ::= L # huge const volatile (16-bit)
|
|
// ::= M <basis> # based
|
|
// ::= N <basis> # based const
|
|
// ::= O <basis> # based volatile
|
|
// ::= P <basis> # based const volatile
|
|
// ::= Q # near member
|
|
// ::= R # near const member
|
|
// ::= S # near volatile member
|
|
// ::= T # near const volatile member
|
|
// ::= U # far member (16-bit)
|
|
// ::= V # far const member (16-bit)
|
|
// ::= W # far volatile member (16-bit)
|
|
// ::= X # far const volatile member (16-bit)
|
|
// ::= Y # huge member (16-bit)
|
|
// ::= Z # huge const member (16-bit)
|
|
// ::= 0 # huge volatile member (16-bit)
|
|
// ::= 1 # huge const volatile member (16-bit)
|
|
// ::= 2 <basis> # based member
|
|
// ::= 3 <basis> # based const member
|
|
// ::= 4 <basis> # based volatile member
|
|
// ::= 5 <basis> # based const volatile member
|
|
// ::= 6 # near function (pointers only)
|
|
// ::= 7 # far function (pointers only)
|
|
// ::= 8 # near method (pointers only)
|
|
// ::= 9 # far method (pointers only)
|
|
// ::= _A <basis> # based function (pointers only)
|
|
// ::= _B <basis> # based function (far?) (pointers only)
|
|
// ::= _C <basis> # based method (pointers only)
|
|
// ::= _D <basis> # based method (far?) (pointers only)
|
|
// ::= _E # block (Clang)
|
|
// <basis> ::= 0 # __based(void)
|
|
// ::= 1 # __based(segment)?
|
|
// ::= 2 <name> # __based(name)
|
|
// ::= 3 # ?
|
|
// ::= 4 # ?
|
|
// ::= 5 # not really based
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
|
|
if (!IsMember) {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'D';
|
|
} else if (HasVolatile) {
|
|
Out << 'C';
|
|
} else if (HasConst) {
|
|
Out << 'B';
|
|
} else {
|
|
Out << 'A';
|
|
}
|
|
} else {
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'T';
|
|
} else if (HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasConst) {
|
|
Out << 'R';
|
|
} else {
|
|
Out << 'Q';
|
|
}
|
|
}
|
|
|
|
// FIXME: For now, just drop all extension qualifiers on the floor.
|
|
}
|
|
|
|
void
|
|
MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
|
|
// <ref-qualifier> ::= G # lvalue reference
|
|
// ::= H # rvalue-reference
|
|
switch (RefQualifier) {
|
|
case RQ_None:
|
|
break;
|
|
|
|
case RQ_LValue:
|
|
Out << 'G';
|
|
break;
|
|
|
|
case RQ_RValue:
|
|
Out << 'H';
|
|
break;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
|
|
QualType PointeeType) {
|
|
bool HasRestrict = Quals.hasRestrict();
|
|
if (PointersAre64Bit &&
|
|
(PointeeType.isNull() || !PointeeType->isFunctionType()))
|
|
Out << 'E';
|
|
|
|
if (HasRestrict)
|
|
Out << 'I';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
|
|
// <pointer-cv-qualifiers> ::= P # no qualifiers
|
|
// ::= Q # const
|
|
// ::= R # volatile
|
|
// ::= S # const volatile
|
|
bool HasConst = Quals.hasConst(),
|
|
HasVolatile = Quals.hasVolatile();
|
|
|
|
if (HasConst && HasVolatile) {
|
|
Out << 'S';
|
|
} else if (HasVolatile) {
|
|
Out << 'R';
|
|
} else if (HasConst) {
|
|
Out << 'Q';
|
|
} else {
|
|
Out << 'P';
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
|
|
SourceRange Range) {
|
|
// MSVC will backreference two canonically equivalent types that have slightly
|
|
// different manglings when mangled alone.
|
|
|
|
// Decayed types do not match up with non-decayed versions of the same type.
|
|
//
|
|
// e.g.
|
|
// void (*x)(void) will not form a backreference with void x(void)
|
|
void *TypePtr;
|
|
if (const auto *DT = T->getAs<DecayedType>()) {
|
|
QualType OriginalType = DT->getOriginalType();
|
|
// All decayed ArrayTypes should be treated identically; as-if they were
|
|
// a decayed IncompleteArrayType.
|
|
if (const auto *AT = getASTContext().getAsArrayType(OriginalType))
|
|
OriginalType = getASTContext().getIncompleteArrayType(
|
|
AT->getElementType(), AT->getSizeModifier(),
|
|
AT->getIndexTypeCVRQualifiers());
|
|
|
|
TypePtr = OriginalType.getCanonicalType().getAsOpaquePtr();
|
|
// If the original parameter was textually written as an array,
|
|
// instead treat the decayed parameter like it's const.
|
|
//
|
|
// e.g.
|
|
// int [] -> int * const
|
|
if (OriginalType->isArrayType())
|
|
T = T.withConst();
|
|
} else {
|
|
TypePtr = T.getCanonicalType().getAsOpaquePtr();
|
|
}
|
|
|
|
ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
|
|
|
|
if (Found == TypeBackReferences.end()) {
|
|
size_t OutSizeBefore = Out.tell();
|
|
|
|
mangleType(T, Range, QMM_Drop);
|
|
|
|
// See if it's worth creating a back reference.
|
|
// Only types longer than 1 character are considered
|
|
// and only 10 back references slots are available:
|
|
bool LongerThanOneChar = (Out.tell() - OutSizeBefore > 1);
|
|
if (LongerThanOneChar && TypeBackReferences.size() < 10) {
|
|
size_t Size = TypeBackReferences.size();
|
|
TypeBackReferences[TypePtr] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::manglePassObjectSizeArg(
|
|
const PassObjectSizeAttr *POSA) {
|
|
int Type = POSA->getType();
|
|
|
|
auto Iter = PassObjectSizeArgs.insert(Type).first;
|
|
auto *TypePtr = (const void *)&*Iter;
|
|
ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
|
|
|
|
if (Found == TypeBackReferences.end()) {
|
|
mangleArtificalTagType(TTK_Enum, "__pass_object_size" + llvm::utostr(Type),
|
|
{"__clang"});
|
|
|
|
if (TypeBackReferences.size() < 10) {
|
|
size_t Size = TypeBackReferences.size();
|
|
TypeBackReferences[TypePtr] = Size;
|
|
}
|
|
} else {
|
|
Out << Found->second;
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
|
|
QualifierMangleMode QMM) {
|
|
// Don't use the canonical types. MSVC includes things like 'const' on
|
|
// pointer arguments to function pointers that canonicalization strips away.
|
|
T = T.getDesugaredType(getASTContext());
|
|
Qualifiers Quals = T.getLocalQualifiers();
|
|
if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
|
|
// If there were any Quals, getAsArrayType() pushed them onto the array
|
|
// element type.
|
|
if (QMM == QMM_Mangle)
|
|
Out << 'A';
|
|
else if (QMM == QMM_Escape || QMM == QMM_Result)
|
|
Out << "$$B";
|
|
mangleArrayType(AT);
|
|
return;
|
|
}
|
|
|
|
bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
|
|
T->isReferenceType() || T->isBlockPointerType();
|
|
|
|
switch (QMM) {
|
|
case QMM_Drop:
|
|
break;
|
|
case QMM_Mangle:
|
|
if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
|
|
Out << '6';
|
|
mangleFunctionType(FT);
|
|
return;
|
|
}
|
|
mangleQualifiers(Quals, false);
|
|
break;
|
|
case QMM_Escape:
|
|
if (!IsPointer && Quals) {
|
|
Out << "$$C";
|
|
mangleQualifiers(Quals, false);
|
|
}
|
|
break;
|
|
case QMM_Result:
|
|
if ((!IsPointer && Quals) || isa<TagType>(T)) {
|
|
Out << '?';
|
|
mangleQualifiers(Quals, false);
|
|
}
|
|
break;
|
|
}
|
|
|
|
const Type *ty = T.getTypePtr();
|
|
|
|
switch (ty->getTypeClass()) {
|
|
#define ABSTRACT_TYPE(CLASS, PARENT)
|
|
#define NON_CANONICAL_TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
|
|
return;
|
|
#define TYPE(CLASS, PARENT) \
|
|
case Type::CLASS: \
|
|
mangleType(cast<CLASS##Type>(ty), Quals, Range); \
|
|
break;
|
|
#include "clang/AST/TypeNodes.def"
|
|
#undef ABSTRACT_TYPE
|
|
#undef NON_CANONICAL_TYPE
|
|
#undef TYPE
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
// <type> ::= <builtin-type>
|
|
// <builtin-type> ::= X # void
|
|
// ::= C # signed char
|
|
// ::= D # char
|
|
// ::= E # unsigned char
|
|
// ::= F # short
|
|
// ::= G # unsigned short (or wchar_t if it's not a builtin)
|
|
// ::= H # int
|
|
// ::= I # unsigned int
|
|
// ::= J # long
|
|
// ::= K # unsigned long
|
|
// L # <none>
|
|
// ::= M # float
|
|
// ::= N # double
|
|
// ::= O # long double (__float80 is mangled differently)
|
|
// ::= _J # long long, __int64
|
|
// ::= _K # unsigned long long, __int64
|
|
// ::= _L # __int128
|
|
// ::= _M # unsigned __int128
|
|
// ::= _N # bool
|
|
// _O # <array in parameter>
|
|
// ::= _T # __float80 (Intel)
|
|
// ::= _W # wchar_t
|
|
// ::= _Z # __float80 (Digital Mars)
|
|
switch (T->getKind()) {
|
|
case BuiltinType::Void:
|
|
Out << 'X';
|
|
break;
|
|
case BuiltinType::SChar:
|
|
Out << 'C';
|
|
break;
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::Char_S:
|
|
Out << 'D';
|
|
break;
|
|
case BuiltinType::UChar:
|
|
Out << 'E';
|
|
break;
|
|
case BuiltinType::Short:
|
|
Out << 'F';
|
|
break;
|
|
case BuiltinType::UShort:
|
|
Out << 'G';
|
|
break;
|
|
case BuiltinType::Int:
|
|
Out << 'H';
|
|
break;
|
|
case BuiltinType::UInt:
|
|
Out << 'I';
|
|
break;
|
|
case BuiltinType::Long:
|
|
Out << 'J';
|
|
break;
|
|
case BuiltinType::ULong:
|
|
Out << 'K';
|
|
break;
|
|
case BuiltinType::Float:
|
|
Out << 'M';
|
|
break;
|
|
case BuiltinType::Double:
|
|
Out << 'N';
|
|
break;
|
|
// TODO: Determine size and mangle accordingly
|
|
case BuiltinType::LongDouble:
|
|
Out << 'O';
|
|
break;
|
|
case BuiltinType::LongLong:
|
|
Out << "_J";
|
|
break;
|
|
case BuiltinType::ULongLong:
|
|
Out << "_K";
|
|
break;
|
|
case BuiltinType::Int128:
|
|
Out << "_L";
|
|
break;
|
|
case BuiltinType::UInt128:
|
|
Out << "_M";
|
|
break;
|
|
case BuiltinType::Bool:
|
|
Out << "_N";
|
|
break;
|
|
case BuiltinType::Char16:
|
|
Out << "_S";
|
|
break;
|
|
case BuiltinType::Char32:
|
|
Out << "_U";
|
|
break;
|
|
case BuiltinType::WChar_S:
|
|
case BuiltinType::WChar_U:
|
|
Out << "_W";
|
|
break;
|
|
|
|
#define BUILTIN_TYPE(Id, SingletonId)
|
|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
|
|
case BuiltinType::Id:
|
|
#include "clang/AST/BuiltinTypes.def"
|
|
case BuiltinType::Dependent:
|
|
llvm_unreachable("placeholder types shouldn't get to name mangling");
|
|
|
|
case BuiltinType::ObjCId:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "objc_object");
|
|
break;
|
|
case BuiltinType::ObjCClass:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "objc_class");
|
|
break;
|
|
case BuiltinType::ObjCSel:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "objc_selector");
|
|
break;
|
|
|
|
case BuiltinType::OCLImage1d:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image1d");
|
|
break;
|
|
case BuiltinType::OCLImage1dArray:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image1darray");
|
|
break;
|
|
case BuiltinType::OCLImage1dBuffer:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image1dbuffer");
|
|
break;
|
|
case BuiltinType::OCLImage2d:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2d");
|
|
break;
|
|
case BuiltinType::OCLImage2dArray:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2darray");
|
|
break;
|
|
case BuiltinType::OCLImage2dDepth:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2ddepth");
|
|
break;
|
|
case BuiltinType::OCLImage2dArrayDepth:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2darraydepth");
|
|
break;
|
|
case BuiltinType::OCLImage2dMSAA:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaa");
|
|
break;
|
|
case BuiltinType::OCLImage2dArrayMSAA:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaa");
|
|
break;
|
|
case BuiltinType::OCLImage2dMSAADepth:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2dmsaadepth");
|
|
break;
|
|
case BuiltinType::OCLImage2dArrayMSAADepth:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image2darraymsaadepth");
|
|
break;
|
|
case BuiltinType::OCLImage3d:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_image3d");
|
|
break;
|
|
case BuiltinType::OCLSampler:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_sampler");
|
|
break;
|
|
case BuiltinType::OCLEvent:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_event");
|
|
break;
|
|
case BuiltinType::OCLClkEvent:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_clkevent");
|
|
break;
|
|
case BuiltinType::OCLQueue:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_queue");
|
|
break;
|
|
case BuiltinType::OCLNDRange:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_ndrange");
|
|
break;
|
|
case BuiltinType::OCLReserveID:
|
|
Out << "PA";
|
|
mangleArtificalTagType(TTK_Struct, "ocl_reserveid");
|
|
break;
|
|
|
|
case BuiltinType::NullPtr:
|
|
Out << "$$T";
|
|
break;
|
|
|
|
case BuiltinType::Half: {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error, "cannot mangle this built-in %0 type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< T->getName(Context.getASTContext().getPrintingPolicy()) << Range;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// <type> ::= <function-type>
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T, Qualifiers,
|
|
SourceRange) {
|
|
// Structors only appear in decls, so at this point we know it's not a
|
|
// structor type.
|
|
// FIXME: This may not be lambda-friendly.
|
|
if (T->getTypeQuals() || T->getRefQualifier() != RQ_None) {
|
|
Out << "$$A8@@";
|
|
mangleFunctionType(T, /*D=*/nullptr, /*ForceThisQuals=*/true);
|
|
} else {
|
|
Out << "$$A6";
|
|
mangleFunctionType(T);
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
|
|
Qualifiers, SourceRange) {
|
|
Out << "$$A6";
|
|
mangleFunctionType(T);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
|
|
const FunctionDecl *D,
|
|
bool ForceThisQuals) {
|
|
// <function-type> ::= <this-cvr-qualifiers> <calling-convention>
|
|
// <return-type> <argument-list> <throw-spec>
|
|
const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(T);
|
|
|
|
SourceRange Range;
|
|
if (D) Range = D->getSourceRange();
|
|
|
|
bool IsStructor = false, HasThisQuals = ForceThisQuals, IsCtorClosure = false;
|
|
CallingConv CC = T->getCallConv();
|
|
if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
|
|
if (MD->isInstance())
|
|
HasThisQuals = true;
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
IsStructor = true;
|
|
} else if (isa<CXXConstructorDecl>(MD)) {
|
|
IsStructor = true;
|
|
IsCtorClosure = (StructorType == Ctor_CopyingClosure ||
|
|
StructorType == Ctor_DefaultClosure) &&
|
|
getStructor(MD) == Structor;
|
|
if (IsCtorClosure)
|
|
CC = getASTContext().getDefaultCallingConvention(
|
|
/*IsVariadic=*/false, /*IsCXXMethod=*/true);
|
|
}
|
|
}
|
|
|
|
// If this is a C++ instance method, mangle the CVR qualifiers for the
|
|
// this pointer.
|
|
if (HasThisQuals) {
|
|
Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
|
|
manglePointerExtQualifiers(Quals, /*PointeeType=*/QualType());
|
|
mangleRefQualifier(Proto->getRefQualifier());
|
|
mangleQualifiers(Quals, /*IsMember=*/false);
|
|
}
|
|
|
|
mangleCallingConvention(CC);
|
|
|
|
// <return-type> ::= <type>
|
|
// ::= @ # structors (they have no declared return type)
|
|
if (IsStructor) {
|
|
if (isa<CXXDestructorDecl>(D) && D == Structor &&
|
|
StructorType == Dtor_Deleting) {
|
|
// The scalar deleting destructor takes an extra int argument.
|
|
// However, the FunctionType generated has 0 arguments.
|
|
// FIXME: This is a temporary hack.
|
|
// Maybe should fix the FunctionType creation instead?
|
|
Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
|
|
return;
|
|
}
|
|
if (IsCtorClosure) {
|
|
// Default constructor closure and copy constructor closure both return
|
|
// void.
|
|
Out << 'X';
|
|
|
|
if (StructorType == Ctor_DefaultClosure) {
|
|
// Default constructor closure always has no arguments.
|
|
Out << 'X';
|
|
} else if (StructorType == Ctor_CopyingClosure) {
|
|
// Copy constructor closure always takes an unqualified reference.
|
|
mangleArgumentType(getASTContext().getLValueReferenceType(
|
|
Proto->getParamType(0)
|
|
->getAs<LValueReferenceType>()
|
|
->getPointeeType(),
|
|
/*SpelledAsLValue=*/true),
|
|
Range);
|
|
Out << '@';
|
|
} else {
|
|
llvm_unreachable("unexpected constructor closure!");
|
|
}
|
|
Out << 'Z';
|
|
return;
|
|
}
|
|
Out << '@';
|
|
} else {
|
|
QualType ResultType = T->getReturnType();
|
|
if (const auto *AT =
|
|
dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
|
|
Out << '?';
|
|
mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
|
|
Out << '?';
|
|
assert(AT->getKeyword() != AutoTypeKeyword::GNUAutoType &&
|
|
"shouldn't need to mangle __auto_type!");
|
|
mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
|
|
Out << '@';
|
|
} else {
|
|
if (ResultType->isVoidType())
|
|
ResultType = ResultType.getUnqualifiedType();
|
|
mangleType(ResultType, Range, QMM_Result);
|
|
}
|
|
}
|
|
|
|
// <argument-list> ::= X # void
|
|
// ::= <type>+ @
|
|
// ::= <type>* Z # varargs
|
|
if (!Proto) {
|
|
// Function types without prototypes can arise when mangling a function type
|
|
// within an overloadable function in C. We mangle these as the absence of
|
|
// any parameter types (not even an empty parameter list).
|
|
Out << '@';
|
|
} else if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
|
|
Out << 'X';
|
|
} else {
|
|
// Happens for function pointer type arguments for example.
|
|
for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
|
|
mangleArgumentType(Proto->getParamType(I), Range);
|
|
// Mangle each pass_object_size parameter as if it's a paramater of enum
|
|
// type passed directly after the parameter with the pass_object_size
|
|
// attribute. The aforementioned enum's name is __pass_object_size, and we
|
|
// pretend it resides in a top-level namespace called __clang.
|
|
//
|
|
// FIXME: Is there a defined extension notation for the MS ABI, or is it
|
|
// necessary to just cross our fingers and hope this type+namespace
|
|
// combination doesn't conflict with anything?
|
|
if (D)
|
|
if (const auto *P = D->getParamDecl(I)->getAttr<PassObjectSizeAttr>())
|
|
manglePassObjectSizeArg(P);
|
|
}
|
|
// <builtin-type> ::= Z # ellipsis
|
|
if (Proto->isVariadic())
|
|
Out << 'Z';
|
|
else
|
|
Out << '@';
|
|
}
|
|
|
|
mangleThrowSpecification(Proto);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
|
|
// <function-class> ::= <member-function> E? # E designates a 64-bit 'this'
|
|
// # pointer. in 64-bit mode *all*
|
|
// # 'this' pointers are 64-bit.
|
|
// ::= <global-function>
|
|
// <member-function> ::= A # private: near
|
|
// ::= B # private: far
|
|
// ::= C # private: static near
|
|
// ::= D # private: static far
|
|
// ::= E # private: virtual near
|
|
// ::= F # private: virtual far
|
|
// ::= I # protected: near
|
|
// ::= J # protected: far
|
|
// ::= K # protected: static near
|
|
// ::= L # protected: static far
|
|
// ::= M # protected: virtual near
|
|
// ::= N # protected: virtual far
|
|
// ::= Q # public: near
|
|
// ::= R # public: far
|
|
// ::= S # public: static near
|
|
// ::= T # public: static far
|
|
// ::= U # public: virtual near
|
|
// ::= V # public: virtual far
|
|
// <global-function> ::= Y # global near
|
|
// ::= Z # global far
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
if (MD->isStatic())
|
|
Out << 'C';
|
|
else if (MD->isVirtual())
|
|
Out << 'E';
|
|
else
|
|
Out << 'A';
|
|
break;
|
|
case AS_protected:
|
|
if (MD->isStatic())
|
|
Out << 'K';
|
|
else if (MD->isVirtual())
|
|
Out << 'M';
|
|
else
|
|
Out << 'I';
|
|
break;
|
|
case AS_public:
|
|
if (MD->isStatic())
|
|
Out << 'S';
|
|
else if (MD->isVirtual())
|
|
Out << 'U';
|
|
else
|
|
Out << 'Q';
|
|
}
|
|
} else {
|
|
Out << 'Y';
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleCallingConvention(CallingConv CC) {
|
|
// <calling-convention> ::= A # __cdecl
|
|
// ::= B # __export __cdecl
|
|
// ::= C # __pascal
|
|
// ::= D # __export __pascal
|
|
// ::= E # __thiscall
|
|
// ::= F # __export __thiscall
|
|
// ::= G # __stdcall
|
|
// ::= H # __export __stdcall
|
|
// ::= I # __fastcall
|
|
// ::= J # __export __fastcall
|
|
// ::= Q # __vectorcall
|
|
// The 'export' calling conventions are from a bygone era
|
|
// (*cough*Win16*cough*) when functions were declared for export with
|
|
// that keyword. (It didn't actually export them, it just made them so
|
|
// that they could be in a DLL and somebody from another module could call
|
|
// them.)
|
|
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported CC for mangling");
|
|
case CC_X86_64Win64:
|
|
case CC_X86_64SysV:
|
|
case CC_C: Out << 'A'; break;
|
|
case CC_X86Pascal: Out << 'C'; break;
|
|
case CC_X86ThisCall: Out << 'E'; break;
|
|
case CC_X86StdCall: Out << 'G'; break;
|
|
case CC_X86FastCall: Out << 'I'; break;
|
|
case CC_X86VectorCall: Out << 'Q'; break;
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
|
|
mangleCallingConvention(T->getCallConv());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleThrowSpecification(
|
|
const FunctionProtoType *FT) {
|
|
// <throw-spec> ::= Z # throw(...) (default)
|
|
// ::= @ # throw() or __declspec/__attribute__((nothrow))
|
|
// ::= <type>+
|
|
// NOTE: Since the Microsoft compiler ignores throw specifications, they are
|
|
// all actually mangled as 'Z'. (They're ignored because their associated
|
|
// functionality isn't implemented, and probably never will be.)
|
|
Out << 'Z';
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
// Probably should be mangled as a template instantiation; need to see what
|
|
// VC does first.
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unresolved dependent type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <union-type> | <struct-type> | <class-type> | <enum-type>
|
|
// <union-type> ::= T <name>
|
|
// <struct-type> ::= U <name>
|
|
// <class-type> ::= V <name>
|
|
// <enum-type> ::= W4 <name>
|
|
void MicrosoftCXXNameMangler::mangleTagTypeKind(TagTypeKind TTK) {
|
|
switch (TTK) {
|
|
case TTK_Union:
|
|
Out << 'T';
|
|
break;
|
|
case TTK_Struct:
|
|
case TTK_Interface:
|
|
Out << 'U';
|
|
break;
|
|
case TTK_Class:
|
|
Out << 'V';
|
|
break;
|
|
case TTK_Enum:
|
|
Out << "W4";
|
|
break;
|
|
}
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const EnumType *T, Qualifiers,
|
|
SourceRange) {
|
|
mangleType(cast<TagType>(T)->getDecl());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const RecordType *T, Qualifiers,
|
|
SourceRange) {
|
|
mangleType(cast<TagType>(T)->getDecl());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
|
|
mangleTagTypeKind(TD->getTagKind());
|
|
mangleName(TD);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleArtificalTagType(
|
|
TagTypeKind TK, StringRef UnqualifiedName, ArrayRef<StringRef> NestedNames) {
|
|
// <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
|
|
mangleTagTypeKind(TK);
|
|
|
|
// Always start with the unqualified name.
|
|
mangleSourceName(UnqualifiedName);
|
|
|
|
for (auto I = NestedNames.rbegin(), E = NestedNames.rend(); I != E; ++I)
|
|
mangleSourceName(*I);
|
|
|
|
// Terminate the whole name with an '@'.
|
|
Out << '@';
|
|
}
|
|
|
|
// <type> ::= <array-type>
|
|
// <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// [Y <dimension-count> <dimension>+]
|
|
// <element-type> # as global, E is never required
|
|
// It's supposed to be the other way around, but for some strange reason, it
|
|
// isn't. Today this behavior is retained for the sole purpose of backwards
|
|
// compatibility.
|
|
void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
|
|
// This isn't a recursive mangling, so now we have to do it all in this
|
|
// one call.
|
|
manglePointerCVQualifiers(T->getElementType().getQualifiers());
|
|
mangleType(T->getElementType(), SourceRange());
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T, Qualifiers,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T, Qualifiers,
|
|
SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
|
|
Qualifiers, SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
|
|
Qualifiers, SourceRange) {
|
|
llvm_unreachable("Should have been special cased");
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
|
|
QualType ElementTy(T, 0);
|
|
SmallVector<llvm::APInt, 3> Dimensions;
|
|
for (;;) {
|
|
if (ElementTy->isConstantArrayType()) {
|
|
const ConstantArrayType *CAT =
|
|
getASTContext().getAsConstantArrayType(ElementTy);
|
|
Dimensions.push_back(CAT->getSize());
|
|
ElementTy = CAT->getElementType();
|
|
} else if (ElementTy->isIncompleteArrayType()) {
|
|
const IncompleteArrayType *IAT =
|
|
getASTContext().getAsIncompleteArrayType(ElementTy);
|
|
Dimensions.push_back(llvm::APInt(32, 0));
|
|
ElementTy = IAT->getElementType();
|
|
} else if (ElementTy->isVariableArrayType()) {
|
|
const VariableArrayType *VAT =
|
|
getASTContext().getAsVariableArrayType(ElementTy);
|
|
Dimensions.push_back(llvm::APInt(32, 0));
|
|
ElementTy = VAT->getElementType();
|
|
} else if (ElementTy->isDependentSizedArrayType()) {
|
|
// The dependent expression has to be folded into a constant (TODO).
|
|
const DependentSizedArrayType *DSAT =
|
|
getASTContext().getAsDependentSizedArrayType(ElementTy);
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-length array yet");
|
|
Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
|
|
<< DSAT->getBracketsRange();
|
|
return;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
Out << 'Y';
|
|
// <dimension-count> ::= <number> # number of extra dimensions
|
|
mangleNumber(Dimensions.size());
|
|
for (const llvm::APInt &Dimension : Dimensions)
|
|
mangleNumber(Dimension.getLimitedValue());
|
|
mangleType(ElementTy, SourceRange(), QMM_Escape);
|
|
}
|
|
|
|
// <type> ::= <pointer-to-member-type>
|
|
// <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
|
|
// <class name> <type>
|
|
void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T, Qualifiers Quals,
|
|
SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
manglePointerCVQualifiers(Quals);
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
|
|
Out << '8';
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleFunctionType(FPT, nullptr, true);
|
|
} else {
|
|
mangleQualifiers(PointeeType.getQualifiers(), true);
|
|
mangleName(T->getClass()->castAs<RecordType>()->getDecl());
|
|
mangleType(PointeeType, Range, QMM_Drop);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template type parameter type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this substituted parameter pack yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
// <type> ::= <pointer-type>
|
|
// <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static pointers
|
|
void MicrosoftCXXNameMangler::mangleType(const PointerType *T, Qualifiers Quals,
|
|
SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
manglePointerCVQualifiers(Quals);
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
mangleType(PointeeType, Range);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
|
|
Qualifiers Quals, SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
manglePointerCVQualifiers(Quals);
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
// Object pointers never have qualifiers.
|
|
Out << 'A';
|
|
mangleType(PointeeType, Range);
|
|
}
|
|
|
|
// <type> ::= <reference-type>
|
|
// <reference-type> ::= A E? <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static lvalue references
|
|
void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
|
|
Qualifiers Quals, SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
|
|
Out << 'A';
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
mangleType(PointeeType, Range);
|
|
}
|
|
|
|
// <type> ::= <r-value-reference-type>
|
|
// <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
|
|
// # the E is required for 64-bit non-static rvalue references
|
|
void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
|
|
Qualifiers Quals, SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
assert(!Quals.hasConst() && !Quals.hasVolatile() && "unexpected qualifier!");
|
|
Out << "$$Q";
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
mangleType(PointeeType, Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ComplexType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
QualType ElementType = T->getElementType();
|
|
|
|
llvm::SmallString<64> TemplateMangling;
|
|
llvm::raw_svector_ostream Stream(TemplateMangling);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Stream << "?$";
|
|
Extra.mangleSourceName("_Complex");
|
|
Extra.mangleType(ElementType, Range, QMM_Escape);
|
|
|
|
mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const VectorType *T, Qualifiers Quals,
|
|
SourceRange Range) {
|
|
const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
|
|
assert(ET && "vectors with non-builtin elements are unsupported");
|
|
uint64_t Width = getASTContext().getTypeSize(T);
|
|
// Pattern match exactly the typedefs in our intrinsic headers. Anything that
|
|
// doesn't match the Intel types uses a custom mangling below.
|
|
size_t OutSizeBefore = Out.tell();
|
|
llvm::Triple::ArchType AT =
|
|
getASTContext().getTargetInfo().getTriple().getArch();
|
|
if (AT == llvm::Triple::x86 || AT == llvm::Triple::x86_64) {
|
|
if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
|
|
mangleArtificalTagType(TTK_Union, "__m64");
|
|
} else if (Width >= 128) {
|
|
if (ET->getKind() == BuiltinType::Float)
|
|
mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width));
|
|
else if (ET->getKind() == BuiltinType::LongLong)
|
|
mangleArtificalTagType(TTK_Union, "__m" + llvm::utostr(Width) + 'i');
|
|
else if (ET->getKind() == BuiltinType::Double)
|
|
mangleArtificalTagType(TTK_Struct, "__m" + llvm::utostr(Width) + 'd');
|
|
}
|
|
}
|
|
|
|
bool IsBuiltin = Out.tell() != OutSizeBefore;
|
|
if (!IsBuiltin) {
|
|
// The MS ABI doesn't have a special mangling for vector types, so we define
|
|
// our own mangling to handle uses of __vector_size__ on user-specified
|
|
// types, and for extensions like __v4sf.
|
|
|
|
llvm::SmallString<64> TemplateMangling;
|
|
llvm::raw_svector_ostream Stream(TemplateMangling);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Stream << "?$";
|
|
Extra.mangleSourceName("__vector");
|
|
Extra.mangleType(QualType(ET, 0), Range, QMM_Escape);
|
|
Extra.mangleIntegerLiteral(llvm::APSInt::getUnsigned(T->getNumElements()),
|
|
/*IsBoolean=*/false);
|
|
|
|
mangleArtificalTagType(TTK_Union, TemplateMangling, {"__clang"});
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
|
|
Qualifiers Quals, SourceRange Range) {
|
|
mangleType(static_cast<const VectorType *>(T), Quals, Range);
|
|
}
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent-sized extended vector type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T, Qualifiers,
|
|
SourceRange) {
|
|
// ObjC interfaces have structs underlying them.
|
|
mangleTagTypeKind(TTK_Struct);
|
|
mangleName(T->getDecl());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
// We don't allow overloading by different protocol qualification,
|
|
// so mangling them isn't necessary.
|
|
mangleType(T->getBaseType(), Range);
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
|
|
Qualifiers Quals, SourceRange Range) {
|
|
QualType PointeeType = T->getPointeeType();
|
|
manglePointerCVQualifiers(Quals);
|
|
manglePointerExtQualifiers(Quals, PointeeType);
|
|
|
|
Out << "_E";
|
|
|
|
mangleFunctionType(PointeeType->castAs<FunctionProtoType>());
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
|
|
Qualifiers, SourceRange) {
|
|
llvm_unreachable("Cannot mangle injected class name type.");
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent name type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(
|
|
const DependentTemplateSpecializationType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this dependent template specialization type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this pack expansion yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(type) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this typeof(expression) yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this decltype() yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
|
|
Qualifiers, SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this unary transform type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AutoType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
assert(T->getDeducedType().isNull() && "expecting a dependent type!");
|
|
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this 'auto' type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const AtomicType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
QualType ValueType = T->getValueType();
|
|
|
|
llvm::SmallString<64> TemplateMangling;
|
|
llvm::raw_svector_ostream Stream(TemplateMangling);
|
|
MicrosoftCXXNameMangler Extra(Context, Stream);
|
|
Stream << "?$";
|
|
Extra.mangleSourceName("_Atomic");
|
|
Extra.mangleType(ValueType, Range, QMM_Escape);
|
|
|
|
mangleArtificalTagType(TTK_Struct, TemplateMangling, {"__clang"});
|
|
}
|
|
|
|
void MicrosoftCXXNameMangler::mangleType(const PipeType *T, Qualifiers,
|
|
SourceRange Range) {
|
|
DiagnosticsEngine &Diags = Context.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
|
|
"cannot mangle this OpenCL pipe type yet");
|
|
Diags.Report(Range.getBegin(), DiagID)
|
|
<< Range;
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
|
|
raw_ostream &Out) {
|
|
assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
|
|
"Invalid mangleName() call, argument is not a variable or function!");
|
|
assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
|
|
"Invalid mangleName() call on 'structor decl!");
|
|
|
|
PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
|
|
getASTContext().getSourceManager(),
|
|
"Mangling declaration");
|
|
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
return Mangler.mangle(D);
|
|
}
|
|
|
|
// <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
|
|
// <virtual-adjustment>
|
|
// <no-adjustment> ::= A # private near
|
|
// ::= B # private far
|
|
// ::= I # protected near
|
|
// ::= J # protected far
|
|
// ::= Q # public near
|
|
// ::= R # public far
|
|
// <static-adjustment> ::= G <static-offset> # private near
|
|
// ::= H <static-offset> # private far
|
|
// ::= O <static-offset> # protected near
|
|
// ::= P <static-offset> # protected far
|
|
// ::= W <static-offset> # public near
|
|
// ::= X <static-offset> # public far
|
|
// <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
|
|
// ::= $1 <virtual-shift> <static-offset> # private far
|
|
// ::= $2 <virtual-shift> <static-offset> # protected near
|
|
// ::= $3 <virtual-shift> <static-offset> # protected far
|
|
// ::= $4 <virtual-shift> <static-offset> # public near
|
|
// ::= $5 <virtual-shift> <static-offset> # public far
|
|
// <virtual-shift> ::= <vtordisp-shift> | <vtordispex-shift>
|
|
// <vtordisp-shift> ::= <offset-to-vtordisp>
|
|
// <vtordispex-shift> ::= <offset-to-vbptr> <vbase-offset-offset>
|
|
// <offset-to-vtordisp>
|
|
static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
|
|
const ThisAdjustment &Adjustment,
|
|
MicrosoftCXXNameMangler &Mangler,
|
|
raw_ostream &Out) {
|
|
if (!Adjustment.Virtual.isEmpty()) {
|
|
Out << '$';
|
|
char AccessSpec;
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
AccessSpec = '0';
|
|
break;
|
|
case AS_protected:
|
|
AccessSpec = '2';
|
|
break;
|
|
case AS_public:
|
|
AccessSpec = '4';
|
|
}
|
|
if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
|
|
Out << 'R' << AccessSpec;
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
|
|
Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
} else {
|
|
Out << AccessSpec;
|
|
Mangler.mangleNumber(
|
|
static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
|
|
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
}
|
|
} else if (Adjustment.NonVirtual != 0) {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
Out << 'G';
|
|
break;
|
|
case AS_protected:
|
|
Out << 'O';
|
|
break;
|
|
case AS_public:
|
|
Out << 'W';
|
|
}
|
|
Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
|
|
} else {
|
|
switch (MD->getAccess()) {
|
|
case AS_none:
|
|
llvm_unreachable("Unsupported access specifier");
|
|
case AS_private:
|
|
Out << 'A';
|
|
break;
|
|
case AS_protected:
|
|
Out << 'I';
|
|
break;
|
|
case AS_public:
|
|
Out << 'Q';
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
|
|
raw_ostream &Out) {
|
|
MicrosoftVTableContext *VTContext =
|
|
cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML =
|
|
VTContext->getMethodVFTableLocation(GlobalDecl(MD));
|
|
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01?";
|
|
Mangler.mangleVirtualMemPtrThunk(MD, ML);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
|
|
const ThunkInfo &Thunk,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Out << "\01?";
|
|
Mangler.mangleName(MD);
|
|
mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
|
|
if (!Thunk.Return.isEmpty())
|
|
assert(Thunk.Method != nullptr &&
|
|
"Thunk info should hold the overridee decl");
|
|
|
|
const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
|
|
Mangler.mangleFunctionType(
|
|
DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
|
|
const CXXDestructorDecl *DD, CXXDtorType Type,
|
|
const ThisAdjustment &Adjustment, raw_ostream &Out) {
|
|
// FIXME: Actually, the dtor thunk should be emitted for vector deleting
|
|
// dtors rather than scalar deleting dtors. Just use the vector deleting dtor
|
|
// mangling manually until we support both deleting dtor types.
|
|
assert(Type == Dtor_Deleting);
|
|
MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
|
|
Out << "\01??_E";
|
|
Mangler.mangleName(DD->getParent());
|
|
mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
|
|
Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXVFTable(
|
|
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ?_7 <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '6' for vftables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_7";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
|
|
for (const CXXRecordDecl *RD : BasePath)
|
|
Mangler.mangleName(RD);
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXVBTable(
|
|
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ?_8 <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '7' for vbtables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_8";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "7B"; // '7' for vbtable, 'B' for const.
|
|
for (const CXXRecordDecl *RD : BasePath)
|
|
Mangler.mangleName(RD);
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_R0";
|
|
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
|
|
Mangler.getStream() << "@8";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << '.';
|
|
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXVirtualDisplacementMap(
|
|
const CXXRecordDecl *SrcRD, const CXXRecordDecl *DstRD, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_K";
|
|
Mangler.mangleName(SrcRD);
|
|
Mangler.getStream() << "$C";
|
|
Mangler.mangleName(DstRD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXThrowInfo(QualType T,
|
|
bool IsConst,
|
|
bool IsVolatile,
|
|
uint32_t NumEntries,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_TI";
|
|
if (IsConst)
|
|
Mangler.getStream() << 'C';
|
|
if (IsVolatile)
|
|
Mangler.getStream() << 'V';
|
|
Mangler.getStream() << NumEntries;
|
|
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXCatchableTypeArray(
|
|
QualType T, uint32_t NumEntries, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_CTA";
|
|
Mangler.getStream() << NumEntries;
|
|
Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXCatchableType(
|
|
QualType T, const CXXConstructorDecl *CD, CXXCtorType CT, uint32_t Size,
|
|
uint32_t NVOffset, int32_t VBPtrOffset, uint32_t VBIndex,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "_CT";
|
|
|
|
llvm::SmallString<64> RTTIMangling;
|
|
{
|
|
llvm::raw_svector_ostream Stream(RTTIMangling);
|
|
mangleCXXRTTI(T, Stream);
|
|
}
|
|
Mangler.getStream() << RTTIMangling.substr(1);
|
|
|
|
// VS2015 CTP6 omits the copy-constructor in the mangled name. This name is,
|
|
// in fact, superfluous but I'm not sure the change was made consciously.
|
|
// TODO: Revisit this when VS2015 gets released.
|
|
llvm::SmallString<64> CopyCtorMangling;
|
|
if (CD) {
|
|
llvm::raw_svector_ostream Stream(CopyCtorMangling);
|
|
mangleCXXCtor(CD, CT, Stream);
|
|
}
|
|
Mangler.getStream() << CopyCtorMangling.substr(1);
|
|
|
|
Mangler.getStream() << Size;
|
|
if (VBPtrOffset == -1) {
|
|
if (NVOffset) {
|
|
Mangler.getStream() << NVOffset;
|
|
}
|
|
} else {
|
|
Mangler.getStream() << NVOffset;
|
|
Mangler.getStream() << VBPtrOffset;
|
|
Mangler.getStream() << VBIndex;
|
|
}
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
|
|
const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
|
|
uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_R1";
|
|
Mangler.mangleNumber(NVOffset);
|
|
Mangler.mangleNumber(VBPtrOffset);
|
|
Mangler.mangleNumber(VBTableOffset);
|
|
Mangler.mangleNumber(Flags);
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "8";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
|
|
const CXXRecordDecl *Derived, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_R2";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "8";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
|
|
const CXXRecordDecl *Derived, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_R3";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "8";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
|
|
const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
|
|
raw_ostream &Out) {
|
|
// <mangled-name> ::= ?_R4 <class-name> <storage-class>
|
|
// <cvr-qualifiers> [<name>] @
|
|
// NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
|
|
// is always '6' for vftables.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_R4";
|
|
Mangler.mangleName(Derived);
|
|
Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
|
|
for (const CXXRecordDecl *RD : BasePath)
|
|
Mangler.mangleName(RD);
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleSEHFilterExpression(
|
|
const NamedDecl *EnclosingDecl, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
// The function body is in the same comdat as the function with the handler,
|
|
// so the numbering here doesn't have to be the same across TUs.
|
|
//
|
|
// <mangled-name> ::= ?filt$ <filter-number> @0
|
|
Mangler.getStream() << "\01?filt$" << SEHFilterIds[EnclosingDecl]++ << "@0@";
|
|
Mangler.mangleName(EnclosingDecl);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleSEHFinallyBlock(
|
|
const NamedDecl *EnclosingDecl, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
// The function body is in the same comdat as the function with the handler,
|
|
// so the numbering here doesn't have to be the same across TUs.
|
|
//
|
|
// <mangled-name> ::= ?fin$ <filter-number> @0
|
|
Mangler.getStream() << "\01?fin$" << SEHFinallyIds[EnclosingDecl]++ << "@0@";
|
|
Mangler.mangleName(EnclosingDecl);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
|
|
// This is just a made up unique string for the purposes of tbaa. undname
|
|
// does *not* know how to demangle it.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << '?';
|
|
Mangler.mangleType(T, SourceRange());
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
|
|
mangler.mangle(D);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
|
|
CXXDtorType Type,
|
|
raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
|
|
mangler.mangle(D);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleReferenceTemporary(
|
|
const VarDecl *VD, unsigned ManglingNumber, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
|
|
Mangler.getStream() << "\01?$RT" << ManglingNumber << '@';
|
|
Mangler.mangle(VD, "");
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleThreadSafeStaticGuardVariable(
|
|
const VarDecl *VD, unsigned GuardNum, raw_ostream &Out) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
|
|
Mangler.getStream() << "\01?$TSS" << GuardNum << '@';
|
|
Mangler.mangleNestedName(VD);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
|
|
raw_ostream &Out) {
|
|
// <guard-name> ::= ?_B <postfix> @5 <scope-depth>
|
|
// ::= ?__J <postfix> @5 <scope-depth>
|
|
// ::= ?$S <guard-num> @ <postfix> @4IA
|
|
|
|
// The first mangling is what MSVC uses to guard static locals in inline
|
|
// functions. It uses a different mangling in external functions to support
|
|
// guarding more than 32 variables. MSVC rejects inline functions with more
|
|
// than 32 static locals. We don't fully implement the second mangling
|
|
// because those guards are not externally visible, and instead use LLVM's
|
|
// default renaming when creating a new guard variable.
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
|
|
bool Visible = VD->isExternallyVisible();
|
|
if (Visible) {
|
|
Mangler.getStream() << (VD->getTLSKind() ? "\01??__J" : "\01??_B");
|
|
} else {
|
|
Mangler.getStream() << "\01?$S1@";
|
|
}
|
|
unsigned ScopeDepth = 0;
|
|
if (Visible && !getNextDiscriminator(VD, ScopeDepth))
|
|
// If we do not have a discriminator and are emitting a guard variable for
|
|
// use at global scope, then mangling the nested name will not be enough to
|
|
// remove ambiguities.
|
|
Mangler.mangle(VD, "");
|
|
else
|
|
Mangler.mangleNestedName(VD);
|
|
Mangler.getStream() << (Visible ? "@5" : "@4IA");
|
|
if (ScopeDepth)
|
|
Mangler.mangleNumber(ScopeDepth);
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
|
|
raw_ostream &Out,
|
|
char CharCode) {
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??__" << CharCode;
|
|
Mangler.mangleName(D);
|
|
if (D->isStaticDataMember()) {
|
|
Mangler.mangleVariableEncoding(D);
|
|
Mangler.getStream() << '@';
|
|
}
|
|
// This is the function class mangling. These stubs are global, non-variadic,
|
|
// cdecl functions that return void and take no args.
|
|
Mangler.getStream() << "YAXXZ";
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// <initializer-name> ::= ?__E <name> YAXXZ
|
|
mangleInitFiniStub(D, Out, 'E');
|
|
}
|
|
|
|
void
|
|
MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
|
|
raw_ostream &Out) {
|
|
// <destructor-name> ::= ?__F <name> YAXXZ
|
|
mangleInitFiniStub(D, Out, 'F');
|
|
}
|
|
|
|
void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
|
|
raw_ostream &Out) {
|
|
// <char-type> ::= 0 # char
|
|
// ::= 1 # wchar_t
|
|
// ::= ??? # char16_t/char32_t will need a mangling too...
|
|
//
|
|
// <literal-length> ::= <non-negative integer> # the length of the literal
|
|
//
|
|
// <encoded-crc> ::= <hex digit>+ @ # crc of the literal including
|
|
// # null-terminator
|
|
//
|
|
// <encoded-string> ::= <simple character> # uninteresting character
|
|
// ::= '?$' <hex digit> <hex digit> # these two nibbles
|
|
// # encode the byte for the
|
|
// # character
|
|
// ::= '?' [a-z] # \xe1 - \xfa
|
|
// ::= '?' [A-Z] # \xc1 - \xda
|
|
// ::= '?' [0-9] # [,/\:. \n\t'-]
|
|
//
|
|
// <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
|
|
// <encoded-string> '@'
|
|
MicrosoftCXXNameMangler Mangler(*this, Out);
|
|
Mangler.getStream() << "\01??_C@_";
|
|
|
|
// <char-type>: The "kind" of string literal is encoded into the mangled name.
|
|
if (SL->isWide())
|
|
Mangler.getStream() << '1';
|
|
else
|
|
Mangler.getStream() << '0';
|
|
|
|
// <literal-length>: The next part of the mangled name consists of the length
|
|
// of the string.
|
|
// The StringLiteral does not consider the NUL terminator byte(s) but the
|
|
// mangling does.
|
|
// N.B. The length is in terms of bytes, not characters.
|
|
Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
|
|
|
|
auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
|
|
unsigned CharByteWidth = SL->getCharByteWidth();
|
|
uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
|
|
unsigned OffsetInCodeUnit = Index % CharByteWidth;
|
|
return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
|
|
};
|
|
|
|
auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
|
|
unsigned CharByteWidth = SL->getCharByteWidth();
|
|
uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
|
|
unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
|
|
return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
|
|
};
|
|
|
|
// CRC all the bytes of the StringLiteral.
|
|
llvm::JamCRC JC;
|
|
for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
|
|
JC.update(GetLittleEndianByte(I));
|
|
|
|
// The NUL terminator byte(s) were not present earlier,
|
|
// we need to manually process those bytes into the CRC.
|
|
for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
|
|
++NullTerminator)
|
|
JC.update('\x00');
|
|
|
|
// <encoded-crc>: The CRC is encoded utilizing the standard number mangling
|
|
// scheme.
|
|
Mangler.mangleNumber(JC.getCRC());
|
|
|
|
// <encoded-string>: The mangled name also contains the first 32 _characters_
|
|
// (including null-terminator bytes) of the StringLiteral.
|
|
// Each character is encoded by splitting them into bytes and then encoding
|
|
// the constituent bytes.
|
|
auto MangleByte = [&Mangler](char Byte) {
|
|
// There are five different manglings for characters:
|
|
// - [a-zA-Z0-9_$]: A one-to-one mapping.
|
|
// - ?[a-z]: The range from \xe1 to \xfa.
|
|
// - ?[A-Z]: The range from \xc1 to \xda.
|
|
// - ?[0-9]: The set of [,/\:. \n\t'-].
|
|
// - ?$XX: A fallback which maps nibbles.
|
|
if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
|
|
Mangler.getStream() << Byte;
|
|
} else if (isLetter(Byte & 0x7f)) {
|
|
Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
|
|
} else {
|
|
const char SpecialChars[] = {',', '/', '\\', ':', '.',
|
|
' ', '\n', '\t', '\'', '-'};
|
|
const char *Pos =
|
|
std::find(std::begin(SpecialChars), std::end(SpecialChars), Byte);
|
|
if (Pos != std::end(SpecialChars)) {
|
|
Mangler.getStream() << '?' << (Pos - std::begin(SpecialChars));
|
|
} else {
|
|
Mangler.getStream() << "?$";
|
|
Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
|
|
Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
|
|
}
|
|
}
|
|
};
|
|
|
|
// Enforce our 32 character max.
|
|
unsigned NumCharsToMangle = std::min(32U, SL->getLength());
|
|
for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
|
|
++I)
|
|
if (SL->isWide())
|
|
MangleByte(GetBigEndianByte(I));
|
|
else
|
|
MangleByte(GetLittleEndianByte(I));
|
|
|
|
// Encode the NUL terminator if there is room.
|
|
if (NumCharsToMangle < 32)
|
|
for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
|
|
++NullTerminator)
|
|
MangleByte(0);
|
|
|
|
Mangler.getStream() << '@';
|
|
}
|
|
|
|
MicrosoftMangleContext *
|
|
MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
|
|
return new MicrosoftMangleContextImpl(Context, Diags);
|
|
}
|