forked from OSchip/llvm-project
749 lines
28 KiB
C++
749 lines
28 KiB
C++
//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implement an interface to specify and query how an illegal operation on a
|
|
// given type should be expanded.
|
|
//
|
|
// Issues to be resolved:
|
|
// + Make it fast.
|
|
// + Support weird types like i3, <7 x i3>, ...
|
|
// + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LowLevelTypeImpl.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
|
|
#define DEBUG_TYPE "legalizer-info"
|
|
|
|
cl::opt<bool> llvm::DisableGISelLegalityCheck(
|
|
"disable-gisel-legality-check",
|
|
cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
|
|
cl::Hidden);
|
|
|
|
raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
|
|
switch (Action) {
|
|
case Legal:
|
|
OS << "Legal";
|
|
break;
|
|
case NarrowScalar:
|
|
OS << "NarrowScalar";
|
|
break;
|
|
case WidenScalar:
|
|
OS << "WidenScalar";
|
|
break;
|
|
case FewerElements:
|
|
OS << "FewerElements";
|
|
break;
|
|
case MoreElements:
|
|
OS << "MoreElements";
|
|
break;
|
|
case Lower:
|
|
OS << "Lower";
|
|
break;
|
|
case Libcall:
|
|
OS << "Libcall";
|
|
break;
|
|
case Custom:
|
|
OS << "Custom";
|
|
break;
|
|
case Unsupported:
|
|
OS << "Unsupported";
|
|
break;
|
|
case NotFound:
|
|
OS << "NotFound";
|
|
break;
|
|
case UseLegacyRules:
|
|
OS << "UseLegacyRules";
|
|
break;
|
|
}
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
|
|
OS << Opcode << ", Tys={";
|
|
for (const auto &Type : Types) {
|
|
OS << Type << ", ";
|
|
}
|
|
OS << "}, Opcode=";
|
|
|
|
OS << Opcode << ", MMOs={";
|
|
for (const auto &MMODescr : MMODescrs) {
|
|
OS << MMODescr.SizeInBits << ", ";
|
|
}
|
|
OS << "}";
|
|
|
|
return OS;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Make sure the rule won't (trivially) loop forever.
|
|
static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
|
|
const std::pair<unsigned, LLT> &Mutation) {
|
|
switch (Rule.getAction()) {
|
|
case Custom:
|
|
case Lower:
|
|
case MoreElements:
|
|
case FewerElements:
|
|
break;
|
|
default:
|
|
return Q.Types[Mutation.first] != Mutation.second;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Make sure the returned mutation makes sense for the match type.
|
|
static bool mutationIsSane(const LegalizeRule &Rule,
|
|
const LegalityQuery &Q,
|
|
std::pair<unsigned, LLT> Mutation) {
|
|
// If the user wants a custom mutation, then we can't really say much about
|
|
// it. Return true, and trust that they're doing the right thing.
|
|
if (Rule.getAction() == Custom)
|
|
return true;
|
|
|
|
const unsigned TypeIdx = Mutation.first;
|
|
const LLT OldTy = Q.Types[TypeIdx];
|
|
const LLT NewTy = Mutation.second;
|
|
|
|
switch (Rule.getAction()) {
|
|
case FewerElements:
|
|
case MoreElements: {
|
|
if (!OldTy.isVector())
|
|
return false;
|
|
|
|
if (NewTy.isVector()) {
|
|
if (Rule.getAction() == FewerElements) {
|
|
// Make sure the element count really decreased.
|
|
if (NewTy.getNumElements() >= OldTy.getNumElements())
|
|
return false;
|
|
} else {
|
|
// Make sure the element count really increased.
|
|
if (NewTy.getNumElements() <= OldTy.getNumElements())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure the element type didn't change.
|
|
return NewTy.getScalarType() == OldTy.getElementType();
|
|
}
|
|
case NarrowScalar:
|
|
case WidenScalar: {
|
|
if (OldTy.isVector()) {
|
|
// Number of elements should not change.
|
|
if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
|
|
return false;
|
|
} else {
|
|
// Both types must be vectors
|
|
if (NewTy.isVector())
|
|
return false;
|
|
}
|
|
|
|
if (Rule.getAction() == NarrowScalar) {
|
|
// Make sure the size really decreased.
|
|
if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
|
|
return false;
|
|
} else {
|
|
// Make sure the size really increased.
|
|
if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
|
|
LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
|
|
dbgs() << "\n");
|
|
if (Rules.empty()) {
|
|
LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
|
|
return {LegalizeAction::UseLegacyRules, 0, LLT{}};
|
|
}
|
|
for (const LegalizeRule &Rule : Rules) {
|
|
if (Rule.match(Query)) {
|
|
LLVM_DEBUG(dbgs() << ".. match\n");
|
|
std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
|
|
LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
|
|
<< Mutation.first << ", " << Mutation.second << "\n");
|
|
assert(mutationIsSane(Rule, Query, Mutation) &&
|
|
"legality mutation invalid for match");
|
|
assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
|
|
return {Rule.getAction(), Mutation.first, Mutation.second};
|
|
} else
|
|
LLVM_DEBUG(dbgs() << ".. no match\n");
|
|
}
|
|
LLVM_DEBUG(dbgs() << ".. unsupported\n");
|
|
return {LegalizeAction::Unsupported, 0, LLT{}};
|
|
}
|
|
|
|
bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
|
|
#ifndef NDEBUG
|
|
if (Rules.empty()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
|
|
return true;
|
|
}
|
|
const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
|
|
if (FirstUncovered < 0) {
|
|
LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
|
|
" user-defined predicate detected\n");
|
|
return true;
|
|
}
|
|
const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
|
|
if (NumTypeIdxs > 0)
|
|
LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
|
|
<< ", " << (AllCovered ? "OK" : "FAIL") << "\n");
|
|
return AllCovered;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
|
|
#ifndef NDEBUG
|
|
if (Rules.empty()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
|
|
return true;
|
|
}
|
|
const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
|
|
if (FirstUncovered < 0) {
|
|
LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
|
|
" user-defined predicate detected\n");
|
|
return true;
|
|
}
|
|
const bool AllCovered = (FirstUncovered >= NumImmIdxs);
|
|
LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
|
|
<< ", " << (AllCovered ? "OK" : "FAIL") << "\n");
|
|
return AllCovered;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
|
|
// Set defaults.
|
|
// FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
|
|
// fundamental load/store Jakob proposed. Once loads & stores are supported.
|
|
setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
|
|
setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
|
|
setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
|
|
setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
|
|
setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
|
|
|
|
setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
|
|
setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
|
|
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
setLegalizeScalarToDifferentSizeStrategy(
|
|
TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
|
|
setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
|
|
}
|
|
|
|
void LegalizerInfo::computeTables() {
|
|
assert(TablesInitialized == false);
|
|
|
|
for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
|
|
const unsigned Opcode = FirstOp + OpcodeIdx;
|
|
for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
|
|
++TypeIdx) {
|
|
// 0. Collect information specified through the setAction API, i.e.
|
|
// for specific bit sizes.
|
|
// For scalar types:
|
|
SizeAndActionsVec ScalarSpecifiedActions;
|
|
// For pointer types:
|
|
std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
|
|
// For vector types:
|
|
std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
|
|
for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
|
|
const LLT Type = LLT2Action.first;
|
|
const LegalizeAction Action = LLT2Action.second;
|
|
|
|
auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
|
|
if (Type.isPointer())
|
|
AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
|
|
SizeAction);
|
|
else if (Type.isVector())
|
|
ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
|
|
.push_back(SizeAction);
|
|
else
|
|
ScalarSpecifiedActions.push_back(SizeAction);
|
|
}
|
|
|
|
// 1. Handle scalar types
|
|
{
|
|
// Decide how to handle bit sizes for which no explicit specification
|
|
// was given.
|
|
SizeChangeStrategy S = &unsupportedForDifferentSizes;
|
|
if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
|
|
ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
|
|
S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
|
|
llvm::sort(ScalarSpecifiedActions);
|
|
checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
|
|
setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
|
|
}
|
|
|
|
// 2. Handle pointer types
|
|
for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
|
|
llvm::sort(PointerSpecifiedActions.second);
|
|
checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
|
|
// For pointer types, we assume that there isn't a meaningfull way
|
|
// to change the number of bits used in the pointer.
|
|
setPointerAction(
|
|
Opcode, TypeIdx, PointerSpecifiedActions.first,
|
|
unsupportedForDifferentSizes(PointerSpecifiedActions.second));
|
|
}
|
|
|
|
// 3. Handle vector types
|
|
SizeAndActionsVec ElementSizesSeen;
|
|
for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
|
|
llvm::sort(VectorSpecifiedActions.second);
|
|
const uint16_t ElementSize = VectorSpecifiedActions.first;
|
|
ElementSizesSeen.push_back({ElementSize, Legal});
|
|
checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
|
|
// For vector types, we assume that the best way to adapt the number
|
|
// of elements is to the next larger number of elements type for which
|
|
// the vector type is legal, unless there is no such type. In that case,
|
|
// legalize towards a vector type with a smaller number of elements.
|
|
SizeAndActionsVec NumElementsActions;
|
|
for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
|
|
assert(BitsizeAndAction.first % ElementSize == 0);
|
|
const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
|
|
NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
|
|
}
|
|
setVectorNumElementAction(
|
|
Opcode, TypeIdx, ElementSize,
|
|
moreToWiderTypesAndLessToWidest(NumElementsActions));
|
|
}
|
|
llvm::sort(ElementSizesSeen);
|
|
SizeChangeStrategy VectorElementSizeChangeStrategy =
|
|
&unsupportedForDifferentSizes;
|
|
if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
|
|
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
|
|
VectorElementSizeChangeStrategy =
|
|
VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
|
|
setScalarInVectorAction(
|
|
Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
|
|
}
|
|
}
|
|
|
|
TablesInitialized = true;
|
|
}
|
|
|
|
// FIXME: inefficient implementation for now. Without ComputeValueVTs we're
|
|
// probably going to need specialized lookup structures for various types before
|
|
// we have any hope of doing well with something like <13 x i3>. Even the common
|
|
// cases should do better than what we have now.
|
|
std::pair<LegalizeAction, LLT>
|
|
LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
|
|
assert(TablesInitialized && "backend forgot to call computeTables");
|
|
// These *have* to be implemented for now, they're the fundamental basis of
|
|
// how everything else is transformed.
|
|
if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
|
|
return findScalarLegalAction(Aspect);
|
|
assert(Aspect.Type.isVector());
|
|
return findVectorLegalAction(Aspect);
|
|
}
|
|
|
|
/// Helper function to get LLT for the given type index.
|
|
static LLT getTypeFromTypeIdx(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI, unsigned OpIdx,
|
|
unsigned TypeIdx) {
|
|
assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
|
|
// G_UNMERGE_VALUES has variable number of operands, but there is only
|
|
// one source type and one destination type as all destinations must be the
|
|
// same type. So, get the last operand if TypeIdx == 1.
|
|
if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
|
|
return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
|
|
return MRI.getType(MI.getOperand(OpIdx).getReg());
|
|
}
|
|
|
|
unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
|
|
assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
|
|
return Opcode - FirstOp;
|
|
}
|
|
|
|
unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
|
|
unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
|
|
if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
|
|
LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
|
|
<< "\n");
|
|
OpcodeIdx = getOpcodeIdxForOpcode(Alias);
|
|
assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
|
|
}
|
|
|
|
return OpcodeIdx;
|
|
}
|
|
|
|
const LegalizeRuleSet &
|
|
LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
|
|
unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
|
|
return RulesForOpcode[OpcodeIdx];
|
|
}
|
|
|
|
LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
|
|
unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
|
|
auto &Result = RulesForOpcode[OpcodeIdx];
|
|
assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
|
|
return Result;
|
|
}
|
|
|
|
LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
|
|
std::initializer_list<unsigned> Opcodes) {
|
|
unsigned Representative = *Opcodes.begin();
|
|
|
|
assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
|
|
"Initializer list must have at least two opcodes");
|
|
|
|
for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
|
|
aliasActionDefinitions(Representative, *I);
|
|
|
|
auto &Return = getActionDefinitionsBuilder(Representative);
|
|
Return.setIsAliasedByAnother();
|
|
return Return;
|
|
}
|
|
|
|
void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
|
|
unsigned OpcodeFrom) {
|
|
assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
|
|
assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
|
|
const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
|
|
RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
|
|
}
|
|
|
|
LegalizeActionStep
|
|
LegalizerInfo::getAction(const LegalityQuery &Query) const {
|
|
LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
|
|
if (Step.Action != LegalizeAction::UseLegacyRules) {
|
|
return Step;
|
|
}
|
|
|
|
for (unsigned i = 0; i < Query.Types.size(); ++i) {
|
|
auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
|
|
if (Action.first != Legal) {
|
|
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
|
|
<< Action.first << ", " << Action.second << "\n");
|
|
return {Action.first, i, Action.second};
|
|
} else
|
|
LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
|
|
}
|
|
LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
|
|
return {Legal, 0, LLT{}};
|
|
}
|
|
|
|
LegalizeActionStep
|
|
LegalizerInfo::getAction(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) const {
|
|
SmallVector<LLT, 2> Types;
|
|
SmallBitVector SeenTypes(8);
|
|
const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
|
|
// FIXME: probably we'll need to cache the results here somehow?
|
|
for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
|
|
if (!OpInfo[i].isGenericType())
|
|
continue;
|
|
|
|
// We must only record actions once for each TypeIdx; otherwise we'd
|
|
// try to legalize operands multiple times down the line.
|
|
unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
|
|
if (SeenTypes[TypeIdx])
|
|
continue;
|
|
|
|
SeenTypes.set(TypeIdx);
|
|
|
|
LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
|
|
Types.push_back(Ty);
|
|
}
|
|
|
|
SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
|
|
for (const auto &MMO : MI.memoperands())
|
|
MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
|
|
8 * MMO->getAlignment(),
|
|
MMO->getOrdering()});
|
|
|
|
return getAction({MI.getOpcode(), Types, MemDescrs});
|
|
}
|
|
|
|
bool LegalizerInfo::isLegal(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) const {
|
|
return getAction(MI, MRI).Action == Legal;
|
|
}
|
|
|
|
bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
|
|
const MachineRegisterInfo &MRI) const {
|
|
auto Action = getAction(MI, MRI).Action;
|
|
// If the action is custom, it may not necessarily modify the instruction,
|
|
// so we have to assume it's legal.
|
|
return Action == Legal || Action == Custom;
|
|
}
|
|
|
|
bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
return false;
|
|
}
|
|
|
|
LegalizerInfo::SizeAndActionsVec
|
|
LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
|
|
const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
|
|
LegalizeAction DecreaseAction) {
|
|
SizeAndActionsVec result;
|
|
unsigned LargestSizeSoFar = 0;
|
|
if (v.size() >= 1 && v[0].first != 1)
|
|
result.push_back({1, IncreaseAction});
|
|
for (size_t i = 0; i < v.size(); ++i) {
|
|
result.push_back(v[i]);
|
|
LargestSizeSoFar = v[i].first;
|
|
if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
|
|
result.push_back({LargestSizeSoFar + 1, IncreaseAction});
|
|
LargestSizeSoFar = v[i].first + 1;
|
|
}
|
|
}
|
|
result.push_back({LargestSizeSoFar + 1, DecreaseAction});
|
|
return result;
|
|
}
|
|
|
|
LegalizerInfo::SizeAndActionsVec
|
|
LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
|
|
const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
|
|
LegalizeAction IncreaseAction) {
|
|
SizeAndActionsVec result;
|
|
if (v.size() == 0 || v[0].first != 1)
|
|
result.push_back({1, IncreaseAction});
|
|
for (size_t i = 0; i < v.size(); ++i) {
|
|
result.push_back(v[i]);
|
|
if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
|
|
result.push_back({v[i].first + 1, DecreaseAction});
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
LegalizerInfo::SizeAndAction
|
|
LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
|
|
assert(Size >= 1);
|
|
// Find the last element in Vec that has a bitsize equal to or smaller than
|
|
// the requested bit size.
|
|
// That is the element just before the first element that is bigger than Size.
|
|
auto It = partition_point(
|
|
Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
|
|
assert(It != Vec.begin() && "Does Vec not start with size 1?");
|
|
int VecIdx = It - Vec.begin() - 1;
|
|
|
|
LegalizeAction Action = Vec[VecIdx].second;
|
|
switch (Action) {
|
|
case Legal:
|
|
case Lower:
|
|
case Libcall:
|
|
case Custom:
|
|
return {Size, Action};
|
|
case FewerElements:
|
|
// FIXME: is this special case still needed and correct?
|
|
// Special case for scalarization:
|
|
if (Vec == SizeAndActionsVec({{1, FewerElements}}))
|
|
return {1, FewerElements};
|
|
LLVM_FALLTHROUGH;
|
|
case NarrowScalar: {
|
|
// The following needs to be a loop, as for now, we do allow needing to
|
|
// go over "Unsupported" bit sizes before finding a legalizable bit size.
|
|
// e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
|
|
// we need to iterate over s9, and then to s32 to return (s32, Legal).
|
|
// If we want to get rid of the below loop, we should have stronger asserts
|
|
// when building the SizeAndActionsVecs, probably not allowing
|
|
// "Unsupported" unless at the ends of the vector.
|
|
for (int i = VecIdx - 1; i >= 0; --i)
|
|
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
|
|
Vec[i].second != Unsupported)
|
|
return {Vec[i].first, Action};
|
|
llvm_unreachable("");
|
|
}
|
|
case WidenScalar:
|
|
case MoreElements: {
|
|
// See above, the following needs to be a loop, at least for now.
|
|
for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
|
|
if (!needsLegalizingToDifferentSize(Vec[i].second) &&
|
|
Vec[i].second != Unsupported)
|
|
return {Vec[i].first, Action};
|
|
llvm_unreachable("");
|
|
}
|
|
case Unsupported:
|
|
return {Size, Unsupported};
|
|
case NotFound:
|
|
case UseLegacyRules:
|
|
llvm_unreachable("NotFound");
|
|
}
|
|
llvm_unreachable("Action has an unknown enum value");
|
|
}
|
|
|
|
std::pair<LegalizeAction, LLT>
|
|
LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
|
|
assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
|
|
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
|
|
return {NotFound, LLT()};
|
|
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
|
|
if (Aspect.Type.isPointer() &&
|
|
AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
|
|
AddrSpace2PointerActions[OpcodeIdx].end()) {
|
|
return {NotFound, LLT()};
|
|
}
|
|
const SmallVector<SizeAndActionsVec, 1> &Actions =
|
|
Aspect.Type.isPointer()
|
|
? AddrSpace2PointerActions[OpcodeIdx]
|
|
.find(Aspect.Type.getAddressSpace())
|
|
->second
|
|
: ScalarActions[OpcodeIdx];
|
|
if (Aspect.Idx >= Actions.size())
|
|
return {NotFound, LLT()};
|
|
const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
|
|
// FIXME: speed up this search, e.g. by using a results cache for repeated
|
|
// queries?
|
|
auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
|
|
return {SizeAndAction.second,
|
|
Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
|
|
: LLT::pointer(Aspect.Type.getAddressSpace(),
|
|
SizeAndAction.first)};
|
|
}
|
|
|
|
std::pair<LegalizeAction, LLT>
|
|
LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
|
|
assert(Aspect.Type.isVector());
|
|
// First legalize the vector element size, then legalize the number of
|
|
// lanes in the vector.
|
|
if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
|
|
return {NotFound, Aspect.Type};
|
|
const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
|
|
const unsigned TypeIdx = Aspect.Idx;
|
|
if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
|
|
return {NotFound, Aspect.Type};
|
|
const SizeAndActionsVec &ElemSizeVec =
|
|
ScalarInVectorActions[OpcodeIdx][TypeIdx];
|
|
|
|
LLT IntermediateType;
|
|
auto ElementSizeAndAction =
|
|
findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
|
|
IntermediateType =
|
|
LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
|
|
if (ElementSizeAndAction.second != Legal)
|
|
return {ElementSizeAndAction.second, IntermediateType};
|
|
|
|
auto i = NumElements2Actions[OpcodeIdx].find(
|
|
IntermediateType.getScalarSizeInBits());
|
|
if (i == NumElements2Actions[OpcodeIdx].end()) {
|
|
return {NotFound, IntermediateType};
|
|
}
|
|
const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
|
|
auto NumElementsAndAction =
|
|
findAction(NumElementsVec, IntermediateType.getNumElements());
|
|
return {NumElementsAndAction.second,
|
|
LLT::vector(NumElementsAndAction.first,
|
|
IntermediateType.getScalarSizeInBits())};
|
|
}
|
|
|
|
bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
return true;
|
|
}
|
|
|
|
/// \pre Type indices of every opcode form a dense set starting from 0.
|
|
void LegalizerInfo::verify(const MCInstrInfo &MII) const {
|
|
#ifndef NDEBUG
|
|
std::vector<unsigned> FailedOpcodes;
|
|
for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
|
|
const MCInstrDesc &MCID = MII.get(Opcode);
|
|
const unsigned NumTypeIdxs = std::accumulate(
|
|
MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
|
|
[](unsigned Acc, const MCOperandInfo &OpInfo) {
|
|
return OpInfo.isGenericType()
|
|
? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
|
|
: Acc;
|
|
});
|
|
const unsigned NumImmIdxs = std::accumulate(
|
|
MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
|
|
[](unsigned Acc, const MCOperandInfo &OpInfo) {
|
|
return OpInfo.isGenericImm()
|
|
? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
|
|
: Acc;
|
|
});
|
|
LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
|
|
<< "): " << NumTypeIdxs << " type ind"
|
|
<< (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
|
|
<< NumImmIdxs << " imm ind"
|
|
<< (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
|
|
const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
|
|
if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
|
|
FailedOpcodes.push_back(Opcode);
|
|
else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
|
|
FailedOpcodes.push_back(Opcode);
|
|
}
|
|
if (!FailedOpcodes.empty()) {
|
|
errs() << "The following opcodes have ill-defined legalization rules:";
|
|
for (unsigned Opcode : FailedOpcodes)
|
|
errs() << " " << MII.getName(Opcode);
|
|
errs() << "\n";
|
|
|
|
report_fatal_error("ill-defined LegalizerInfo"
|
|
", try -debug-only=legalizer-info for details");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// FIXME: This should be in the MachineVerifier, but it can't use the
|
|
// LegalizerInfo as it's currently in the separate GlobalISel library.
|
|
// Note that RegBankSelected property already checked in the verifier
|
|
// has the same layering problem, but we only use inline methods so
|
|
// end up not needing to link against the GlobalISel library.
|
|
const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
|
|
if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (const MachineBasicBlock &MBB : MF)
|
|
for (const MachineInstr &MI : MBB)
|
|
if (isPreISelGenericOpcode(MI.getOpcode()) &&
|
|
!MLI->isLegalOrCustom(MI, MRI))
|
|
return &MI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
#endif
|