forked from OSchip/llvm-project
3242 lines
109 KiB
C++
3242 lines
109 KiB
C++
//=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-=
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a meta-engine for path-sensitive dataflow analysis that
|
|
// is built on GREngine, but provides the boilerplate to execute transfer
|
|
// functions and build the ExplodedGraph at the expression level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngineBuilders.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/PrettyStackTrace.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
|
|
#ifndef NDEBUG
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#endif
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
using llvm::dyn_cast;
|
|
using llvm::dyn_cast_or_null;
|
|
using llvm::cast;
|
|
using llvm::APSInt;
|
|
|
|
namespace {
|
|
// Trait class for recording returned expression in the state.
|
|
struct ReturnExpr {
|
|
static int TagInt;
|
|
typedef const Stmt *data_type;
|
|
};
|
|
int ReturnExpr::TagInt;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline Selector GetNullarySelector(const char* name, ASTContext& Ctx) {
|
|
IdentifierInfo* II = &Ctx.Idents.get(name);
|
|
return Ctx.Selectors.getSelector(0, &II);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Engine construction and deletion.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExprEngine::ExprEngine(AnalysisManager &mgr, TransferFuncs *tf)
|
|
: AMgr(mgr),
|
|
Engine(*this),
|
|
G(Engine.getGraph()),
|
|
Builder(NULL),
|
|
StateMgr(getContext(), mgr.getStoreManagerCreator(),
|
|
mgr.getConstraintManagerCreator(), G.getAllocator(),
|
|
*this),
|
|
SymMgr(StateMgr.getSymbolManager()),
|
|
svalBuilder(StateMgr.getSValBuilder()),
|
|
EntryNode(NULL), currentStmt(NULL),
|
|
NSExceptionII(NULL), NSExceptionInstanceRaiseSelectors(NULL),
|
|
RaiseSel(GetNullarySelector("raise", getContext())),
|
|
BR(mgr, *this), TF(tf) {
|
|
|
|
// FIXME: Eventually remove the TF object entirely.
|
|
TF->RegisterChecks(*this);
|
|
TF->RegisterPrinters(getStateManager().Printers);
|
|
|
|
if (mgr.shouldEagerlyTrimExplodedGraph()) {
|
|
// Enable eager node reclaimation when constructing the ExplodedGraph.
|
|
G.enableNodeReclamation();
|
|
}
|
|
}
|
|
|
|
ExprEngine::~ExprEngine() {
|
|
BR.FlushReports();
|
|
delete [] NSExceptionInstanceRaiseSelectors;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const GRState* ExprEngine::getInitialState(const LocationContext *InitLoc) {
|
|
const GRState *state = StateMgr.getInitialState(InitLoc);
|
|
|
|
// Preconditions.
|
|
|
|
// FIXME: It would be nice if we had a more general mechanism to add
|
|
// such preconditions. Some day.
|
|
do {
|
|
const Decl *D = InitLoc->getDecl();
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
|
// Precondition: the first argument of 'main' is an integer guaranteed
|
|
// to be > 0.
|
|
const IdentifierInfo *II = FD->getIdentifier();
|
|
if (!II || !(II->getName() == "main" && FD->getNumParams() > 0))
|
|
break;
|
|
|
|
const ParmVarDecl *PD = FD->getParamDecl(0);
|
|
QualType T = PD->getType();
|
|
if (!T->isIntegerType())
|
|
break;
|
|
|
|
const MemRegion *R = state->getRegion(PD, InitLoc);
|
|
if (!R)
|
|
break;
|
|
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
SVal Constraint_untested = evalBinOp(state, BO_GT, V,
|
|
svalBuilder.makeZeroVal(T),
|
|
getContext().IntTy);
|
|
|
|
DefinedOrUnknownSVal *Constraint =
|
|
dyn_cast<DefinedOrUnknownSVal>(&Constraint_untested);
|
|
|
|
if (!Constraint)
|
|
break;
|
|
|
|
if (const GRState *newState = state->assume(*Constraint, true))
|
|
state = newState;
|
|
|
|
break;
|
|
}
|
|
|
|
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
|
|
// Precondition: 'self' is always non-null upon entry to an Objective-C
|
|
// method.
|
|
const ImplicitParamDecl *SelfD = MD->getSelfDecl();
|
|
const MemRegion *R = state->getRegion(SelfD, InitLoc);
|
|
SVal V = state->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (const Loc *LV = dyn_cast<Loc>(&V)) {
|
|
// Assume that the pointer value in 'self' is non-null.
|
|
state = state->assume(*LV, true);
|
|
assert(state && "'self' cannot be null");
|
|
}
|
|
}
|
|
} while (0);
|
|
|
|
return state;
|
|
}
|
|
|
|
bool
|
|
ExprEngine::doesInvalidateGlobals(const CallOrObjCMessage &callOrMessage) const
|
|
{
|
|
if (callOrMessage.isFunctionCall() && !callOrMessage.isCXXCall()) {
|
|
SVal calleeV = callOrMessage.getFunctionCallee();
|
|
if (const FunctionTextRegion *codeR =
|
|
llvm::dyn_cast_or_null<FunctionTextRegion>(calleeV.getAsRegion())) {
|
|
|
|
const FunctionDecl *fd = codeR->getDecl();
|
|
if (const IdentifierInfo *ii = fd->getIdentifier()) {
|
|
llvm::StringRef fname = ii->getName();
|
|
if (fname == "strlen")
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The conservative answer: invalidates globals.
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-level transfer function logic (Dispatcher).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// evalAssume - Called by ConstraintManager. Used to call checker-specific
|
|
/// logic for handling assumptions on symbolic values.
|
|
const GRState *ExprEngine::processAssume(const GRState *state, SVal cond,
|
|
bool assumption) {
|
|
state = getCheckerManager().runCheckersForEvalAssume(state, cond, assumption);
|
|
|
|
// If the state is infeasible at this point, bail out.
|
|
if (!state)
|
|
return NULL;
|
|
|
|
return TF->evalAssume(state, cond, assumption);
|
|
}
|
|
|
|
bool ExprEngine::wantsRegionChangeUpdate(const GRState* state) {
|
|
return getCheckerManager().wantsRegionChangeUpdate(state);
|
|
}
|
|
|
|
const GRState *
|
|
ExprEngine::processRegionChanges(const GRState *state,
|
|
const StoreManager::InvalidatedSymbols *invalidated,
|
|
const MemRegion * const *Begin,
|
|
const MemRegion * const *End) {
|
|
return getCheckerManager().runCheckersForRegionChanges(state, invalidated,
|
|
Begin, End);
|
|
}
|
|
|
|
void ExprEngine::processEndWorklist(bool hasWorkRemaining) {
|
|
getCheckerManager().runCheckersForEndAnalysis(G, BR, *this);
|
|
}
|
|
|
|
void ExprEngine::processCFGElement(const CFGElement E,
|
|
StmtNodeBuilder& builder) {
|
|
switch (E.getKind()) {
|
|
case CFGElement::Invalid:
|
|
llvm_unreachable("Unexpected CFGElement kind.");
|
|
case CFGElement::Statement:
|
|
ProcessStmt(E.getAs<CFGStmt>()->getStmt(), builder);
|
|
return;
|
|
case CFGElement::Initializer:
|
|
ProcessInitializer(E.getAs<CFGInitializer>()->getInitializer(), builder);
|
|
return;
|
|
case CFGElement::AutomaticObjectDtor:
|
|
case CFGElement::BaseDtor:
|
|
case CFGElement::MemberDtor:
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessImplicitDtor(*E.getAs<CFGImplicitDtor>(), builder);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void ExprEngine::ProcessStmt(const CFGStmt S, StmtNodeBuilder& builder) {
|
|
// Reclaim any unnecessary nodes in the ExplodedGraph.
|
|
G.reclaimRecentlyAllocatedNodes();
|
|
// Recycle any unused states in the GRStateManager.
|
|
StateMgr.recycleUnusedStates();
|
|
|
|
currentStmt = S.getStmt();
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
currentStmt->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
Builder = &builder;
|
|
EntryNode = builder.getPredecessor();
|
|
|
|
// Create the cleaned state.
|
|
const LocationContext *LC = EntryNode->getLocationContext();
|
|
SymbolReaper SymReaper(LC, currentStmt, SymMgr);
|
|
|
|
if (AMgr.shouldPurgeDead()) {
|
|
const GRState *St = EntryNode->getState();
|
|
getCheckerManager().runCheckersForLiveSymbols(St, SymReaper);
|
|
|
|
const StackFrameContext *SFC = LC->getCurrentStackFrame();
|
|
CleanedState = StateMgr.removeDeadBindings(St, SFC, SymReaper);
|
|
} else {
|
|
CleanedState = EntryNode->getState();
|
|
}
|
|
|
|
// Process any special transfer function for dead symbols.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (!SymReaper.hasDeadSymbols())
|
|
Tmp.Add(EntryNode);
|
|
else {
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->hasGeneratedNode);
|
|
|
|
SaveAndRestore<bool> OldPurgeDeadSymbols(Builder->PurgingDeadSymbols);
|
|
Builder->PurgingDeadSymbols = true;
|
|
|
|
// FIXME: This should soon be removed.
|
|
ExplodedNodeSet Tmp2;
|
|
getTF().evalDeadSymbols(Tmp2, *this, *Builder, EntryNode,
|
|
CleanedState, SymReaper);
|
|
|
|
getCheckerManager().runCheckersForDeadSymbols(Tmp, Tmp2,
|
|
SymReaper, currentStmt, *this);
|
|
|
|
if (!Builder->BuildSinks && !Builder->hasGeneratedNode)
|
|
Tmp.Add(EntryNode);
|
|
}
|
|
|
|
bool HasAutoGenerated = false;
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
ExplodedNodeSet Dst;
|
|
|
|
// Set the cleaned state.
|
|
Builder->SetCleanedState(*I == EntryNode ? CleanedState : GetState(*I));
|
|
|
|
// Visit the statement.
|
|
Visit(currentStmt, *I, Dst);
|
|
|
|
// Do we need to auto-generate a node? We only need to do this to generate
|
|
// a node with a "cleaned" state; CoreEngine will actually handle
|
|
// auto-transitions for other cases.
|
|
if (Dst.size() == 1 && *Dst.begin() == EntryNode
|
|
&& !Builder->hasGeneratedNode && !HasAutoGenerated) {
|
|
HasAutoGenerated = true;
|
|
builder.generateNode(currentStmt, GetState(EntryNode), *I);
|
|
}
|
|
}
|
|
|
|
// NULL out these variables to cleanup.
|
|
CleanedState = NULL;
|
|
EntryNode = NULL;
|
|
|
|
currentStmt = 0;
|
|
|
|
Builder = NULL;
|
|
}
|
|
|
|
void ExprEngine::ProcessInitializer(const CFGInitializer Init,
|
|
StmtNodeBuilder &builder) {
|
|
// We don't set EntryNode and currentStmt. And we don't clean up state.
|
|
const CXXCtorInitializer *BMI = Init.getInitializer();
|
|
|
|
ExplodedNode *pred = builder.getPredecessor();
|
|
|
|
const StackFrameContext *stackFrame = cast<StackFrameContext>(pred->getLocationContext());
|
|
const CXXConstructorDecl *decl = cast<CXXConstructorDecl>(stackFrame->getDecl());
|
|
const CXXThisRegion *thisReg = getCXXThisRegion(decl, stackFrame);
|
|
|
|
SVal thisVal = pred->getState()->getSVal(thisReg);
|
|
|
|
if (BMI->isAnyMemberInitializer()) {
|
|
ExplodedNodeSet Dst;
|
|
|
|
// Evaluate the initializer.
|
|
Visit(BMI->getInit(), pred, Dst);
|
|
|
|
for (ExplodedNodeSet::iterator I = Dst.begin(), E = Dst.end(); I != E; ++I){
|
|
ExplodedNode *Pred = *I;
|
|
const GRState *state = Pred->getState();
|
|
|
|
const FieldDecl *FD = BMI->getAnyMember();
|
|
|
|
SVal FieldLoc = state->getLValue(FD, thisVal);
|
|
SVal InitVal = state->getSVal(BMI->getInit());
|
|
state = state->bindLoc(FieldLoc, InitVal);
|
|
|
|
// Use a custom node building process.
|
|
PostInitializer PP(BMI, stackFrame);
|
|
// Builder automatically add the generated node to the deferred set,
|
|
// which are processed in the builder's dtor.
|
|
builder.generateNode(PP, state, Pred);
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(BMI->isBaseInitializer());
|
|
|
|
// Get the base class declaration.
|
|
const CXXConstructExpr *ctorExpr = cast<CXXConstructExpr>(BMI->getInit());
|
|
|
|
// Create the base object region.
|
|
SVal baseVal =
|
|
getStoreManager().evalDerivedToBase(thisVal, ctorExpr->getType());
|
|
const MemRegion *baseReg = baseVal.getAsRegion();
|
|
assert(baseReg);
|
|
Builder = &builder;
|
|
ExplodedNodeSet dst;
|
|
VisitCXXConstructExpr(ctorExpr, baseReg, pred, dst);
|
|
}
|
|
|
|
void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D,
|
|
StmtNodeBuilder &builder) {
|
|
Builder = &builder;
|
|
|
|
switch (D.getKind()) {
|
|
case CFGElement::AutomaticObjectDtor:
|
|
ProcessAutomaticObjDtor(cast<CFGAutomaticObjDtor>(D), builder);
|
|
break;
|
|
case CFGElement::BaseDtor:
|
|
ProcessBaseDtor(cast<CFGBaseDtor>(D), builder);
|
|
break;
|
|
case CFGElement::MemberDtor:
|
|
ProcessMemberDtor(cast<CFGMemberDtor>(D), builder);
|
|
break;
|
|
case CFGElement::TemporaryDtor:
|
|
ProcessTemporaryDtor(cast<CFGTemporaryDtor>(D), builder);
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected dtor kind.");
|
|
}
|
|
}
|
|
|
|
void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor dtor,
|
|
StmtNodeBuilder &builder) {
|
|
ExplodedNode *pred = builder.getPredecessor();
|
|
const GRState *state = pred->getState();
|
|
const VarDecl *varDecl = dtor.getVarDecl();
|
|
|
|
QualType varType = varDecl->getType();
|
|
|
|
if (const ReferenceType *refType = varType->getAs<ReferenceType>())
|
|
varType = refType->getPointeeType();
|
|
|
|
const CXXRecordDecl *recordDecl = varType->getAsCXXRecordDecl();
|
|
assert(recordDecl && "get CXXRecordDecl fail");
|
|
const CXXDestructorDecl *dtorDecl = recordDecl->getDestructor();
|
|
|
|
Loc dest = state->getLValue(varDecl, pred->getLocationContext());
|
|
|
|
ExplodedNodeSet dstSet;
|
|
VisitCXXDestructor(dtorDecl, cast<loc::MemRegionVal>(dest).getRegion(),
|
|
dtor.getTriggerStmt(), pred, dstSet);
|
|
}
|
|
|
|
void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D,
|
|
StmtNodeBuilder &builder) {
|
|
}
|
|
|
|
void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D,
|
|
StmtNodeBuilder &builder) {
|
|
}
|
|
|
|
void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D,
|
|
StmtNodeBuilder &builder) {
|
|
}
|
|
|
|
void ExprEngine::Visit(const Stmt* S, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
S->getLocStart(),
|
|
"Error evaluating statement");
|
|
|
|
// Expressions to ignore.
|
|
if (const Expr *Ex = dyn_cast<Expr>(S))
|
|
S = Ex->IgnoreParens();
|
|
|
|
// FIXME: add metadata to the CFG so that we can disable
|
|
// this check when we KNOW that there is no block-level subexpression.
|
|
// The motivation is that this check requires a hashtable lookup.
|
|
|
|
if (S != currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(S)) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
switch (S->getStmtClass()) {
|
|
// C++ stuff we don't support yet.
|
|
case Stmt::CXXBindTemporaryExprClass:
|
|
case Stmt::CXXCatchStmtClass:
|
|
case Stmt::CXXDependentScopeMemberExprClass:
|
|
case Stmt::CXXForRangeStmtClass:
|
|
case Stmt::CXXPseudoDestructorExprClass:
|
|
case Stmt::CXXTemporaryObjectExprClass:
|
|
case Stmt::CXXThrowExprClass:
|
|
case Stmt::CXXTryStmtClass:
|
|
case Stmt::CXXTypeidExprClass:
|
|
case Stmt::CXXUuidofExprClass:
|
|
case Stmt::CXXUnresolvedConstructExprClass:
|
|
case Stmt::CXXScalarValueInitExprClass:
|
|
case Stmt::DependentScopeDeclRefExprClass:
|
|
case Stmt::UnaryTypeTraitExprClass:
|
|
case Stmt::BinaryTypeTraitExprClass:
|
|
case Stmt::ArrayTypeTraitExprClass:
|
|
case Stmt::ExpressionTraitExprClass:
|
|
case Stmt::UnresolvedLookupExprClass:
|
|
case Stmt::UnresolvedMemberExprClass:
|
|
case Stmt::CXXNoexceptExprClass:
|
|
case Stmt::PackExpansionExprClass:
|
|
case Stmt::SubstNonTypeTemplateParmPackExprClass:
|
|
case Stmt::SEHTryStmtClass:
|
|
case Stmt::SEHExceptStmtClass:
|
|
case Stmt::SEHFinallyStmtClass:
|
|
{
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
const ExplodedNode *node = MakeNode(Dst, S, Pred, GetState(Pred));
|
|
Engine.addAbortedBlock(node, Builder->getBlock());
|
|
break;
|
|
}
|
|
|
|
// We don't handle default arguments either yet, but we can fake it
|
|
// for now by just skipping them.
|
|
case Stmt::CXXDefaultArgExprClass: {
|
|
Dst.Add(Pred);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ParenExprClass:
|
|
llvm_unreachable("ParenExprs already handled.");
|
|
case Stmt::GenericSelectionExprClass:
|
|
llvm_unreachable("GenericSelectionExprs already handled.");
|
|
// Cases that should never be evaluated simply because they shouldn't
|
|
// appear in the CFG.
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::CaseStmtClass:
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::DefaultStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IfStmtClass:
|
|
case Stmt::IndirectGotoStmtClass:
|
|
case Stmt::LabelStmtClass:
|
|
case Stmt::NoStmtClass:
|
|
case Stmt::NullStmtClass:
|
|
case Stmt::SwitchStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
llvm_unreachable("Stmt should not be in analyzer evaluation loop");
|
|
break;
|
|
|
|
case Stmt::GNUNullExprClass: {
|
|
MakeNode(Dst, S, Pred, GetState(Pred)->BindExpr(S, svalBuilder.makeNull()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
VisitObjCPropertyRefExpr(cast<ObjCPropertyRefExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
// Cases not handled yet; but will handle some day.
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::ExtVectorElementExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ImplicitValueInitExprClass:
|
|
case Stmt::ObjCAtCatchStmtClass:
|
|
case Stmt::ObjCAtFinallyStmtClass:
|
|
case Stmt::ObjCAtTryStmtClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCIsaExprClass:
|
|
case Stmt::ObjCProtocolExprClass:
|
|
case Stmt::ObjCSelectorExprClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::ParenListExprClass:
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::CUDAKernelCallExprClass:
|
|
case Stmt::OpaqueValueExprClass:
|
|
case Stmt::AsTypeExprClass:
|
|
// Fall through.
|
|
|
|
// Cases we intentionally don't evaluate, since they don't need
|
|
// to be explicitly evaluated.
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::ExprWithCleanupsClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::SizeOfPackExprClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
Dst.Add(Pred); // No-op. Simply propagate the current state unchanged.
|
|
break;
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::AsmStmtClass:
|
|
VisitAsmStmt(cast<AsmStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::BlockDeclRefExprClass: {
|
|
const BlockDeclRefExpr *BE = cast<BlockDeclRefExpr>(S);
|
|
VisitCommonDeclRefExpr(BE, BE->getDecl(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::BlockExprClass:
|
|
VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator* B = cast<BinaryOperator>(S);
|
|
if (B->isLogicalOp()) {
|
|
VisitLogicalExpr(B, Pred, Dst);
|
|
break;
|
|
}
|
|
else if (B->getOpcode() == BO_Comma) {
|
|
const GRState* state = GetState(Pred);
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, state->getSVal(B->getRHS())));
|
|
break;
|
|
}
|
|
|
|
if (AMgr.shouldEagerlyAssume() &&
|
|
(B->isRelationalOp() || B->isEqualityOp())) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp);
|
|
evalEagerlyAssume(Dst, Tmp, cast<Expr>(S));
|
|
}
|
|
else
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXOperatorCallExprClass:
|
|
case Stmt::CXXMemberCallExprClass: {
|
|
VisitCallExpr(cast<CallExpr>(S), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXConstructExprClass: {
|
|
const CXXConstructExpr *C = cast<CXXConstructExpr>(S);
|
|
// For block-level CXXConstructExpr, we don't have a destination region.
|
|
// Let VisitCXXConstructExpr() create one.
|
|
VisitCXXConstructExpr(C, 0, Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXNewExprClass: {
|
|
const CXXNewExpr *NE = cast<CXXNewExpr>(S);
|
|
VisitCXXNewExpr(NE, Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXDeleteExprClass: {
|
|
const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S);
|
|
VisitCXXDeleteExpr(CDE, Pred, Dst);
|
|
break;
|
|
}
|
|
// FIXME: ChooseExpr is really a constant. We need to fix
|
|
// the CFG do not model them as explicit control-flow.
|
|
|
|
case Stmt::ChooseExprClass: { // __builtin_choose_expr
|
|
const ChooseExpr* C = cast<ChooseExpr>(S);
|
|
VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::CompoundLiteralExprClass:
|
|
VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: { // '?' operator
|
|
const AbstractConditionalOperator *C
|
|
= cast<AbstractConditionalOperator>(S);
|
|
VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::CXXThisExprClass:
|
|
VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DE = cast<DeclRefExpr>(S);
|
|
VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::DeclStmtClass:
|
|
VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::CXXDynamicCastExprClass:
|
|
case Stmt::CXXReinterpretCastExprClass:
|
|
case Stmt::CXXConstCastExprClass:
|
|
case Stmt::CXXFunctionalCastExprClass: {
|
|
const CastExpr* C = cast<CastExpr>(S);
|
|
VisitCast(C, C->getSubExpr(), Pred, Dst);
|
|
break;
|
|
}
|
|
|
|
case Stmt::InitListExprClass:
|
|
VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::MemberExprClass:
|
|
VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst);
|
|
break;
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCMessageExprClass:
|
|
VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::ObjCAtThrowStmtClass: {
|
|
// FIXME: This is not complete. We basically treat @throw as
|
|
// an abort.
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
Builder->BuildSinks = true;
|
|
MakeNode(Dst, S, Pred, GetState(Pred));
|
|
break;
|
|
}
|
|
|
|
case Stmt::ReturnStmtClass:
|
|
VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::OffsetOfExprClass:
|
|
VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::UnaryExprOrTypeTraitExprClass:
|
|
VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
|
|
Pred, Dst);
|
|
break;
|
|
|
|
case Stmt::StmtExprClass: {
|
|
const StmtExpr* SE = cast<StmtExpr>(S);
|
|
|
|
if (SE->getSubStmt()->body_empty()) {
|
|
// Empty statement expression.
|
|
assert(SE->getType() == getContext().VoidTy
|
|
&& "Empty statement expression must have void type.");
|
|
Dst.Add(Pred);
|
|
break;
|
|
}
|
|
|
|
if (Expr* LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) {
|
|
const GRState* state = GetState(Pred);
|
|
MakeNode(Dst, SE, Pred, state->BindExpr(SE, state->getSVal(LastExpr)));
|
|
}
|
|
else
|
|
Dst.Add(Pred);
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::StringLiteralClass: {
|
|
const GRState* state = GetState(Pred);
|
|
SVal V = state->getLValue(cast<StringLiteral>(S));
|
|
MakeNode(Dst, S, Pred, state->BindExpr(S, V));
|
|
return;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *U = cast<UnaryOperator>(S);
|
|
if (AMgr.shouldEagerlyAssume()&&(U->getOpcode() == UO_LNot)) {
|
|
ExplodedNodeSet Tmp;
|
|
VisitUnaryOperator(U, Pred, Tmp);
|
|
evalEagerlyAssume(Dst, Tmp, U);
|
|
}
|
|
else
|
|
VisitUnaryOperator(U, Pred, Dst);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block entrance. (Update counters).
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::processCFGBlockEntrance(ExplodedNodeSet &dstNodes,
|
|
GenericNodeBuilder<BlockEntrance> &nodeBuilder){
|
|
|
|
// FIXME: Refactor this into a checker.
|
|
const CFGBlock *block = nodeBuilder.getProgramPoint().getBlock();
|
|
ExplodedNode *pred = nodeBuilder.getPredecessor();
|
|
|
|
if (nodeBuilder.getBlockCounter().getNumVisited(
|
|
pred->getLocationContext()->getCurrentStackFrame(),
|
|
block->getBlockID()) >= AMgr.getMaxVisit()) {
|
|
|
|
static int tag = 0;
|
|
nodeBuilder.generateNode(pred->getState(), pred, &tag, true);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic node creation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ExplodedNode* ExprEngine::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
|
|
ExplodedNode* Pred, const GRState* St,
|
|
ProgramPoint::Kind K, const void *tag) {
|
|
assert (Builder && "StmtNodeBuilder not present.");
|
|
SaveAndRestore<const void*> OldTag(Builder->Tag);
|
|
Builder->Tag = tag;
|
|
return Builder->MakeNode(Dst, S, Pred, St, K);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Branch processing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const GRState* ExprEngine::MarkBranch(const GRState* state,
|
|
const Stmt* Terminator,
|
|
bool branchTaken) {
|
|
|
|
switch (Terminator->getStmtClass()) {
|
|
default:
|
|
return state;
|
|
|
|
case Stmt::BinaryOperatorClass: { // '&&' and '||'
|
|
|
|
const BinaryOperator* B = cast<BinaryOperator>(Terminator);
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
assert (Op == BO_LAnd || Op == BO_LOr);
|
|
|
|
// For &&, if we take the true branch, then the value of the whole
|
|
// expression is that of the RHS expression.
|
|
//
|
|
// For ||, if we take the false branch, then the value of the whole
|
|
// expression is that of the RHS expression.
|
|
|
|
const Expr* Ex = (Op == BO_LAnd && branchTaken) ||
|
|
(Op == BO_LOr && !branchTaken)
|
|
? B->getRHS() : B->getLHS();
|
|
|
|
return state->BindExpr(B, UndefinedVal(Ex));
|
|
}
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: { // ?:
|
|
const AbstractConditionalOperator* C
|
|
= cast<AbstractConditionalOperator>(Terminator);
|
|
|
|
// For ?, if branchTaken == true then the value is either the LHS or
|
|
// the condition itself. (GNU extension).
|
|
|
|
const Expr* Ex;
|
|
|
|
if (branchTaken)
|
|
Ex = C->getTrueExpr();
|
|
else
|
|
Ex = C->getFalseExpr();
|
|
|
|
return state->BindExpr(C, UndefinedVal(Ex));
|
|
}
|
|
|
|
case Stmt::ChooseExprClass: { // ?:
|
|
|
|
const ChooseExpr* C = cast<ChooseExpr>(Terminator);
|
|
|
|
const Expr* Ex = branchTaken ? C->getLHS() : C->getRHS();
|
|
return state->BindExpr(C, UndefinedVal(Ex));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RecoverCastedSymbol - A helper function for ProcessBranch that is used
|
|
/// to try to recover some path-sensitivity for casts of symbolic
|
|
/// integers that promote their values (which are currently not tracked well).
|
|
/// This function returns the SVal bound to Condition->IgnoreCasts if all the
|
|
// cast(s) did was sign-extend the original value.
|
|
static SVal RecoverCastedSymbol(GRStateManager& StateMgr, const GRState* state,
|
|
const Stmt* Condition, ASTContext& Ctx) {
|
|
|
|
const Expr *Ex = dyn_cast<Expr>(Condition);
|
|
if (!Ex)
|
|
return UnknownVal();
|
|
|
|
uint64_t bits = 0;
|
|
bool bitsInit = false;
|
|
|
|
while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
QualType T = CE->getType();
|
|
|
|
if (!T->isIntegerType())
|
|
return UnknownVal();
|
|
|
|
uint64_t newBits = Ctx.getTypeSize(T);
|
|
if (!bitsInit || newBits < bits) {
|
|
bitsInit = true;
|
|
bits = newBits;
|
|
}
|
|
|
|
Ex = CE->getSubExpr();
|
|
}
|
|
|
|
// We reached a non-cast. Is it a symbolic value?
|
|
QualType T = Ex->getType();
|
|
|
|
if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits)
|
|
return UnknownVal();
|
|
|
|
return state->getSVal(Ex);
|
|
}
|
|
|
|
void ExprEngine::processBranch(const Stmt* Condition, const Stmt* Term,
|
|
BranchNodeBuilder& builder) {
|
|
|
|
// Check for NULL conditions; e.g. "for(;;)"
|
|
if (!Condition) {
|
|
builder.markInfeasible(false);
|
|
return;
|
|
}
|
|
|
|
PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),
|
|
Condition->getLocStart(),
|
|
"Error evaluating branch");
|
|
|
|
getCheckerManager().runCheckersForBranchCondition(Condition, builder, *this);
|
|
|
|
// If the branch condition is undefined, return;
|
|
if (!builder.isFeasible(true) && !builder.isFeasible(false))
|
|
return;
|
|
|
|
const GRState* PrevState = builder.getState();
|
|
SVal X = PrevState->getSVal(Condition);
|
|
|
|
if (X.isUnknownOrUndef()) {
|
|
// Give it a chance to recover from unknown.
|
|
if (const Expr *Ex = dyn_cast<Expr>(Condition)) {
|
|
if (Ex->getType()->isIntegerType()) {
|
|
// Try to recover some path-sensitivity. Right now casts of symbolic
|
|
// integers that promote their values are currently not tracked well.
|
|
// If 'Condition' is such an expression, try and recover the
|
|
// underlying value and use that instead.
|
|
SVal recovered = RecoverCastedSymbol(getStateManager(),
|
|
builder.getState(), Condition,
|
|
getContext());
|
|
|
|
if (!recovered.isUnknown()) {
|
|
X = recovered;
|
|
}
|
|
}
|
|
}
|
|
// If the condition is still unknown, give up.
|
|
if (X.isUnknownOrUndef()) {
|
|
builder.generateNode(MarkBranch(PrevState, Term, true), true);
|
|
builder.generateNode(MarkBranch(PrevState, Term, false), false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
DefinedSVal V = cast<DefinedSVal>(X);
|
|
|
|
// Process the true branch.
|
|
if (builder.isFeasible(true)) {
|
|
if (const GRState *state = PrevState->assume(V, true))
|
|
builder.generateNode(MarkBranch(state, Term, true), true);
|
|
else
|
|
builder.markInfeasible(true);
|
|
}
|
|
|
|
// Process the false branch.
|
|
if (builder.isFeasible(false)) {
|
|
if (const GRState *state = PrevState->assume(V, false))
|
|
builder.generateNode(MarkBranch(state, Term, false), false);
|
|
else
|
|
builder.markInfeasible(false);
|
|
}
|
|
}
|
|
|
|
/// processIndirectGoto - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a computed goto jump.
|
|
void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) {
|
|
|
|
const GRState *state = builder.getState();
|
|
SVal V = state->getSVal(builder.getTarget());
|
|
|
|
// Three possibilities:
|
|
//
|
|
// (1) We know the computed label.
|
|
// (2) The label is NULL (or some other constant), or Undefined.
|
|
// (3) We have no clue about the label. Dispatch to all targets.
|
|
//
|
|
|
|
typedef IndirectGotoNodeBuilder::iterator iterator;
|
|
|
|
if (isa<loc::GotoLabel>(V)) {
|
|
const LabelDecl *L = cast<loc::GotoLabel>(V).getLabel();
|
|
|
|
for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) {
|
|
if (I.getLabel() == L) {
|
|
builder.generateNode(I, state);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert(false && "No block with label.");
|
|
return;
|
|
}
|
|
|
|
if (isa<loc::ConcreteInt>(V) || isa<UndefinedVal>(V)) {
|
|
// Dispatch to the first target and mark it as a sink.
|
|
//ExplodedNode* N = builder.generateNode(builder.begin(), state, true);
|
|
// FIXME: add checker visit.
|
|
// UndefBranches.insert(N);
|
|
return;
|
|
}
|
|
|
|
// This is really a catch-all. We don't support symbolics yet.
|
|
// FIXME: Implement dispatch for symbolic pointers.
|
|
|
|
for (iterator I=builder.begin(), E=builder.end(); I != E; ++I)
|
|
builder.generateNode(I, state);
|
|
}
|
|
|
|
|
|
void ExprEngine::VisitGuardedExpr(const Expr* Ex, const Expr* L,
|
|
const Expr* R,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
|
|
assert(Ex == currentStmt &&
|
|
Pred->getLocationContext()->getCFG()->isBlkExpr(Ex));
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal X = state->getSVal(Ex);
|
|
|
|
assert (X.isUndef());
|
|
|
|
const Expr *SE = (Expr*) cast<UndefinedVal>(X).getData();
|
|
assert(SE);
|
|
X = state->getSVal(SE);
|
|
|
|
// Make sure that we invalidate the previous binding.
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, X, true));
|
|
}
|
|
|
|
/// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path
|
|
/// nodes when the control reaches the end of a function.
|
|
void ExprEngine::processEndOfFunction(EndOfFunctionNodeBuilder& builder) {
|
|
getTF().evalEndPath(*this, builder);
|
|
StateMgr.EndPath(builder.getState());
|
|
getCheckerManager().runCheckersForEndPath(builder, *this);
|
|
}
|
|
|
|
/// ProcessSwitch - Called by CoreEngine. Used to generate successor
|
|
/// nodes by processing the 'effects' of a switch statement.
|
|
void ExprEngine::processSwitch(SwitchNodeBuilder& builder) {
|
|
typedef SwitchNodeBuilder::iterator iterator;
|
|
const GRState* state = builder.getState();
|
|
const Expr* CondE = builder.getCondition();
|
|
SVal CondV_untested = state->getSVal(CondE);
|
|
|
|
if (CondV_untested.isUndef()) {
|
|
//ExplodedNode* N = builder.generateDefaultCaseNode(state, true);
|
|
// FIXME: add checker
|
|
//UndefBranches.insert(N);
|
|
|
|
return;
|
|
}
|
|
DefinedOrUnknownSVal CondV = cast<DefinedOrUnknownSVal>(CondV_untested);
|
|
|
|
const GRState *DefaultSt = state;
|
|
|
|
iterator I = builder.begin(), EI = builder.end();
|
|
bool defaultIsFeasible = I == EI;
|
|
|
|
for ( ; I != EI; ++I) {
|
|
// Successor may be pruned out during CFG construction.
|
|
if (!I.getBlock())
|
|
continue;
|
|
|
|
const CaseStmt* Case = I.getCase();
|
|
|
|
// Evaluate the LHS of the case value.
|
|
Expr::EvalResult V1;
|
|
bool b = Case->getLHS()->Evaluate(V1, getContext());
|
|
|
|
// Sanity checks. These go away in Release builds.
|
|
assert(b && V1.Val.isInt() && !V1.HasSideEffects
|
|
&& "Case condition must evaluate to an integer constant.");
|
|
(void)b; // silence unused variable warning
|
|
assert(V1.Val.getInt().getBitWidth() ==
|
|
getContext().getTypeSize(CondE->getType()));
|
|
|
|
// Get the RHS of the case, if it exists.
|
|
Expr::EvalResult V2;
|
|
|
|
if (const Expr* E = Case->getRHS()) {
|
|
b = E->Evaluate(V2, getContext());
|
|
assert(b && V2.Val.isInt() && !V2.HasSideEffects
|
|
&& "Case condition must evaluate to an integer constant.");
|
|
(void)b; // silence unused variable warning
|
|
}
|
|
else
|
|
V2 = V1;
|
|
|
|
// FIXME: Eventually we should replace the logic below with a range
|
|
// comparison, rather than concretize the values within the range.
|
|
// This should be easy once we have "ranges" for NonLVals.
|
|
|
|
do {
|
|
nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1.Val.getInt()));
|
|
DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state,
|
|
CondV, CaseVal);
|
|
|
|
// Now "assume" that the case matches.
|
|
if (const GRState* stateNew = state->assume(Res, true)) {
|
|
builder.generateCaseStmtNode(I, stateNew);
|
|
|
|
// If CondV evaluates to a constant, then we know that this
|
|
// is the *only* case that we can take, so stop evaluating the
|
|
// others.
|
|
if (isa<nonloc::ConcreteInt>(CondV))
|
|
return;
|
|
}
|
|
|
|
// Now "assume" that the case doesn't match. Add this state
|
|
// to the default state (if it is feasible).
|
|
if (DefaultSt) {
|
|
if (const GRState *stateNew = DefaultSt->assume(Res, false)) {
|
|
defaultIsFeasible = true;
|
|
DefaultSt = stateNew;
|
|
}
|
|
else {
|
|
defaultIsFeasible = false;
|
|
DefaultSt = NULL;
|
|
}
|
|
}
|
|
|
|
// Concretize the next value in the range.
|
|
if (V1.Val.getInt() == V2.Val.getInt())
|
|
break;
|
|
|
|
++V1.Val.getInt();
|
|
assert (V1.Val.getInt() <= V2.Val.getInt());
|
|
|
|
} while (true);
|
|
}
|
|
|
|
if (!defaultIsFeasible)
|
|
return;
|
|
|
|
// If we have switch(enum value), the default branch is not
|
|
// feasible if all of the enum constants not covered by 'case:' statements
|
|
// are not feasible values for the switch condition.
|
|
//
|
|
// Note that this isn't as accurate as it could be. Even if there isn't
|
|
// a case for a particular enum value as long as that enum value isn't
|
|
// feasible then it shouldn't be considered for making 'default:' reachable.
|
|
const SwitchStmt *SS = builder.getSwitch();
|
|
const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts();
|
|
if (CondExpr->getType()->getAs<EnumType>()) {
|
|
if (SS->isAllEnumCasesCovered())
|
|
return;
|
|
}
|
|
|
|
builder.generateDefaultCaseNode(DefaultSt);
|
|
}
|
|
|
|
void ExprEngine::processCallEnter(CallEnterNodeBuilder &B) {
|
|
const GRState *state = B.getState()->enterStackFrame(B.getCalleeContext());
|
|
B.generateNode(state);
|
|
}
|
|
|
|
void ExprEngine::processCallExit(CallExitNodeBuilder &B) {
|
|
const GRState *state = B.getState();
|
|
const ExplodedNode *Pred = B.getPredecessor();
|
|
const StackFrameContext *calleeCtx =
|
|
cast<StackFrameContext>(Pred->getLocationContext());
|
|
const Stmt *CE = calleeCtx->getCallSite();
|
|
|
|
// If the callee returns an expression, bind its value to CallExpr.
|
|
const Stmt *ReturnedExpr = state->get<ReturnExpr>();
|
|
if (ReturnedExpr) {
|
|
SVal RetVal = state->getSVal(ReturnedExpr);
|
|
state = state->BindExpr(CE, RetVal);
|
|
// Clear the return expr GDM.
|
|
state = state->remove<ReturnExpr>();
|
|
}
|
|
|
|
// Bind the constructed object value to CXXConstructExpr.
|
|
if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(CE)) {
|
|
const CXXThisRegion *ThisR =
|
|
getCXXThisRegion(CCE->getConstructor()->getParent(), calleeCtx);
|
|
|
|
SVal ThisV = state->getSVal(ThisR);
|
|
// Always bind the region to the CXXConstructExpr.
|
|
state = state->BindExpr(CCE, ThisV);
|
|
}
|
|
|
|
B.generateNode(state);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: logical operations ('&&', '||').
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
assert(B->getOpcode() == BO_LAnd ||
|
|
B->getOpcode() == BO_LOr);
|
|
|
|
assert(B==currentStmt && Pred->getLocationContext()->getCFG()->isBlkExpr(B));
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal X = state->getSVal(B);
|
|
assert(X.isUndef());
|
|
|
|
const Expr *Ex = (const Expr*) cast<UndefinedVal>(X).getData();
|
|
assert(Ex);
|
|
|
|
if (Ex == B->getRHS()) {
|
|
X = state->getSVal(Ex);
|
|
|
|
// Handle undefined values.
|
|
if (X.isUndef()) {
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
|
return;
|
|
}
|
|
|
|
DefinedOrUnknownSVal XD = cast<DefinedOrUnknownSVal>(X);
|
|
|
|
// We took the RHS. Because the value of the '&&' or '||' expression must
|
|
// evaluate to 0 or 1, we must assume the value of the RHS evaluates to 0
|
|
// or 1. Alternatively, we could take a lazy approach, and calculate this
|
|
// value later when necessary. We don't have the machinery in place for
|
|
// this right now, and since most logical expressions are used for branches,
|
|
// the payoff is not likely to be large. Instead, we do eager evaluation.
|
|
if (const GRState *newState = state->assume(XD, true))
|
|
MakeNode(Dst, B, Pred,
|
|
newState->BindExpr(B, svalBuilder.makeIntVal(1U, B->getType())));
|
|
|
|
if (const GRState *newState = state->assume(XD, false))
|
|
MakeNode(Dst, B, Pred,
|
|
newState->BindExpr(B, svalBuilder.makeIntVal(0U, B->getType())));
|
|
}
|
|
else {
|
|
// We took the LHS expression. Depending on whether we are '&&' or
|
|
// '||' we know what the value of the expression is via properties of
|
|
// the short-circuiting.
|
|
X = svalBuilder.makeIntVal(B->getOpcode() == BO_LAnd ? 0U : 1U,
|
|
B->getType());
|
|
MakeNode(Dst, B, Pred, state->BindExpr(B, X));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Loads and stores.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
ExplodedNodeSet Tmp;
|
|
|
|
CanQualType T = getContext().getCanonicalType(BE->getType());
|
|
SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
|
|
Pred->getLocationContext());
|
|
|
|
MakeNode(Tmp, BE, Pred, GetState(Pred)->BindExpr(BE, V),
|
|
ProgramPoint::PostLValueKind);
|
|
|
|
// Post-visit the BlockExpr.
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
|
|
}
|
|
|
|
void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
const GRState *state = GetState(Pred);
|
|
|
|
if (const VarDecl* VD = dyn_cast<VarDecl>(D)) {
|
|
assert(Ex->isLValue());
|
|
SVal V = state->getLValue(VD, Pred->getLocationContext());
|
|
|
|
// For references, the 'lvalue' is the pointer address stored in the
|
|
// reference region.
|
|
if (VD->getType()->isReferenceType()) {
|
|
if (const MemRegion *R = V.getAsRegion())
|
|
V = state->getSVal(R);
|
|
else
|
|
V = UnknownVal();
|
|
}
|
|
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
if (const EnumConstantDecl* ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
assert(!Ex->isLValue());
|
|
SVal V = svalBuilder.makeIntVal(ED->getInitVal());
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V));
|
|
return;
|
|
}
|
|
if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(D)) {
|
|
SVal V = svalBuilder.getFunctionPointer(FD);
|
|
MakeNode(Dst, Ex, Pred, state->BindExpr(Ex, V),
|
|
ProgramPoint::PostLValueKind);
|
|
return;
|
|
}
|
|
assert (false &&
|
|
"ValueDecl support for this ValueDecl not implemented.");
|
|
}
|
|
|
|
/// VisitArraySubscriptExpr - Transfer function for array accesses
|
|
void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr* A,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst){
|
|
|
|
const Expr* Base = A->getBase()->IgnoreParens();
|
|
const Expr* Idx = A->getIdx()->IgnoreParens();
|
|
|
|
// Evaluate the base.
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Base, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I1=Tmp.begin(), E1=Tmp.end(); I1!=E1; ++I1) {
|
|
ExplodedNodeSet Tmp2;
|
|
Visit(Idx, *I1, Tmp2); // Evaluate the index.
|
|
ExplodedNodeSet Tmp3;
|
|
getCheckerManager().runCheckersForPreStmt(Tmp3, Tmp2, A, *this);
|
|
|
|
for (ExplodedNodeSet::iterator I2=Tmp3.begin(),E2=Tmp3.end();I2!=E2; ++I2) {
|
|
const GRState* state = GetState(*I2);
|
|
SVal V = state->getLValue(A->getType(), state->getSVal(Idx),
|
|
state->getSVal(Base));
|
|
assert(A->isLValue());
|
|
MakeNode(Dst, A, *I2, state->BindExpr(A, V), ProgramPoint::PostLValueKind);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// VisitMemberExpr - Transfer function for member expressions.
|
|
void ExprEngine::VisitMemberExpr(const MemberExpr* M, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
Expr *baseExpr = M->getBase()->IgnoreParens();
|
|
ExplodedNodeSet dstBase;
|
|
Visit(baseExpr, Pred, dstBase);
|
|
|
|
FieldDecl *field = dyn_cast<FieldDecl>(M->getMemberDecl());
|
|
if (!field) // FIXME: skipping member expressions for non-fields
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
|
|
I != E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
SVal baseExprVal = state->getSVal(baseExpr);
|
|
if (isa<nonloc::LazyCompoundVal>(baseExprVal) ||
|
|
isa<nonloc::CompoundVal>(baseExprVal) ||
|
|
// FIXME: This can originate by conjuring a symbol for an unknown
|
|
// temporary struct object, see test/Analysis/fields.c:
|
|
// (p = getit()).x
|
|
isa<nonloc::SymbolVal>(baseExprVal)) {
|
|
MakeNode(Dst, M, *I, state->BindExpr(M, UnknownVal()));
|
|
continue;
|
|
}
|
|
|
|
// FIXME: Should we insert some assumption logic in here to determine
|
|
// if "Base" is a valid piece of memory? Before we put this assumption
|
|
// later when using FieldOffset lvals (which we no longer have).
|
|
|
|
// For all other cases, compute an lvalue.
|
|
SVal L = state->getLValue(field, baseExprVal);
|
|
if (M->isLValue())
|
|
MakeNode(Dst, M, *I, state->BindExpr(M, L), ProgramPoint::PostLValueKind);
|
|
else
|
|
evalLoad(Dst, M, *I, state, L);
|
|
}
|
|
}
|
|
|
|
/// evalBind - Handle the semantics of binding a value to a specific location.
|
|
/// This method is used by evalStore and (soon) VisitDeclStmt, and others.
|
|
void ExprEngine::evalBind(ExplodedNodeSet& Dst, const Stmt* StoreE,
|
|
ExplodedNode* Pred, const GRState* state,
|
|
SVal location, SVal Val, bool atDeclInit) {
|
|
|
|
|
|
// Do a previsit of the bind.
|
|
ExplodedNodeSet CheckedSet, Src;
|
|
Src.Add(Pred);
|
|
getCheckerManager().runCheckersForBind(CheckedSet, Src, location, Val, StoreE,
|
|
*this);
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I!=E; ++I) {
|
|
|
|
if (Pred != *I)
|
|
state = GetState(*I);
|
|
|
|
const GRState* newState = 0;
|
|
|
|
if (atDeclInit) {
|
|
const VarRegion *VR =
|
|
cast<VarRegion>(cast<loc::MemRegionVal>(location).getRegion());
|
|
|
|
newState = state->bindDecl(VR, Val);
|
|
}
|
|
else {
|
|
if (location.isUnknown()) {
|
|
// We know that the new state will be the same as the old state since
|
|
// the location of the binding is "unknown". Consequently, there
|
|
// is no reason to just create a new node.
|
|
newState = state;
|
|
}
|
|
else {
|
|
// We are binding to a value other than 'unknown'. Perform the binding
|
|
// using the StoreManager.
|
|
newState = state->bindLoc(cast<Loc>(location), Val);
|
|
}
|
|
}
|
|
|
|
// The next thing to do is check if the TransferFuncs object wants to
|
|
// update the state based on the new binding. If the GRTransferFunc object
|
|
// doesn't do anything, just auto-propagate the current state.
|
|
|
|
// NOTE: We use 'AssignE' for the location of the PostStore if 'AssignE'
|
|
// is non-NULL. Checkers typically care about
|
|
|
|
StmtNodeBuilderRef BuilderRef(Dst, *Builder, *this, *I, newState, StoreE,
|
|
true);
|
|
|
|
getTF().evalBind(BuilderRef, location, Val);
|
|
}
|
|
}
|
|
|
|
/// evalStore - Handle the semantics of a store via an assignment.
|
|
/// @param Dst The node set to store generated state nodes
|
|
/// @param AssignE The assignment expression if the store happens in an
|
|
/// assignment.
|
|
/// @param LocatioinE The location expression that is stored to.
|
|
/// @param state The current simulation state
|
|
/// @param location The location to store the value
|
|
/// @param Val The value to be stored
|
|
void ExprEngine::evalStore(ExplodedNodeSet& Dst, const Expr *AssignE,
|
|
const Expr* LocationE,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location, SVal Val,
|
|
const void *tag) {
|
|
|
|
assert(Builder && "StmtNodeBuilder must be defined.");
|
|
|
|
// Proceed with the store. We use AssignE as the anchor for the PostStore
|
|
// ProgramPoint if it is non-NULL, and LocationE otherwise.
|
|
const Expr *StoreE = AssignE ? AssignE : LocationE;
|
|
|
|
if (isa<loc::ObjCPropRef>(location)) {
|
|
loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location);
|
|
ExplodedNodeSet src = Pred;
|
|
return VisitObjCMessage(ObjCPropertySetter(prop.getPropRefExpr(),
|
|
StoreE, Val), src, Dst);
|
|
}
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, LocationE, Pred, state, location, tag, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind,
|
|
ProgramPoint::PostStoreKind);
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
evalBind(Dst, StoreE, *NI, GetState(*NI), location, Val);
|
|
}
|
|
|
|
void ExprEngine::evalLoad(ExplodedNodeSet& Dst, const Expr *Ex,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, QualType LoadTy) {
|
|
assert(!isa<NonLoc>(location) && "location cannot be a NonLoc.");
|
|
|
|
if (isa<loc::ObjCPropRef>(location)) {
|
|
loc::ObjCPropRef prop = cast<loc::ObjCPropRef>(location);
|
|
ExplodedNodeSet src = Pred;
|
|
return VisitObjCMessage(ObjCPropertyGetter(prop.getPropRefExpr(), Ex),
|
|
src, Dst);
|
|
}
|
|
|
|
// Are we loading from a region? This actually results in two loads; one
|
|
// to fetch the address of the referenced value and one to fetch the
|
|
// referenced value.
|
|
if (const TypedRegion *TR =
|
|
dyn_cast_or_null<TypedRegion>(location.getAsRegion())) {
|
|
|
|
QualType ValTy = TR->getValueType();
|
|
if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) {
|
|
static int loadReferenceTag = 0;
|
|
ExplodedNodeSet Tmp;
|
|
evalLoadCommon(Tmp, Ex, Pred, state, location, &loadReferenceTag,
|
|
getContext().getPointerType(RT->getPointeeType()));
|
|
|
|
// Perform the load from the referenced value.
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) {
|
|
state = GetState(*I);
|
|
location = state->getSVal(Ex);
|
|
evalLoadCommon(Dst, Ex, *I, state, location, tag, LoadTy);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
evalLoadCommon(Dst, Ex, Pred, state, location, tag, LoadTy);
|
|
}
|
|
|
|
void ExprEngine::evalLoadCommon(ExplodedNodeSet& Dst, const Expr *Ex,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, QualType LoadTy) {
|
|
|
|
// Evaluate the location (checks for bad dereferences).
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, Ex, Pred, state, location, tag, true);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
if (location.isUndef())
|
|
return;
|
|
|
|
SaveAndRestore<ProgramPoint::Kind> OldSPointKind(Builder->PointKind);
|
|
|
|
// Proceed with the load.
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
state = GetState(*NI);
|
|
|
|
if (location.isUnknown()) {
|
|
// This is important. We must nuke the old binding.
|
|
MakeNode(Dst, Ex, *NI, state->BindExpr(Ex, UnknownVal()),
|
|
ProgramPoint::PostLoadKind, tag);
|
|
}
|
|
else {
|
|
if (LoadTy.isNull())
|
|
LoadTy = Ex->getType();
|
|
SVal V = state->getSVal(cast<Loc>(location), LoadTy);
|
|
MakeNode(Dst, Ex, *NI, state->bindExprAndLocation(Ex, location, V),
|
|
ProgramPoint::PostLoadKind, tag);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *S,
|
|
ExplodedNode* Pred,
|
|
const GRState* state, SVal location,
|
|
const void *tag, bool isLoad) {
|
|
// Early checks for performance reason.
|
|
if (location.isUnknown()) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Src;
|
|
if (Builder->GetState(Pred) == state) {
|
|
Src.Add(Pred);
|
|
} else {
|
|
// Associate this new state with an ExplodedNode.
|
|
// FIXME: If I pass null tag, the graph is incorrect, e.g for
|
|
// int *p;
|
|
// p = 0;
|
|
// *p = 0xDEADBEEF;
|
|
// "p = 0" is not noted as "Null pointer value stored to 'p'" but
|
|
// instead "int *p" is noted as
|
|
// "Variable 'p' initialized to a null pointer value"
|
|
ExplodedNode *N = Builder->generateNode(S, state, Pred, this);
|
|
Src.Add(N ? N : Pred);
|
|
}
|
|
getCheckerManager().runCheckersForLocation(Dst, Src, location, isLoad, S,
|
|
*this);
|
|
}
|
|
|
|
bool ExprEngine::InlineCall(ExplodedNodeSet &Dst, const CallExpr *CE,
|
|
ExplodedNode *Pred) {
|
|
return false;
|
|
|
|
// Inlining isn't correct right now because we:
|
|
// (a) don't generate CallExit nodes.
|
|
// (b) we need a way to postpone doing post-visits of CallExprs until
|
|
// the CallExit. This means we need CallExits for the non-inline
|
|
// cases as well.
|
|
|
|
#if 0
|
|
const GRState *state = GetState(Pred);
|
|
const Expr *Callee = CE->getCallee();
|
|
SVal L = state->getSVal(Callee);
|
|
|
|
const FunctionDecl *FD = L.getAsFunctionDecl();
|
|
if (!FD)
|
|
return false;
|
|
|
|
// Specially handle CXXMethods.
|
|
const CXXMethodDecl *methodDecl = 0;
|
|
|
|
switch (CE->getStmtClass()) {
|
|
default: break;
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const CXXOperatorCallExpr *opCall = cast<CXXOperatorCallExpr>(CE);
|
|
methodDecl =
|
|
llvm::dyn_cast_or_null<CXXMethodDecl>(opCall->getCalleeDecl());
|
|
break;
|
|
}
|
|
case Stmt::CXXMemberCallExprClass: {
|
|
const CXXMemberCallExpr *memberCall = cast<CXXMemberCallExpr>(CE);
|
|
const MemberExpr *memberExpr =
|
|
cast<MemberExpr>(memberCall->getCallee()->IgnoreParens());
|
|
methodDecl = cast<CXXMethodDecl>(memberExpr->getMemberDecl());
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
// Check if the function definition is in the same translation unit.
|
|
if (FD->hasBody(FD)) {
|
|
const StackFrameContext *stackFrame =
|
|
AMgr.getStackFrame(AMgr.getAnalysisContext(FD),
|
|
Pred->getLocationContext(),
|
|
CE, Builder->getBlock(), Builder->getIndex());
|
|
// Now we have the definition of the callee, create a CallEnter node.
|
|
CallEnter Loc(CE, stackFrame, Pred->getLocationContext());
|
|
|
|
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
|
|
Dst.Add(N);
|
|
return true;
|
|
}
|
|
|
|
// Check if we can find the function definition in other translation units.
|
|
if (AMgr.hasIndexer()) {
|
|
AnalysisContext *C = AMgr.getAnalysisContextInAnotherTU(FD);
|
|
if (C == 0)
|
|
return false;
|
|
const StackFrameContext *stackFrame =
|
|
AMgr.getStackFrame(C, Pred->getLocationContext(),
|
|
CE, Builder->getBlock(), Builder->getIndex());
|
|
CallEnter Loc(CE, stackFrame, Pred->getLocationContext());
|
|
ExplodedNode *N = Builder->generateNode(Loc, state, Pred);
|
|
Dst.Add(N);
|
|
return true;
|
|
}
|
|
|
|
// Generate the CallExit node.
|
|
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
void ExprEngine::VisitCallExpr(const CallExpr* CE, ExplodedNode* Pred,
|
|
ExplodedNodeSet& dst) {
|
|
|
|
// Determine the type of function we're calling (if available).
|
|
const FunctionProtoType *Proto = NULL;
|
|
QualType FnType = CE->getCallee()->IgnoreParens()->getType();
|
|
if (const PointerType *FnTypePtr = FnType->getAs<PointerType>())
|
|
Proto = FnTypePtr->getPointeeType()->getAs<FunctionProtoType>();
|
|
|
|
// Should the first argument be evaluated as an lvalue?
|
|
bool firstArgumentAsLvalue = false;
|
|
switch (CE->getStmtClass()) {
|
|
case Stmt::CXXOperatorCallExprClass:
|
|
firstArgumentAsLvalue = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Evaluate the arguments.
|
|
ExplodedNodeSet dstArgsEvaluated;
|
|
evalArguments(CE->arg_begin(), CE->arg_end(), Proto, Pred, dstArgsEvaluated,
|
|
firstArgumentAsLvalue);
|
|
|
|
// Evaluate the callee.
|
|
ExplodedNodeSet dstCalleeEvaluated;
|
|
evalCallee(CE, dstArgsEvaluated, dstCalleeEvaluated);
|
|
|
|
// Perform the previsit of the CallExpr.
|
|
ExplodedNodeSet dstPreVisit;
|
|
getCheckerManager().runCheckersForPreStmt(dstPreVisit, dstCalleeEvaluated,
|
|
CE, *this);
|
|
|
|
// Now evaluate the call itself.
|
|
class DefaultEval : public GraphExpander {
|
|
ExprEngine &Eng;
|
|
const CallExpr *CE;
|
|
public:
|
|
|
|
DefaultEval(ExprEngine &eng, const CallExpr *ce)
|
|
: Eng(eng), CE(ce) {}
|
|
virtual void expandGraph(ExplodedNodeSet &Dst, ExplodedNode *Pred) {
|
|
// Should we inline the call?
|
|
if (Eng.getAnalysisManager().shouldInlineCall() &&
|
|
Eng.InlineCall(Dst, CE, Pred)) {
|
|
return;
|
|
}
|
|
|
|
StmtNodeBuilder &Builder = Eng.getBuilder();
|
|
assert(&Builder && "StmtNodeBuilder must be defined.");
|
|
|
|
// Dispatch to the plug-in transfer function.
|
|
unsigned oldSize = Dst.size();
|
|
SaveOr OldHasGen(Builder.hasGeneratedNode);
|
|
|
|
// Dispatch to transfer function logic to handle the call itself.
|
|
const Expr* Callee = CE->getCallee()->IgnoreParens();
|
|
const GRState* state = Eng.GetState(Pred);
|
|
SVal L = state->getSVal(Callee);
|
|
Eng.getTF().evalCall(Dst, Eng, Builder, CE, L, Pred);
|
|
|
|
// Handle the case where no nodes where generated. Auto-generate that
|
|
// contains the updated state if we aren't generating sinks.
|
|
if (!Builder.BuildSinks && Dst.size() == oldSize &&
|
|
!Builder.hasGeneratedNode)
|
|
Eng.MakeNode(Dst, CE, Pred, state);
|
|
}
|
|
};
|
|
|
|
// Finally, evaluate the function call. We try each of the checkers
|
|
// to see if the can evaluate the function call.
|
|
ExplodedNodeSet dstCallEvaluated;
|
|
DefaultEval defEval(*this, CE);
|
|
getCheckerManager().runCheckersForEvalCall(dstCallEvaluated,
|
|
dstPreVisit,
|
|
CE, *this, &defEval);
|
|
|
|
// Finally, perform the post-condition check of the CallExpr and store
|
|
// the created nodes in 'Dst'.
|
|
getCheckerManager().runCheckersForPostStmt(dst, dstCallEvaluated, CE,
|
|
*this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C dot-syntax to access a property.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Ex,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet dstBase;
|
|
|
|
// Visit the receiver (if any).
|
|
if (Ex->isObjectReceiver())
|
|
Visit(Ex->getBase(), Pred, dstBase);
|
|
else
|
|
dstBase = Pred;
|
|
|
|
ExplodedNodeSet dstPropRef;
|
|
|
|
// Using the base, compute the lvalue of the instance variable.
|
|
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *nodeBase = *I;
|
|
const GRState *state = GetState(nodeBase);
|
|
MakeNode(dstPropRef, Ex, *I, state->BindExpr(Ex, loc::ObjCPropRef(Ex)));
|
|
}
|
|
|
|
Dst.insert(dstPropRef);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C ivar references.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static std::pair<const void*,const void*> EagerlyAssumeTag
|
|
= std::pair<const void*,const void*>(&EagerlyAssumeTag,static_cast<void*>(0));
|
|
|
|
void ExprEngine::evalEagerlyAssume(ExplodedNodeSet &Dst, ExplodedNodeSet &Src,
|
|
const Expr *Ex) {
|
|
for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) {
|
|
ExplodedNode *Pred = *I;
|
|
|
|
// Test if the previous node was as the same expression. This can happen
|
|
// when the expression fails to evaluate to anything meaningful and
|
|
// (as an optimization) we don't generate a node.
|
|
ProgramPoint P = Pred->getLocation();
|
|
if (!isa<PostStmt>(P) || cast<PostStmt>(P).getStmt() != Ex) {
|
|
Dst.Add(Pred);
|
|
continue;
|
|
}
|
|
|
|
const GRState* state = GetState(Pred);
|
|
SVal V = state->getSVal(Ex);
|
|
if (nonloc::SymExprVal *SEV = dyn_cast<nonloc::SymExprVal>(&V)) {
|
|
// First assume that the condition is true.
|
|
if (const GRState *stateTrue = state->assume(*SEV, true)) {
|
|
stateTrue = stateTrue->BindExpr(Ex,
|
|
svalBuilder.makeIntVal(1U, Ex->getType()));
|
|
Dst.Add(Builder->generateNode(PostStmtCustom(Ex,
|
|
&EagerlyAssumeTag, Pred->getLocationContext()),
|
|
stateTrue, Pred));
|
|
}
|
|
|
|
// Next, assume that the condition is false.
|
|
if (const GRState *stateFalse = state->assume(*SEV, false)) {
|
|
stateFalse = stateFalse->BindExpr(Ex,
|
|
svalBuilder.makeIntVal(0U, Ex->getType()));
|
|
Dst.Add(Builder->generateNode(PostStmtCustom(Ex, &EagerlyAssumeTag,
|
|
Pred->getLocationContext()),
|
|
stateFalse, Pred));
|
|
}
|
|
}
|
|
else
|
|
Dst.Add(Pred);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C @synchronized.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S,
|
|
ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
|
|
// The mutex expression is a CFGElement, so we don't need to explicitly
|
|
// visit it since it will already be processed.
|
|
|
|
// Pre-visit the ObjCAtSynchronizedStmt.
|
|
ExplodedNodeSet Tmp;
|
|
Tmp.Add(Pred);
|
|
getCheckerManager().runCheckersForPreStmt(Dst, Tmp, S, *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C ivar references.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr* Ex,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
// Visit the base expression, which is needed for computing the lvalue
|
|
// of the ivar.
|
|
ExplodedNodeSet dstBase;
|
|
const Expr *baseExpr = Ex->getBase();
|
|
Visit(baseExpr, Pred, dstBase);
|
|
|
|
ExplodedNodeSet dstIvar;
|
|
|
|
// Using the base, compute the lvalue of the instance variable.
|
|
for (ExplodedNodeSet::iterator I = dstBase.begin(), E = dstBase.end();
|
|
I!=E; ++I) {
|
|
ExplodedNode *nodeBase = *I;
|
|
const GRState *state = GetState(nodeBase);
|
|
SVal baseVal = state->getSVal(baseExpr);
|
|
SVal location = state->getLValue(Ex->getDecl(), baseVal);
|
|
MakeNode(dstIvar, Ex, *I, state->BindExpr(Ex, location));
|
|
}
|
|
|
|
// Perform the post-condition check of the ObjCIvarRefExpr and store
|
|
// the created nodes in 'Dst'.
|
|
getCheckerManager().runCheckersForPostStmt(Dst, dstIvar, Ex, *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C fast enumeration 'for' statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitObjCForCollectionStmt(const ObjCForCollectionStmt* S,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
|
|
// ObjCForCollectionStmts are processed in two places. This method
|
|
// handles the case where an ObjCForCollectionStmt* occurs as one of the
|
|
// statements within a basic block. This transfer function does two things:
|
|
//
|
|
// (1) binds the next container value to 'element'. This creates a new
|
|
// node in the ExplodedGraph.
|
|
//
|
|
// (2) binds the value 0/1 to the ObjCForCollectionStmt* itself, indicating
|
|
// whether or not the container has any more elements. This value
|
|
// will be tested in ProcessBranch. We need to explicitly bind
|
|
// this value because a container can contain nil elements.
|
|
//
|
|
// FIXME: Eventually this logic should actually do dispatches to
|
|
// 'countByEnumeratingWithState:objects:count:' (NSFastEnumeration).
|
|
// This will require simulating a temporary NSFastEnumerationState, either
|
|
// through an SVal or through the use of MemRegions. This value can
|
|
// be affixed to the ObjCForCollectionStmt* instead of 0/1; when the loop
|
|
// terminates we reclaim the temporary (it goes out of scope) and we
|
|
// we can test if the SVal is 0 or if the MemRegion is null (depending
|
|
// on what approach we take).
|
|
//
|
|
// For now: simulate (1) by assigning either a symbol or nil if the
|
|
// container is empty. Thus this transfer function will by default
|
|
// result in state splitting.
|
|
|
|
const Stmt* elem = S->getElement();
|
|
SVal ElementV;
|
|
|
|
if (const DeclStmt* DS = dyn_cast<DeclStmt>(elem)) {
|
|
const VarDecl* ElemD = cast<VarDecl>(DS->getSingleDecl());
|
|
assert (ElemD->getInit() == 0);
|
|
ElementV = GetState(Pred)->getLValue(ElemD, Pred->getLocationContext());
|
|
VisitObjCForCollectionStmtAux(S, Pred, Dst, ElementV);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(cast<Expr>(elem), Pred, Tmp);
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
VisitObjCForCollectionStmtAux(S, *I, Dst, state->getSVal(elem));
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitObjCForCollectionStmtAux(const ObjCForCollectionStmt* S,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst,
|
|
SVal ElementV) {
|
|
|
|
// Check if the location we are writing back to is a null pointer.
|
|
const Stmt* elem = S->getElement();
|
|
ExplodedNodeSet Tmp;
|
|
evalLocation(Tmp, elem, Pred, GetState(Pred), ElementV, NULL, false);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) {
|
|
Pred = *NI;
|
|
const GRState *state = GetState(Pred);
|
|
|
|
// Handle the case where the container still has elements.
|
|
SVal TrueV = svalBuilder.makeTruthVal(1);
|
|
const GRState *hasElems = state->BindExpr(S, TrueV);
|
|
|
|
// Handle the case where the container has no elements.
|
|
SVal FalseV = svalBuilder.makeTruthVal(0);
|
|
const GRState *noElems = state->BindExpr(S, FalseV);
|
|
|
|
if (loc::MemRegionVal* MV = dyn_cast<loc::MemRegionVal>(&ElementV))
|
|
if (const TypedRegion* R = dyn_cast<TypedRegion>(MV->getRegion())) {
|
|
// FIXME: The proper thing to do is to really iterate over the
|
|
// container. We will do this with dispatch logic to the store.
|
|
// For now, just 'conjure' up a symbolic value.
|
|
QualType T = R->getValueType();
|
|
assert(Loc::isLocType(T));
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
SymbolRef Sym = SymMgr.getConjuredSymbol(elem, T, Count);
|
|
SVal V = svalBuilder.makeLoc(Sym);
|
|
hasElems = hasElems->bindLoc(ElementV, V);
|
|
|
|
// Bind the location to 'nil' on the false branch.
|
|
SVal nilV = svalBuilder.makeIntVal(0, T);
|
|
noElems = noElems->bindLoc(ElementV, nilV);
|
|
}
|
|
|
|
// Create the new nodes.
|
|
MakeNode(Dst, S, Pred, hasElems);
|
|
MakeNode(Dst, S, Pred, noElems);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer function: Objective-C message expressions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
class ObjCMsgWLItem {
|
|
public:
|
|
ObjCMessageExpr::const_arg_iterator I;
|
|
ExplodedNode *N;
|
|
|
|
ObjCMsgWLItem(const ObjCMessageExpr::const_arg_iterator &i, ExplodedNode *n)
|
|
: I(i), N(n) {}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void ExprEngine::VisitObjCMessageExpr(const ObjCMessageExpr* ME,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst){
|
|
|
|
// Create a worklist to process both the arguments.
|
|
llvm::SmallVector<ObjCMsgWLItem, 20> WL;
|
|
|
|
// But first evaluate the receiver (if any).
|
|
ObjCMessageExpr::const_arg_iterator AI = ME->arg_begin(), AE = ME->arg_end();
|
|
if (const Expr *Receiver = ME->getInstanceReceiver()) {
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Receiver, Pred, Tmp);
|
|
|
|
if (Tmp.empty())
|
|
return;
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I)
|
|
WL.push_back(ObjCMsgWLItem(AI, *I));
|
|
}
|
|
else
|
|
WL.push_back(ObjCMsgWLItem(AI, Pred));
|
|
|
|
// Evaluate the arguments.
|
|
ExplodedNodeSet ArgsEvaluated;
|
|
while (!WL.empty()) {
|
|
ObjCMsgWLItem Item = WL.back();
|
|
WL.pop_back();
|
|
|
|
if (Item.I == AE) {
|
|
ArgsEvaluated.insert(Item.N);
|
|
continue;
|
|
}
|
|
|
|
// Evaluate the subexpression.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
// FIXME: [Objective-C++] handle arguments that are references
|
|
Visit(*Item.I, Item.N, Tmp);
|
|
|
|
// Enqueue evaluating the next argument on the worklist.
|
|
++(Item.I);
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI)
|
|
WL.push_back(ObjCMsgWLItem(Item.I, *NI));
|
|
}
|
|
|
|
// Now that the arguments are processed, handle the ObjC message.
|
|
VisitObjCMessage(ME, ArgsEvaluated, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitObjCMessage(const ObjCMessage &msg,
|
|
ExplodedNodeSet &Src, ExplodedNodeSet& Dst) {
|
|
|
|
// Handle the previsits checks.
|
|
ExplodedNodeSet DstPrevisit;
|
|
getCheckerManager().runCheckersForPreObjCMessage(DstPrevisit, Src, msg,*this);
|
|
|
|
// Proceed with evaluate the message expression.
|
|
ExplodedNodeSet dstEval;
|
|
|
|
for (ExplodedNodeSet::iterator DI = DstPrevisit.begin(),
|
|
DE = DstPrevisit.end(); DI != DE; ++DI) {
|
|
|
|
ExplodedNode *Pred = *DI;
|
|
bool RaisesException = false;
|
|
unsigned oldSize = dstEval.size();
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->hasGeneratedNode);
|
|
|
|
if (const Expr *Receiver = msg.getInstanceReceiver()) {
|
|
const GRState *state = GetState(Pred);
|
|
SVal recVal = state->getSVal(Receiver);
|
|
if (!recVal.isUndef()) {
|
|
// Bifurcate the state into nil and non-nil ones.
|
|
DefinedOrUnknownSVal receiverVal = cast<DefinedOrUnknownSVal>(recVal);
|
|
|
|
const GRState *notNilState, *nilState;
|
|
llvm::tie(notNilState, nilState) = state->assume(receiverVal);
|
|
|
|
// There are three cases: can be nil or non-nil, must be nil, must be
|
|
// non-nil. We ignore must be nil, and merge the rest two into non-nil.
|
|
if (nilState && !notNilState) {
|
|
dstEval.insert(Pred);
|
|
continue;
|
|
}
|
|
|
|
// Check if the "raise" message was sent.
|
|
assert(notNilState);
|
|
if (msg.getSelector() == RaiseSel)
|
|
RaisesException = true;
|
|
|
|
// Check if we raise an exception. For now treat these as sinks.
|
|
// Eventually we will want to handle exceptions properly.
|
|
if (RaisesException)
|
|
Builder->BuildSinks = true;
|
|
|
|
// Dispatch to plug-in transfer function.
|
|
evalObjCMessage(dstEval, msg, Pred, notNilState);
|
|
}
|
|
}
|
|
else if (const ObjCInterfaceDecl *Iface = msg.getReceiverInterface()) {
|
|
IdentifierInfo* ClsName = Iface->getIdentifier();
|
|
Selector S = msg.getSelector();
|
|
|
|
// Check for special instance methods.
|
|
if (!NSExceptionII) {
|
|
ASTContext& Ctx = getContext();
|
|
NSExceptionII = &Ctx.Idents.get("NSException");
|
|
}
|
|
|
|
if (ClsName == NSExceptionII) {
|
|
enum { NUM_RAISE_SELECTORS = 2 };
|
|
|
|
// Lazily create a cache of the selectors.
|
|
if (!NSExceptionInstanceRaiseSelectors) {
|
|
ASTContext& Ctx = getContext();
|
|
NSExceptionInstanceRaiseSelectors =
|
|
new Selector[NUM_RAISE_SELECTORS];
|
|
llvm::SmallVector<IdentifierInfo*, NUM_RAISE_SELECTORS> II;
|
|
unsigned idx = 0;
|
|
|
|
// raise:format:
|
|
II.push_back(&Ctx.Idents.get("raise"));
|
|
II.push_back(&Ctx.Idents.get("format"));
|
|
NSExceptionInstanceRaiseSelectors[idx++] =
|
|
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
|
|
|
// raise:format::arguments:
|
|
II.push_back(&Ctx.Idents.get("arguments"));
|
|
NSExceptionInstanceRaiseSelectors[idx++] =
|
|
Ctx.Selectors.getSelector(II.size(), &II[0]);
|
|
}
|
|
|
|
for (unsigned i = 0; i < NUM_RAISE_SELECTORS; ++i)
|
|
if (S == NSExceptionInstanceRaiseSelectors[i]) {
|
|
RaisesException = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check if we raise an exception. For now treat these as sinks.
|
|
// Eventually we will want to handle exceptions properly.
|
|
if (RaisesException)
|
|
Builder->BuildSinks = true;
|
|
|
|
// Dispatch to plug-in transfer function.
|
|
evalObjCMessage(dstEval, msg, Pred, Builder->GetState(Pred));
|
|
}
|
|
|
|
// Handle the case where no nodes where generated. Auto-generate that
|
|
// contains the updated state if we aren't generating sinks.
|
|
if (!Builder->BuildSinks && dstEval.size() == oldSize &&
|
|
!Builder->hasGeneratedNode)
|
|
MakeNode(dstEval, msg.getOriginExpr(), Pred, GetState(Pred));
|
|
}
|
|
|
|
// Finally, perform the post-condition check of the ObjCMessageExpr and store
|
|
// the created nodes in 'Dst'.
|
|
getCheckerManager().runCheckersForPostObjCMessage(Dst, dstEval, msg, *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Miscellaneous statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
|
|
ExplodedNode *Pred, ExplodedNodeSet &Dst) {
|
|
|
|
ExplodedNodeSet S1;
|
|
Visit(Ex, Pred, S1);
|
|
ExplodedNodeSet S2;
|
|
getCheckerManager().runCheckersForPreStmt(S2, S1, CastE, *this);
|
|
|
|
if (CastE->getCastKind() == CK_LValueToRValue ||
|
|
CastE->getCastKind() == CK_GetObjCProperty) {
|
|
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I!=E; ++I) {
|
|
ExplodedNode *subExprNode = *I;
|
|
const GRState *state = GetState(subExprNode);
|
|
evalLoad(Dst, CastE, subExprNode, state, state->getSVal(Ex));
|
|
}
|
|
return;
|
|
}
|
|
|
|
// All other casts.
|
|
QualType T = CastE->getType();
|
|
QualType ExTy = Ex->getType();
|
|
|
|
if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
|
|
T = ExCast->getTypeAsWritten();
|
|
|
|
for (ExplodedNodeSet::iterator I = S2.begin(), E = S2.end(); I != E; ++I) {
|
|
Pred = *I;
|
|
|
|
switch (CastE->getCastKind()) {
|
|
case CK_ToVoid:
|
|
Dst.Add(Pred);
|
|
continue;
|
|
case CK_LValueToRValue:
|
|
case CK_NoOp:
|
|
case CK_FunctionToPointerDecay: {
|
|
// Copy the SVal of Ex to CastE.
|
|
const GRState *state = GetState(Pred);
|
|
SVal V = state->getSVal(Ex);
|
|
state = state->BindExpr(CastE, V);
|
|
MakeNode(Dst, CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_GetObjCProperty:
|
|
case CK_Dependent:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_BitCast:
|
|
case CK_LValueBitCast:
|
|
case CK_IntegralCast:
|
|
case CK_NullToPointer:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_PointerToBoolean:
|
|
case CK_IntegralToBoolean:
|
|
case CK_IntegralToFloating:
|
|
case CK_FloatingToIntegral:
|
|
case CK_FloatingToBoolean:
|
|
case CK_FloatingCast:
|
|
case CK_FloatingRealToComplex:
|
|
case CK_FloatingComplexToReal:
|
|
case CK_FloatingComplexToBoolean:
|
|
case CK_FloatingComplexCast:
|
|
case CK_FloatingComplexToIntegralComplex:
|
|
case CK_IntegralRealToComplex:
|
|
case CK_IntegralComplexToReal:
|
|
case CK_IntegralComplexToBoolean:
|
|
case CK_IntegralComplexCast:
|
|
case CK_IntegralComplexToFloatingComplex:
|
|
case CK_AnyPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_ObjCObjectLValueCast: {
|
|
// Delegate to SValBuilder to process.
|
|
const GRState* state = GetState(Pred);
|
|
SVal V = state->getSVal(Ex);
|
|
V = svalBuilder.evalCast(V, T, ExTy);
|
|
state = state->BindExpr(CastE, V);
|
|
MakeNode(Dst, CastE, Pred, state);
|
|
continue;
|
|
}
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase: {
|
|
// For DerivedToBase cast, delegate to the store manager.
|
|
const GRState *state = GetState(Pred);
|
|
SVal val = state->getSVal(Ex);
|
|
val = getStoreManager().evalDerivedToBase(val, T);
|
|
state = state->BindExpr(CastE, val);
|
|
MakeNode(Dst, CastE, Pred, state);
|
|
continue;
|
|
}
|
|
// Various C++ casts that are not handled yet.
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_BaseToDerived:
|
|
case CK_NullToMemberPointer:
|
|
case CK_BaseToDerivedMemberPointer:
|
|
case CK_DerivedToBaseMemberPointer:
|
|
case CK_UserDefinedConversion:
|
|
case CK_ConstructorConversion:
|
|
case CK_VectorSplat:
|
|
case CK_MemberPointerToBoolean: {
|
|
// Recover some path-sensitivty by conjuring a new value.
|
|
QualType resultType = CastE->getType();
|
|
if (CastE->isLValue())
|
|
resultType = getContext().getPointerType(resultType);
|
|
|
|
SVal result =
|
|
svalBuilder.getConjuredSymbolVal(NULL, CastE, resultType,
|
|
Builder->getCurrentBlockCount());
|
|
|
|
const GRState *state = GetState(Pred)->BindExpr(CastE, result);
|
|
MakeNode(Dst, CastE, Pred, state);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr* CL,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
const InitListExpr* ILE
|
|
= cast<InitListExpr>(CL->getInitializer()->IgnoreParens());
|
|
ExplodedNodeSet Tmp;
|
|
Visit(ILE, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), EI = Tmp.end(); I!=EI; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
SVal ILV = state->getSVal(ILE);
|
|
const LocationContext *LC = (*I)->getLocationContext();
|
|
state = state->bindCompoundLiteral(CL, LC, ILV);
|
|
|
|
if (CL->isLValue()) {
|
|
MakeNode(Dst, CL, *I, state->BindExpr(CL, state->getLValue(CL, LC)));
|
|
}
|
|
else
|
|
MakeNode(Dst, CL, *I, state->BindExpr(CL, ILV));
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
// The CFG has one DeclStmt per Decl.
|
|
const Decl* D = *DS->decl_begin();
|
|
|
|
if (!D || !isa<VarDecl>(D))
|
|
return;
|
|
|
|
const VarDecl* VD = dyn_cast<VarDecl>(D);
|
|
const Expr* InitEx = VD->getInit();
|
|
|
|
// FIXME: static variables may have an initializer, but the second
|
|
// time a function is called those values may not be current.
|
|
ExplodedNodeSet Tmp;
|
|
|
|
if (InitEx) {
|
|
if (VD->getType()->isReferenceType() && !InitEx->isLValue()) {
|
|
// If the initializer is C++ record type, it should already has a
|
|
// temp object.
|
|
if (!InitEx->getType()->isRecordType())
|
|
CreateCXXTemporaryObject(InitEx, Pred, Tmp);
|
|
else
|
|
Tmp.Add(Pred);
|
|
} else
|
|
Visit(InitEx, Pred, Tmp);
|
|
} else
|
|
Tmp.Add(Pred);
|
|
|
|
ExplodedNodeSet Tmp2;
|
|
getCheckerManager().runCheckersForPreStmt(Tmp2, Tmp, DS, *this);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp2.begin(), E=Tmp2.end(); I!=E; ++I) {
|
|
ExplodedNode *N = *I;
|
|
const GRState *state = GetState(N);
|
|
|
|
// Decls without InitExpr are not initialized explicitly.
|
|
const LocationContext *LC = N->getLocationContext();
|
|
|
|
if (InitEx) {
|
|
SVal InitVal = state->getSVal(InitEx);
|
|
|
|
// We bound the temp obj region to the CXXConstructExpr. Now recover
|
|
// the lazy compound value when the variable is not a reference.
|
|
if (AMgr.getLangOptions().CPlusPlus && VD->getType()->isRecordType() &&
|
|
!VD->getType()->isReferenceType() && isa<loc::MemRegionVal>(InitVal)){
|
|
InitVal = state->getSVal(cast<loc::MemRegionVal>(InitVal).getRegion());
|
|
assert(isa<nonloc::LazyCompoundVal>(InitVal));
|
|
}
|
|
|
|
// Recover some path-sensitivity if a scalar value evaluated to
|
|
// UnknownVal.
|
|
if ((InitVal.isUnknown() ||
|
|
!getConstraintManager().canReasonAbout(InitVal)) &&
|
|
!VD->getType()->isReferenceType()) {
|
|
InitVal = svalBuilder.getConjuredSymbolVal(NULL, InitEx,
|
|
Builder->getCurrentBlockCount());
|
|
}
|
|
|
|
evalBind(Dst, DS, *I, state,
|
|
loc::MemRegionVal(state->getRegion(VD, LC)), InitVal, true);
|
|
}
|
|
else {
|
|
state = state->bindDeclWithNoInit(state->getRegion(VD, LC));
|
|
MakeNode(Dst, DS, *I, state);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
// This class is used by VisitInitListExpr as an item in a worklist
|
|
// for processing the values contained in an InitListExpr.
|
|
class InitListWLItem {
|
|
public:
|
|
llvm::ImmutableList<SVal> Vals;
|
|
ExplodedNode* N;
|
|
InitListExpr::const_reverse_iterator Itr;
|
|
|
|
InitListWLItem(ExplodedNode* n, llvm::ImmutableList<SVal> vals,
|
|
InitListExpr::const_reverse_iterator itr)
|
|
: Vals(vals), N(n), Itr(itr) {}
|
|
};
|
|
}
|
|
|
|
|
|
void ExprEngine::VisitInitListExpr(const InitListExpr* E, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
const GRState* state = GetState(Pred);
|
|
QualType T = getContext().getCanonicalType(E->getType());
|
|
unsigned NumInitElements = E->getNumInits();
|
|
|
|
if (T->isArrayType() || T->isRecordType() || T->isVectorType()) {
|
|
llvm::ImmutableList<SVal> StartVals = getBasicVals().getEmptySValList();
|
|
|
|
// Handle base case where the initializer has no elements.
|
|
// e.g: static int* myArray[] = {};
|
|
if (NumInitElements == 0) {
|
|
SVal V = svalBuilder.makeCompoundVal(T, StartVals);
|
|
MakeNode(Dst, E, Pred, state->BindExpr(E, V));
|
|
return;
|
|
}
|
|
|
|
// Create a worklist to process the initializers.
|
|
llvm::SmallVector<InitListWLItem, 10> WorkList;
|
|
WorkList.reserve(NumInitElements);
|
|
WorkList.push_back(InitListWLItem(Pred, StartVals, E->rbegin()));
|
|
InitListExpr::const_reverse_iterator ItrEnd = E->rend();
|
|
assert(!(E->rbegin() == E->rend()));
|
|
|
|
// Process the worklist until it is empty.
|
|
while (!WorkList.empty()) {
|
|
InitListWLItem X = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(*X.Itr, X.N, Tmp);
|
|
|
|
InitListExpr::const_reverse_iterator NewItr = X.Itr + 1;
|
|
|
|
for (ExplodedNodeSet::iterator NI=Tmp.begin(),NE=Tmp.end();NI!=NE;++NI) {
|
|
// Get the last initializer value.
|
|
state = GetState(*NI);
|
|
SVal InitV = state->getSVal(cast<Expr>(*X.Itr));
|
|
|
|
// Construct the new list of values by prepending the new value to
|
|
// the already constructed list.
|
|
llvm::ImmutableList<SVal> NewVals =
|
|
getBasicVals().consVals(InitV, X.Vals);
|
|
|
|
if (NewItr == ItrEnd) {
|
|
// Now we have a list holding all init values. Make CompoundValData.
|
|
SVal V = svalBuilder.makeCompoundVal(T, NewVals);
|
|
|
|
// Make final state and node.
|
|
MakeNode(Dst, E, *NI, state->BindExpr(E, V));
|
|
}
|
|
else {
|
|
// Still some initializer values to go. Push them onto the worklist.
|
|
WorkList.push_back(InitListWLItem(*NI, NewVals, NewItr));
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (Loc::isLocType(T) || T->isIntegerType()) {
|
|
assert (E->getNumInits() == 1);
|
|
ExplodedNodeSet Tmp;
|
|
const Expr* Init = E->getInit(0);
|
|
Visit(Init, Pred, Tmp);
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), EI=Tmp.end(); I != EI; ++I) {
|
|
state = GetState(*I);
|
|
MakeNode(Dst, E, *I, state->BindExpr(E, state->getSVal(Init)));
|
|
}
|
|
return;
|
|
}
|
|
|
|
assert(0 && "unprocessed InitListExpr type");
|
|
}
|
|
|
|
/// VisitUnaryExprOrTypeTraitExpr - Transfer function for sizeof(type).
|
|
void ExprEngine::VisitUnaryExprOrTypeTraitExpr(
|
|
const UnaryExprOrTypeTraitExpr* Ex,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
QualType T = Ex->getTypeOfArgument();
|
|
|
|
if (Ex->getKind() == UETT_SizeOf) {
|
|
if (!T->isIncompleteType() && !T->isConstantSizeType()) {
|
|
assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
|
|
|
|
// FIXME: Add support for VLA type arguments, not just VLA expressions.
|
|
// When that happens, we should probably refactor VLASizeChecker's code.
|
|
if (Ex->isArgumentType()) {
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
|
|
// Get the size by getting the extent of the sub-expression.
|
|
// First, visit the sub-expression to find its region.
|
|
const Expr *Arg = Ex->getArgumentExpr();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Arg, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
const MemRegion *MR = state->getSVal(Arg).getAsRegion();
|
|
|
|
// If the subexpression can't be resolved to a region, we don't know
|
|
// anything about its size. Just leave the state as is and continue.
|
|
if (!MR) {
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// The result is the extent of the VLA.
|
|
SVal Extent = cast<SubRegion>(MR)->getExtent(svalBuilder);
|
|
MakeNode(Dst, Ex, *I, state->BindExpr(Ex, Extent));
|
|
}
|
|
|
|
return;
|
|
}
|
|
else if (T->getAs<ObjCObjectType>()) {
|
|
// Some code tries to take the sizeof an ObjCObjectType, relying that
|
|
// the compiler has laid out its representation. Just report Unknown
|
|
// for these.
|
|
Dst.Add(Pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
Expr::EvalResult Result;
|
|
Ex->Evaluate(Result, getContext());
|
|
CharUnits amt = CharUnits::fromQuantity(Result.Val.getInt().getZExtValue());
|
|
|
|
MakeNode(Dst, Ex, Pred,
|
|
GetState(Pred)->BindExpr(Ex,
|
|
svalBuilder.makeIntVal(amt.getQuantity(), Ex->getType())));
|
|
}
|
|
|
|
void ExprEngine::VisitOffsetOfExpr(const OffsetOfExpr* OOE,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
Expr::EvalResult Res;
|
|
if (OOE->Evaluate(Res, getContext()) && Res.Val.isInt()) {
|
|
const APSInt &IV = Res.Val.getInt();
|
|
assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
|
|
assert(OOE->getType()->isIntegerType());
|
|
assert(IV.isSigned() == OOE->getType()->isSignedIntegerOrEnumerationType());
|
|
SVal X = svalBuilder.makeIntVal(IV);
|
|
MakeNode(Dst, OOE, Pred, GetState(Pred)->BindExpr(OOE, X));
|
|
return;
|
|
}
|
|
// FIXME: Handle the case where __builtin_offsetof is not a constant.
|
|
Dst.Add(Pred);
|
|
}
|
|
|
|
void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
|
|
switch (U->getOpcode()) {
|
|
|
|
default:
|
|
break;
|
|
|
|
case UO_Real: {
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// For all other types, UO_Real is an identity operation.
|
|
assert (U->getType() == Ex->getType());
|
|
const GRState* state = GetState(*I);
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UO_Imag: {
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
// FIXME: We don't have complex SValues yet.
|
|
if (Ex->getType()->isAnyComplexType()) {
|
|
// Just report "Unknown."
|
|
Dst.Add(*I);
|
|
continue;
|
|
}
|
|
|
|
// For all other types, UO_Imag returns 0.
|
|
const GRState* state = GetState(*I);
|
|
SVal X = svalBuilder.makeZeroVal(Ex->getType());
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, X));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UO_Plus:
|
|
assert(!U->isLValue());
|
|
// FALL-THROUGH.
|
|
case UO_Deref:
|
|
case UO_AddrOf:
|
|
case UO_Extension: {
|
|
|
|
// Unary "+" is a no-op, similar to a parentheses. We still have places
|
|
// where it may be a block-level expression, so we need to
|
|
// generate an extra node that just propagates the value of the
|
|
// subexpression.
|
|
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, state->getSVal(Ex)));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
case UO_LNot:
|
|
case UO_Minus:
|
|
case UO_Not: {
|
|
assert (!U->isLValue());
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
ExplodedNodeSet Tmp;
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end(); I!=E; ++I) {
|
|
const GRState* state = GetState(*I);
|
|
|
|
// Get the value of the subexpression.
|
|
SVal V = state->getSVal(Ex);
|
|
|
|
if (V.isUnknownOrUndef()) {
|
|
MakeNode(Dst, U, *I, state->BindExpr(U, V));
|
|
continue;
|
|
}
|
|
|
|
// QualType DstT = getContext().getCanonicalType(U->getType());
|
|
// QualType SrcT = getContext().getCanonicalType(Ex->getType());
|
|
//
|
|
// if (DstT != SrcT) // Perform promotions.
|
|
// V = evalCast(V, DstT);
|
|
//
|
|
// if (V.isUnknownOrUndef()) {
|
|
// MakeNode(Dst, U, *I, BindExpr(St, U, V));
|
|
// continue;
|
|
// }
|
|
|
|
switch (U->getOpcode()) {
|
|
default:
|
|
assert(false && "Invalid Opcode.");
|
|
break;
|
|
|
|
case UO_Not:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, evalComplement(cast<NonLoc>(V)));
|
|
break;
|
|
|
|
case UO_Minus:
|
|
// FIXME: Do we need to handle promotions?
|
|
state = state->BindExpr(U, evalMinus(cast<NonLoc>(V)));
|
|
break;
|
|
|
|
case UO_LNot:
|
|
|
|
// C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
|
|
//
|
|
// Note: technically we do "E == 0", but this is the same in the
|
|
// transfer functions as "0 == E".
|
|
SVal Result;
|
|
|
|
if (isa<Loc>(V)) {
|
|
Loc X = svalBuilder.makeNull();
|
|
Result = evalBinOp(state, BO_EQ, cast<Loc>(V), X,
|
|
U->getType());
|
|
}
|
|
else {
|
|
nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
|
|
Result = evalBinOp(state, BO_EQ, cast<NonLoc>(V), X,
|
|
U->getType());
|
|
}
|
|
|
|
state = state->BindExpr(U, Result);
|
|
|
|
break;
|
|
}
|
|
|
|
MakeNode(Dst, U, *I, state);
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Handle ++ and -- (both pre- and post-increment).
|
|
assert (U->isIncrementDecrementOp());
|
|
ExplodedNodeSet Tmp;
|
|
const Expr* Ex = U->getSubExpr()->IgnoreParens();
|
|
Visit(Ex, Pred, Tmp);
|
|
|
|
for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I!=E; ++I) {
|
|
|
|
const GRState* state = GetState(*I);
|
|
SVal loc = state->getSVal(Ex);
|
|
|
|
// Perform a load.
|
|
ExplodedNodeSet Tmp2;
|
|
evalLoad(Tmp2, Ex, *I, state, loc);
|
|
|
|
for (ExplodedNodeSet::iterator I2=Tmp2.begin(), E2=Tmp2.end();I2!=E2;++I2) {
|
|
|
|
state = GetState(*I2);
|
|
SVal V2_untested = state->getSVal(Ex);
|
|
|
|
// Propagate unknown and undefined values.
|
|
if (V2_untested.isUnknownOrUndef()) {
|
|
MakeNode(Dst, U, *I2, state->BindExpr(U, V2_untested));
|
|
continue;
|
|
}
|
|
DefinedSVal V2 = cast<DefinedSVal>(V2_untested);
|
|
|
|
// Handle all other values.
|
|
BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add
|
|
: BO_Sub;
|
|
|
|
// If the UnaryOperator has non-location type, use its type to create the
|
|
// constant value. If the UnaryOperator has location type, create the
|
|
// constant with int type and pointer width.
|
|
SVal RHS;
|
|
|
|
if (U->getType()->isAnyPointerType())
|
|
RHS = svalBuilder.makeArrayIndex(1);
|
|
else
|
|
RHS = svalBuilder.makeIntVal(1, U->getType());
|
|
|
|
SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
|
|
|
|
// Conjure a new symbol if necessary to recover precision.
|
|
if (Result.isUnknown() || !getConstraintManager().canReasonAbout(Result)){
|
|
DefinedOrUnknownSVal SymVal =
|
|
svalBuilder.getConjuredSymbolVal(NULL, Ex,
|
|
Builder->getCurrentBlockCount());
|
|
Result = SymVal;
|
|
|
|
// If the value is a location, ++/-- should always preserve
|
|
// non-nullness. Check if the original value was non-null, and if so
|
|
// propagate that constraint.
|
|
if (Loc::isLocType(U->getType())) {
|
|
DefinedOrUnknownSVal Constraint =
|
|
svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
if (!state->assume(Constraint, true)) {
|
|
// It isn't feasible for the original value to be null.
|
|
// Propagate this constraint.
|
|
Constraint = svalBuilder.evalEQ(state, SymVal,
|
|
svalBuilder.makeZeroVal(U->getType()));
|
|
|
|
|
|
state = state->assume(Constraint, false);
|
|
assert(state);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Since the lvalue-to-rvalue conversion is explicit in the AST,
|
|
// we bind an l-value if the operator is prefix and an lvalue (in C++).
|
|
if (U->isLValue())
|
|
state = state->BindExpr(U, loc);
|
|
else
|
|
state = state->BindExpr(U, U->isPostfix() ? V2 : Result);
|
|
|
|
// Perform the store.
|
|
evalStore(Dst, NULL, U, *I2, state, loc, Result);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ExprEngine::VisitAsmStmt(const AsmStmt* A, ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
VisitAsmStmtHelperOutputs(A, A->begin_outputs(), A->end_outputs(), Pred, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitAsmStmtHelperOutputs(const AsmStmt* A,
|
|
AsmStmt::const_outputs_iterator I,
|
|
AsmStmt::const_outputs_iterator E,
|
|
ExplodedNode* Pred, ExplodedNodeSet& Dst) {
|
|
if (I == E) {
|
|
VisitAsmStmtHelperInputs(A, A->begin_inputs(), A->end_inputs(), Pred, Dst);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(*I, Pred, Tmp);
|
|
++I;
|
|
|
|
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end();NI != NE;++NI)
|
|
VisitAsmStmtHelperOutputs(A, I, E, *NI, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitAsmStmtHelperInputs(const AsmStmt* A,
|
|
AsmStmt::const_inputs_iterator I,
|
|
AsmStmt::const_inputs_iterator E,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
if (I == E) {
|
|
|
|
// We have processed both the inputs and the outputs. All of the outputs
|
|
// should evaluate to Locs. Nuke all of their values.
|
|
|
|
// FIXME: Some day in the future it would be nice to allow a "plug-in"
|
|
// which interprets the inline asm and stores proper results in the
|
|
// outputs.
|
|
|
|
const GRState* state = GetState(Pred);
|
|
|
|
for (AsmStmt::const_outputs_iterator OI = A->begin_outputs(),
|
|
OE = A->end_outputs(); OI != OE; ++OI) {
|
|
|
|
SVal X = state->getSVal(*OI);
|
|
assert (!isa<NonLoc>(X)); // Should be an Lval, or unknown, undef.
|
|
|
|
if (isa<Loc>(X))
|
|
state = state->bindLoc(cast<Loc>(X), UnknownVal());
|
|
}
|
|
|
|
MakeNode(Dst, A, Pred, state);
|
|
return;
|
|
}
|
|
|
|
ExplodedNodeSet Tmp;
|
|
Visit(*I, Pred, Tmp);
|
|
|
|
++I;
|
|
|
|
for (ExplodedNodeSet::iterator NI = Tmp.begin(), NE = Tmp.end(); NI!=NE; ++NI)
|
|
VisitAsmStmtHelperInputs(A, I, E, *NI, Dst);
|
|
}
|
|
|
|
void ExprEngine::VisitReturnStmt(const ReturnStmt *RS, ExplodedNode *Pred,
|
|
ExplodedNodeSet &Dst) {
|
|
ExplodedNodeSet Src;
|
|
if (const Expr *RetE = RS->getRetValue()) {
|
|
// Record the returned expression in the state. It will be used in
|
|
// processCallExit to bind the return value to the call expr.
|
|
{
|
|
static int tag = 0;
|
|
const GRState *state = GetState(Pred);
|
|
state = state->set<ReturnExpr>(RetE);
|
|
Pred = Builder->generateNode(RetE, state, Pred, &tag);
|
|
}
|
|
// We may get a NULL Pred because we generated a cached node.
|
|
if (Pred)
|
|
Visit(RetE, Pred, Src);
|
|
}
|
|
else {
|
|
Src.Add(Pred);
|
|
}
|
|
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Src, RS, *this);
|
|
|
|
for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
|
|
I != E; ++I) {
|
|
|
|
assert(Builder && "StmtNodeBuilder must be defined.");
|
|
|
|
Pred = *I;
|
|
unsigned size = Dst.size();
|
|
|
|
SaveAndRestore<bool> OldSink(Builder->BuildSinks);
|
|
SaveOr OldHasGen(Builder->hasGeneratedNode);
|
|
|
|
getTF().evalReturn(Dst, *this, *Builder, RS, Pred);
|
|
|
|
// Handle the case where no nodes where generated.
|
|
if (!Builder->BuildSinks && Dst.size() == size &&
|
|
!Builder->hasGeneratedNode)
|
|
MakeNode(Dst, RS, Pred, GetState(Pred));
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Transfer functions: Binary operators.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
|
|
ExplodedNode* Pred,
|
|
ExplodedNodeSet& Dst) {
|
|
ExplodedNodeSet Tmp1;
|
|
Expr* LHS = B->getLHS()->IgnoreParens();
|
|
Expr* RHS = B->getRHS()->IgnoreParens();
|
|
|
|
Visit(LHS, Pred, Tmp1);
|
|
ExplodedNodeSet Tmp3;
|
|
|
|
for (ExplodedNodeSet::iterator I1=Tmp1.begin(), E1=Tmp1.end(); I1!=E1; ++I1) {
|
|
SVal LeftV = GetState(*I1)->getSVal(LHS);
|
|
ExplodedNodeSet Tmp2;
|
|
Visit(RHS, *I1, Tmp2);
|
|
|
|
ExplodedNodeSet CheckedSet;
|
|
getCheckerManager().runCheckersForPreStmt(CheckedSet, Tmp2, B, *this);
|
|
|
|
// With both the LHS and RHS evaluated, process the operation itself.
|
|
|
|
for (ExplodedNodeSet::iterator I2=CheckedSet.begin(), E2=CheckedSet.end();
|
|
I2 != E2; ++I2) {
|
|
|
|
const GRState *state = GetState(*I2);
|
|
SVal RightV = state->getSVal(RHS);
|
|
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
if (Op == BO_Assign) {
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
if (RightV.isUnknown() ||!getConstraintManager().canReasonAbout(RightV))
|
|
{
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
RightV = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), Count);
|
|
}
|
|
|
|
SVal ExprVal = B->isLValue() ? LeftV : RightV;
|
|
|
|
// Simulate the effects of a "store": bind the value of the RHS
|
|
// to the L-Value represented by the LHS.
|
|
evalStore(Tmp3, B, LHS, *I2, state->BindExpr(B, ExprVal), LeftV,RightV);
|
|
continue;
|
|
}
|
|
|
|
if (!B->isAssignmentOp()) {
|
|
// Process non-assignments except commas or short-circuited
|
|
// logical expressions (LAnd and LOr).
|
|
SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
|
|
|
|
if (Result.isUnknown()) {
|
|
MakeNode(Tmp3, B, *I2, state);
|
|
continue;
|
|
}
|
|
|
|
state = state->BindExpr(B, Result);
|
|
|
|
MakeNode(Tmp3, B, *I2, state);
|
|
continue;
|
|
}
|
|
|
|
assert (B->isCompoundAssignmentOp());
|
|
|
|
switch (Op) {
|
|
default:
|
|
assert(0 && "Invalid opcode for compound assignment.");
|
|
case BO_MulAssign: Op = BO_Mul; break;
|
|
case BO_DivAssign: Op = BO_Div; break;
|
|
case BO_RemAssign: Op = BO_Rem; break;
|
|
case BO_AddAssign: Op = BO_Add; break;
|
|
case BO_SubAssign: Op = BO_Sub; break;
|
|
case BO_ShlAssign: Op = BO_Shl; break;
|
|
case BO_ShrAssign: Op = BO_Shr; break;
|
|
case BO_AndAssign: Op = BO_And; break;
|
|
case BO_XorAssign: Op = BO_Xor; break;
|
|
case BO_OrAssign: Op = BO_Or; break;
|
|
}
|
|
|
|
// Perform a load (the LHS). This performs the checks for
|
|
// null dereferences, and so on.
|
|
ExplodedNodeSet Tmp4;
|
|
SVal location = state->getSVal(LHS);
|
|
evalLoad(Tmp4, LHS, *I2, state, location);
|
|
|
|
for (ExplodedNodeSet::iterator I4=Tmp4.begin(), E4=Tmp4.end(); I4!=E4;
|
|
++I4) {
|
|
state = GetState(*I4);
|
|
SVal V = state->getSVal(LHS);
|
|
|
|
// Get the computation type.
|
|
QualType CTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationResultType();
|
|
CTy = getContext().getCanonicalType(CTy);
|
|
|
|
QualType CLHSTy =
|
|
cast<CompoundAssignOperator>(B)->getComputationLHSType();
|
|
CLHSTy = getContext().getCanonicalType(CLHSTy);
|
|
|
|
QualType LTy = getContext().getCanonicalType(LHS->getType());
|
|
|
|
// Promote LHS.
|
|
V = svalBuilder.evalCast(V, CLHSTy, LTy);
|
|
|
|
// Compute the result of the operation.
|
|
SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
|
|
B->getType(), CTy);
|
|
|
|
// EXPERIMENTAL: "Conjured" symbols.
|
|
// FIXME: Handle structs.
|
|
|
|
SVal LHSVal;
|
|
|
|
if (Result.isUnknown() ||
|
|
!getConstraintManager().canReasonAbout(Result)) {
|
|
|
|
unsigned Count = Builder->getCurrentBlockCount();
|
|
|
|
// The symbolic value is actually for the type of the left-hand side
|
|
// expression, not the computation type, as this is the value the
|
|
// LValue on the LHS will bind to.
|
|
LHSVal = svalBuilder.getConjuredSymbolVal(NULL, B->getRHS(), LTy, Count);
|
|
|
|
// However, we need to convert the symbol to the computation type.
|
|
Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
|
|
}
|
|
else {
|
|
// The left-hand side may bind to a different value then the
|
|
// computation type.
|
|
LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
|
|
}
|
|
|
|
// In C++, assignment and compound assignment operators return an
|
|
// lvalue.
|
|
if (B->isLValue())
|
|
state = state->BindExpr(B, location);
|
|
else
|
|
state = state->BindExpr(B, Result);
|
|
|
|
evalStore(Tmp3, B, LHS, *I4, state, location, LHSVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
getCheckerManager().runCheckersForPostStmt(Dst, Tmp3, B, *this);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Visualization.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef NDEBUG
|
|
static ExprEngine* GraphPrintCheckerState;
|
|
static SourceManager* GraphPrintSourceManager;
|
|
|
|
namespace llvm {
|
|
template<>
|
|
struct DOTGraphTraits<ExplodedNode*> :
|
|
public DefaultDOTGraphTraits {
|
|
|
|
DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
|
|
|
|
// FIXME: Since we do not cache error nodes in ExprEngine now, this does not
|
|
// work.
|
|
static std::string getNodeAttributes(const ExplodedNode* N, void*) {
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to tell if the node is
|
|
// an error node.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isExplicitNullDeref(N) ||
|
|
GraphPrintCheckerState->isUndefDeref(N) ||
|
|
GraphPrintCheckerState->isUndefStore(N) ||
|
|
GraphPrintCheckerState->isUndefControlFlow(N) ||
|
|
GraphPrintCheckerState->isUndefResult(N) ||
|
|
GraphPrintCheckerState->isBadCall(N) ||
|
|
GraphPrintCheckerState->isUndefArg(N))
|
|
return "color=\"red\",style=\"filled\"";
|
|
|
|
if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
return "color=\"blue\",style=\"filled\"";
|
|
#endif
|
|
return "";
|
|
}
|
|
|
|
static std::string getNodeLabel(const ExplodedNode* N, void*){
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream Out(sbuf);
|
|
|
|
// Program Location.
|
|
ProgramPoint Loc = N->getLocation();
|
|
|
|
switch (Loc.getKind()) {
|
|
case ProgramPoint::BlockEntranceKind:
|
|
Out << "Block Entrance: B"
|
|
<< cast<BlockEntrance>(Loc).getBlock()->getBlockID();
|
|
break;
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false);
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
Out << "CallEnter";
|
|
break;
|
|
|
|
case ProgramPoint::CallExitKind:
|
|
Out << "CallExit";
|
|
break;
|
|
|
|
default: {
|
|
if (StmtPoint *L = dyn_cast<StmtPoint>(&Loc)) {
|
|
const Stmt* S = L->getStmt();
|
|
SourceLocation SLoc = S->getLocStart();
|
|
|
|
Out << S->getStmtClassName() << ' ' << (void*) S << ' ';
|
|
LangOptions LO; // FIXME.
|
|
S->printPretty(Out, 0, PrintingPolicy(LO));
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc)
|
|
<< "\\l";
|
|
}
|
|
|
|
if (isa<PreStmt>(Loc))
|
|
Out << "\\lPreStmt\\l;";
|
|
else if (isa<PostLoad>(Loc))
|
|
Out << "\\lPostLoad\\l;";
|
|
else if (isa<PostStore>(Loc))
|
|
Out << "\\lPostStore\\l";
|
|
else if (isa<PostLValue>(Loc))
|
|
Out << "\\lPostLValue\\l";
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isImplicitNullDeref(N))
|
|
Out << "\\|Implicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isExplicitNullDeref(N))
|
|
Out << "\\|Explicit-Null Dereference.\\l";
|
|
else if (GraphPrintCheckerState->isUndefDeref(N))
|
|
Out << "\\|Dereference of undefialied value.\\l";
|
|
else if (GraphPrintCheckerState->isUndefStore(N))
|
|
Out << "\\|Store to Undefined Loc.";
|
|
else if (GraphPrintCheckerState->isUndefResult(N))
|
|
Out << "\\|Result of operation is undefined.";
|
|
else if (GraphPrintCheckerState->isNoReturnCall(N))
|
|
Out << "\\|Call to function marked \"noreturn\".";
|
|
else if (GraphPrintCheckerState->isBadCall(N))
|
|
Out << "\\|Call to NULL/Undefined.";
|
|
else if (GraphPrintCheckerState->isUndefArg(N))
|
|
Out << "\\|Argument in call is undefined";
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
const BlockEdge& E = cast<BlockEdge>(Loc);
|
|
Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B"
|
|
<< E.getDst()->getBlockID() << ')';
|
|
|
|
if (const Stmt* T = E.getSrc()->getTerminator()) {
|
|
|
|
SourceLocation SLoc = T->getLocStart();
|
|
|
|
Out << "\\|Terminator: ";
|
|
LangOptions LO; // FIXME.
|
|
E.getSrc()->printTerminator(Out, LO);
|
|
|
|
if (SLoc.isFileID()) {
|
|
Out << "\\lline="
|
|
<< GraphPrintSourceManager->getInstantiationLineNumber(SLoc)
|
|
<< " col="
|
|
<< GraphPrintSourceManager->getInstantiationColumnNumber(SLoc);
|
|
}
|
|
|
|
if (isa<SwitchStmt>(T)) {
|
|
const Stmt* Label = E.getDst()->getLabel();
|
|
|
|
if (Label) {
|
|
if (const CaseStmt* C = dyn_cast<CaseStmt>(Label)) {
|
|
Out << "\\lcase ";
|
|
LangOptions LO; // FIXME.
|
|
C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO));
|
|
|
|
if (const Stmt* RHS = C->getRHS()) {
|
|
Out << " .. ";
|
|
RHS->printPretty(Out, 0, PrintingPolicy(LO));
|
|
}
|
|
|
|
Out << ":";
|
|
}
|
|
else {
|
|
assert (isa<DefaultStmt>(Label));
|
|
Out << "\\ldefault:";
|
|
}
|
|
}
|
|
else
|
|
Out << "\\l(implicit) default:";
|
|
}
|
|
else if (isa<IndirectGotoStmt>(T)) {
|
|
// FIXME
|
|
}
|
|
else {
|
|
Out << "\\lCondition: ";
|
|
if (*E.getSrc()->succ_begin() == E.getDst())
|
|
Out << "true";
|
|
else
|
|
Out << "false";
|
|
}
|
|
|
|
Out << "\\l";
|
|
}
|
|
|
|
#if 0
|
|
// FIXME: Replace with a general scheme to determine
|
|
// the name of the check.
|
|
if (GraphPrintCheckerState->isUndefControlFlow(N)) {
|
|
Out << "\\|Control-flow based on\\lUndefined value.\\l";
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
const GRState *state = N->getState();
|
|
Out << "\\|StateID: " << (void*) state
|
|
<< " NodeID: " << (void*) N << "\\|";
|
|
state->printDOT(Out, *N->getLocationContext()->getCFG());
|
|
Out << "\\l";
|
|
return Out.str();
|
|
}
|
|
};
|
|
} // end llvm namespace
|
|
#endif
|
|
|
|
#ifndef NDEBUG
|
|
template <typename ITERATOR>
|
|
ExplodedNode* GetGraphNode(ITERATOR I) { return *I; }
|
|
|
|
template <> ExplodedNode*
|
|
GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator>
|
|
(llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) {
|
|
return I->first;
|
|
}
|
|
#endif
|
|
|
|
void ExprEngine::ViewGraph(bool trim) {
|
|
#ifndef NDEBUG
|
|
if (trim) {
|
|
std::vector<ExplodedNode*> Src;
|
|
|
|
// Flush any outstanding reports to make sure we cover all the nodes.
|
|
// This does not cause them to get displayed.
|
|
for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(BR);
|
|
|
|
// Iterate through the reports and get their nodes.
|
|
for (BugReporter::EQClasses_iterator
|
|
EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) {
|
|
BugReportEquivClass& EQ = *EI;
|
|
const BugReport &R = **EQ.begin();
|
|
ExplodedNode *N = const_cast<ExplodedNode*>(R.getErrorNode());
|
|
if (N) Src.push_back(N);
|
|
}
|
|
|
|
ViewGraph(&Src[0], &Src[0]+Src.size());
|
|
}
|
|
else {
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
llvm::ViewGraph(*G.roots_begin(), "ExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) {
|
|
#ifndef NDEBUG
|
|
GraphPrintCheckerState = this;
|
|
GraphPrintSourceManager = &getContext().getSourceManager();
|
|
|
|
std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first);
|
|
|
|
if (!TrimmedG.get())
|
|
llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n";
|
|
else
|
|
llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine");
|
|
|
|
GraphPrintCheckerState = NULL;
|
|
GraphPrintSourceManager = NULL;
|
|
#endif
|
|
}
|