forked from OSchip/llvm-project
1963 lines
65 KiB
C++
1963 lines
65 KiB
C++
//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Create a polyhedral description for a static control flow region.
|
|
//
|
|
// The pass creates a polyhedral description of the Scops detected by the Scop
|
|
// detection derived from their LLVM-IR code.
|
|
//
|
|
// This representation is shared among several tools in the polyhedral
|
|
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/LinkAllPasses.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "polly/TempScopInfo.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/RegionIterator.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include "isl/constraint.h"
|
|
#include "isl/set.h"
|
|
#include "isl/map.h"
|
|
#include "isl/union_map.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/printer.h"
|
|
#include "isl/local_space.h"
|
|
#include "isl/options.h"
|
|
#include "isl/val.h"
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
#define DEBUG_TYPE "polly-scops"
|
|
|
|
STATISTIC(ScopFound, "Number of valid Scops");
|
|
STATISTIC(RichScopFound, "Number of Scops containing a loop");
|
|
|
|
// Multiplicative reductions can be disabled separately as these kind of
|
|
// operations can overflow easily. Additive reductions and bit operations
|
|
// are in contrast pretty stable.
|
|
static cl::opt<bool> DisableMultiplicativeReductions(
|
|
"polly-disable-multiplicative-reductions",
|
|
cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(false), cl::cat(PollyCategory));
|
|
|
|
static cl::opt<unsigned> RunTimeChecksMaxParameters(
|
|
"polly-rtc-max-parameters",
|
|
cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
|
|
cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
|
|
|
|
/// Translate a 'const SCEV *' expression in an isl_pw_aff.
|
|
struct SCEVAffinator : public SCEVVisitor<SCEVAffinator, isl_pw_aff *> {
|
|
public:
|
|
/// @brief Translate a 'const SCEV *' to an isl_pw_aff.
|
|
///
|
|
/// @param Stmt The location at which the scalar evolution expression
|
|
/// is evaluated.
|
|
/// @param Expr The expression that is translated.
|
|
static __isl_give isl_pw_aff *getPwAff(ScopStmt *Stmt, const SCEV *Expr);
|
|
|
|
private:
|
|
isl_ctx *Ctx;
|
|
int NbLoopSpaces;
|
|
const Scop *S;
|
|
|
|
SCEVAffinator(const ScopStmt *Stmt);
|
|
int getLoopDepth(const Loop *L);
|
|
|
|
__isl_give isl_pw_aff *visit(const SCEV *Expr);
|
|
__isl_give isl_pw_aff *visitConstant(const SCEVConstant *Expr);
|
|
__isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr *Expr);
|
|
__isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr);
|
|
__isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr *Expr);
|
|
__isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr *Expr);
|
|
__isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr *Expr);
|
|
__isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr *Expr);
|
|
__isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr *Expr);
|
|
__isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr *Expr);
|
|
__isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr *Expr);
|
|
__isl_give isl_pw_aff *visitUnknown(const SCEVUnknown *Expr);
|
|
__isl_give isl_pw_aff *visitSDivInstruction(Instruction *SDiv);
|
|
|
|
friend struct SCEVVisitor<SCEVAffinator, isl_pw_aff *>;
|
|
};
|
|
|
|
SCEVAffinator::SCEVAffinator(const ScopStmt *Stmt)
|
|
: Ctx(Stmt->getIslCtx()), NbLoopSpaces(Stmt->getNumIterators()),
|
|
S(Stmt->getParent()) {}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::getPwAff(ScopStmt *Stmt,
|
|
const SCEV *Scev) {
|
|
Scop *S = Stmt->getParent();
|
|
const Region *Reg = &S->getRegion();
|
|
|
|
S->addParams(getParamsInAffineExpr(Reg, Scev, *S->getSE()));
|
|
|
|
SCEVAffinator Affinator(Stmt);
|
|
return Affinator.visit(Scev);
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visit(const SCEV *Expr) {
|
|
// In case the scev is a valid parameter, we do not further analyze this
|
|
// expression, but create a new parameter in the isl_pw_aff. This allows us
|
|
// to treat subexpressions that we cannot translate into an piecewise affine
|
|
// expression, as constant parameters of the piecewise affine expression.
|
|
if (isl_id *Id = S->getIdForParam(Expr)) {
|
|
isl_space *Space = isl_space_set_alloc(Ctx, 1, NbLoopSpaces);
|
|
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
|
|
|
|
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
|
|
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
|
|
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
|
|
|
|
return isl_pw_aff_alloc(Domain, Affine);
|
|
}
|
|
|
|
return SCEVVisitor<SCEVAffinator, isl_pw_aff *>::visit(Expr);
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
|
|
ConstantInt *Value = Expr->getValue();
|
|
isl_val *v;
|
|
|
|
// LLVM does not define if an integer value is interpreted as a signed or
|
|
// unsigned value. Hence, without further information, it is unknown how
|
|
// this value needs to be converted to GMP. At the moment, we only support
|
|
// signed operations. So we just interpret it as signed. Later, there are
|
|
// two options:
|
|
//
|
|
// 1. We always interpret any value as signed and convert the values on
|
|
// demand.
|
|
// 2. We pass down the signedness of the calculation and use it to interpret
|
|
// this constant correctly.
|
|
v = isl_valFromAPInt(Ctx, Value->getValue(), /* isSigned */ true);
|
|
|
|
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
|
|
isl_local_space *ls = isl_local_space_from_space(Space);
|
|
return isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v));
|
|
}
|
|
|
|
__isl_give isl_pw_aff *
|
|
SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
|
|
llvm_unreachable("SCEVTruncateExpr not yet supported");
|
|
}
|
|
|
|
__isl_give isl_pw_aff *
|
|
SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
|
|
llvm_unreachable("SCEVZeroExtendExpr not yet supported");
|
|
}
|
|
|
|
__isl_give isl_pw_aff *
|
|
SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
|
|
// Assuming the value is signed, a sign extension is basically a noop.
|
|
// TODO: Reconsider this as soon as we support unsigned values.
|
|
return visit(Expr->getOperand());
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
|
|
isl_pw_aff *Sum = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
|
|
Sum = isl_pw_aff_add(Sum, NextSummand);
|
|
}
|
|
|
|
// TODO: Check for NSW and NUW.
|
|
|
|
return Sum;
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
|
|
isl_pw_aff *Product = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
|
|
|
|
if (!isl_pw_aff_is_cst(Product) && !isl_pw_aff_is_cst(NextOperand)) {
|
|
isl_pw_aff_free(Product);
|
|
isl_pw_aff_free(NextOperand);
|
|
return nullptr;
|
|
}
|
|
|
|
Product = isl_pw_aff_mul(Product, NextOperand);
|
|
}
|
|
|
|
// TODO: Check for NSW and NUW.
|
|
return Product;
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
|
|
llvm_unreachable("SCEVUDivExpr not yet supported");
|
|
}
|
|
|
|
__isl_give isl_pw_aff *
|
|
SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
|
|
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
|
|
|
|
// Directly generate isl_pw_aff for Expr if 'start' is zero.
|
|
if (Expr->getStart()->isZero()) {
|
|
assert(S->getRegion().contains(Expr->getLoop()) &&
|
|
"Scop does not contain the loop referenced in this AddRec");
|
|
|
|
isl_pw_aff *Start = visit(Expr->getStart());
|
|
isl_pw_aff *Step = visit(Expr->getOperand(1));
|
|
isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
|
|
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
|
|
|
|
int loopDimension = getLoopDepth(Expr->getLoop());
|
|
|
|
isl_aff *LAff = isl_aff_set_coefficient_si(
|
|
isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
|
|
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
|
|
|
|
// TODO: Do we need to check for NSW and NUW?
|
|
return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff));
|
|
}
|
|
|
|
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
|
|
// if 'start' is not zero.
|
|
ScalarEvolution &SE = *S->getSE();
|
|
const SCEV *ZeroStartExpr = SE.getAddRecExpr(
|
|
SE.getConstant(Expr->getStart()->getType(), 0),
|
|
Expr->getStepRecurrence(SE), Expr->getLoop(), SCEV::FlagAnyWrap);
|
|
|
|
isl_pw_aff *ZeroStartResult = visit(ZeroStartExpr);
|
|
isl_pw_aff *Start = visit(Expr->getStart());
|
|
|
|
return isl_pw_aff_add(ZeroStartResult, Start);
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
|
|
isl_pw_aff *Max = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
|
|
Max = isl_pw_aff_max(Max, NextOperand);
|
|
}
|
|
|
|
return Max;
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
|
|
llvm_unreachable("SCEVUMaxExpr not yet supported");
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
|
|
assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
|
|
auto *SE = S->getSE();
|
|
|
|
auto *Divisor = SDiv->getOperand(1);
|
|
auto *DivisorSCEV = SE->getSCEV(Divisor);
|
|
auto *DivisorPWA = visit(DivisorSCEV);
|
|
assert(isa<ConstantInt>(Divisor) &&
|
|
"SDiv is no parameter but has a non-constant RHS.");
|
|
|
|
auto *Dividend = SDiv->getOperand(0);
|
|
auto *DividendSCEV = SE->getSCEV(Dividend);
|
|
auto *DividendPWA = visit(DividendSCEV);
|
|
return isl_pw_aff_tdiv_q(DividendPWA, DivisorPWA);
|
|
}
|
|
|
|
__isl_give isl_pw_aff *SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::SDiv:
|
|
return visitSDivInstruction(I);
|
|
default:
|
|
break; // Fall through.
|
|
}
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"Unknowns SCEV was neither parameter nor a valid instruction.");
|
|
}
|
|
|
|
int SCEVAffinator::getLoopDepth(const Loop *L) {
|
|
Loop *outerLoop = S->getRegion().outermostLoopInRegion(const_cast<Loop *>(L));
|
|
assert(outerLoop && "Scop does not contain this loop");
|
|
return L->getLoopDepth() - outerLoop->getLoopDepth();
|
|
}
|
|
|
|
ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *AccessType, isl_ctx *Ctx,
|
|
const SmallVector<const SCEV *, 4> &DimensionSizes)
|
|
: BasePtr(BasePtr), AccessType(AccessType), DimensionSizes(DimensionSizes) {
|
|
const std::string BasePtrName = getIslCompatibleName("MemRef_", BasePtr, "");
|
|
Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
|
|
}
|
|
|
|
ScopArrayInfo::~ScopArrayInfo() { isl_id_free(Id); }
|
|
|
|
isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); }
|
|
|
|
void ScopArrayInfo::dump() const { print(errs()); }
|
|
|
|
void ScopArrayInfo::print(raw_ostream &OS) const {
|
|
OS << "ScopArrayInfo:\n";
|
|
OS << " Base: " << *getBasePtr() << "\n";
|
|
OS << " Type: " << *getType() << "\n";
|
|
OS << " Dimension Sizes:\n";
|
|
for (unsigned u = 0; u < getNumberOfDimensions(); u++)
|
|
OS << " " << u << ") " << *DimensionSizes[u] << "\n";
|
|
OS << "\n";
|
|
}
|
|
|
|
const ScopArrayInfo *
|
|
ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
|
|
isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
|
|
assert(Id && "Output dimension didn't have an ID");
|
|
return getFromId(Id);
|
|
}
|
|
|
|
const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) {
|
|
void *User = isl_id_get_user(Id);
|
|
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
|
|
isl_id_free(Id);
|
|
return SAI;
|
|
}
|
|
|
|
const std::string
|
|
MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
|
|
switch (RT) {
|
|
case MemoryAccess::RT_NONE:
|
|
llvm_unreachable("Requested a reduction operator string for a memory "
|
|
"access which isn't a reduction");
|
|
case MemoryAccess::RT_ADD:
|
|
return "+";
|
|
case MemoryAccess::RT_MUL:
|
|
return "*";
|
|
case MemoryAccess::RT_BOR:
|
|
return "|";
|
|
case MemoryAccess::RT_BXOR:
|
|
return "^";
|
|
case MemoryAccess::RT_BAND:
|
|
return "&";
|
|
}
|
|
llvm_unreachable("Unknown reduction type");
|
|
return "";
|
|
}
|
|
|
|
/// @brief Return the reduction type for a given binary operator
|
|
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
|
|
const Instruction *Load) {
|
|
if (!BinOp)
|
|
return MemoryAccess::RT_NONE;
|
|
switch (BinOp->getOpcode()) {
|
|
case Instruction::FAdd:
|
|
if (!BinOp->hasUnsafeAlgebra())
|
|
return MemoryAccess::RT_NONE;
|
|
// Fall through
|
|
case Instruction::Add:
|
|
return MemoryAccess::RT_ADD;
|
|
case Instruction::Or:
|
|
return MemoryAccess::RT_BOR;
|
|
case Instruction::Xor:
|
|
return MemoryAccess::RT_BXOR;
|
|
case Instruction::And:
|
|
return MemoryAccess::RT_BAND;
|
|
case Instruction::FMul:
|
|
if (!BinOp->hasUnsafeAlgebra())
|
|
return MemoryAccess::RT_NONE;
|
|
// Fall through
|
|
case Instruction::Mul:
|
|
if (DisableMultiplicativeReductions)
|
|
return MemoryAccess::RT_NONE;
|
|
return MemoryAccess::RT_MUL;
|
|
default:
|
|
return MemoryAccess::RT_NONE;
|
|
}
|
|
}
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MemoryAccess::~MemoryAccess() {
|
|
isl_map_free(AccessRelation);
|
|
isl_map_free(newAccessRelation);
|
|
}
|
|
|
|
static MemoryAccess::AccessType getMemoryAccessType(const IRAccess &Access) {
|
|
switch (Access.getType()) {
|
|
case IRAccess::READ:
|
|
return MemoryAccess::READ;
|
|
case IRAccess::MUST_WRITE:
|
|
return MemoryAccess::MUST_WRITE;
|
|
case IRAccess::MAY_WRITE:
|
|
return MemoryAccess::MAY_WRITE;
|
|
}
|
|
llvm_unreachable("Unknown IRAccess type!");
|
|
}
|
|
|
|
const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const {
|
|
isl_id *ArrayId = getArrayId();
|
|
void *User = isl_id_get_user(ArrayId);
|
|
const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
|
|
isl_id_free(ArrayId);
|
|
return SAI;
|
|
}
|
|
|
|
isl_id *MemoryAccess::getArrayId() const {
|
|
return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
|
|
}
|
|
|
|
isl_pw_multi_aff *
|
|
MemoryAccess::applyScheduleToAccessRelation(isl_union_map *USchedule) const {
|
|
isl_map *Schedule, *ScheduledAccRel;
|
|
isl_union_set *UDomain;
|
|
|
|
UDomain = isl_union_set_from_set(getStatement()->getDomain());
|
|
USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
|
|
Schedule = isl_map_from_union_map(USchedule);
|
|
ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule);
|
|
return isl_pw_multi_aff_from_map(ScheduledAccRel);
|
|
}
|
|
|
|
isl_map *MemoryAccess::getOriginalAccessRelation() const {
|
|
return isl_map_copy(AccessRelation);
|
|
}
|
|
|
|
std::string MemoryAccess::getOriginalAccessRelationStr() const {
|
|
return stringFromIslObj(AccessRelation);
|
|
}
|
|
|
|
__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
|
|
return isl_map_get_space(AccessRelation);
|
|
}
|
|
|
|
isl_map *MemoryAccess::getNewAccessRelation() const {
|
|
return isl_map_copy(newAccessRelation);
|
|
}
|
|
|
|
isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
|
|
isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
|
|
Space = isl_space_align_params(Space, Statement->getDomainSpace());
|
|
|
|
return isl_basic_map_from_domain_and_range(
|
|
isl_basic_set_universe(Statement->getDomainSpace()),
|
|
isl_basic_set_universe(Space));
|
|
}
|
|
|
|
// Formalize no out-of-bound access assumption
|
|
//
|
|
// When delinearizing array accesses we optimistically assume that the
|
|
// delinearized accesses do not access out of bound locations (the subscript
|
|
// expression of each array evaluates for each statement instance that is
|
|
// executed to a value that is larger than zero and strictly smaller than the
|
|
// size of the corresponding dimension). The only exception is the outermost
|
|
// dimension for which we do not need to assume any upper bound. At this point
|
|
// we formalize this assumption to ensure that at code generation time the
|
|
// relevant run-time checks can be generated.
|
|
//
|
|
// To find the set of constraints necessary to avoid out of bound accesses, we
|
|
// first build the set of data locations that are not within array bounds. We
|
|
// then apply the reverse access relation to obtain the set of iterations that
|
|
// may contain invalid accesses and reduce this set of iterations to the ones
|
|
// that are actually executed by intersecting them with the domain of the
|
|
// statement. If we now project out all loop dimensions, we obtain a set of
|
|
// parameters that may cause statement instances to be executed that may
|
|
// possibly yield out of bound memory accesses. The complement of these
|
|
// constraints is the set of constraints that needs to be assumed to ensure such
|
|
// statement instances are never executed.
|
|
void MemoryAccess::assumeNoOutOfBound(const IRAccess &Access) {
|
|
isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
|
|
isl_set *Outside = isl_set_empty(isl_space_copy(Space));
|
|
for (int i = 1, Size = Access.Subscripts.size(); i < Size; ++i) {
|
|
isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
|
|
isl_pw_aff *Var =
|
|
isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
|
|
isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
|
|
|
|
isl_set *DimOutside;
|
|
|
|
DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
|
|
isl_pw_aff *SizeE = SCEVAffinator::getPwAff(Statement, Access.Sizes[i - 1]);
|
|
|
|
SizeE = isl_pw_aff_drop_dims(SizeE, isl_dim_in, 0,
|
|
Statement->getNumIterators());
|
|
SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
|
|
isl_space_dim(Space, isl_dim_set));
|
|
SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
|
|
isl_space_get_tuple_id(Space, isl_dim_set));
|
|
|
|
DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
|
|
|
|
Outside = isl_set_union(Outside, DimOutside);
|
|
}
|
|
|
|
Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
|
|
Outside = isl_set_intersect(Outside, Statement->getDomain());
|
|
Outside = isl_set_params(Outside);
|
|
Outside = isl_set_complement(Outside);
|
|
Statement->getParent()->addAssumption(Outside);
|
|
isl_space_free(Space);
|
|
}
|
|
|
|
MemoryAccess::MemoryAccess(const IRAccess &Access, Instruction *AccInst,
|
|
ScopStmt *Statement, const ScopArrayInfo *SAI)
|
|
: AccType(getMemoryAccessType(Access)), Statement(Statement), Inst(AccInst),
|
|
newAccessRelation(nullptr) {
|
|
|
|
isl_ctx *Ctx = Statement->getIslCtx();
|
|
BaseAddr = Access.getBase();
|
|
BaseName = getIslCompatibleName("MemRef_", getBaseAddr(), "");
|
|
|
|
isl_id *BaseAddrId = SAI->getBasePtrId();
|
|
|
|
if (!Access.isAffine()) {
|
|
// We overapproximate non-affine accesses with a possible access to the
|
|
// whole array. For read accesses it does not make a difference, if an
|
|
// access must or may happen. However, for write accesses it is important to
|
|
// differentiate between writes that must happen and writes that may happen.
|
|
AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
|
|
AccessRelation =
|
|
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
|
|
return;
|
|
}
|
|
|
|
isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
|
|
AccessRelation = isl_map_universe(Space);
|
|
|
|
for (int i = 0, Size = Access.Subscripts.size(); i < Size; ++i) {
|
|
isl_pw_aff *Affine =
|
|
SCEVAffinator::getPwAff(Statement, Access.Subscripts[i]);
|
|
|
|
if (Size == 1) {
|
|
// For the non delinearized arrays, divide the access function of the last
|
|
// subscript by the size of the elements in the array.
|
|
//
|
|
// A stride one array access in C expressed as A[i] is expressed in
|
|
// LLVM-IR as something like A[i * elementsize]. This hides the fact that
|
|
// two subsequent values of 'i' index two values that are stored next to
|
|
// each other in memory. By this division we make this characteristic
|
|
// obvious again.
|
|
isl_val *v = isl_val_int_from_si(Ctx, Access.getElemSizeInBytes());
|
|
Affine = isl_pw_aff_scale_down_val(Affine, v);
|
|
}
|
|
|
|
isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
|
|
|
|
AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
|
|
}
|
|
|
|
Space = Statement->getDomainSpace();
|
|
AccessRelation = isl_map_set_tuple_id(
|
|
AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
|
|
AccessRelation =
|
|
isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
|
|
|
|
assumeNoOutOfBound(Access);
|
|
isl_space_free(Space);
|
|
}
|
|
|
|
void MemoryAccess::realignParams() {
|
|
isl_space *ParamSpace = Statement->getParent()->getParamSpace();
|
|
AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
|
|
}
|
|
|
|
const std::string MemoryAccess::getReductionOperatorStr() const {
|
|
return MemoryAccess::getReductionOperatorStr(getReductionType());
|
|
}
|
|
|
|
raw_ostream &polly::operator<<(raw_ostream &OS,
|
|
MemoryAccess::ReductionType RT) {
|
|
if (RT == MemoryAccess::RT_NONE)
|
|
OS << "NONE";
|
|
else
|
|
OS << MemoryAccess::getReductionOperatorStr(RT);
|
|
return OS;
|
|
}
|
|
|
|
void MemoryAccess::print(raw_ostream &OS) const {
|
|
switch (AccType) {
|
|
case READ:
|
|
OS.indent(12) << "ReadAccess :=\t";
|
|
break;
|
|
case MUST_WRITE:
|
|
OS.indent(12) << "MustWriteAccess :=\t";
|
|
break;
|
|
case MAY_WRITE:
|
|
OS.indent(12) << "MayWriteAccess :=\t";
|
|
break;
|
|
}
|
|
OS << "[Reduction Type: " << getReductionType() << "] ";
|
|
OS << "[Scalar: " << isScalar() << "]\n";
|
|
OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
|
|
}
|
|
|
|
void MemoryAccess::dump() const { print(errs()); }
|
|
|
|
// Create a map in the size of the provided set domain, that maps from the
|
|
// one element of the provided set domain to another element of the provided
|
|
// set domain.
|
|
// The mapping is limited to all points that are equal in all but the last
|
|
// dimension and for which the last dimension of the input is strict smaller
|
|
// than the last dimension of the output.
|
|
//
|
|
// getEqualAndLarger(set[i0, i1, ..., iX]):
|
|
//
|
|
// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
|
|
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
|
|
//
|
|
static isl_map *getEqualAndLarger(isl_space *setDomain) {
|
|
isl_space *Space = isl_space_map_from_set(setDomain);
|
|
isl_map *Map = isl_map_universe(isl_space_copy(Space));
|
|
isl_local_space *MapLocalSpace = isl_local_space_from_space(Space);
|
|
unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
|
|
|
|
// Set all but the last dimension to be equal for the input and output
|
|
//
|
|
// input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
|
|
// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
|
|
for (unsigned i = 0; i < lastDimension; ++i)
|
|
Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
|
|
|
|
// Set the last dimension of the input to be strict smaller than the
|
|
// last dimension of the output.
|
|
//
|
|
// input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
|
|
//
|
|
isl_val *v;
|
|
isl_ctx *Ctx = isl_map_get_ctx(Map);
|
|
isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(MapLocalSpace));
|
|
v = isl_val_int_from_si(Ctx, -1);
|
|
c = isl_constraint_set_coefficient_val(c, isl_dim_in, lastDimension, v);
|
|
v = isl_val_int_from_si(Ctx, 1);
|
|
c = isl_constraint_set_coefficient_val(c, isl_dim_out, lastDimension, v);
|
|
v = isl_val_int_from_si(Ctx, -1);
|
|
c = isl_constraint_set_constant_val(c, v);
|
|
|
|
Map = isl_map_add_constraint(Map, c);
|
|
|
|
isl_local_space_free(MapLocalSpace);
|
|
return Map;
|
|
}
|
|
|
|
isl_set *MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
|
|
isl_map *S = const_cast<isl_map *>(Schedule);
|
|
isl_map *AccessRelation = getAccessRelation();
|
|
isl_space *Space = isl_space_range(isl_map_get_space(S));
|
|
isl_map *NextScatt = getEqualAndLarger(Space);
|
|
|
|
S = isl_map_reverse(S);
|
|
NextScatt = isl_map_lexmin(NextScatt);
|
|
|
|
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
|
|
NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
|
|
NextScatt = isl_map_apply_domain(NextScatt, S);
|
|
NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
|
|
|
|
isl_set *Deltas = isl_map_deltas(NextScatt);
|
|
return Deltas;
|
|
}
|
|
|
|
bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
|
|
int StrideWidth) const {
|
|
isl_set *Stride, *StrideX;
|
|
bool IsStrideX;
|
|
|
|
Stride = getStride(Schedule);
|
|
StrideX = isl_set_universe(isl_set_get_space(Stride));
|
|
StrideX = isl_set_fix_si(StrideX, isl_dim_set, 0, StrideWidth);
|
|
IsStrideX = isl_set_is_equal(Stride, StrideX);
|
|
|
|
isl_set_free(StrideX);
|
|
isl_set_free(Stride);
|
|
|
|
return IsStrideX;
|
|
}
|
|
|
|
bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
|
|
return isStrideX(Schedule, 0);
|
|
}
|
|
|
|
bool MemoryAccess::isScalar() const {
|
|
return isl_map_n_out(AccessRelation) == 0;
|
|
}
|
|
|
|
bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
|
|
return isStrideX(Schedule, 1);
|
|
}
|
|
|
|
void MemoryAccess::setNewAccessRelation(isl_map *newAccess) {
|
|
isl_map_free(newAccessRelation);
|
|
newAccessRelation = newAccess;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
isl_map *ScopStmt::getScattering() const { return isl_map_copy(Scattering); }
|
|
|
|
void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
|
|
assert(isl_set_is_subset(NewDomain, Domain) &&
|
|
"New domain is not a subset of old domain!");
|
|
isl_set_free(Domain);
|
|
Domain = NewDomain;
|
|
Scattering = isl_map_intersect_domain(Scattering, isl_set_copy(Domain));
|
|
}
|
|
|
|
void ScopStmt::setScattering(isl_map *NewScattering) {
|
|
assert(NewScattering && "New scattering is nullptr");
|
|
isl_map_free(Scattering);
|
|
Scattering = NewScattering;
|
|
}
|
|
|
|
void ScopStmt::buildScattering(SmallVectorImpl<unsigned> &Scatter) {
|
|
unsigned NbIterators = getNumIterators();
|
|
unsigned NbScatteringDims = Parent.getMaxLoopDepth() * 2 + 1;
|
|
|
|
isl_space *Space = isl_space_set_alloc(getIslCtx(), 0, NbScatteringDims);
|
|
|
|
Scattering = isl_map_from_domain_and_range(isl_set_universe(getDomainSpace()),
|
|
isl_set_universe(Space));
|
|
|
|
// Loop dimensions.
|
|
for (unsigned i = 0; i < NbIterators; ++i)
|
|
Scattering =
|
|
isl_map_equate(Scattering, isl_dim_out, 2 * i + 1, isl_dim_in, i);
|
|
|
|
// Constant dimensions
|
|
for (unsigned i = 0; i < NbIterators + 1; ++i)
|
|
Scattering = isl_map_fix_si(Scattering, isl_dim_out, 2 * i, Scatter[i]);
|
|
|
|
// Fill scattering dimensions.
|
|
for (unsigned i = 2 * NbIterators + 1; i < NbScatteringDims; ++i)
|
|
Scattering = isl_map_fix_si(Scattering, isl_dim_out, i, 0);
|
|
|
|
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
|
|
}
|
|
|
|
void ScopStmt::buildAccesses(TempScop &tempScop) {
|
|
for (const auto &AccessPair : *tempScop.getAccessFunctions(BB)) {
|
|
const IRAccess &Access = AccessPair.first;
|
|
Instruction *AccessInst = AccessPair.second;
|
|
|
|
Type *AccessType = getAccessInstType(AccessInst)->getPointerTo();
|
|
const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo(
|
|
Access.getBase(), AccessType, Access.Sizes);
|
|
|
|
MemAccs.push_back(new MemoryAccess(Access, AccessInst, this, SAI));
|
|
|
|
// We do not track locations for scalar memory accesses at the moment.
|
|
//
|
|
// We do not have a use for this information at the moment. If we need this
|
|
// at some point, the "instruction -> access" mapping needs to be enhanced
|
|
// as a single instruction could then possibly perform multiple accesses.
|
|
if (!Access.isScalar()) {
|
|
assert(!InstructionToAccess.count(AccessInst) &&
|
|
"Unexpected 1-to-N mapping on instruction to access map!");
|
|
InstructionToAccess[AccessInst] = MemAccs.back();
|
|
}
|
|
}
|
|
}
|
|
|
|
void ScopStmt::realignParams() {
|
|
for (MemoryAccess *MA : *this)
|
|
MA->realignParams();
|
|
|
|
Domain = isl_set_align_params(Domain, Parent.getParamSpace());
|
|
Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
|
|
}
|
|
|
|
__isl_give isl_set *ScopStmt::buildConditionSet(const Comparison &Comp) {
|
|
isl_pw_aff *L = SCEVAffinator::getPwAff(this, Comp.getLHS());
|
|
isl_pw_aff *R = SCEVAffinator::getPwAff(this, Comp.getRHS());
|
|
|
|
switch (Comp.getPred()) {
|
|
case ICmpInst::ICMP_EQ:
|
|
return isl_pw_aff_eq_set(L, R);
|
|
case ICmpInst::ICMP_NE:
|
|
return isl_pw_aff_ne_set(L, R);
|
|
case ICmpInst::ICMP_SLT:
|
|
return isl_pw_aff_lt_set(L, R);
|
|
case ICmpInst::ICMP_SLE:
|
|
return isl_pw_aff_le_set(L, R);
|
|
case ICmpInst::ICMP_SGT:
|
|
return isl_pw_aff_gt_set(L, R);
|
|
case ICmpInst::ICMP_SGE:
|
|
return isl_pw_aff_ge_set(L, R);
|
|
case ICmpInst::ICMP_ULT:
|
|
return isl_pw_aff_lt_set(L, R);
|
|
case ICmpInst::ICMP_UGT:
|
|
return isl_pw_aff_gt_set(L, R);
|
|
case ICmpInst::ICMP_ULE:
|
|
return isl_pw_aff_le_set(L, R);
|
|
case ICmpInst::ICMP_UGE:
|
|
return isl_pw_aff_ge_set(L, R);
|
|
default:
|
|
llvm_unreachable("Non integer predicate not supported");
|
|
}
|
|
}
|
|
|
|
__isl_give isl_set *ScopStmt::addLoopBoundsToDomain(__isl_take isl_set *Domain,
|
|
TempScop &tempScop) {
|
|
isl_space *Space;
|
|
isl_local_space *LocalSpace;
|
|
|
|
Space = isl_set_get_space(Domain);
|
|
LocalSpace = isl_local_space_from_space(Space);
|
|
|
|
ScalarEvolution *SE = getParent()->getSE();
|
|
for (int i = 0, e = getNumIterators(); i != e; ++i) {
|
|
isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_copy(LocalSpace));
|
|
isl_pw_aff *IV =
|
|
isl_pw_aff_from_aff(isl_aff_set_coefficient_si(Zero, isl_dim_in, i, 1));
|
|
|
|
// 0 <= IV.
|
|
isl_set *LowerBound = isl_pw_aff_nonneg_set(isl_pw_aff_copy(IV));
|
|
Domain = isl_set_intersect(Domain, LowerBound);
|
|
|
|
// IV <= LatchExecutions.
|
|
const Loop *L = getLoopForDimension(i);
|
|
const SCEV *LatchExecutions = SE->getBackedgeTakenCount(L);
|
|
isl_pw_aff *UpperBound = SCEVAffinator::getPwAff(this, LatchExecutions);
|
|
isl_set *UpperBoundSet = isl_pw_aff_le_set(IV, UpperBound);
|
|
Domain = isl_set_intersect(Domain, UpperBoundSet);
|
|
}
|
|
|
|
isl_local_space_free(LocalSpace);
|
|
return Domain;
|
|
}
|
|
|
|
__isl_give isl_set *ScopStmt::addConditionsToDomain(__isl_take isl_set *Domain,
|
|
TempScop &tempScop,
|
|
const Region &CurRegion) {
|
|
const Region *TopRegion = tempScop.getMaxRegion().getParent(),
|
|
*CurrentRegion = &CurRegion;
|
|
const BasicBlock *BranchingBB = BB;
|
|
|
|
do {
|
|
if (BranchingBB != CurrentRegion->getEntry()) {
|
|
if (const BBCond *Condition = tempScop.getBBCond(BranchingBB))
|
|
for (const auto &C : *Condition) {
|
|
isl_set *ConditionSet = buildConditionSet(C);
|
|
Domain = isl_set_intersect(Domain, ConditionSet);
|
|
}
|
|
}
|
|
BranchingBB = CurrentRegion->getEntry();
|
|
CurrentRegion = CurrentRegion->getParent();
|
|
} while (TopRegion != CurrentRegion);
|
|
|
|
return Domain;
|
|
}
|
|
|
|
__isl_give isl_set *ScopStmt::buildDomain(TempScop &tempScop,
|
|
const Region &CurRegion) {
|
|
isl_space *Space;
|
|
isl_set *Domain;
|
|
isl_id *Id;
|
|
|
|
Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators());
|
|
|
|
Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
|
|
|
|
Domain = isl_set_universe(Space);
|
|
Domain = addLoopBoundsToDomain(Domain, tempScop);
|
|
Domain = addConditionsToDomain(Domain, tempScop, CurRegion);
|
|
Domain = isl_set_set_tuple_id(Domain, Id);
|
|
|
|
return Domain;
|
|
}
|
|
|
|
void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) {
|
|
int Dimension = 0;
|
|
isl_ctx *Ctx = Parent.getIslCtx();
|
|
isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace());
|
|
Type *Ty = GEP->getPointerOperandType();
|
|
ScalarEvolution &SE = *Parent.getSE();
|
|
|
|
if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
|
|
Dimension = 1;
|
|
Ty = PtrTy->getElementType();
|
|
}
|
|
|
|
while (auto ArrayTy = dyn_cast<ArrayType>(Ty)) {
|
|
unsigned int Operand = 1 + Dimension;
|
|
|
|
if (GEP->getNumOperands() <= Operand)
|
|
break;
|
|
|
|
const SCEV *Expr = SE.getSCEV(GEP->getOperand(Operand));
|
|
|
|
if (isAffineExpr(&Parent.getRegion(), Expr, SE)) {
|
|
isl_pw_aff *AccessOffset = SCEVAffinator::getPwAff(this, Expr);
|
|
AccessOffset =
|
|
isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId());
|
|
|
|
isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain(
|
|
isl_local_space_copy(LSpace),
|
|
isl_val_int_from_si(Ctx, ArrayTy->getNumElements())));
|
|
|
|
isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize);
|
|
OutOfBound = isl_set_intersect(getDomain(), OutOfBound);
|
|
OutOfBound = isl_set_params(OutOfBound);
|
|
isl_set *InBound = isl_set_complement(OutOfBound);
|
|
isl_set *Executed = isl_set_params(getDomain());
|
|
|
|
// A => B == !A or B
|
|
isl_set *InBoundIfExecuted =
|
|
isl_set_union(isl_set_complement(Executed), InBound);
|
|
|
|
Parent.addAssumption(InBoundIfExecuted);
|
|
}
|
|
|
|
Dimension += 1;
|
|
Ty = ArrayTy->getElementType();
|
|
}
|
|
|
|
isl_local_space_free(LSpace);
|
|
}
|
|
|
|
void ScopStmt::deriveAssumptions() {
|
|
for (Instruction &Inst : *BB)
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst))
|
|
deriveAssumptionsFromGEP(GEP);
|
|
}
|
|
|
|
ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
|
|
BasicBlock &bb, SmallVectorImpl<Loop *> &Nest,
|
|
SmallVectorImpl<unsigned> &Scatter)
|
|
: Parent(parent), BB(&bb), Build(nullptr), NestLoops(Nest.size()) {
|
|
// Setup the induction variables.
|
|
for (unsigned i = 0, e = Nest.size(); i < e; ++i)
|
|
NestLoops[i] = Nest[i];
|
|
|
|
BaseName = getIslCompatibleName("Stmt_", &bb, "");
|
|
|
|
Domain = buildDomain(tempScop, CurRegion);
|
|
buildScattering(Scatter);
|
|
buildAccesses(tempScop);
|
|
checkForReductions();
|
|
deriveAssumptions();
|
|
}
|
|
|
|
/// @brief Collect loads which might form a reduction chain with @p StoreMA
|
|
///
|
|
/// Check if the stored value for @p StoreMA is a binary operator with one or
|
|
/// two loads as operands. If the binary operand is commutative & associative,
|
|
/// used only once (by @p StoreMA) and its load operands are also used only
|
|
/// once, we have found a possible reduction chain. It starts at an operand
|
|
/// load and includes the binary operator and @p StoreMA.
|
|
///
|
|
/// Note: We allow only one use to ensure the load and binary operator cannot
|
|
/// escape this block or into any other store except @p StoreMA.
|
|
void ScopStmt::collectCandiateReductionLoads(
|
|
MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
|
|
auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
|
|
if (!Store)
|
|
return;
|
|
|
|
// Skip if there is not one binary operator between the load and the store
|
|
auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
|
|
if (!BinOp)
|
|
return;
|
|
|
|
// Skip if the binary operators has multiple uses
|
|
if (BinOp->getNumUses() != 1)
|
|
return;
|
|
|
|
// Skip if the opcode of the binary operator is not commutative/associative
|
|
if (!BinOp->isCommutative() || !BinOp->isAssociative())
|
|
return;
|
|
|
|
// Skip if the binary operator is outside the current SCoP
|
|
if (BinOp->getParent() != Store->getParent())
|
|
return;
|
|
|
|
// Skip if it is a multiplicative reduction and we disabled them
|
|
if (DisableMultiplicativeReductions &&
|
|
(BinOp->getOpcode() == Instruction::Mul ||
|
|
BinOp->getOpcode() == Instruction::FMul))
|
|
return;
|
|
|
|
// Check the binary operator operands for a candidate load
|
|
auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
|
|
auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
|
|
if (!PossibleLoad0 && !PossibleLoad1)
|
|
return;
|
|
|
|
// A load is only a candidate if it cannot escape (thus has only this use)
|
|
if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
|
|
if (PossibleLoad0->getParent() == Store->getParent())
|
|
Loads.push_back(lookupAccessFor(PossibleLoad0));
|
|
if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
|
|
if (PossibleLoad1->getParent() == Store->getParent())
|
|
Loads.push_back(lookupAccessFor(PossibleLoad1));
|
|
}
|
|
|
|
/// @brief Check for reductions in this ScopStmt
|
|
///
|
|
/// Iterate over all store memory accesses and check for valid binary reduction
|
|
/// like chains. For all candidates we check if they have the same base address
|
|
/// and there are no other accesses which overlap with them. The base address
|
|
/// check rules out impossible reductions candidates early. The overlap check,
|
|
/// together with the "only one user" check in collectCandiateReductionLoads,
|
|
/// guarantees that none of the intermediate results will escape during
|
|
/// execution of the loop nest. We basically check here that no other memory
|
|
/// access can access the same memory as the potential reduction.
|
|
void ScopStmt::checkForReductions() {
|
|
SmallVector<MemoryAccess *, 2> Loads;
|
|
SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
|
|
|
|
// First collect candidate load-store reduction chains by iterating over all
|
|
// stores and collecting possible reduction loads.
|
|
for (MemoryAccess *StoreMA : MemAccs) {
|
|
if (StoreMA->isRead())
|
|
continue;
|
|
|
|
Loads.clear();
|
|
collectCandiateReductionLoads(StoreMA, Loads);
|
|
for (MemoryAccess *LoadMA : Loads)
|
|
Candidates.push_back(std::make_pair(LoadMA, StoreMA));
|
|
}
|
|
|
|
// Then check each possible candidate pair.
|
|
for (const auto &CandidatePair : Candidates) {
|
|
bool Valid = true;
|
|
isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
|
|
isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
|
|
|
|
// Skip those with obviously unequal base addresses.
|
|
if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
|
|
isl_map_free(LoadAccs);
|
|
isl_map_free(StoreAccs);
|
|
continue;
|
|
}
|
|
|
|
// And check if the remaining for overlap with other memory accesses.
|
|
isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
|
|
AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
|
|
isl_set *AllAccs = isl_map_range(AllAccsRel);
|
|
|
|
for (MemoryAccess *MA : MemAccs) {
|
|
if (MA == CandidatePair.first || MA == CandidatePair.second)
|
|
continue;
|
|
|
|
isl_map *AccRel =
|
|
isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
|
|
isl_set *Accs = isl_map_range(AccRel);
|
|
|
|
if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
|
|
isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
|
|
Valid = Valid && isl_set_is_empty(OverlapAccs);
|
|
isl_set_free(OverlapAccs);
|
|
}
|
|
}
|
|
|
|
isl_set_free(AllAccs);
|
|
if (!Valid)
|
|
continue;
|
|
|
|
const LoadInst *Load =
|
|
dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
|
|
MemoryAccess::ReductionType RT =
|
|
getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
|
|
|
|
// If no overlapping access was found we mark the load and store as
|
|
// reduction like.
|
|
CandidatePair.first->markAsReductionLike(RT);
|
|
CandidatePair.second->markAsReductionLike(RT);
|
|
}
|
|
}
|
|
|
|
std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
|
|
|
|
std::string ScopStmt::getScatteringStr() const {
|
|
return stringFromIslObj(Scattering);
|
|
}
|
|
|
|
unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
|
|
|
|
unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
|
|
|
|
unsigned ScopStmt::getNumScattering() const {
|
|
return isl_map_dim(Scattering, isl_dim_out);
|
|
}
|
|
|
|
const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
|
|
|
|
const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
|
|
return NestLoops[Dimension];
|
|
}
|
|
|
|
isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
|
|
|
|
isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
|
|
|
|
isl_space *ScopStmt::getDomainSpace() const {
|
|
return isl_set_get_space(Domain);
|
|
}
|
|
|
|
isl_id *ScopStmt::getDomainId() const { return isl_set_get_tuple_id(Domain); }
|
|
|
|
ScopStmt::~ScopStmt() {
|
|
while (!MemAccs.empty()) {
|
|
delete MemAccs.back();
|
|
MemAccs.pop_back();
|
|
}
|
|
|
|
isl_set_free(Domain);
|
|
isl_map_free(Scattering);
|
|
}
|
|
|
|
void ScopStmt::print(raw_ostream &OS) const {
|
|
OS << "\t" << getBaseName() << "\n";
|
|
OS.indent(12) << "Domain :=\n";
|
|
|
|
if (Domain) {
|
|
OS.indent(16) << getDomainStr() << ";\n";
|
|
} else
|
|
OS.indent(16) << "n/a\n";
|
|
|
|
OS.indent(12) << "Scattering :=\n";
|
|
|
|
if (Domain) {
|
|
OS.indent(16) << getScatteringStr() << ";\n";
|
|
} else
|
|
OS.indent(16) << "n/a\n";
|
|
|
|
for (MemoryAccess *Access : MemAccs)
|
|
Access->print(OS);
|
|
}
|
|
|
|
void ScopStmt::dump() const { print(dbgs()); }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Scop class implement
|
|
|
|
void Scop::setContext(__isl_take isl_set *NewContext) {
|
|
NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
|
|
isl_set_free(Context);
|
|
Context = NewContext;
|
|
}
|
|
|
|
void Scop::addParams(std::vector<const SCEV *> NewParameters) {
|
|
for (const SCEV *Parameter : NewParameters) {
|
|
if (ParameterIds.find(Parameter) != ParameterIds.end())
|
|
continue;
|
|
|
|
int dimension = Parameters.size();
|
|
|
|
Parameters.push_back(Parameter);
|
|
ParameterIds[Parameter] = dimension;
|
|
}
|
|
}
|
|
|
|
__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const {
|
|
ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
|
|
|
|
if (IdIter == ParameterIds.end())
|
|
return nullptr;
|
|
|
|
std::string ParameterName;
|
|
|
|
if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
|
|
Value *Val = ValueParameter->getValue();
|
|
ParameterName = Val->getName();
|
|
}
|
|
|
|
if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
|
|
ParameterName = "p_" + utostr_32(IdIter->second);
|
|
|
|
return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
|
|
const_cast<void *>((const void *)Parameter));
|
|
}
|
|
|
|
void Scop::buildContext() {
|
|
isl_space *Space = isl_space_params_alloc(IslCtx, 0);
|
|
Context = isl_set_universe(isl_space_copy(Space));
|
|
AssumedContext = isl_set_universe(Space);
|
|
}
|
|
|
|
void Scop::addParameterBounds() {
|
|
for (unsigned i = 0; i < isl_set_dim(Context, isl_dim_param); ++i) {
|
|
isl_val *V;
|
|
isl_id *Id;
|
|
const SCEV *Scev;
|
|
const IntegerType *T;
|
|
int Width;
|
|
|
|
Id = isl_set_get_dim_id(Context, isl_dim_param, i);
|
|
Scev = (const SCEV *)isl_id_get_user(Id);
|
|
isl_id_free(Id);
|
|
|
|
T = dyn_cast<IntegerType>(Scev->getType());
|
|
|
|
if (!T)
|
|
continue;
|
|
|
|
Width = T->getBitWidth();
|
|
|
|
V = isl_val_int_from_si(IslCtx, Width - 1);
|
|
V = isl_val_2exp(V);
|
|
V = isl_val_neg(V);
|
|
Context = isl_set_lower_bound_val(Context, isl_dim_param, i, V);
|
|
|
|
V = isl_val_int_from_si(IslCtx, Width - 1);
|
|
V = isl_val_2exp(V);
|
|
V = isl_val_sub_ui(V, 1);
|
|
Context = isl_set_upper_bound_val(Context, isl_dim_param, i, V);
|
|
}
|
|
}
|
|
|
|
void Scop::realignParams() {
|
|
// Add all parameters into a common model.
|
|
isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
|
|
|
|
for (const auto &ParamID : ParameterIds) {
|
|
const SCEV *Parameter = ParamID.first;
|
|
isl_id *id = getIdForParam(Parameter);
|
|
Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id);
|
|
}
|
|
|
|
// Align the parameters of all data structures to the model.
|
|
Context = isl_set_align_params(Context, Space);
|
|
|
|
for (ScopStmt *Stmt : *this)
|
|
Stmt->realignParams();
|
|
}
|
|
|
|
void Scop::simplifyAssumedContext() {
|
|
// The parameter constraints of the iteration domains give us a set of
|
|
// constraints that need to hold for all cases where at least a single
|
|
// statement iteration is executed in the whole scop. We now simplify the
|
|
// assumed context under the assumption that such constraints hold and at
|
|
// least a single statement iteration is executed. For cases where no
|
|
// statement instances are executed, the assumptions we have taken about
|
|
// the executed code do not matter and can be changed.
|
|
//
|
|
// WARNING: This only holds if the assumptions we have taken do not reduce
|
|
// the set of statement instances that are executed. Otherwise we
|
|
// may run into a case where the iteration domains suggest that
|
|
// for a certain set of parameter constraints no code is executed,
|
|
// but in the original program some computation would have been
|
|
// performed. In such a case, modifying the run-time conditions and
|
|
// possibly influencing the run-time check may cause certain scops
|
|
// to not be executed.
|
|
//
|
|
// Example:
|
|
//
|
|
// When delinearizing the following code:
|
|
//
|
|
// for (long i = 0; i < 100; i++)
|
|
// for (long j = 0; j < m; j++)
|
|
// A[i+p][j] = 1.0;
|
|
//
|
|
// we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
|
|
// otherwise we would access out of bound data. Now, knowing that code is
|
|
// only executed for the case m >= 0, it is sufficient to assume p >= 0.
|
|
AssumedContext =
|
|
isl_set_gist_params(AssumedContext, isl_union_set_params(getDomains()));
|
|
}
|
|
|
|
/// @brief Add the minimal/maximal access in @p Set to @p User.
|
|
static int buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
|
|
Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
|
|
isl_pw_multi_aff *MinPMA, *MaxPMA;
|
|
isl_pw_aff *LastDimAff;
|
|
isl_aff *OneAff;
|
|
unsigned Pos;
|
|
|
|
// Restrict the number of parameters involved in the access as the lexmin/
|
|
// lexmax computation will take too long if this number is high.
|
|
//
|
|
// Experiments with a simple test case using an i7 4800MQ:
|
|
//
|
|
// #Parameters involved | Time (in sec)
|
|
// 6 | 0.01
|
|
// 7 | 0.04
|
|
// 8 | 0.12
|
|
// 9 | 0.40
|
|
// 10 | 1.54
|
|
// 11 | 6.78
|
|
// 12 | 30.38
|
|
//
|
|
if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
|
|
unsigned InvolvedParams = 0;
|
|
for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
|
|
if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
|
|
InvolvedParams++;
|
|
|
|
if (InvolvedParams > RunTimeChecksMaxParameters) {
|
|
isl_set_free(Set);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
Set = isl_set_remove_divs(Set);
|
|
|
|
MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
|
|
MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
|
|
|
|
MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
|
|
MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
|
|
|
|
// Adjust the last dimension of the maximal access by one as we want to
|
|
// enclose the accessed memory region by MinPMA and MaxPMA. The pointer
|
|
// we test during code generation might now point after the end of the
|
|
// allocated array but we will never dereference it anyway.
|
|
assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&
|
|
"Assumed at least one output dimension");
|
|
Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
|
|
LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
|
|
OneAff = isl_aff_zero_on_domain(
|
|
isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
|
|
OneAff = isl_aff_add_constant_si(OneAff, 1);
|
|
LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
|
|
MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
|
|
|
|
MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
|
|
|
|
isl_set_free(Set);
|
|
return 0;
|
|
}
|
|
|
|
static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
|
|
isl_set *Domain = MA->getStatement()->getDomain();
|
|
Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
|
|
return isl_set_reset_tuple_id(Domain);
|
|
}
|
|
|
|
bool Scop::buildAliasGroups(AliasAnalysis &AA) {
|
|
// To create sound alias checks we perform the following steps:
|
|
// o) Use the alias analysis and an alias set tracker to build alias sets
|
|
// for all memory accesses inside the SCoP.
|
|
// o) For each alias set we then map the aliasing pointers back to the
|
|
// memory accesses we know, thus obtain groups of memory accesses which
|
|
// might alias.
|
|
// o) We divide each group based on the domains of the minimal/maximal
|
|
// accesses. That means two minimal/maximal accesses are only in a group
|
|
// if their access domains intersect, otherwise they are in different
|
|
// ones.
|
|
// o) We split groups such that they contain at most one read only base
|
|
// address.
|
|
// o) For each group with more than one base pointer we then compute minimal
|
|
// and maximal accesses to each array in this group.
|
|
using AliasGroupTy = SmallVector<MemoryAccess *, 4>;
|
|
|
|
AliasSetTracker AST(AA);
|
|
|
|
DenseMap<Value *, MemoryAccess *> PtrToAcc;
|
|
DenseSet<Value *> HasWriteAccess;
|
|
for (ScopStmt *Stmt : *this) {
|
|
|
|
// Skip statements with an empty domain as they will never be executed.
|
|
isl_set *StmtDomain = Stmt->getDomain();
|
|
bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
|
|
isl_set_free(StmtDomain);
|
|
if (StmtDomainEmpty)
|
|
continue;
|
|
|
|
for (MemoryAccess *MA : *Stmt) {
|
|
if (MA->isScalar())
|
|
continue;
|
|
if (!MA->isRead())
|
|
HasWriteAccess.insert(MA->getBaseAddr());
|
|
Instruction *Acc = MA->getAccessInstruction();
|
|
PtrToAcc[getPointerOperand(*Acc)] = MA;
|
|
AST.add(Acc);
|
|
}
|
|
}
|
|
|
|
SmallVector<AliasGroupTy, 4> AliasGroups;
|
|
for (AliasSet &AS : AST) {
|
|
if (AS.isMustAlias() || AS.isForwardingAliasSet())
|
|
continue;
|
|
AliasGroupTy AG;
|
|
for (auto PR : AS)
|
|
AG.push_back(PtrToAcc[PR.getValue()]);
|
|
assert(AG.size() > 1 &&
|
|
"Alias groups should contain at least two accesses");
|
|
AliasGroups.push_back(std::move(AG));
|
|
}
|
|
|
|
// Split the alias groups based on their domain.
|
|
for (unsigned u = 0; u < AliasGroups.size(); u++) {
|
|
AliasGroupTy NewAG;
|
|
AliasGroupTy &AG = AliasGroups[u];
|
|
AliasGroupTy::iterator AGI = AG.begin();
|
|
isl_set *AGDomain = getAccessDomain(*AGI);
|
|
while (AGI != AG.end()) {
|
|
MemoryAccess *MA = *AGI;
|
|
isl_set *MADomain = getAccessDomain(MA);
|
|
if (isl_set_is_disjoint(AGDomain, MADomain)) {
|
|
NewAG.push_back(MA);
|
|
AGI = AG.erase(AGI);
|
|
isl_set_free(MADomain);
|
|
} else {
|
|
AGDomain = isl_set_union(AGDomain, MADomain);
|
|
AGI++;
|
|
}
|
|
}
|
|
if (NewAG.size() > 1)
|
|
AliasGroups.push_back(std::move(NewAG));
|
|
isl_set_free(AGDomain);
|
|
}
|
|
|
|
DenseMap<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs;
|
|
SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues;
|
|
for (AliasGroupTy &AG : AliasGroups) {
|
|
NonReadOnlyBaseValues.clear();
|
|
ReadOnlyPairs.clear();
|
|
|
|
if (AG.size() < 2) {
|
|
AG.clear();
|
|
continue;
|
|
}
|
|
|
|
for (auto II = AG.begin(); II != AG.end();) {
|
|
Value *BaseAddr = (*II)->getBaseAddr();
|
|
if (HasWriteAccess.count(BaseAddr)) {
|
|
NonReadOnlyBaseValues.insert(BaseAddr);
|
|
II++;
|
|
} else {
|
|
ReadOnlyPairs[BaseAddr].insert(*II);
|
|
II = AG.erase(II);
|
|
}
|
|
}
|
|
|
|
// If we don't have read only pointers check if there are at least two
|
|
// non read only pointers, otherwise clear the alias group.
|
|
if (ReadOnlyPairs.empty()) {
|
|
if (NonReadOnlyBaseValues.size() <= 1)
|
|
AG.clear();
|
|
continue;
|
|
}
|
|
|
|
// If we don't have non read only pointers clear the alias group.
|
|
if (NonReadOnlyBaseValues.empty()) {
|
|
AG.clear();
|
|
continue;
|
|
}
|
|
|
|
// If we have both read only and non read only base pointers we combine
|
|
// the non read only ones with exactly one read only one at a time into a
|
|
// new alias group and clear the old alias group in the end.
|
|
for (const auto &ReadOnlyPair : ReadOnlyPairs) {
|
|
AliasGroupTy AGNonReadOnly = AG;
|
|
for (MemoryAccess *MA : ReadOnlyPair.second)
|
|
AGNonReadOnly.push_back(MA);
|
|
AliasGroups.push_back(std::move(AGNonReadOnly));
|
|
}
|
|
AG.clear();
|
|
}
|
|
|
|
bool Valid = true;
|
|
for (AliasGroupTy &AG : AliasGroups) {
|
|
if (AG.empty())
|
|
continue;
|
|
|
|
MinMaxVectorTy *MinMaxAccesses = new MinMaxVectorTy();
|
|
MinMaxAccesses->reserve(AG.size());
|
|
|
|
isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
|
|
for (MemoryAccess *MA : AG)
|
|
Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
|
|
Accesses = isl_union_map_intersect_domain(Accesses, getDomains());
|
|
|
|
isl_union_set *Locations = isl_union_map_range(Accesses);
|
|
Locations = isl_union_set_intersect_params(Locations, getAssumedContext());
|
|
Locations = isl_union_set_coalesce(Locations);
|
|
Locations = isl_union_set_detect_equalities(Locations);
|
|
Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
|
|
MinMaxAccesses));
|
|
isl_union_set_free(Locations);
|
|
MinMaxAliasGroups.push_back(MinMaxAccesses);
|
|
|
|
if (!Valid)
|
|
break;
|
|
}
|
|
|
|
return Valid;
|
|
}
|
|
|
|
static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI) {
|
|
unsigned MinLD = INT_MAX, MaxLD = 0;
|
|
for (BasicBlock *BB : R.blocks()) {
|
|
if (Loop *L = LI.getLoopFor(BB)) {
|
|
if (!R.contains(L))
|
|
continue;
|
|
unsigned LD = L->getLoopDepth();
|
|
MinLD = std::min(MinLD, LD);
|
|
MaxLD = std::max(MaxLD, LD);
|
|
}
|
|
}
|
|
|
|
// Handle the case that there is no loop in the SCoP first.
|
|
if (MaxLD == 0)
|
|
return 1;
|
|
|
|
assert(MinLD >= 1 && "Minimal loop depth should be at least one");
|
|
assert(MaxLD >= MinLD &&
|
|
"Maximal loop depth was smaller than mininaml loop depth?");
|
|
return MaxLD - MinLD + 1;
|
|
}
|
|
|
|
void Scop::dropConstantScheduleDims() {
|
|
isl_union_map *FullSchedule = getSchedule();
|
|
|
|
if (isl_union_map_n_map(FullSchedule) == 0) {
|
|
isl_union_map_free(FullSchedule);
|
|
return;
|
|
}
|
|
|
|
isl_set *ScheduleSpace =
|
|
isl_set_from_union_set(isl_union_map_range(FullSchedule));
|
|
isl_map *DropDimMap = isl_set_identity(isl_set_copy(ScheduleSpace));
|
|
|
|
int NumDimsDropped = 0;
|
|
for (unsigned i = 0; i < isl_set_dim(ScheduleSpace, isl_dim_set); i++)
|
|
if (i % 2 == 0) {
|
|
isl_val *FixedVal =
|
|
isl_set_plain_get_val_if_fixed(ScheduleSpace, isl_dim_set, i);
|
|
if (isl_val_is_int(FixedVal)) {
|
|
DropDimMap =
|
|
isl_map_project_out(DropDimMap, isl_dim_out, i - NumDimsDropped, 1);
|
|
NumDimsDropped++;
|
|
}
|
|
isl_val_free(FixedVal);
|
|
}
|
|
|
|
for (auto *S : *this) {
|
|
isl_map *Schedule = S->getScattering();
|
|
Schedule = isl_map_apply_range(Schedule, isl_map_copy(DropDimMap));
|
|
S->setScattering(Schedule);
|
|
}
|
|
isl_set_free(ScheduleSpace);
|
|
isl_map_free(DropDimMap);
|
|
}
|
|
|
|
Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution,
|
|
isl_ctx *Context)
|
|
: SE(&ScalarEvolution), R(tempScop.getMaxRegion()), IsOptimized(false),
|
|
MaxLoopDepth(getMaxLoopDepthInRegion(tempScop.getMaxRegion(), LI)) {
|
|
IslCtx = Context;
|
|
buildContext();
|
|
|
|
SmallVector<Loop *, 8> NestLoops;
|
|
SmallVector<unsigned, 8> Scatter;
|
|
|
|
Scatter.assign(MaxLoopDepth + 1, 0);
|
|
|
|
// Build the iteration domain, access functions and scattering functions
|
|
// traversing the region tree.
|
|
buildScop(tempScop, getRegion(), NestLoops, Scatter, LI);
|
|
|
|
realignParams();
|
|
addParameterBounds();
|
|
simplifyAssumedContext();
|
|
dropConstantScheduleDims();
|
|
|
|
assert(NestLoops.empty() && "NestLoops not empty at top level!");
|
|
}
|
|
|
|
Scop::~Scop() {
|
|
isl_set_free(Context);
|
|
isl_set_free(AssumedContext);
|
|
|
|
// Free the statements;
|
|
for (ScopStmt *Stmt : *this)
|
|
delete Stmt;
|
|
|
|
// Free the ScopArrayInfo objects.
|
|
for (auto &ScopArrayInfoPair : ScopArrayInfoMap)
|
|
delete ScopArrayInfoPair.second;
|
|
|
|
// Free the alias groups
|
|
for (MinMaxVectorTy *MinMaxAccesses : MinMaxAliasGroups) {
|
|
for (MinMaxAccessTy &MMA : *MinMaxAccesses) {
|
|
isl_pw_multi_aff_free(MMA.first);
|
|
isl_pw_multi_aff_free(MMA.second);
|
|
}
|
|
delete MinMaxAccesses;
|
|
}
|
|
}
|
|
|
|
const ScopArrayInfo *
|
|
Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType,
|
|
const SmallVector<const SCEV *, 4> &Sizes) {
|
|
const ScopArrayInfo *&SAI = ScopArrayInfoMap[BasePtr];
|
|
if (!SAI)
|
|
SAI = new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes);
|
|
return SAI;
|
|
}
|
|
|
|
const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr) {
|
|
const SCEV *PtrSCEV = SE->getSCEV(BasePtr);
|
|
const SCEVUnknown *PtrBaseSCEV =
|
|
cast<SCEVUnknown>(SE->getPointerBase(PtrSCEV));
|
|
const ScopArrayInfo *SAI = ScopArrayInfoMap[PtrBaseSCEV->getValue()];
|
|
assert(SAI && "No ScopArrayInfo available for this base pointer");
|
|
return SAI;
|
|
}
|
|
|
|
std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
|
|
std::string Scop::getAssumedContextStr() const {
|
|
return stringFromIslObj(AssumedContext);
|
|
}
|
|
|
|
std::string Scop::getNameStr() const {
|
|
std::string ExitName, EntryName;
|
|
raw_string_ostream ExitStr(ExitName);
|
|
raw_string_ostream EntryStr(EntryName);
|
|
|
|
R.getEntry()->printAsOperand(EntryStr, false);
|
|
EntryStr.str();
|
|
|
|
if (R.getExit()) {
|
|
R.getExit()->printAsOperand(ExitStr, false);
|
|
ExitStr.str();
|
|
} else
|
|
ExitName = "FunctionExit";
|
|
|
|
return EntryName + "---" + ExitName;
|
|
}
|
|
|
|
__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
|
|
__isl_give isl_space *Scop::getParamSpace() const {
|
|
return isl_set_get_space(this->Context);
|
|
}
|
|
|
|
__isl_give isl_set *Scop::getAssumedContext() const {
|
|
return isl_set_copy(AssumedContext);
|
|
}
|
|
|
|
void Scop::addAssumption(__isl_take isl_set *Set) {
|
|
AssumedContext = isl_set_intersect(AssumedContext, Set);
|
|
AssumedContext = isl_set_coalesce(AssumedContext);
|
|
}
|
|
|
|
void Scop::printContext(raw_ostream &OS) const {
|
|
OS << "Context:\n";
|
|
|
|
if (!Context) {
|
|
OS.indent(4) << "n/a\n\n";
|
|
return;
|
|
}
|
|
|
|
OS.indent(4) << getContextStr() << "\n";
|
|
|
|
OS.indent(4) << "Assumed Context:\n";
|
|
if (!AssumedContext) {
|
|
OS.indent(4) << "n/a\n\n";
|
|
return;
|
|
}
|
|
|
|
OS.indent(4) << getAssumedContextStr() << "\n";
|
|
|
|
for (const SCEV *Parameter : Parameters) {
|
|
int Dim = ParameterIds.find(Parameter)->second;
|
|
OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
|
|
}
|
|
}
|
|
|
|
void Scop::printAliasAssumptions(raw_ostream &OS) const {
|
|
OS.indent(4) << "Alias Groups (" << MinMaxAliasGroups.size() << "):\n";
|
|
if (MinMaxAliasGroups.empty()) {
|
|
OS.indent(8) << "n/a\n";
|
|
return;
|
|
}
|
|
for (MinMaxVectorTy *MinMaxAccesses : MinMaxAliasGroups) {
|
|
OS.indent(8) << "[[";
|
|
for (MinMaxAccessTy &MinMacAccess : *MinMaxAccesses)
|
|
OS << " <" << MinMacAccess.first << ", " << MinMacAccess.second << ">";
|
|
OS << " ]]\n";
|
|
}
|
|
}
|
|
|
|
void Scop::printStatements(raw_ostream &OS) const {
|
|
OS << "Statements {\n";
|
|
|
|
for (ScopStmt *Stmt : *this)
|
|
OS.indent(4) << *Stmt;
|
|
|
|
OS.indent(4) << "}\n";
|
|
}
|
|
|
|
void Scop::print(raw_ostream &OS) const {
|
|
OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
|
|
<< "\n";
|
|
OS.indent(4) << "Region: " << getNameStr() << "\n";
|
|
OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
|
|
printContext(OS.indent(4));
|
|
printAliasAssumptions(OS);
|
|
printStatements(OS.indent(4));
|
|
}
|
|
|
|
void Scop::dump() const { print(dbgs()); }
|
|
|
|
isl_ctx *Scop::getIslCtx() const { return IslCtx; }
|
|
|
|
__isl_give isl_union_set *Scop::getDomains() {
|
|
isl_union_set *Domain = isl_union_set_empty(getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this)
|
|
Domain = isl_union_set_add_set(Domain, Stmt->getDomain());
|
|
|
|
return Domain;
|
|
}
|
|
|
|
__isl_give isl_union_map *Scop::getMustWrites() {
|
|
isl_union_map *Write = isl_union_map_empty(this->getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this) {
|
|
for (MemoryAccess *MA : *Stmt) {
|
|
if (!MA->isMustWrite())
|
|
continue;
|
|
|
|
isl_set *Domain = Stmt->getDomain();
|
|
isl_map *AccessDomain = MA->getAccessRelation();
|
|
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
|
|
Write = isl_union_map_add_map(Write, AccessDomain);
|
|
}
|
|
}
|
|
return isl_union_map_coalesce(Write);
|
|
}
|
|
|
|
__isl_give isl_union_map *Scop::getMayWrites() {
|
|
isl_union_map *Write = isl_union_map_empty(this->getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this) {
|
|
for (MemoryAccess *MA : *Stmt) {
|
|
if (!MA->isMayWrite())
|
|
continue;
|
|
|
|
isl_set *Domain = Stmt->getDomain();
|
|
isl_map *AccessDomain = MA->getAccessRelation();
|
|
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
|
|
Write = isl_union_map_add_map(Write, AccessDomain);
|
|
}
|
|
}
|
|
return isl_union_map_coalesce(Write);
|
|
}
|
|
|
|
__isl_give isl_union_map *Scop::getWrites() {
|
|
isl_union_map *Write = isl_union_map_empty(this->getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this) {
|
|
for (MemoryAccess *MA : *Stmt) {
|
|
if (!MA->isWrite())
|
|
continue;
|
|
|
|
isl_set *Domain = Stmt->getDomain();
|
|
isl_map *AccessDomain = MA->getAccessRelation();
|
|
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
|
|
Write = isl_union_map_add_map(Write, AccessDomain);
|
|
}
|
|
}
|
|
return isl_union_map_coalesce(Write);
|
|
}
|
|
|
|
__isl_give isl_union_map *Scop::getReads() {
|
|
isl_union_map *Read = isl_union_map_empty(getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this) {
|
|
for (MemoryAccess *MA : *Stmt) {
|
|
if (!MA->isRead())
|
|
continue;
|
|
|
|
isl_set *Domain = Stmt->getDomain();
|
|
isl_map *AccessDomain = MA->getAccessRelation();
|
|
|
|
AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
|
|
Read = isl_union_map_add_map(Read, AccessDomain);
|
|
}
|
|
}
|
|
return isl_union_map_coalesce(Read);
|
|
}
|
|
|
|
__isl_give isl_union_map *Scop::getSchedule() {
|
|
isl_union_map *Schedule = isl_union_map_empty(getParamSpace());
|
|
|
|
for (ScopStmt *Stmt : *this)
|
|
Schedule = isl_union_map_add_map(Schedule, Stmt->getScattering());
|
|
|
|
return isl_union_map_coalesce(Schedule);
|
|
}
|
|
|
|
bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
|
|
bool Changed = false;
|
|
for (ScopStmt *Stmt : *this) {
|
|
isl_union_set *StmtDomain = isl_union_set_from_set(Stmt->getDomain());
|
|
isl_union_set *NewStmtDomain = isl_union_set_intersect(
|
|
isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
|
|
|
|
if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
|
|
isl_union_set_free(StmtDomain);
|
|
isl_union_set_free(NewStmtDomain);
|
|
continue;
|
|
}
|
|
|
|
Changed = true;
|
|
|
|
isl_union_set_free(StmtDomain);
|
|
NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
|
|
|
|
if (isl_union_set_is_empty(NewStmtDomain)) {
|
|
Stmt->restrictDomain(isl_set_empty(Stmt->getDomainSpace()));
|
|
isl_union_set_free(NewStmtDomain);
|
|
} else
|
|
Stmt->restrictDomain(isl_set_from_union_set(NewStmtDomain));
|
|
}
|
|
isl_union_set_free(Domain);
|
|
return Changed;
|
|
}
|
|
|
|
ScalarEvolution *Scop::getSE() const { return SE; }
|
|
|
|
bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
|
|
if (tempScop.getAccessFunctions(BB))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Scop::buildScop(TempScop &tempScop, const Region &CurRegion,
|
|
SmallVectorImpl<Loop *> &NestLoops,
|
|
SmallVectorImpl<unsigned> &Scatter, LoopInfo &LI) {
|
|
Loop *L = castToLoop(CurRegion, LI);
|
|
|
|
if (L)
|
|
NestLoops.push_back(L);
|
|
|
|
unsigned loopDepth = NestLoops.size();
|
|
assert(Scatter.size() > loopDepth && "Scatter not big enough!");
|
|
|
|
for (Region::const_element_iterator I = CurRegion.element_begin(),
|
|
E = CurRegion.element_end();
|
|
I != E; ++I)
|
|
if (I->isSubRegion())
|
|
buildScop(tempScop, *(I->getNodeAs<Region>()), NestLoops, Scatter, LI);
|
|
else {
|
|
BasicBlock *BB = I->getNodeAs<BasicBlock>();
|
|
|
|
if (isTrivialBB(BB, tempScop))
|
|
continue;
|
|
|
|
ScopStmt *Stmt =
|
|
new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops, Scatter);
|
|
|
|
// Insert all statements into the statement map and the statement vector.
|
|
StmtMap[BB] = Stmt;
|
|
Stmts.push_back(Stmt);
|
|
|
|
// Increasing the Scattering function is OK for the moment, because
|
|
// we are using a depth first iterator and the program is well structured.
|
|
++Scatter[loopDepth];
|
|
}
|
|
|
|
if (!L)
|
|
return;
|
|
|
|
// Exiting a loop region.
|
|
Scatter[loopDepth] = 0;
|
|
NestLoops.pop_back();
|
|
++Scatter[loopDepth - 1];
|
|
}
|
|
|
|
ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const {
|
|
const auto &StmtMapIt = StmtMap.find(BB);
|
|
if (StmtMapIt == StmtMap.end())
|
|
return nullptr;
|
|
return StmtMapIt->second;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
|
|
ctx = isl_ctx_alloc();
|
|
isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
|
|
}
|
|
|
|
ScopInfo::~ScopInfo() {
|
|
clear();
|
|
isl_ctx_free(ctx);
|
|
}
|
|
|
|
void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<RegionInfoPass>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
AU.addRequired<TempScopInfo>();
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
|
|
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
|
|
ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
|
|
|
|
TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);
|
|
|
|
// This region is no Scop.
|
|
if (!tempScop) {
|
|
scop = nullptr;
|
|
return false;
|
|
}
|
|
|
|
scop = new Scop(*tempScop, LI, SE, ctx);
|
|
|
|
if (!PollyUseRuntimeAliasChecks) {
|
|
// Statistics.
|
|
++ScopFound;
|
|
if (scop->getMaxLoopDepth() > 0)
|
|
++RichScopFound;
|
|
return false;
|
|
}
|
|
|
|
// If a problem occurs while building the alias groups we need to delete
|
|
// this SCoP and pretend it wasn't valid in the first place.
|
|
if (scop->buildAliasGroups(AA)) {
|
|
// Statistics.
|
|
++ScopFound;
|
|
if (scop->getMaxLoopDepth() > 0)
|
|
++RichScopFound;
|
|
return false;
|
|
}
|
|
|
|
DEBUG(dbgs()
|
|
<< "\n\nNOTE: Run time checks for " << scop->getNameStr()
|
|
<< " could not be created as the number of parameters involved is too "
|
|
"high. The SCoP will be "
|
|
"dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust the "
|
|
"maximal number of parameters but be advised that the compile time "
|
|
"might increase exponentially.\n\n");
|
|
|
|
delete scop;
|
|
scop = nullptr;
|
|
return false;
|
|
}
|
|
|
|
char ScopInfo::ID = 0;
|
|
|
|
Pass *polly::createScopInfoPass() { return new ScopInfo(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
|
|
"Polly - Create polyhedral description of Scops", false,
|
|
false);
|
|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis);
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
|
|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
|
|
INITIALIZE_PASS_DEPENDENCY(TempScopInfo);
|
|
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
|
|
"Polly - Create polyhedral description of Scops", false,
|
|
false)
|