llvm-project/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp

5526 lines
204 KiB
C++

//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "PPCInstrInfo.h"
#include "MCTargetDesc/PPCPredicates.h"
#include "PPC.h"
#include "PPCHazardRecognizers.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "ppc-instr-info"
#define GET_INSTRMAP_INFO
#define GET_INSTRINFO_CTOR_DTOR
#include "PPCGenInstrInfo.inc"
STATISTIC(NumStoreSPILLVSRRCAsVec,
"Number of spillvsrrc spilled to stack as vec");
STATISTIC(NumStoreSPILLVSRRCAsGpr,
"Number of spillvsrrc spilled to stack as gpr");
STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
STATISTIC(CmpIselsConverted,
"Number of ISELs that depend on comparison of constants converted");
STATISTIC(MissedConvertibleImmediateInstrs,
"Number of compare-immediate instructions fed by constants");
STATISTIC(NumRcRotatesConvertedToRcAnd,
"Number of record-form rotates converted to record-form andi");
static cl::
opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
cl::desc("Disable analysis for CTR loops"));
static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
cl::desc("Disable compare instruction optimization"), cl::Hidden);
static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
cl::Hidden);
static cl::opt<bool>
UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
cl::desc("Use the old (incorrect) instruction latency calculation"));
static cl::opt<float>
FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
cl::desc("register pressure factor for the transformations."));
static cl::opt<bool> EnableFMARegPressureReduction(
"ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
cl::desc("enable register pressure reduce in machine combiner pass."));
// Pin the vtable to this file.
void PPCInstrInfo::anchor() {}
PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
: PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
/* CatchRetOpcode */ -1,
STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
Subtarget(STI), RI(STI.getTargetMachine()) {}
/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
/// this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const {
unsigned Directive =
static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
const InstrItineraryData *II =
static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
return new ScoreboardHazardRecognizer(II, DAG);
}
return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
}
/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
/// to use for this target when scheduling the DAG.
ScheduleHazardRecognizer *
PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
unsigned Directive =
DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
// FIXME: Leaving this as-is until we have POWER9 scheduling info
if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
// Most subtargets use a PPC970 recognizer.
if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
assert(DAG->TII && "No InstrInfo?");
return new PPCHazardRecognizer970(*DAG);
}
return new ScoreboardHazardRecognizer(II, DAG);
}
unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost) const {
if (!ItinData || UseOldLatencyCalc)
return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
// The default implementation of getInstrLatency calls getStageLatency, but
// getStageLatency does not do the right thing for us. While we have
// itinerary, most cores are fully pipelined, and so the itineraries only
// express the first part of the pipeline, not every stage. Instead, we need
// to use the listed output operand cycle number (using operand 0 here, which
// is an output).
unsigned Latency = 1;
unsigned DefClass = MI.getDesc().getSchedClass();
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
continue;
int Cycle = ItinData->getOperandCycle(DefClass, i);
if (Cycle < 0)
continue;
Latency = std::max(Latency, (unsigned) Cycle);
}
return Latency;
}
int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI, unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const {
int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
UseMI, UseIdx);
if (!DefMI.getParent())
return Latency;
const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
Register Reg = DefMO.getReg();
bool IsRegCR;
if (Register::isVirtualRegister(Reg)) {
const MachineRegisterInfo *MRI =
&DefMI.getParent()->getParent()->getRegInfo();
IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
} else {
IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
PPC::CRBITRCRegClass.contains(Reg);
}
if (UseMI.isBranch() && IsRegCR) {
if (Latency < 0)
Latency = getInstrLatency(ItinData, DefMI);
// On some cores, there is an additional delay between writing to a condition
// register, and using it from a branch.
unsigned Directive = Subtarget.getCPUDirective();
switch (Directive) {
default: break;
case PPC::DIR_7400:
case PPC::DIR_750:
case PPC::DIR_970:
case PPC::DIR_E5500:
case PPC::DIR_PWR4:
case PPC::DIR_PWR5:
case PPC::DIR_PWR5X:
case PPC::DIR_PWR6:
case PPC::DIR_PWR6X:
case PPC::DIR_PWR7:
case PPC::DIR_PWR8:
// FIXME: Is this needed for POWER9?
Latency += 2;
break;
}
}
return Latency;
}
/// This is an architecture-specific helper function of reassociateOps.
/// Set special operand attributes for new instructions after reassociation.
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1,
MachineInstr &OldMI2,
MachineInstr &NewMI1,
MachineInstr &NewMI2) const {
// Propagate FP flags from the original instructions.
// But clear poison-generating flags because those may not be valid now.
uint16_t IntersectedFlags = OldMI1.getFlags() & OldMI2.getFlags();
NewMI1.setFlags(IntersectedFlags);
NewMI1.clearFlag(MachineInstr::MIFlag::NoSWrap);
NewMI1.clearFlag(MachineInstr::MIFlag::NoUWrap);
NewMI1.clearFlag(MachineInstr::MIFlag::IsExact);
NewMI2.setFlags(IntersectedFlags);
NewMI2.clearFlag(MachineInstr::MIFlag::NoSWrap);
NewMI2.clearFlag(MachineInstr::MIFlag::NoUWrap);
NewMI2.clearFlag(MachineInstr::MIFlag::IsExact);
}
void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
uint16_t Flags) const {
MI.setFlags(Flags);
MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
MI.clearFlag(MachineInstr::MIFlag::IsExact);
}
// This function does not list all associative and commutative operations, but
// only those worth feeding through the machine combiner in an attempt to
// reduce the critical path. Mostly, this means floating-point operations,
// because they have high latencies(>=5) (compared to other operations, such as
// and/or, which are also associative and commutative, but have low latencies).
bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst) const {
switch (Inst.getOpcode()) {
// Floating point:
// FP Add:
case PPC::FADD:
case PPC::FADDS:
// FP Multiply:
case PPC::FMUL:
case PPC::FMULS:
// Altivec Add:
case PPC::VADDFP:
// VSX Add:
case PPC::XSADDDP:
case PPC::XVADDDP:
case PPC::XVADDSP:
case PPC::XSADDSP:
// VSX Multiply:
case PPC::XSMULDP:
case PPC::XVMULDP:
case PPC::XVMULSP:
case PPC::XSMULSP:
return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
Inst.getFlag(MachineInstr::MIFlag::FmNsz);
// Fixed point:
// Multiply:
case PPC::MULHD:
case PPC::MULLD:
case PPC::MULHW:
case PPC::MULLW:
return true;
default:
return false;
}
}
#define InfoArrayIdxFMAInst 0
#define InfoArrayIdxFAddInst 1
#define InfoArrayIdxFMULInst 2
#define InfoArrayIdxAddOpIdx 3
#define InfoArrayIdxMULOpIdx 4
#define InfoArrayIdxFSubInst 5
// Array keeps info for FMA instructions:
// Index 0(InfoArrayIdxFMAInst): FMA instruction;
// Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
// Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
// Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
// Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
// second MUL operand index is plus 1;
// Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
static const uint16_t FMAOpIdxInfo[][6] = {
// FIXME: Add more FMA instructions like XSNMADDADP and so on.
{PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
{PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
{PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
{PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
{PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
{PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
// Check if an opcode is a FMA instruction. If it is, return the index in array
// FMAOpIdxInfo. Otherwise, return -1.
int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
for (unsigned I = 0; I < array_lengthof(FMAOpIdxInfo); I++)
if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
return I;
return -1;
}
// On PowerPC target, we have two kinds of patterns related to FMA:
// 1: Improve ILP.
// Try to reassociate FMA chains like below:
//
// Pattern 1:
// A = FADD X, Y (Leaf)
// B = FMA A, M21, M22 (Prev)
// C = FMA B, M31, M32 (Root)
// -->
// A = FMA X, M21, M22
// B = FMA Y, M31, M32
// C = FADD A, B
//
// Pattern 2:
// A = FMA X, M11, M12 (Leaf)
// B = FMA A, M21, M22 (Prev)
// C = FMA B, M31, M32 (Root)
// -->
// A = FMUL M11, M12
// B = FMA X, M21, M22
// D = FMA A, M31, M32
// C = FADD B, D
//
// breaking the dependency between A and B, allowing FMA to be executed in
// parallel (or back-to-back in a pipeline) instead of depending on each other.
//
// 2: Reduce register pressure.
// Try to reassociate FMA with FSUB and a constant like below:
// C is a floating point const.
//
// Pattern 1:
// A = FSUB X, Y (Leaf)
// D = FMA B, C, A (Root)
// -->
// A = FMA B, Y, -C
// D = FMA A, X, C
//
// Pattern 2:
// A = FSUB X, Y (Leaf)
// D = FMA B, A, C (Root)
// -->
// A = FMA B, Y, -C
// D = FMA A, X, C
//
// Before the transformation, A must be assigned with different hardware
// register with D. After the transformation, A and D must be assigned with
// same hardware register due to TIE attribute of FMA instructions.
//
bool PPCInstrInfo::getFMAPatterns(
MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
bool DoRegPressureReduce) const {
MachineBasicBlock *MBB = Root.getParent();
const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
const TargetRegisterInfo *TRI = &getRegisterInfo();
auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
for (const auto &MO : Instr.explicit_operands())
if (!(MO.isReg() && Register::isVirtualRegister(MO.getReg())))
return false;
return true;
};
auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
unsigned OpType) {
if (Instr.getOpcode() !=
FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
return false;
// Instruction can be reassociated.
// fast math flags may prohibit reassociation.
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
return false;
// Instruction operands are virtual registers for reassociation.
if (!IsAllOpsVirtualReg(Instr))
return false;
// For register pressure reassociation, the FSub must have only one use as
// we want to delete the sub to save its def.
if (OpType == InfoArrayIdxFSubInst &&
!MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
return false;
return true;
};
auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
int16_t &MulOpIdx, bool IsLeaf) {
int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
if (Idx < 0)
return false;
// Instruction can be reassociated.
// fast math flags may prohibit reassociation.
if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
return false;
// Instruction operands are virtual registers for reassociation.
if (!IsAllOpsVirtualReg(Instr))
return false;
MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
if (IsLeaf)
return true;
AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
// If 'add' operand's def is not in current block, don't do ILP related opt.
if (!MIAdd || MIAdd->getParent() != MBB)
return false;
// If this is not Leaf FMA Instr, its 'add' operand should only have one use
// as this fma will be changed later.
return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
};
int16_t AddOpIdx = -1;
int16_t MulOpIdx = -1;
bool IsUsedOnceL = false;
bool IsUsedOnceR = false;
MachineInstr *MULInstrL = nullptr;
MachineInstr *MULInstrR = nullptr;
auto IsRPReductionCandidate = [&]() {
// Currently, we only support float and double.
// FIXME: add support for other types.
unsigned Opcode = Root.getOpcode();
if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
return false;
// Root must be a valid FMA like instruction.
// Treat it as leaf as we don't care its add operand.
if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
assert((MulOpIdx >= 0) && "mul operand index not right!");
Register MULRegL = TRI->lookThruSingleUseCopyChain(
Root.getOperand(MulOpIdx).getReg(), MRI);
Register MULRegR = TRI->lookThruSingleUseCopyChain(
Root.getOperand(MulOpIdx + 1).getReg(), MRI);
if (!MULRegL && !MULRegR)
return false;
if (MULRegL && !MULRegR) {
MULRegR =
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
IsUsedOnceL = true;
} else if (!MULRegL && MULRegR) {
MULRegL =
TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
IsUsedOnceR = true;
} else {
IsUsedOnceL = true;
IsUsedOnceR = true;
}
if (!Register::isVirtualRegister(MULRegL) ||
!Register::isVirtualRegister(MULRegR))
return false;
MULInstrL = MRI->getVRegDef(MULRegL);
MULInstrR = MRI->getVRegDef(MULRegR);
return true;
}
return false;
};
// Register pressure fma reassociation patterns.
if (DoRegPressureReduce && IsRPReductionCandidate()) {
assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
// Register pressure pattern 1
if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BCA);
return true;
}
// Register pressure pattern 2
if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_BAC);
return true;
}
}
// ILP fma reassociation patterns.
// Root must be a valid FMA like instruction.
AddOpIdx = -1;
if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
return false;
assert((AddOpIdx >= 0) && "add operand index not right!");
Register RegB = Root.getOperand(AddOpIdx).getReg();
MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
// Prev must be a valid FMA like instruction.
AddOpIdx = -1;
if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
return false;
assert((AddOpIdx >= 0) && "add operand index not right!");
Register RegA = Prev->getOperand(AddOpIdx).getReg();
MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
AddOpIdx = -1;
if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
Patterns.push_back(MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
return true;
}
if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
Patterns.push_back(MachineCombinerPattern::REASSOC_XY_AMM_BMM);
LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
return true;
}
return false;
}
void PPCInstrInfo::finalizeInsInstrs(
MachineInstr &Root, MachineCombinerPattern &P,
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
MachineFunction *MF = Root.getMF();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineConstantPool *MCP = MF->getConstantPool();
int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
if (Idx < 0)
return;
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
// For now we only need to fix up placeholder for register pressure reduce
// patterns.
Register ConstReg = 0;
switch (P) {
case MachineCombinerPattern::REASSOC_XY_BCA:
ConstReg =
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
break;
case MachineCombinerPattern::REASSOC_XY_BAC:
ConstReg =
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
break;
default:
// Not register pressure reduce patterns.
return;
}
MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
// Get const value from const pool.
const Constant *C = getConstantFromConstantPool(ConstDefInstr);
assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
// Get negative fp const.
APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
F1.changeSign();
Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
// Put negative fp const into constant pool.
unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
MachineOperand *Placeholder = nullptr;
// Record the placeholder PPC::ZERO8 we add in reassociateFMA.
for (auto *Inst : InsInstrs) {
for (MachineOperand &Operand : Inst->explicit_operands()) {
assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
if (Operand.getReg() == PPC::ZERO8) {
Placeholder = &Operand;
break;
}
}
}
assert(Placeholder && "Placeholder does not exist!");
// Generate instructions to load the const fp from constant pool.
// We only support PPC64 and medium code model.
Register LoadNewConst =
generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
// Fill the placeholder with the new load from constant pool.
Placeholder->setReg(LoadNewConst);
}
bool PPCInstrInfo::shouldReduceRegisterPressure(
MachineBasicBlock *MBB, RegisterClassInfo *RegClassInfo) const {
if (!EnableFMARegPressureReduction)
return false;
// Currently, we only enable register pressure reducing in machine combiner
// for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
// support.
//
// So we need following instructions to access a TOC entry:
//
// %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
// %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
// killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
//
// FIXME: add more supported targets, like Small and Large code model, PPC32,
// AIX.
if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
return false;
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineFunction *MF = MBB->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
auto GetMBBPressure = [&](MachineBasicBlock *MBB) -> std::vector<unsigned> {
RegionPressure Pressure;
RegPressureTracker RPTracker(Pressure);
// Initialize the register pressure tracker.
RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
/*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
for (MachineBasicBlock::iterator MII = MBB->instr_end(),
MIE = MBB->instr_begin();
MII != MIE; --MII) {
MachineInstr &MI = *std::prev(MII);
if (MI.isDebugValue() || MI.isDebugLabel())
continue;
RegisterOperands RegOpers;
RegOpers.collect(MI, *TRI, *MRI, false, false);
RPTracker.recedeSkipDebugValues();
assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
RPTracker.recede(RegOpers);
}
// Close the RPTracker to finalize live ins.
RPTracker.closeRegion();
return RPTracker.getPressure().MaxSetPressure;
};
// For now we only care about float and double type fma.
unsigned VSSRCLimit = TRI->getRegPressureSetLimit(
*MBB->getParent(), PPC::RegisterPressureSets::VSSRC);
// Only reduce register pressure when pressure is high.
return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
(float)VSSRCLimit * FMARPFactor;
}
bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
// I has only one memory operand which is load from constant pool.
if (!I->hasOneMemOperand())
return false;
MachineMemOperand *Op = I->memoperands()[0];
return Op->isLoad() && Op->getPseudoValue() &&
Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
}
Register PPCInstrInfo::generateLoadForNewConst(
unsigned Idx, MachineInstr *MI, Type *Ty,
SmallVectorImpl<MachineInstr *> &InsInstrs) const {
// Now we only support PPC64, Medium code model and P9 with vector.
// We have immutable pattern to access const pool. See function
// shouldReduceRegisterPressure.
assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
"Target not supported!\n");
MachineFunction *MF = MI->getMF();
MachineRegisterInfo *MRI = &MF->getRegInfo();
// Generate ADDIStocHA8
Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
MachineInstrBuilder TOCOffset =
BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
.addReg(PPC::X2)
.addConstantPoolIndex(Idx);
assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
"Only float and double are supported!");
unsigned LoadOpcode;
// Should be float type or double type.
if (Ty->isFloatTy())
LoadOpcode = PPC::DFLOADf32;
else
LoadOpcode = PPC::DFLOADf64;
const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
Register VReg2 = MRI->createVirtualRegister(RC);
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
// Generate Load from constant pool.
MachineInstrBuilder Load =
BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
.addConstantPoolIndex(Idx)
.addReg(VReg1, getKillRegState(true))
.addMemOperand(MMO);
Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
// Insert the toc load instructions into InsInstrs.
InsInstrs.insert(InsInstrs.begin(), Load);
InsInstrs.insert(InsInstrs.begin(), TOCOffset);
return VReg2;
}
// This function returns the const value in constant pool if the \p I is a load
// from constant pool.
const Constant *
PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
MachineFunction *MF = I->getMF();
MachineRegisterInfo *MRI = &MF->getRegInfo();
MachineConstantPool *MCP = MF->getConstantPool();
assert(I->mayLoad() && "Should be a load instruction.\n");
for (auto MO : I->uses()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg == 0 || !Register::isVirtualRegister(Reg))
continue;
// Find the toc address.
MachineInstr *DefMI = MRI->getVRegDef(Reg);
for (auto MO2 : DefMI->uses())
if (MO2.isCPI())
return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
}
return nullptr;
}
bool PPCInstrInfo::getMachineCombinerPatterns(
MachineInstr &Root, SmallVectorImpl<MachineCombinerPattern> &Patterns,
bool DoRegPressureReduce) const {
// Using the machine combiner in this way is potentially expensive, so
// restrict to when aggressive optimizations are desired.
if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOpt::Aggressive)
return false;
if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
return true;
return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
DoRegPressureReduce);
}
void PPCInstrInfo::genAlternativeCodeSequence(
MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
switch (Pattern) {
case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
case MachineCombinerPattern::REASSOC_XY_BCA:
case MachineCombinerPattern::REASSOC_XY_BAC:
reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
break;
default:
// Reassociate default patterns.
TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
DelInstrs, InstrIdxForVirtReg);
break;
}
}
void PPCInstrInfo::reassociateFMA(
MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
MachineFunction *MF = Root.getMF();
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineOperand &OpC = Root.getOperand(0);
Register RegC = OpC.getReg();
const TargetRegisterClass *RC = MRI.getRegClass(RegC);
MRI.constrainRegClass(RegC, RC);
unsigned FmaOp = Root.getOpcode();
int16_t Idx = getFMAOpIdxInfo(FmaOp);
assert(Idx >= 0 && "Root must be a FMA instruction");
bool IsILPReassociate =
(Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
(Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM);
uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
MachineInstr *Prev = nullptr;
MachineInstr *Leaf = nullptr;
switch (Pattern) {
default:
llvm_unreachable("not recognized pattern!");
case MachineCombinerPattern::REASSOC_XY_AMM_BMM:
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM:
Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
break;
case MachineCombinerPattern::REASSOC_XY_BAC: {
Register MULReg =
TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
Leaf = MRI.getVRegDef(MULReg);
break;
}
case MachineCombinerPattern::REASSOC_XY_BCA: {
Register MULReg = TRI->lookThruCopyLike(
Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
Leaf = MRI.getVRegDef(MULReg);
break;
}
}
uint16_t IntersectedFlags = 0;
if (IsILPReassociate)
IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
else
IntersectedFlags = Root.getFlags() & Leaf->getFlags();
auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
bool &KillFlag) {
Reg = Operand.getReg();
MRI.constrainRegClass(Reg, RC);
KillFlag = Operand.isKill();
};
auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
Register &MulOp2, Register &AddOp,
bool &MulOp1KillFlag, bool &MulOp2KillFlag,
bool &AddOpKillFlag) {
GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
};
Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
RegA21, RegB;
bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
KillA11 = false, KillA21 = false, KillB = false;
GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
if (IsILPReassociate)
GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
} else if (Pattern == MachineCombinerPattern::REASSOC_XY_AMM_BMM) {
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
} else {
// Get FSUB instruction info.
GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
}
// Create new virtual registers for the new results instead of
// recycling legacy ones because the MachineCombiner's computation of the
// critical path requires a new register definition rather than an existing
// one.
// For register pressure reassociation, we only need create one virtual
// register for the new fma.
Register NewVRA = MRI.createVirtualRegister(RC);
InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
Register NewVRB = 0;
if (IsILPReassociate) {
NewVRB = MRI.createVirtualRegister(RC);
InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
}
Register NewVRD = 0;
if (Pattern == MachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
NewVRD = MRI.createVirtualRegister(RC);
InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
}
auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
Register RegMul1, bool KillRegMul1,
Register RegMul2, bool KillRegMul2) {
MI->getOperand(AddOpIdx).setReg(RegAdd);
MI->getOperand(AddOpIdx).setIsKill(KillAdd);
MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
};
MachineInstrBuilder NewARegPressure, NewCRegPressure;
switch (Pattern) {
default:
llvm_unreachable("not recognized pattern!");
case MachineCombinerPattern::REASSOC_XY_AMM_BMM: {
// Create new instructions for insertion.
MachineInstrBuilder MINewB =
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
.addReg(RegX, getKillRegState(KillX))
.addReg(RegM21, getKillRegState(KillM21))
.addReg(RegM22, getKillRegState(KillM22));
MachineInstrBuilder MINewA =
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
.addReg(RegY, getKillRegState(KillY))
.addReg(RegM31, getKillRegState(KillM31))
.addReg(RegM32, getKillRegState(KillM32));
// If AddOpIdx is not 1, adjust the order.
if (AddOpIdx != 1) {
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
}
MachineInstrBuilder MINewC =
BuildMI(*MF, Root.getDebugLoc(),
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
.addReg(NewVRB, getKillRegState(true))
.addReg(NewVRA, getKillRegState(true));
// Update flags for newly created instructions.
setSpecialOperandAttr(*MINewA, IntersectedFlags);
setSpecialOperandAttr(*MINewB, IntersectedFlags);
setSpecialOperandAttr(*MINewC, IntersectedFlags);
// Record new instructions for insertion.
InsInstrs.push_back(MINewA);
InsInstrs.push_back(MINewB);
InsInstrs.push_back(MINewC);
break;
}
case MachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
assert(NewVRD && "new FMA register not created!");
// Create new instructions for insertion.
MachineInstrBuilder MINewA =
BuildMI(*MF, Leaf->getDebugLoc(),
get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
.addReg(RegM11, getKillRegState(KillM11))
.addReg(RegM12, getKillRegState(KillM12));
MachineInstrBuilder MINewB =
BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
.addReg(RegX, getKillRegState(KillX))
.addReg(RegM21, getKillRegState(KillM21))
.addReg(RegM22, getKillRegState(KillM22));
MachineInstrBuilder MINewD =
BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
.addReg(NewVRA, getKillRegState(true))
.addReg(RegM31, getKillRegState(KillM31))
.addReg(RegM32, getKillRegState(KillM32));
// If AddOpIdx is not 1, adjust the order.
if (AddOpIdx != 1) {
AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
KillM32);
}
MachineInstrBuilder MINewC =
BuildMI(*MF, Root.getDebugLoc(),
get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
.addReg(NewVRB, getKillRegState(true))
.addReg(NewVRD, getKillRegState(true));
// Update flags for newly created instructions.
setSpecialOperandAttr(*MINewA, IntersectedFlags);
setSpecialOperandAttr(*MINewB, IntersectedFlags);
setSpecialOperandAttr(*MINewD, IntersectedFlags);
setSpecialOperandAttr(*MINewC, IntersectedFlags);
// Record new instructions for insertion.
InsInstrs.push_back(MINewA);
InsInstrs.push_back(MINewB);
InsInstrs.push_back(MINewD);
InsInstrs.push_back(MINewC);
break;
}
case MachineCombinerPattern::REASSOC_XY_BAC:
case MachineCombinerPattern::REASSOC_XY_BCA: {
Register VarReg;
bool KillVarReg = false;
if (Pattern == MachineCombinerPattern::REASSOC_XY_BCA) {
VarReg = RegM31;
KillVarReg = KillM31;
} else {
VarReg = RegM32;
KillVarReg = KillM32;
}
// We don't want to get negative const from memory pool too early, as the
// created entry will not be deleted even if it has no users. Since all
// operand of Leaf and Root are virtual register, we use zero register
// here as a placeholder. When the InsInstrs is selected in
// MachineCombiner, we call finalizeInsInstrs to replace the zero register
// with a virtual register which is a load from constant pool.
NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
.addReg(RegB, getKillRegState(RegB))
.addReg(RegY, getKillRegState(KillY))
.addReg(PPC::ZERO8);
NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
.addReg(NewVRA, getKillRegState(true))
.addReg(RegX, getKillRegState(KillX))
.addReg(VarReg, getKillRegState(KillVarReg));
// For now, we only support xsmaddadp/xsmaddasp, their add operand are
// both at index 1, no need to adjust.
// FIXME: when add more fma instructions support, like fma/fmas, adjust
// the operand index here.
break;
}
}
if (!IsILPReassociate) {
setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
InsInstrs.push_back(NewARegPressure);
InsInstrs.push_back(NewCRegPressure);
}
assert(!InsInstrs.empty() &&
"Insertion instructions set should not be empty!");
// Record old instructions for deletion.
DelInstrs.push_back(Leaf);
if (IsILPReassociate)
DelInstrs.push_back(Prev);
DelInstrs.push_back(&Root);
}
// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
Register &SrcReg, Register &DstReg,
unsigned &SubIdx) const {
switch (MI.getOpcode()) {
default: return false;
case PPC::EXTSW:
case PPC::EXTSW_32:
case PPC::EXTSW_32_64:
SrcReg = MI.getOperand(1).getReg();
DstReg = MI.getOperand(0).getReg();
SubIdx = PPC::sub_32;
return true;
}
}
unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Opcode = MI.getOpcode();
const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
if (End != std::find(OpcodesForSpill, End, Opcode)) {
// Check for the operands added by addFrameReference (the immediate is the
// offset which defaults to 0).
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
MI.getOperand(2).isFI()) {
FrameIndex = MI.getOperand(2).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
// For opcodes with the ReMaterializable flag set, this function is called to
// verify the instruction is really rematable.
bool PPCInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
AliasAnalysis *AA) const {
switch (MI.getOpcode()) {
default:
// This function should only be called for opcodes with the ReMaterializable
// flag set.
llvm_unreachable("Unknown rematerializable operation!");
break;
case PPC::LI:
case PPC::LI8:
case PPC::PLI:
case PPC::PLI8:
case PPC::LIS:
case PPC::LIS8:
case PPC::ADDIStocHA:
case PPC::ADDIStocHA8:
case PPC::ADDItocL:
case PPC::LOAD_STACK_GUARD:
case PPC::XXLXORz:
case PPC::XXLXORspz:
case PPC::XXLXORdpz:
case PPC::XXLEQVOnes:
case PPC::XXSPLTI32DX:
case PPC::XXSPLTIW:
case PPC::XXSPLTIDP:
case PPC::V_SET0B:
case PPC::V_SET0H:
case PPC::V_SET0:
case PPC::V_SETALLONESB:
case PPC::V_SETALLONESH:
case PPC::V_SETALLONES:
case PPC::CRSET:
case PPC::CRUNSET:
case PPC::XXSETACCZ:
return true;
}
return false;
}
unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
unsigned Opcode = MI.getOpcode();
const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
const unsigned *End = OpcodesForSpill + SOK_LastOpcodeSpill;
if (End != std::find(OpcodesForSpill, End, Opcode)) {
if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
MI.getOperand(2).isFI()) {
FrameIndex = MI.getOperand(2).getIndex();
return MI.getOperand(0).getReg();
}
}
return 0;
}
MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
MachineFunction &MF = *MI.getParent()->getParent();
// Normal instructions can be commuted the obvious way.
if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
// Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
// 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
// changing the relative order of the mask operands might change what happens
// to the high-bits of the mask (and, thus, the result).
// Cannot commute if it has a non-zero rotate count.
if (MI.getOperand(3).getImm() != 0)
return nullptr;
// If we have a zero rotate count, we have:
// M = mask(MB,ME)
// Op0 = (Op1 & ~M) | (Op2 & M)
// Change this to:
// M = mask((ME+1)&31, (MB-1)&31)
// Op0 = (Op2 & ~M) | (Op1 & M)
// Swap op1/op2
assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
"Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
Register Reg0 = MI.getOperand(0).getReg();
Register Reg1 = MI.getOperand(1).getReg();
Register Reg2 = MI.getOperand(2).getReg();
unsigned SubReg1 = MI.getOperand(1).getSubReg();
unsigned SubReg2 = MI.getOperand(2).getSubReg();
bool Reg1IsKill = MI.getOperand(1).isKill();
bool Reg2IsKill = MI.getOperand(2).isKill();
bool ChangeReg0 = false;
// If machine instrs are no longer in two-address forms, update
// destination register as well.
if (Reg0 == Reg1) {
// Must be two address instruction!
assert(MI.getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
"Expecting a two-address instruction!");
assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
Reg2IsKill = false;
ChangeReg0 = true;
}
// Masks.
unsigned MB = MI.getOperand(4).getImm();
unsigned ME = MI.getOperand(5).getImm();
// We can't commute a trivial mask (there is no way to represent an all-zero
// mask).
if (MB == 0 && ME == 31)
return nullptr;
if (NewMI) {
// Create a new instruction.
Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
bool Reg0IsDead = MI.getOperand(0).isDead();
return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
.addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
.addReg(Reg2, getKillRegState(Reg2IsKill))
.addReg(Reg1, getKillRegState(Reg1IsKill))
.addImm((ME + 1) & 31)
.addImm((MB - 1) & 31);
}
if (ChangeReg0) {
MI.getOperand(0).setReg(Reg2);
MI.getOperand(0).setSubReg(SubReg2);
}
MI.getOperand(2).setReg(Reg1);
MI.getOperand(1).setReg(Reg2);
MI.getOperand(2).setSubReg(SubReg1);
MI.getOperand(1).setSubReg(SubReg2);
MI.getOperand(2).setIsKill(Reg1IsKill);
MI.getOperand(1).setIsKill(Reg2IsKill);
// Swap the mask around.
MI.getOperand(4).setImm((ME + 1) & 31);
MI.getOperand(5).setImm((MB - 1) & 31);
return &MI;
}
bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
// For VSX A-Type FMA instructions, it is the first two operands that can be
// commuted, however, because the non-encoded tied input operand is listed
// first, the operands to swap are actually the second and third.
int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
if (AltOpc == -1)
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
// The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
// and SrcOpIdx2.
return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
}
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
// This function is used for scheduling, and the nop wanted here is the type
// that terminates dispatch groups on the POWER cores.
unsigned Directive = Subtarget.getCPUDirective();
unsigned Opcode;
switch (Directive) {
default: Opcode = PPC::NOP; break;
case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
// FIXME: Update when POWER9 scheduling model is ready.
case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
}
DebugLoc DL;
BuildMI(MBB, MI, DL, get(Opcode));
}
/// Return the noop instruction to use for a noop.
MCInst PPCInstrInfo::getNop() const {
MCInst Nop;
Nop.setOpcode(PPC::NOP);
return Nop;
}
// Branch analysis.
// Note: If the condition register is set to CTR or CTR8 then this is a
// BDNZ (imm == 1) or BDZ (imm == 0) branch.
bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
bool isPPC64 = Subtarget.isPPC64();
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end())
return false;
if (!isUnpredicatedTerminator(*I))
return false;
if (AllowModify) {
// If the BB ends with an unconditional branch to the fallthrough BB,
// we eliminate the branch instruction.
if (I->getOpcode() == PPC::B &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
I->eraseFromParent();
// We update iterator after deleting the last branch.
I = MBB.getLastNonDebugInstr();
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
return false;
}
}
// Get the last instruction in the block.
MachineInstr &LastInst = *I;
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
if (LastInst.getOpcode() == PPC::B) {
if (!LastInst.getOperand(0).isMBB())
return true;
TBB = LastInst.getOperand(0).getMBB();
return false;
} else if (LastInst.getOpcode() == PPC::BCC) {
if (!LastInst.getOperand(2).isMBB())
return true;
// Block ends with fall-through condbranch.
TBB = LastInst.getOperand(2).getMBB();
Cond.push_back(LastInst.getOperand(0));
Cond.push_back(LastInst.getOperand(1));
return false;
} else if (LastInst.getOpcode() == PPC::BC) {
if (!LastInst.getOperand(1).isMBB())
return true;
// Block ends with fall-through condbranch.
TBB = LastInst.getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
Cond.push_back(LastInst.getOperand(0));
return false;
} else if (LastInst.getOpcode() == PPC::BCn) {
if (!LastInst.getOperand(1).isMBB())
return true;
// Block ends with fall-through condbranch.
TBB = LastInst.getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
Cond.push_back(LastInst.getOperand(0));
return false;
} else if (LastInst.getOpcode() == PPC::BDNZ8 ||
LastInst.getOpcode() == PPC::BDNZ) {
if (!LastInst.getOperand(0).isMBB())
return true;
if (DisableCTRLoopAnal)
return true;
TBB = LastInst.getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(1));
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
true));
return false;
} else if (LastInst.getOpcode() == PPC::BDZ8 ||
LastInst.getOpcode() == PPC::BDZ) {
if (!LastInst.getOperand(0).isMBB())
return true;
if (DisableCTRLoopAnal)
return true;
TBB = LastInst.getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(0));
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
true));
return false;
}
// Otherwise, don't know what this is.
return true;
}
// Get the instruction before it if it's a terminator.
MachineInstr &SecondLastInst = *I;
// If there are three terminators, we don't know what sort of block this is.
if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
return true;
// If the block ends with PPC::B and PPC:BCC, handle it.
if (SecondLastInst.getOpcode() == PPC::BCC &&
LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(2).isMBB() ||
!LastInst.getOperand(0).isMBB())
return true;
TBB = SecondLastInst.getOperand(2).getMBB();
Cond.push_back(SecondLastInst.getOperand(0));
Cond.push_back(SecondLastInst.getOperand(1));
FBB = LastInst.getOperand(0).getMBB();
return false;
} else if (SecondLastInst.getOpcode() == PPC::BC &&
LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(1).isMBB() ||
!LastInst.getOperand(0).isMBB())
return true;
TBB = SecondLastInst.getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
Cond.push_back(SecondLastInst.getOperand(0));
FBB = LastInst.getOperand(0).getMBB();
return false;
} else if (SecondLastInst.getOpcode() == PPC::BCn &&
LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(1).isMBB() ||
!LastInst.getOperand(0).isMBB())
return true;
TBB = SecondLastInst.getOperand(1).getMBB();
Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
Cond.push_back(SecondLastInst.getOperand(0));
FBB = LastInst.getOperand(0).getMBB();
return false;
} else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
SecondLastInst.getOpcode() == PPC::BDNZ) &&
LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(0).isMBB() ||
!LastInst.getOperand(0).isMBB())
return true;
if (DisableCTRLoopAnal)
return true;
TBB = SecondLastInst.getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(1));
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
true));
FBB = LastInst.getOperand(0).getMBB();
return false;
} else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
SecondLastInst.getOpcode() == PPC::BDZ) &&
LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(0).isMBB() ||
!LastInst.getOperand(0).isMBB())
return true;
if (DisableCTRLoopAnal)
return true;
TBB = SecondLastInst.getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(0));
Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
true));
FBB = LastInst.getOperand(0).getMBB();
return false;
}
// If the block ends with two PPC:Bs, handle it. The second one is not
// executed, so remove it.
if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
if (!SecondLastInst.getOperand(0).isMBB())
return true;
TBB = SecondLastInst.getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// Otherwise, can't handle this.
return true;
}
unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end())
return 0;
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return 1;
--I;
if (I->getOpcode() != PPC::BCC &&
I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 2 || Cond.size() == 0) &&
"PPC branch conditions have two components!");
assert(!BytesAdded && "code size not handled");
bool isPPC64 = Subtarget.isPPC64();
// One-way branch.
if (!FBB) {
if (Cond.empty()) // Unconditional branch
BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
else // Conditional branch
BuildMI(&MBB, DL, get(PPC::BCC))
.addImm(Cond[0].getImm())
.add(Cond[1])
.addMBB(TBB);
return 1;
}
// Two-way Conditional Branch.
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
BuildMI(&MBB, DL, get(Cond[0].getImm() ?
(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
(isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
else
BuildMI(&MBB, DL, get(PPC::BCC))
.addImm(Cond[0].getImm())
.add(Cond[1])
.addMBB(TBB);
BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
return 2;
}
// Select analysis.
bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
Register DstReg, Register TrueReg,
Register FalseReg, int &CondCycles,
int &TrueCycles, int &FalseCycles) const {
if (Cond.size() != 2)
return false;
// If this is really a bdnz-like condition, then it cannot be turned into a
// select.
if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
return false;
// If the conditional branch uses a physical register, then it cannot be
// turned into a select.
if (Register::isPhysicalRegister(Cond[1].getReg()))
return false;
// Check register classes.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
if (!RC)
return false;
// isel is for regular integer GPRs only.
if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
!PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
!PPC::G8RCRegClass.hasSubClassEq(RC) &&
!PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
return false;
// FIXME: These numbers are for the A2, how well they work for other cores is
// an open question. On the A2, the isel instruction has a 2-cycle latency
// but single-cycle throughput. These numbers are used in combination with
// the MispredictPenalty setting from the active SchedMachineModel.
CondCycles = 1;
TrueCycles = 1;
FalseCycles = 1;
return true;
}
void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &dl, Register DestReg,
ArrayRef<MachineOperand> Cond, Register TrueReg,
Register FalseReg) const {
assert(Cond.size() == 2 &&
"PPC branch conditions have two components!");
// Get the register classes.
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC =
RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
assert(RC && "TrueReg and FalseReg must have overlapping register classes");
bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
assert((Is64Bit ||
PPC::GPRCRegClass.hasSubClassEq(RC) ||
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
"isel is for regular integer GPRs only");
unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
unsigned SubIdx = 0;
bool SwapOps = false;
switch (SelectPred) {
case PPC::PRED_EQ:
case PPC::PRED_EQ_MINUS:
case PPC::PRED_EQ_PLUS:
SubIdx = PPC::sub_eq; SwapOps = false; break;
case PPC::PRED_NE:
case PPC::PRED_NE_MINUS:
case PPC::PRED_NE_PLUS:
SubIdx = PPC::sub_eq; SwapOps = true; break;
case PPC::PRED_LT:
case PPC::PRED_LT_MINUS:
case PPC::PRED_LT_PLUS:
SubIdx = PPC::sub_lt; SwapOps = false; break;
case PPC::PRED_GE:
case PPC::PRED_GE_MINUS:
case PPC::PRED_GE_PLUS:
SubIdx = PPC::sub_lt; SwapOps = true; break;
case PPC::PRED_GT:
case PPC::PRED_GT_MINUS:
case PPC::PRED_GT_PLUS:
SubIdx = PPC::sub_gt; SwapOps = false; break;
case PPC::PRED_LE:
case PPC::PRED_LE_MINUS:
case PPC::PRED_LE_PLUS:
SubIdx = PPC::sub_gt; SwapOps = true; break;
case PPC::PRED_UN:
case PPC::PRED_UN_MINUS:
case PPC::PRED_UN_PLUS:
SubIdx = PPC::sub_un; SwapOps = false; break;
case PPC::PRED_NU:
case PPC::PRED_NU_MINUS:
case PPC::PRED_NU_PLUS:
SubIdx = PPC::sub_un; SwapOps = true; break;
case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
}
Register FirstReg = SwapOps ? FalseReg : TrueReg,
SecondReg = SwapOps ? TrueReg : FalseReg;
// The first input register of isel cannot be r0. If it is a member
// of a register class that can be r0, then copy it first (the
// register allocator should eliminate the copy).
if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
const TargetRegisterClass *FirstRC =
MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
&PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
Register OldFirstReg = FirstReg;
FirstReg = MRI.createVirtualRegister(FirstRC);
BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
.addReg(OldFirstReg);
}
BuildMI(MBB, MI, dl, get(OpCode), DestReg)
.addReg(FirstReg).addReg(SecondReg)
.addReg(Cond[1].getReg(), 0, SubIdx);
}
static unsigned getCRBitValue(unsigned CRBit) {
unsigned Ret = 4;
if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
Ret = 3;
if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
Ret = 2;
if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
Ret = 1;
if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
Ret = 0;
assert(Ret != 4 && "Invalid CR bit register");
return Ret;
}
void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc) const {
// We can end up with self copies and similar things as a result of VSX copy
// legalization. Promote them here.
const TargetRegisterInfo *TRI = &getRegisterInfo();
if (PPC::F8RCRegClass.contains(DestReg) &&
PPC::VSRCRegClass.contains(SrcReg)) {
MCRegister SuperReg =
TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
if (VSXSelfCopyCrash && SrcReg == SuperReg)
llvm_unreachable("nop VSX copy");
DestReg = SuperReg;
} else if (PPC::F8RCRegClass.contains(SrcReg) &&
PPC::VSRCRegClass.contains(DestReg)) {
MCRegister SuperReg =
TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
if (VSXSelfCopyCrash && DestReg == SuperReg)
llvm_unreachable("nop VSX copy");
SrcReg = SuperReg;
}
// Different class register copy
if (PPC::CRBITRCRegClass.contains(SrcReg) &&
PPC::GPRCRegClass.contains(DestReg)) {
MCRegister CRReg = getCRFromCRBit(SrcReg);
BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
getKillRegState(KillSrc);
// Rotate the CR bit in the CR fields to be the least significant bit and
// then mask with 0x1 (MB = ME = 31).
BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
.addReg(DestReg, RegState::Kill)
.addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
.addImm(31)
.addImm(31);
return;
} else if (PPC::CRRCRegClass.contains(SrcReg) &&
(PPC::G8RCRegClass.contains(DestReg) ||
PPC::GPRCRegClass.contains(DestReg))) {
bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
unsigned CRNum = TRI->getEncodingValue(SrcReg);
BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
getKillRegState(KillSrc);
if (CRNum == 7)
return;
// Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
BuildMI(MBB, I, DL, get(ShCode), DestReg)
.addReg(DestReg, RegState::Kill)
.addImm(CRNum * 4 + 4)
.addImm(28)
.addImm(31);
return;
} else if (PPC::G8RCRegClass.contains(SrcReg) &&
PPC::VSFRCRegClass.contains(DestReg)) {
assert(Subtarget.hasDirectMove() &&
"Subtarget doesn't support directmove, don't know how to copy.");
BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
NumGPRtoVSRSpill++;
getKillRegState(KillSrc);
return;
} else if (PPC::VSFRCRegClass.contains(SrcReg) &&
PPC::G8RCRegClass.contains(DestReg)) {
assert(Subtarget.hasDirectMove() &&
"Subtarget doesn't support directmove, don't know how to copy.");
BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
getKillRegState(KillSrc);
return;
} else if (PPC::SPERCRegClass.contains(SrcReg) &&
PPC::GPRCRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
getKillRegState(KillSrc);
return;
} else if (PPC::GPRCRegClass.contains(SrcReg) &&
PPC::SPERCRegClass.contains(DestReg)) {
BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
getKillRegState(KillSrc);
return;
}
unsigned Opc;
if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::OR;
else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
Opc = PPC::OR8;
else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
Opc = PPC::FMR;
else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::MCRF;
else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::VOR;
else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
// There are two different ways this can be done:
// 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
// issue in VSU pipeline 0.
// 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
// can go to either pipeline.
// We'll always use xxlor here, because in practically all cases where
// copies are generated, they are close enough to some use that the
// lower-latency form is preferable.
Opc = PPC::XXLOR;
else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
PPC::VSSRCRegClass.contains(DestReg, SrcReg))
Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
else if (Subtarget.pairedVectorMemops() &&
PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
if (SrcReg > PPC::VSRp15)
SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
else
SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
if (DestReg > PPC::VSRp15)
DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
else
DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
return;
}
else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
Opc = PPC::CROR;
else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
Opc = PPC::EVOR;
else if ((PPC::ACCRCRegClass.contains(DestReg) ||
PPC::UACCRCRegClass.contains(DestReg)) &&
(PPC::ACCRCRegClass.contains(SrcReg) ||
PPC::UACCRCRegClass.contains(SrcReg))) {
// If primed, de-prime the source register, copy the individual registers
// and prime the destination if needed. The vector subregisters are
// vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
// source is primed, we need to re-prime it after the copy as well.
PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
MCRegister VSLSrcReg =
PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
MCRegister VSLDestReg =
PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
if (SrcPrimed)
BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
for (unsigned Idx = 0; Idx < 4; Idx++)
BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
.addReg(VSLSrcReg + Idx)
.addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
if (DestPrimed)
BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
if (SrcPrimed && !KillSrc)
BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
return;
} else if (PPC::G8pRCRegClass.contains(DestReg) &&
PPC::G8pRCRegClass.contains(SrcReg)) {
// TODO: Handle G8RC to G8pRC (and vice versa) copy.
unsigned DestRegIdx = DestReg - PPC::G8p0;
MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
unsigned SrcRegIdx = SrcReg - PPC::G8p0;
MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
.addReg(SrcRegSub0)
.addReg(SrcRegSub0, getKillRegState(KillSrc));
BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
.addReg(SrcRegSub1)
.addReg(SrcRegSub1, getKillRegState(KillSrc));
return;
} else
llvm_unreachable("Impossible reg-to-reg copy");
const MCInstrDesc &MCID = get(Opc);
if (MCID.getNumOperands() == 3)
BuildMI(MBB, I, DL, MCID, DestReg)
.addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
else
BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
}
unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
int OpcodeIndex = 0;
if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_Int4Spill;
} else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_Int8Spill;
} else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_Float8Spill;
} else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_Float4Spill;
} else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_SPESpill;
} else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_CRSpill;
} else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_CRBitSpill;
} else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_VRVectorSpill;
} else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_VSXVectorSpill;
} else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_VectorFloat8Spill;
} else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_VectorFloat4Spill;
} else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_SpillToVSR;
} else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
assert(Subtarget.pairedVectorMemops() &&
"Register unexpected when paired memops are disabled.");
OpcodeIndex = SOK_AccumulatorSpill;
} else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
assert(Subtarget.pairedVectorMemops() &&
"Register unexpected when paired memops are disabled.");
OpcodeIndex = SOK_UAccumulatorSpill;
} else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
assert(Subtarget.pairedVectorMemops() &&
"Register unexpected when paired memops are disabled.");
OpcodeIndex = SOK_PairedVecSpill;
} else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
OpcodeIndex = SOK_PairedG8Spill;
} else {
llvm_unreachable("Unknown regclass!");
}
return OpcodeIndex;
}
unsigned
PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
const unsigned *OpcodesForSpill = getStoreOpcodesForSpillArray();
return OpcodesForSpill[getSpillIndex(RC)];
}
unsigned
PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
const unsigned *OpcodesForSpill = getLoadOpcodesForSpillArray();
return OpcodesForSpill[getSpillIndex(RC)];
}
void PPCInstrInfo::StoreRegToStackSlot(
MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs) const {
unsigned Opcode = getStoreOpcodeForSpill(RC);
DebugLoc DL;
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setHasSpills();
NewMIs.push_back(addFrameReference(
BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
FrameIdx));
if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
PPC::CRBITRCRegClass.hasSubClassEq(RC))
FuncInfo->setSpillsCR();
if (isXFormMemOp(Opcode))
FuncInfo->setHasNonRISpills();
}
void PPCInstrInfo::storeRegToStackSlotNoUpd(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
bool isKill, int FrameIdx, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
SmallVector<MachineInstr *, 4> NewMIs;
StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
MBB.insert(MI, NewMIs[i]);
const MachineFrameInfo &MFI = MF.getFrameInfo();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FrameIdx),
MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
MFI.getObjectAlign(FrameIdx));
NewMIs.back()->addMemOperand(MF, MMO);
}
void PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register SrcReg, bool isKill,
int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
// We need to avoid a situation in which the value from a VRRC register is
// spilled using an Altivec instruction and reloaded into a VSRC register
// using a VSX instruction. The issue with this is that the VSX
// load/store instructions swap the doublewords in the vector and the Altivec
// ones don't. The register classes on the spill/reload may be different if
// the register is defined using an Altivec instruction and is then used by a
// VSX instruction.
RC = updatedRC(RC);
storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
}
void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs)
const {
unsigned Opcode = getLoadOpcodeForSpill(RC);
NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
FrameIdx));
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
PPC::CRBITRCRegClass.hasSubClassEq(RC))
FuncInfo->setSpillsCR();
if (isXFormMemOp(Opcode))
FuncInfo->setHasNonRISpills();
}
void PPCInstrInfo::loadRegFromStackSlotNoUpd(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
int FrameIdx, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction &MF = *MBB.getParent();
SmallVector<MachineInstr*, 4> NewMIs;
DebugLoc DL;
if (MI != MBB.end()) DL = MI->getDebugLoc();
PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
FuncInfo->setHasSpills();
LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
MBB.insert(MI, NewMIs[i]);
const MachineFrameInfo &MFI = MF.getFrameInfo();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FrameIdx),
MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
MFI.getObjectAlign(FrameIdx));
NewMIs.back()->addMemOperand(MF, MMO);
}
void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register DestReg, int FrameIdx,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
// We need to avoid a situation in which the value from a VRRC register is
// spilled using an Altivec instruction and reloaded into a VSRC register
// using a VSX instruction. The issue with this is that the VSX
// load/store instructions swap the doublewords in the vector and the Altivec
// ones don't. The register classes on the spill/reload may be different if
// the register is defined using an Altivec instruction and is then used by a
// VSX instruction.
RC = updatedRC(RC);
loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
}
bool PPCInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
else
// Leave the CR# the same, but invert the condition.
Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
return false;
}
// For some instructions, it is legal to fold ZERO into the RA register field.
// This function performs that fold by replacing the operand with PPC::ZERO,
// it does not consider whether the load immediate zero is no longer in use.
bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
Register Reg) const {
// A zero immediate should always be loaded with a single li.
unsigned DefOpc = DefMI.getOpcode();
if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
return false;
if (!DefMI.getOperand(1).isImm())
return false;
if (DefMI.getOperand(1).getImm() != 0)
return false;
// Note that we cannot here invert the arguments of an isel in order to fold
// a ZERO into what is presented as the second argument. All we have here
// is the condition bit, and that might come from a CR-logical bit operation.
const MCInstrDesc &UseMCID = UseMI.getDesc();
// Only fold into real machine instructions.
if (UseMCID.isPseudo())
return false;
// We need to find which of the User's operands is to be folded, that will be
// the operand that matches the given register ID.
unsigned UseIdx;
for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
if (UseMI.getOperand(UseIdx).isReg() &&
UseMI.getOperand(UseIdx).getReg() == Reg)
break;
assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
// We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
// register (which might also be specified as a pointer class kind).
if (UseInfo->isLookupPtrRegClass()) {
if (UseInfo->RegClass /* Kind */ != 1)
return false;
} else {
if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
return false;
}
// Make sure this is not tied to an output register (or otherwise
// constrained). This is true for ST?UX registers, for example, which
// are tied to their output registers.
if (UseInfo->Constraints != 0)
return false;
MCRegister ZeroReg;
if (UseInfo->isLookupPtrRegClass()) {
bool isPPC64 = Subtarget.isPPC64();
ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
} else {
ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
PPC::ZERO8 : PPC::ZERO;
}
UseMI.getOperand(UseIdx).setReg(ZeroReg);
return true;
}
// Folds zero into instructions which have a load immediate zero as an operand
// but also recognize zero as immediate zero. If the definition of the load
// has no more users it is deleted.
bool PPCInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
Register Reg, MachineRegisterInfo *MRI) const {
bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
if (MRI->use_nodbg_empty(Reg))
DefMI.eraseFromParent();
return Changed;
}
static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
I != IE; ++I)
if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
return true;
return false;
}
// We should make sure that, if we're going to predicate both sides of a
// condition (a diamond), that both sides don't define the counter register. We
// can predicate counter-decrement-based branches, but while that predicates
// the branching, it does not predicate the counter decrement. If we tried to
// merge the triangle into one predicated block, we'd decrement the counter
// twice.
bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumT, unsigned ExtraT,
MachineBasicBlock &FMBB,
unsigned NumF, unsigned ExtraF,
BranchProbability Probability) const {
return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
}
bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
// The predicated branches are identified by their type, not really by the
// explicit presence of a predicate. Furthermore, some of them can be
// predicated more than once. Because if conversion won't try to predicate
// any instruction which already claims to be predicated (by returning true
// here), always return false. In doing so, we let isPredicable() be the
// final word on whether not the instruction can be (further) predicated.
return false;
}
bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
// across them, since some FP operations may change content of FPSCR.
// TODO: Model FPSCR in PPC instruction definitions and remove the workaround
if (MI.getOpcode() == PPC::MFFS || MI.getOpcode() == PPC::MTFSF)
return true;
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
}
bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const {
unsigned OpC = MI.getOpcode();
if (OpC == PPC::BLR || OpC == PPC::BLR8) {
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
bool isPPC64 = Subtarget.isPPC64();
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
: (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
// Need add Def and Use for CTR implicit operand.
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addReg(Pred[1].getReg(), RegState::Implicit)
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
MI.setDesc(get(PPC::BCLR));
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
MI.setDesc(get(PPC::BCLRn));
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
} else {
MI.setDesc(get(PPC::BCCLR));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(Pred[0].getImm())
.add(Pred[1]);
}
return true;
} else if (OpC == PPC::B) {
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
bool isPPC64 = Subtarget.isPPC64();
MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
: (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
// Need add Def and Use for CTR implicit operand.
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addReg(Pred[1].getReg(), RegState::Implicit)
.addReg(Pred[1].getReg(), RegState::ImplicitDefine);
} else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
MI.RemoveOperand(0);
MI.setDesc(get(PPC::BC));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.add(Pred[1])
.addMBB(MBB);
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
MI.RemoveOperand(0);
MI.setDesc(get(PPC::BCn));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.add(Pred[1])
.addMBB(MBB);
} else {
MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
MI.RemoveOperand(0);
MI.setDesc(get(PPC::BCC));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(Pred[0].getImm())
.add(Pred[1])
.addMBB(MBB);
}
return true;
} else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
OpC == PPC::BCTRL8) {
if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
bool isPPC64 = Subtarget.isPPC64();
if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
: (setLR ? PPC::BCCTRL : PPC::BCCTR)));
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
} else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
: (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
} else {
MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
: (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(Pred[0].getImm())
.add(Pred[1]);
}
// Need add Def and Use for LR implicit operand.
if (setLR)
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
.addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
return true;
}
return false;
}
bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const {
assert(Pred1.size() == 2 && "Invalid PPC first predicate");
assert(Pred2.size() == 2 && "Invalid PPC second predicate");
if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
return false;
if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
return false;
// P1 can only subsume P2 if they test the same condition register.
if (Pred1[1].getReg() != Pred2[1].getReg())
return false;
PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
if (P1 == P2)
return true;
// Does P1 subsume P2, e.g. GE subsumes GT.
if (P1 == PPC::PRED_LE &&
(P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
return true;
if (P1 == PPC::PRED_GE &&
(P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
return true;
return false;
}
bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
std::vector<MachineOperand> &Pred,
bool SkipDead) const {
// Note: At the present time, the contents of Pred from this function is
// unused by IfConversion. This implementation follows ARM by pushing the
// CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
// predicate, instructions defining CTR or CTR8 are also included as
// predicate-defining instructions.
const TargetRegisterClass *RCs[] =
{ &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
&PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
bool Found = false;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
const TargetRegisterClass *RC = RCs[c];
if (MO.isReg()) {
if (MO.isDef() && RC->contains(MO.getReg())) {
Pred.push_back(MO);
Found = true;
}
} else if (MO.isRegMask()) {
for (TargetRegisterClass::iterator I = RC->begin(),
IE = RC->end(); I != IE; ++I)
if (MO.clobbersPhysReg(*I)) {
Pred.push_back(MO);
Found = true;
}
}
}
}
return Found;
}
bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &Mask,
int64_t &Value) const {
unsigned Opc = MI.getOpcode();
switch (Opc) {
default: return false;
case PPC::CMPWI:
case PPC::CMPLWI:
case PPC::CMPDI:
case PPC::CMPLDI:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = 0;
Value = MI.getOperand(2).getImm();
Mask = 0xFFFF;
return true;
case PPC::CMPW:
case PPC::CMPLW:
case PPC::CMPD:
case PPC::CMPLD:
case PPC::FCMPUS:
case PPC::FCMPUD:
SrcReg = MI.getOperand(1).getReg();
SrcReg2 = MI.getOperand(2).getReg();
Value = 0;
Mask = 0;
return true;
}
}
bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
Register SrcReg2, int64_t Mask,
int64_t Value,
const MachineRegisterInfo *MRI) const {
if (DisableCmpOpt)
return false;
int OpC = CmpInstr.getOpcode();
Register CRReg = CmpInstr.getOperand(0).getReg();
// FP record forms set CR1 based on the exception status bits, not a
// comparison with zero.
if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
return false;
const TargetRegisterInfo *TRI = &getRegisterInfo();
// The record forms set the condition register based on a signed comparison
// with zero (so says the ISA manual). This is not as straightforward as it
// seems, however, because this is always a 64-bit comparison on PPC64, even
// for instructions that are 32-bit in nature (like slw for example).
// So, on PPC32, for unsigned comparisons, we can use the record forms only
// for equality checks (as those don't depend on the sign). On PPC64,
// we are restricted to equality for unsigned 64-bit comparisons and for
// signed 32-bit comparisons the applicability is more restricted.
bool isPPC64 = Subtarget.isPPC64();
bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
// Look through copies unless that gets us to a physical register.
Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
if (ActualSrc.isVirtual())
SrcReg = ActualSrc;
// Get the unique definition of SrcReg.
MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
if (!MI) return false;
bool equalityOnly = false;
bool noSub = false;
if (isPPC64) {
if (is32BitSignedCompare) {
// We can perform this optimization only if MI is sign-extending.
if (isSignExtended(*MI))
noSub = true;
else
return false;
} else if (is32BitUnsignedCompare) {
// We can perform this optimization, equality only, if MI is
// zero-extending.
if (isZeroExtended(*MI)) {
noSub = true;
equalityOnly = true;
} else
return false;
} else
equalityOnly = is64BitUnsignedCompare;
} else
equalityOnly = is32BitUnsignedCompare;
if (equalityOnly) {
// We need to check the uses of the condition register in order to reject
// non-equality comparisons.
for (MachineRegisterInfo::use_instr_iterator
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
I != IE; ++I) {
MachineInstr *UseMI = &*I;
if (UseMI->getOpcode() == PPC::BCC) {
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
unsigned PredCond = PPC::getPredicateCondition(Pred);
// We ignore hint bits when checking for non-equality comparisons.
if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
return false;
} else if (UseMI->getOpcode() == PPC::ISEL ||
UseMI->getOpcode() == PPC::ISEL8) {
unsigned SubIdx = UseMI->getOperand(3).getSubReg();
if (SubIdx != PPC::sub_eq)
return false;
} else
return false;
}
}
MachineBasicBlock::iterator I = CmpInstr;
// Scan forward to find the first use of the compare.
for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
++I) {
bool FoundUse = false;
for (MachineRegisterInfo::use_instr_iterator
J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
J != JE; ++J)
if (&*J == &*I) {
FoundUse = true;
break;
}
if (FoundUse)
break;
}
SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
// There are two possible candidates which can be changed to set CR[01].
// One is MI, the other is a SUB instruction.
// For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
MachineInstr *Sub = nullptr;
if (SrcReg2 != 0)
// MI is not a candidate for CMPrr.
MI = nullptr;
// FIXME: Conservatively refuse to convert an instruction which isn't in the
// same BB as the comparison. This is to allow the check below to avoid calls
// (and other explicit clobbers); instead we should really check for these
// more explicitly (in at least a few predecessors).
else if (MI->getParent() != CmpInstr.getParent())
return false;
else if (Value != 0) {
// The record-form instructions set CR bit based on signed comparison
// against 0. We try to convert a compare against 1 or -1 into a compare
// against 0 to exploit record-form instructions. For example, we change
// the condition "greater than -1" into "greater than or equal to 0"
// and "less than 1" into "less than or equal to 0".
// Since we optimize comparison based on a specific branch condition,
// we don't optimize if condition code is used by more than once.
if (equalityOnly || !MRI->hasOneUse(CRReg))
return false;
MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
if (UseMI->getOpcode() != PPC::BCC)
return false;
PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
unsigned PredCond = PPC::getPredicateCondition(Pred);
unsigned PredHint = PPC::getPredicateHint(Pred);
int16_t Immed = (int16_t)Value;
// When modifying the condition in the predicate, we propagate hint bits
// from the original predicate to the new one.
if (Immed == -1 && PredCond == PPC::PRED_GT)
// We convert "greater than -1" into "greater than or equal to 0",
// since we are assuming signed comparison by !equalityOnly
Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
else if (Immed == -1 && PredCond == PPC::PRED_LE)
// We convert "less than or equal to -1" into "less than 0".
Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
else if (Immed == 1 && PredCond == PPC::PRED_LT)
// We convert "less than 1" into "less than or equal to 0".
Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
else if (Immed == 1 && PredCond == PPC::PRED_GE)
// We convert "greater than or equal to 1" into "greater than 0".
Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
else
return false;
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)), Pred));
}
// Search for Sub.
--I;
// Get ready to iterate backward from CmpInstr.
MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
for (; I != E && !noSub; --I) {
const MachineInstr &Instr = *I;
unsigned IOpC = Instr.getOpcode();
if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
Instr.readsRegister(PPC::CR0, TRI)))
// This instruction modifies or uses the record condition register after
// the one we want to change. While we could do this transformation, it
// would likely not be profitable. This transformation removes one
// instruction, and so even forcing RA to generate one move probably
// makes it unprofitable.
return false;
// Check whether CmpInstr can be made redundant by the current instruction.
if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
(IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
((Instr.getOperand(1).getReg() == SrcReg &&
Instr.getOperand(2).getReg() == SrcReg2) ||
(Instr.getOperand(1).getReg() == SrcReg2 &&
Instr.getOperand(2).getReg() == SrcReg))) {
Sub = &*I;
break;
}
if (I == B)
// The 'and' is below the comparison instruction.
return false;
}
// Return false if no candidates exist.
if (!MI && !Sub)
return false;
// The single candidate is called MI.
if (!MI) MI = Sub;
int NewOpC = -1;
int MIOpC = MI->getOpcode();
if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
NewOpC = MIOpC;
else {
NewOpC = PPC::getRecordFormOpcode(MIOpC);
if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
NewOpC = MIOpC;
}
// FIXME: On the non-embedded POWER architectures, only some of the record
// forms are fast, and we should use only the fast ones.
// The defining instruction has a record form (or is already a record
// form). It is possible, however, that we'll need to reverse the condition
// code of the users.
if (NewOpC == -1)
return false;
// This transformation should not be performed if `nsw` is missing and is not
// `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
// CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
// CRReg can reflect if compared values are equal, this optz is still valid.
if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
Sub && !Sub->getFlag(MachineInstr::NoSWrap))
return false;
// If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
// needs to be updated to be based on SUB. Push the condition code
// operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
// condition code of these operands will be modified.
// Here, Value == 0 means we haven't converted comparison against 1 or -1 to
// comparison against 0, which may modify predicate.
bool ShouldSwap = false;
if (Sub && Value == 0) {
ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
Sub->getOperand(2).getReg() == SrcReg;
// The operands to subf are the opposite of sub, so only in the fixed-point
// case, invert the order.
ShouldSwap = !ShouldSwap;
}
if (ShouldSwap)
for (MachineRegisterInfo::use_instr_iterator
I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
I != IE; ++I) {
MachineInstr *UseMI = &*I;
if (UseMI->getOpcode() == PPC::BCC) {
PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
unsigned PredCond = PPC::getPredicateCondition(Pred);
assert((!equalityOnly ||
PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
"Invalid predicate for equality-only optimization");
(void)PredCond; // To suppress warning in release build.
PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
PPC::getSwappedPredicate(Pred)));
} else if (UseMI->getOpcode() == PPC::ISEL ||
UseMI->getOpcode() == PPC::ISEL8) {
unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
"Invalid CR bit for equality-only optimization");
if (NewSubReg == PPC::sub_lt)
NewSubReg = PPC::sub_gt;
else if (NewSubReg == PPC::sub_gt)
NewSubReg = PPC::sub_lt;
SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
NewSubReg));
} else // We need to abort on a user we don't understand.
return false;
}
assert(!(Value != 0 && ShouldSwap) &&
"Non-zero immediate support and ShouldSwap"
"may conflict in updating predicate");
// Create a new virtual register to hold the value of the CR set by the
// record-form instruction. If the instruction was not previously in
// record form, then set the kill flag on the CR.
CmpInstr.eraseFromParent();
MachineBasicBlock::iterator MII = MI;
BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
get(TargetOpcode::COPY), CRReg)
.addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
// Even if CR0 register were dead before, it is alive now since the
// instruction we just built uses it.
MI->clearRegisterDeads(PPC::CR0);
if (MIOpC != NewOpC) {
// We need to be careful here: we're replacing one instruction with
// another, and we need to make sure that we get all of the right
// implicit uses and defs. On the other hand, the caller may be holding
// an iterator to this instruction, and so we can't delete it (this is
// specifically the case if this is the instruction directly after the
// compare).
// Rotates are expensive instructions. If we're emitting a record-form
// rotate that can just be an andi/andis, we should just emit that.
if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
Register GPRRes = MI->getOperand(0).getReg();
int64_t SH = MI->getOperand(2).getImm();
int64_t MB = MI->getOperand(3).getImm();
int64_t ME = MI->getOperand(4).getImm();
// We can only do this if both the start and end of the mask are in the
// same halfword.
bool MBInLoHWord = MB >= 16;
bool MEInLoHWord = ME >= 16;
uint64_t Mask = ~0LLU;
if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
// The mask value needs to shift right 16 if we're emitting andis.
Mask >>= MBInLoHWord ? 0 : 16;
NewOpC = MIOpC == PPC::RLWINM
? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
: (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
} else if (MRI->use_empty(GPRRes) && (ME == 31) &&
(ME - MB + 1 == SH) && (MB >= 16)) {
// If we are rotating by the exact number of bits as are in the mask
// and the mask is in the least significant bits of the register,
// that's just an andis. (as long as the GPR result has no uses).
Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
Mask >>= 16;
NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
}
// If we've set the mask, we can transform.
if (Mask != ~0LLU) {
MI->RemoveOperand(4);
MI->RemoveOperand(3);
MI->getOperand(2).setImm(Mask);
NumRcRotatesConvertedToRcAnd++;
}
} else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
int64_t MB = MI->getOperand(3).getImm();
if (MB >= 48) {
uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
NewOpC = PPC::ANDI8_rec;
MI->RemoveOperand(3);
MI->getOperand(2).setImm(Mask);
NumRcRotatesConvertedToRcAnd++;
}
}
const MCInstrDesc &NewDesc = get(NewOpC);
MI->setDesc(NewDesc);
if (NewDesc.ImplicitDefs)
for (const MCPhysReg *ImpDefs = NewDesc.getImplicitDefs();
*ImpDefs; ++ImpDefs)
if (!MI->definesRegister(*ImpDefs))
MI->addOperand(*MI->getParent()->getParent(),
MachineOperand::CreateReg(*ImpDefs, true, true));
if (NewDesc.ImplicitUses)
for (const MCPhysReg *ImpUses = NewDesc.getImplicitUses();
*ImpUses; ++ImpUses)
if (!MI->readsRegister(*ImpUses))
MI->addOperand(*MI->getParent()->getParent(),
MachineOperand::CreateReg(*ImpUses, false, true));
}
assert(MI->definesRegister(PPC::CR0) &&
"Record-form instruction does not define cr0?");
// Modify the condition code of operands in OperandsToUpdate.
// Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
// be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
return true;
}
bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const {
const MachineOperand *BaseOp;
OffsetIsScalable = false;
if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
return false;
BaseOps.push_back(BaseOp);
return true;
}
static bool isLdStSafeToCluster(const MachineInstr &LdSt,
const TargetRegisterInfo *TRI) {
// If this is a volatile load/store, don't mess with it.
if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
return false;
if (LdSt.getOperand(2).isFI())
return true;
assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
// Can't cluster if the instruction modifies the base register
// or it is update form. e.g. ld r2,3(r2)
if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
return false;
return true;
}
// Only cluster instruction pair that have the same opcode, and they are
// clusterable according to PowerPC specification.
static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
const PPCSubtarget &Subtarget) {
switch (FirstOpc) {
default:
return false;
case PPC::STD:
case PPC::STFD:
case PPC::STXSD:
case PPC::DFSTOREf64:
return FirstOpc == SecondOpc;
// PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
// 32bit and 64bit instruction selection. They are clusterable pair though
// they are different opcode.
case PPC::STW:
case PPC::STW8:
return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
}
}
bool PPCInstrInfo::shouldClusterMemOps(
ArrayRef<const MachineOperand *> BaseOps1,
ArrayRef<const MachineOperand *> BaseOps2, unsigned NumLoads,
unsigned NumBytes) const {
assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
const MachineOperand &BaseOp1 = *BaseOps1.front();
const MachineOperand &BaseOp2 = *BaseOps2.front();
assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
"Only base registers and frame indices are supported.");
// The NumLoads means the number of loads that has been clustered.
// Don't cluster memory op if there are already two ops clustered at least.
if (NumLoads > 2)
return false;
// Cluster the load/store only when they have the same base
// register or FI.
if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
(BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
(BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
return false;
// Check if the load/store are clusterable according to the PowerPC
// specification.
const MachineInstr &FirstLdSt = *BaseOp1.getParent();
const MachineInstr &SecondLdSt = *BaseOp2.getParent();
unsigned FirstOpc = FirstLdSt.getOpcode();
unsigned SecondOpc = SecondLdSt.getOpcode();
const TargetRegisterInfo *TRI = &getRegisterInfo();
// Cluster the load/store only when they have the same opcode, and they are
// clusterable opcode according to PowerPC specification.
if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
return false;
// Can't cluster load/store that have ordered or volatile memory reference.
if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
!isLdStSafeToCluster(SecondLdSt, TRI))
return false;
int64_t Offset1 = 0, Offset2 = 0;
unsigned Width1 = 0, Width2 = 0;
const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
!getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
Width1 != Width2)
return false;
assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
"getMemOperandWithOffsetWidth return incorrect base op");
// The caller should already have ordered FirstMemOp/SecondMemOp by offset.
assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
return Offset1 + Width1 == Offset2;
}
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
} else if (Opcode == TargetOpcode::STACKMAP) {
StackMapOpers Opers(&MI);
return Opers.getNumPatchBytes();
} else if (Opcode == TargetOpcode::PATCHPOINT) {
PatchPointOpers Opers(&MI);
return Opers.getNumPatchBytes();
} else {
return get(Opcode).getSize();
}
}
std::pair<unsigned, unsigned>
PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
const unsigned Mask = PPCII::MO_ACCESS_MASK;
return std::make_pair(TF & Mask, TF & ~Mask);
}
ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace PPCII;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_LO, "ppc-lo"},
{MO_HA, "ppc-ha"},
{MO_TPREL_LO, "ppc-tprel-lo"},
{MO_TPREL_HA, "ppc-tprel-ha"},
{MO_DTPREL_LO, "ppc-dtprel-lo"},
{MO_TLSLD_LO, "ppc-tlsld-lo"},
{MO_TOC_LO, "ppc-toc-lo"},
{MO_TLS, "ppc-tls"}};
return makeArrayRef(TargetFlags);
}
ArrayRef<std::pair<unsigned, const char *>>
PPCInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
using namespace PPCII;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_PLT, "ppc-plt"},
{MO_PIC_FLAG, "ppc-pic"},
{MO_PCREL_FLAG, "ppc-pcrel"},
{MO_GOT_FLAG, "ppc-got"},
{MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
{MO_TLSGD_FLAG, "ppc-tlsgd"},
{MO_TLSLD_FLAG, "ppc-tlsld"},
{MO_TPREL_FLAG, "ppc-tprel"},
{MO_TLSGDM_FLAG, "ppc-tlsgdm"},
{MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
{MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
{MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"}};
return makeArrayRef(TargetFlags);
}
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
// The VSX versions have the advantage of a full 64-register target whereas
// the FP ones have the advantage of lower latency and higher throughput. So
// what we are after is using the faster instructions in low register pressure
// situations and using the larger register file in high register pressure
// situations.
bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
unsigned UpperOpcode, LowerOpcode;
switch (MI.getOpcode()) {
case PPC::DFLOADf32:
UpperOpcode = PPC::LXSSP;
LowerOpcode = PPC::LFS;
break;
case PPC::DFLOADf64:
UpperOpcode = PPC::LXSD;
LowerOpcode = PPC::LFD;
break;
case PPC::DFSTOREf32:
UpperOpcode = PPC::STXSSP;
LowerOpcode = PPC::STFS;
break;
case PPC::DFSTOREf64:
UpperOpcode = PPC::STXSD;
LowerOpcode = PPC::STFD;
break;
case PPC::XFLOADf32:
UpperOpcode = PPC::LXSSPX;
LowerOpcode = PPC::LFSX;
break;
case PPC::XFLOADf64:
UpperOpcode = PPC::LXSDX;
LowerOpcode = PPC::LFDX;
break;
case PPC::XFSTOREf32:
UpperOpcode = PPC::STXSSPX;
LowerOpcode = PPC::STFSX;
break;
case PPC::XFSTOREf64:
UpperOpcode = PPC::STXSDX;
LowerOpcode = PPC::STFDX;
break;
case PPC::LIWAX:
UpperOpcode = PPC::LXSIWAX;
LowerOpcode = PPC::LFIWAX;
break;
case PPC::LIWZX:
UpperOpcode = PPC::LXSIWZX;
LowerOpcode = PPC::LFIWZX;
break;
case PPC::STIWX:
UpperOpcode = PPC::STXSIWX;
LowerOpcode = PPC::STFIWX;
break;
default:
llvm_unreachable("Unknown Operation!");
}
Register TargetReg = MI.getOperand(0).getReg();
unsigned Opcode;
if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
(TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
Opcode = LowerOpcode;
else
Opcode = UpperOpcode;
MI.setDesc(get(Opcode));
return true;
}
static bool isAnImmediateOperand(const MachineOperand &MO) {
return MO.isCPI() || MO.isGlobal() || MO.isImm();
}
bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
auto &MBB = *MI.getParent();
auto DL = MI.getDebugLoc();
switch (MI.getOpcode()) {
case PPC::BUILD_UACC: {
MCRegister ACC = MI.getOperand(0).getReg();
MCRegister UACC = MI.getOperand(1).getReg();
if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
// FIXME: This can easily be improved to look up to the top of the MBB
// to see if the inputs are XXLOR's. If they are and SrcReg is killed,
// we can just re-target any such XXLOR's to DstVSR + offset.
for (int VecNo = 0; VecNo < 4; VecNo++)
BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
.addReg(SrcVSR + VecNo)
.addReg(SrcVSR + VecNo);
}
// BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
// So after building the 4 copies, we can replace the BUILD_UACC instruction
// with a NOP.
LLVM_FALLTHROUGH;
}
case PPC::KILL_PAIR: {
MI.setDesc(get(PPC::UNENCODED_NOP));
MI.RemoveOperand(1);
MI.RemoveOperand(0);
return true;
}
case TargetOpcode::LOAD_STACK_GUARD: {
assert(Subtarget.isTargetLinux() &&
"Only Linux target is expected to contain LOAD_STACK_GUARD");
const int64_t Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(Offset)
.addReg(Reg);
return true;
}
case PPC::DFLOADf32:
case PPC::DFLOADf64:
case PPC::DFSTOREf32:
case PPC::DFSTOREf64: {
assert(Subtarget.hasP9Vector() &&
"Invalid D-Form Pseudo-ops on Pre-P9 target.");
assert(MI.getOperand(2).isReg() &&
isAnImmediateOperand(MI.getOperand(1)) &&
"D-form op must have register and immediate operands");
return expandVSXMemPseudo(MI);
}
case PPC::XFLOADf32:
case PPC::XFSTOREf32:
case PPC::LIWAX:
case PPC::LIWZX:
case PPC::STIWX: {
assert(Subtarget.hasP8Vector() &&
"Invalid X-Form Pseudo-ops on Pre-P8 target.");
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
"X-form op must have register and register operands");
return expandVSXMemPseudo(MI);
}
case PPC::XFLOADf64:
case PPC::XFSTOREf64: {
assert(Subtarget.hasVSX() &&
"Invalid X-Form Pseudo-ops on target that has no VSX.");
assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
"X-form op must have register and register operands");
return expandVSXMemPseudo(MI);
}
case PPC::SPILLTOVSR_LD: {
Register TargetReg = MI.getOperand(0).getReg();
if (PPC::VSFRCRegClass.contains(TargetReg)) {
MI.setDesc(get(PPC::DFLOADf64));
return expandPostRAPseudo(MI);
}
else
MI.setDesc(get(PPC::LD));
return true;
}
case PPC::SPILLTOVSR_ST: {
Register SrcReg = MI.getOperand(0).getReg();
if (PPC::VSFRCRegClass.contains(SrcReg)) {
NumStoreSPILLVSRRCAsVec++;
MI.setDesc(get(PPC::DFSTOREf64));
return expandPostRAPseudo(MI);
} else {
NumStoreSPILLVSRRCAsGpr++;
MI.setDesc(get(PPC::STD));
}
return true;
}
case PPC::SPILLTOVSR_LDX: {
Register TargetReg = MI.getOperand(0).getReg();
if (PPC::VSFRCRegClass.contains(TargetReg))
MI.setDesc(get(PPC::LXSDX));
else
MI.setDesc(get(PPC::LDX));
return true;
}
case PPC::SPILLTOVSR_STX: {
Register SrcReg = MI.getOperand(0).getReg();
if (PPC::VSFRCRegClass.contains(SrcReg)) {
NumStoreSPILLVSRRCAsVec++;
MI.setDesc(get(PPC::STXSDX));
} else {
NumStoreSPILLVSRRCAsGpr++;
MI.setDesc(get(PPC::STDX));
}
return true;
}
// FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
case PPC::CFENCE8: {
auto Val = MI.getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(PPC::CMPD), PPC::CR7).addReg(Val).addReg(Val);
BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
.addImm(PPC::PRED_NE_MINUS)
.addReg(PPC::CR7)
.addImm(1);
MI.setDesc(get(PPC::ISYNC));
MI.RemoveOperand(0);
return true;
}
}
return false;
}
// Essentially a compile-time implementation of a compare->isel sequence.
// It takes two constants to compare, along with the true/false registers
// and the comparison type (as a subreg to a CR field) and returns one
// of the true/false registers, depending on the comparison results.
static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
unsigned TrueReg, unsigned FalseReg,
unsigned CRSubReg) {
// Signed comparisons. The immediates are assumed to be sign-extended.
if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
switch (CRSubReg) {
default: llvm_unreachable("Unknown integer comparison type.");
case PPC::sub_lt:
return Imm1 < Imm2 ? TrueReg : FalseReg;
case PPC::sub_gt:
return Imm1 > Imm2 ? TrueReg : FalseReg;
case PPC::sub_eq:
return Imm1 == Imm2 ? TrueReg : FalseReg;
}
}
// Unsigned comparisons.
else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
switch (CRSubReg) {
default: llvm_unreachable("Unknown integer comparison type.");
case PPC::sub_lt:
return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
case PPC::sub_gt:
return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
case PPC::sub_eq:
return Imm1 == Imm2 ? TrueReg : FalseReg;
}
}
return PPC::NoRegister;
}
void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
unsigned OpNo,
int64_t Imm) const {
assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
// Replace the REG with the Immediate.
Register InUseReg = MI.getOperand(OpNo).getReg();
MI.getOperand(OpNo).ChangeToImmediate(Imm);
// We need to make sure that the MI didn't have any implicit use
// of this REG any more. We don't call MI.implicit_operands().empty() to
// return early, since MI's MCID might be changed in calling context, as a
// result its number of explicit operands may be changed, thus the begin of
// implicit operand is changed.
const TargetRegisterInfo *TRI = &getRegisterInfo();
int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, false, TRI);
if (UseOpIdx >= 0) {
MachineOperand &MO = MI.getOperand(UseOpIdx);
if (MO.isImplicit())
// The operands must always be in the following order:
// - explicit reg defs,
// - other explicit operands (reg uses, immediates, etc.),
// - implicit reg defs
// - implicit reg uses
// Therefore, removing the implicit operand won't change the explicit
// operands layout.
MI.RemoveOperand(UseOpIdx);
}
}
// Replace an instruction with one that materializes a constant (and sets
// CR0 if the original instruction was a record-form instruction).
void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
const LoadImmediateInfo &LII) const {
// Remove existing operands.
int OperandToKeep = LII.SetCR ? 1 : 0;
for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
MI.RemoveOperand(i);
// Replace the instruction.
if (LII.SetCR) {
MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
// Set the immediate.
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
return;
}
else
MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
// Set the immediate.
MachineInstrBuilder(*MI.getParent()->getParent(), MI)
.addImm(LII.Imm);
}
MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
bool &SeenIntermediateUse) const {
assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
"Should be called after register allocation.");
const TargetRegisterInfo *TRI = &getRegisterInfo();
MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
It++;
SeenIntermediateUse = false;
for (; It != E; ++It) {
if (It->modifiesRegister(Reg, TRI))
return &*It;
if (It->readsRegister(Reg, TRI))
SeenIntermediateUse = true;
}
return nullptr;
}
MachineInstr *PPCInstrInfo::getForwardingDefMI(
MachineInstr &MI,
unsigned &OpNoForForwarding,
bool &SeenIntermediateUse) const {
OpNoForForwarding = ~0U;
MachineInstr *DefMI = nullptr;
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
const TargetRegisterInfo *TRI = &getRegisterInfo();
// If we're in SSA, get the defs through the MRI. Otherwise, only look
// within the basic block to see if the register is defined using an
// LI/LI8/ADDI/ADDI8.
if (MRI->isSSA()) {
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
if (!MI.getOperand(i).isReg())
continue;
Register Reg = MI.getOperand(i).getReg();
if (!Register::isVirtualRegister(Reg))
continue;
unsigned TrueReg = TRI->lookThruCopyLike(Reg, MRI);
if (Register::isVirtualRegister(TrueReg)) {
DefMI = MRI->getVRegDef(TrueReg);
if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8 ||
DefMI->getOpcode() == PPC::ADDI ||
DefMI->getOpcode() == PPC::ADDI8) {
OpNoForForwarding = i;
// The ADDI and LI operand maybe exist in one instruction at same
// time. we prefer to fold LI operand as LI only has one Imm operand
// and is more possible to be converted. So if current DefMI is
// ADDI/ADDI8, we continue to find possible LI/LI8.
if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
break;
}
}
}
} else {
// Looking back through the definition for each operand could be expensive,
// so exit early if this isn't an instruction that either has an immediate
// form or is already an immediate form that we can handle.
ImmInstrInfo III;
unsigned Opc = MI.getOpcode();
bool ConvertibleImmForm =
Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
Opc == PPC::RLWINM8_rec;
bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
? isVFRegister(MI.getOperand(0).getReg())
: false;
if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
return nullptr;
// Don't convert or %X, %Y, %Y since that's just a register move.
if ((Opc == PPC::OR || Opc == PPC::OR8) &&
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
return nullptr;
for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
MachineOperand &MO = MI.getOperand(i);
SeenIntermediateUse = false;
if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
Register Reg = MI.getOperand(i).getReg();
// If we see another use of this reg between the def and the MI,
// we want to flat it so the def isn't deleted.
MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
if (DefMI) {
// Is this register defined by some form of add-immediate (including
// load-immediate) within this basic block?
switch (DefMI->getOpcode()) {
default:
break;
case PPC::LI:
case PPC::LI8:
case PPC::ADDItocL:
case PPC::ADDI:
case PPC::ADDI8:
OpNoForForwarding = i;
return DefMI;
}
}
}
}
}
return OpNoForForwarding == ~0U ? nullptr : DefMI;
}
unsigned PPCInstrInfo::getSpillTarget() const {
// With P10, we may need to spill paired vector registers or accumulator
// registers. MMA implies paired vectors, so we can just check that.
bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
return IsP10Variant ? 2 : Subtarget.hasP9Vector() ? 1 : 0;
}
const unsigned *PPCInstrInfo::getStoreOpcodesForSpillArray() const {
return StoreSpillOpcodesArray[getSpillTarget()];
}
const unsigned *PPCInstrInfo::getLoadOpcodesForSpillArray() const {
return LoadSpillOpcodesArray[getSpillTarget()];
}
void PPCInstrInfo::fixupIsDeadOrKill(MachineInstr *StartMI, MachineInstr *EndMI,
unsigned RegNo) const {
// Conservatively clear kill flag for the register if the instructions are in
// different basic blocks and in SSA form, because the kill flag may no longer
// be right. There is no need to bother with dead flags since defs with no
// uses will be handled by DCE.
MachineRegisterInfo &MRI = StartMI->getParent()->getParent()->getRegInfo();
if (MRI.isSSA() && (StartMI->getParent() != EndMI->getParent())) {
MRI.clearKillFlags(RegNo);
return;
}
// Instructions between [StartMI, EndMI] should be in same basic block.
assert((StartMI->getParent() == EndMI->getParent()) &&
"Instructions are not in same basic block");
// If before RA, StartMI may be def through COPY, we need to adjust it to the
// real def. See function getForwardingDefMI.
if (MRI.isSSA()) {
bool Reads, Writes;
std::tie(Reads, Writes) = StartMI->readsWritesVirtualRegister(RegNo);
if (!Reads && !Writes) {
assert(Register::isVirtualRegister(RegNo) &&
"Must be a virtual register");
// Get real def and ignore copies.
StartMI = MRI.getVRegDef(RegNo);
}
}
bool IsKillSet = false;
auto clearOperandKillInfo = [=] (MachineInstr &MI, unsigned Index) {
MachineOperand &MO = MI.getOperand(Index);
if (MO.isReg() && MO.isUse() && MO.isKill() &&
getRegisterInfo().regsOverlap(MO.getReg(), RegNo))
MO.setIsKill(false);
};
// Set killed flag for EndMI.
// No need to do anything if EndMI defines RegNo.
int UseIndex =
EndMI->findRegisterUseOperandIdx(RegNo, false, &getRegisterInfo());
if (UseIndex != -1) {
EndMI->getOperand(UseIndex).setIsKill(true);
IsKillSet = true;
// Clear killed flag for other EndMI operands related to RegNo. In some
// upexpected cases, killed may be set multiple times for same register
// operand in same MI.
for (int i = 0, e = EndMI->getNumOperands(); i != e; ++i)
if (i != UseIndex)
clearOperandKillInfo(*EndMI, i);
}
// Walking the inst in reverse order (EndMI -> StartMI].
MachineBasicBlock::reverse_iterator It = *EndMI;
MachineBasicBlock::reverse_iterator E = EndMI->getParent()->rend();
// EndMI has been handled above, skip it here.
It++;
MachineOperand *MO = nullptr;
for (; It != E; ++It) {
// Skip insturctions which could not be a def/use of RegNo.
if (It->isDebugInstr() || It->isPosition())
continue;
// Clear killed flag for all It operands related to RegNo. In some
// upexpected cases, killed may be set multiple times for same register
// operand in same MI.
for (int i = 0, e = It->getNumOperands(); i != e; ++i)
clearOperandKillInfo(*It, i);
// If killed is not set, set killed for its last use or set dead for its def
// if no use found.
if (!IsKillSet) {
if ((MO = It->findRegisterUseOperand(RegNo, false, &getRegisterInfo()))) {
// Use found, set it killed.
IsKillSet = true;
MO->setIsKill(true);
continue;
} else if ((MO = It->findRegisterDefOperand(RegNo, false, true,
&getRegisterInfo()))) {
// No use found, set dead for its def.
assert(&*It == StartMI && "No new def between StartMI and EndMI.");
MO->setIsDead(true);
break;
}
}
if ((&*It) == StartMI)
break;
}
// Ensure RegMo liveness is killed after EndMI.
assert((IsKillSet || (MO && MO->isDead())) &&
"RegNo should be killed or dead");
}
// This opt tries to convert the following imm form to an index form to save an
// add for stack variables.
// Return false if no such pattern found.
//
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
// ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
// Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
//
// can be converted to:
//
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
// Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
//
// In order to eliminate ADD instr, make sure that:
// 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
// new ADDI instr and ADDI can only take int16 Imm.
// 2: ToBeChangedReg must be killed in ADD instr and there is no other use
// between ADDI and ADD instr since its original def in ADDI will be changed
// in new ADDI instr. And also there should be no new def for it between
// ADD and Imm instr as ToBeChangedReg will be used in Index instr.
// 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
// between ADD and Imm instr since ADD instr will be eliminated.
// 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
// moved to Index instr.
bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
bool PostRA = !MRI->isSSA();
// Do this opt after PEI which is after RA. The reason is stack slot expansion
// in PEI may expose such opportunities since in PEI, stack slot offsets to
// frame base(OffsetAddi) are determined.
if (!PostRA)
return false;
unsigned ToBeDeletedReg = 0;
int64_t OffsetImm = 0;
unsigned XFormOpcode = 0;
ImmInstrInfo III;
// Check if Imm instr meets requirement.
if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
III))
return false;
bool OtherIntermediateUse = false;
MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
// Exit if there is other use between ADD and Imm instr or no def found.
if (OtherIntermediateUse || !ADDMI)
return false;
// Check if ADD instr meets requirement.
if (!isADDInstrEligibleForFolding(*ADDMI))
return false;
unsigned ScaleRegIdx = 0;
int64_t OffsetAddi = 0;
MachineInstr *ADDIMI = nullptr;
// Check if there is a valid ToBeChangedReg in ADDMI.
// 1: It must be killed.
// 2: Its definition must be a valid ADDIMI.
// 3: It must satify int16 offset requirement.
if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
ScaleRegIdx = 2;
else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
ScaleRegIdx = 1;
else
return false;
assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
unsigned ToBeChangedReg = ADDIMI->getOperand(0).getReg();
unsigned ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
MachineBasicBlock::iterator End) {
for (auto It = ++Start; It != End; It++)
if (It->modifiesRegister(Reg, &getRegisterInfo()))
return true;
return false;
};
// We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
// treated as special zero when ScaleReg is R0/X0 register.
if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
(ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
return false;
// Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
// and Imm Instr.
if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
return false;
// Now start to do the transformation.
LLVM_DEBUG(dbgs() << "Replace instruction: "
<< "\n");
LLVM_DEBUG(ADDIMI->dump());
LLVM_DEBUG(ADDMI->dump());
LLVM_DEBUG(MI.dump());
LLVM_DEBUG(dbgs() << "with: "
<< "\n");
// Update ADDI instr.
ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
// Update Imm instr.
MI.setDesc(get(XFormOpcode));
MI.getOperand(III.ImmOpNo)
.ChangeToRegister(ScaleReg, false, false,
ADDMI->getOperand(ScaleRegIdx).isKill());
MI.getOperand(III.OpNoForForwarding)
.ChangeToRegister(ToBeChangedReg, false, false, true);
// Eliminate ADD instr.
ADDMI->eraseFromParent();
LLVM_DEBUG(ADDIMI->dump());
LLVM_DEBUG(MI.dump());
return true;
}
bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
int64_t &Imm) const {
unsigned Opc = ADDIMI.getOpcode();
// Exit if the instruction is not ADDI.
if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
return false;
// The operand may not necessarily be an immediate - it could be a relocation.
if (!ADDIMI.getOperand(2).isImm())
return false;
Imm = ADDIMI.getOperand(2).getImm();
return true;
}
bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
unsigned Opc = ADDMI.getOpcode();
// Exit if the instruction is not ADD.
return Opc == PPC::ADD4 || Opc == PPC::ADD8;
}
bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
unsigned &ToBeDeletedReg,
unsigned &XFormOpcode,
int64_t &OffsetImm,
ImmInstrInfo &III) const {
// Only handle load/store.
if (!MI.mayLoadOrStore())
return false;
unsigned Opc = MI.getOpcode();
XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
// Exit if instruction has no index form.
if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
return false;
// TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
if (!instrHasImmForm(XFormOpcode, isVFRegister(MI.getOperand(0).getReg()),
III, true))
return false;
if (!III.IsSummingOperands)
return false;
MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
// Only support imm operands, not relocation slots or others.
if (!ImmOperand.isImm())
return false;
assert(RegOperand.isReg() && "Instruction format is not right");
// There are other use for ToBeDeletedReg after Imm instr, can not delete it.
if (!RegOperand.isKill())
return false;
ToBeDeletedReg = RegOperand.getReg();
OffsetImm = ImmOperand.getImm();
return true;
}
bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
MachineInstr *&ADDIMI,
int64_t &OffsetAddi,
int64_t OffsetImm) const {
assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
MachineOperand &MO = ADDMI->getOperand(Index);
if (!MO.isKill())
return false;
bool OtherIntermediateUse = false;
ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
// Currently handle only one "add + Imminstr" pair case, exit if other
// intermediate use for ToBeChangedReg found.
// TODO: handle the cases where there are other "add + Imminstr" pairs
// with same offset in Imminstr which is like:
//
// ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
// ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
// Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
// ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
// Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
//
// can be converted to:
//
// new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
// (OffsetAddi + OffsetImm)
// Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
// Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
if (OtherIntermediateUse || !ADDIMI)
return false;
// Check if ADDI instr meets requirement.
if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
return false;
if (isInt<16>(OffsetAddi + OffsetImm))
return true;
return false;
}
// If this instruction has an immediate form and one of its operands is a
// result of a load-immediate or an add-immediate, convert it to
// the immediate form if the constant is in range.
bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
MachineInstr **KilledDef) const {
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
bool PostRA = !MRI->isSSA();
bool SeenIntermediateUse = true;
unsigned ForwardingOperand = ~0U;
MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
SeenIntermediateUse);
if (!DefMI)
return false;
assert(ForwardingOperand < MI.getNumOperands() &&
"The forwarding operand needs to be valid at this point");
bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
if (KilledDef && KillFwdDefMI)
*KilledDef = DefMI;
// If this is a imm instruction and its register operands is produced by ADDI,
// put the imm into imm inst directly.
if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
PPC::INSTRUCTION_LIST_END &&
transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
return true;
ImmInstrInfo III;
bool IsVFReg = MI.getOperand(0).isReg()
? isVFRegister(MI.getOperand(0).getReg())
: false;
bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
// If this is a reg+reg instruction that has a reg+imm form,
// and one of the operands is produced by an add-immediate,
// try to convert it.
if (HasImmForm &&
transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
KillFwdDefMI))
return true;
// If this is a reg+reg instruction that has a reg+imm form,
// and one of the operands is produced by LI, convert it now.
if (HasImmForm &&
transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
return true;
// If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
// can be simpified to LI.
if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
return true;
return false;
}
bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
MachineInstr **ToErase) const {
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
unsigned FoldingReg = MI.getOperand(1).getReg();
if (!Register::isVirtualRegister(FoldingReg))
return false;
MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
if (SrcMI->getOpcode() != PPC::RLWINM &&
SrcMI->getOpcode() != PPC::RLWINM_rec &&
SrcMI->getOpcode() != PPC::RLWINM8 &&
SrcMI->getOpcode() != PPC::RLWINM8_rec)
return false;
assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
"Invalid PPC::RLWINM Instruction!");
uint64_t SHSrc = SrcMI->getOperand(2).getImm();
uint64_t SHMI = MI.getOperand(2).getImm();
uint64_t MBSrc = SrcMI->getOperand(3).getImm();
uint64_t MBMI = MI.getOperand(3).getImm();
uint64_t MESrc = SrcMI->getOperand(4).getImm();
uint64_t MEMI = MI.getOperand(4).getImm();
assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
"Invalid PPC::RLWINM Instruction!");
// If MBMI is bigger than MEMI, we always can not get run of ones.
// RotatedSrcMask non-wrap:
// 0........31|32........63
// RotatedSrcMask: B---E B---E
// MaskMI: -----------|--E B------
// Result: ----- --- (Bad candidate)
//
// RotatedSrcMask wrap:
// 0........31|32........63
// RotatedSrcMask: --E B----|--E B----
// MaskMI: -----------|--E B------
// Result: --- -----|--- ----- (Bad candidate)
//
// One special case is RotatedSrcMask is a full set mask.
// RotatedSrcMask full:
// 0........31|32........63
// RotatedSrcMask: ------EB---|-------EB---
// MaskMI: -----------|--E B------
// Result: -----------|--- ------- (Good candidate)
// Mark special case.
bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
// For other MBMI > MEMI cases, just return.
if ((MBMI > MEMI) && !SrcMaskFull)
return false;
// Handle MBMI <= MEMI cases.
APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
// In MI, we only need low 32 bits of SrcMI, just consider about low 32
// bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
// while in PowerPC ISA, lowerest bit is at index 63.
APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
APInt FinalMask = RotatedSrcMask & MaskMI;
uint32_t NewMB, NewME;
bool Simplified = false;
// If final mask is 0, MI result should be 0 too.
if (FinalMask.isZero()) {
bool Is64Bit =
(MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
Simplified = true;
LLVM_DEBUG(dbgs() << "Replace Instr: ");
LLVM_DEBUG(MI.dump());
if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
// Replace MI with "LI 0"
MI.RemoveOperand(4);
MI.RemoveOperand(3);
MI.RemoveOperand(2);
MI.getOperand(1).ChangeToImmediate(0);
MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
} else {
// Replace MI with "ANDI_rec reg, 0"
MI.RemoveOperand(4);
MI.RemoveOperand(3);
MI.getOperand(2).setImm(0);
MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
if (SrcMI->getOperand(1).isKill()) {
MI.getOperand(1).setIsKill(true);
SrcMI->getOperand(1).setIsKill(false);
} else
// About to replace MI.getOperand(1), clear its kill flag.
MI.getOperand(1).setIsKill(false);
}
LLVM_DEBUG(dbgs() << "With: ");
LLVM_DEBUG(MI.dump());
} else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
NewMB <= NewME) ||
SrcMaskFull) {
// Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
// than NewME. Otherwise we get a 64 bit value after folding, but MI
// return a 32 bit value.
Simplified = true;
LLVM_DEBUG(dbgs() << "Converting Instr: ");
LLVM_DEBUG(MI.dump());
uint16_t NewSH = (SHSrc + SHMI) % 32;
MI.getOperand(2).setImm(NewSH);
// If SrcMI mask is full, no need to update MBMI and MEMI.
if (!SrcMaskFull) {
MI.getOperand(3).setImm(NewMB);
MI.getOperand(4).setImm(NewME);
}
MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
if (SrcMI->getOperand(1).isKill()) {
MI.getOperand(1).setIsKill(true);
SrcMI->getOperand(1).setIsKill(false);
} else
// About to replace MI.getOperand(1), clear its kill flag.
MI.getOperand(1).setIsKill(false);
LLVM_DEBUG(dbgs() << "To: ");
LLVM_DEBUG(MI.dump());
}
if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
!SrcMI->hasImplicitDef()) {
// If FoldingReg has no non-debug use and it has no implicit def (it
// is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
// Otherwise keep it.
*ToErase = SrcMI;
LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
LLVM_DEBUG(SrcMI->dump());
}
return Simplified;
}
bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
ImmInstrInfo &III, bool PostRA) const {
// The vast majority of the instructions would need their operand 2 replaced
// with an immediate when switching to the reg+imm form. A marked exception
// are the update form loads/stores for which a constant operand 2 would need
// to turn into a displacement and move operand 1 to the operand 2 position.
III.ImmOpNo = 2;
III.OpNoForForwarding = 2;
III.ImmWidth = 16;
III.ImmMustBeMultipleOf = 1;
III.TruncateImmTo = 0;
III.IsSummingOperands = false;
switch (Opc) {
default: return false;
case PPC::ADD4:
case PPC::ADD8:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 1;
III.IsCommutative = true;
III.IsSummingOperands = true;
III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
break;
case PPC::ADDC:
case PPC::ADDC8:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = true;
III.IsSummingOperands = true;
III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
break;
case PPC::ADDC_rec:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = true;
III.IsSummingOperands = true;
III.ImmOpcode = PPC::ADDIC_rec;
break;
case PPC::SUBFC:
case PPC::SUBFC8:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = false;
III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
break;
case PPC::CMPW:
case PPC::CMPD:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = false;
III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
break;
case PPC::CMPLW:
case PPC::CMPLD:
III.SignedImm = false;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = false;
III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
break;
case PPC::AND_rec:
case PPC::AND8_rec:
case PPC::OR:
case PPC::OR8:
case PPC::XOR:
case PPC::XOR8:
III.SignedImm = false;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = true;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::AND_rec:
III.ImmOpcode = PPC::ANDI_rec;
break;
case PPC::AND8_rec:
III.ImmOpcode = PPC::ANDI8_rec;
break;
case PPC::OR: III.ImmOpcode = PPC::ORI; break;
case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
}
break;
case PPC::RLWNM:
case PPC::RLWNM8:
case PPC::RLWNM_rec:
case PPC::RLWNM8_rec:
case PPC::SLW:
case PPC::SLW8:
case PPC::SLW_rec:
case PPC::SLW8_rec:
case PPC::SRW:
case PPC::SRW8:
case PPC::SRW_rec:
case PPC::SRW8_rec:
case PPC::SRAW:
case PPC::SRAW_rec:
III.SignedImm = false;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = false;
// This isn't actually true, but the instructions ignore any of the
// upper bits, so any immediate loaded with an LI is acceptable.
// This does not apply to shift right algebraic because a value
// out of range will produce a -1/0.
III.ImmWidth = 16;
if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
Opc == PPC::RLWNM8_rec)
III.TruncateImmTo = 5;
else
III.TruncateImmTo = 6;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
case PPC::RLWNM_rec:
III.ImmOpcode = PPC::RLWINM_rec;
break;
case PPC::RLWNM8_rec:
III.ImmOpcode = PPC::RLWINM8_rec;
break;
case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
case PPC::SLW_rec:
III.ImmOpcode = PPC::RLWINM_rec;
break;
case PPC::SLW8_rec:
III.ImmOpcode = PPC::RLWINM8_rec;
break;
case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
case PPC::SRW_rec:
III.ImmOpcode = PPC::RLWINM_rec;
break;
case PPC::SRW8_rec:
III.ImmOpcode = PPC::RLWINM8_rec;
break;
case PPC::SRAW:
III.ImmWidth = 5;
III.TruncateImmTo = 0;
III.ImmOpcode = PPC::SRAWI;
break;
case PPC::SRAW_rec:
III.ImmWidth = 5;
III.TruncateImmTo = 0;
III.ImmOpcode = PPC::SRAWI_rec;
break;
}
break;
case PPC::RLDCL:
case PPC::RLDCL_rec:
case PPC::RLDCR:
case PPC::RLDCR_rec:
case PPC::SLD:
case PPC::SLD_rec:
case PPC::SRD:
case PPC::SRD_rec:
case PPC::SRAD:
case PPC::SRAD_rec:
III.SignedImm = false;
III.ZeroIsSpecialOrig = 0;
III.ZeroIsSpecialNew = 0;
III.IsCommutative = false;
// This isn't actually true, but the instructions ignore any of the
// upper bits, so any immediate loaded with an LI is acceptable.
// This does not apply to shift right algebraic because a value
// out of range will produce a -1/0.
III.ImmWidth = 16;
if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
Opc == PPC::RLDCR_rec)
III.TruncateImmTo = 6;
else
III.TruncateImmTo = 7;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
case PPC::RLDCL_rec:
III.ImmOpcode = PPC::RLDICL_rec;
break;
case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
case PPC::RLDCR_rec:
III.ImmOpcode = PPC::RLDICR_rec;
break;
case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
case PPC::SLD_rec:
III.ImmOpcode = PPC::RLDICR_rec;
break;
case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
case PPC::SRD_rec:
III.ImmOpcode = PPC::RLDICL_rec;
break;
case PPC::SRAD:
III.ImmWidth = 6;
III.TruncateImmTo = 0;
III.ImmOpcode = PPC::SRADI;
break;
case PPC::SRAD_rec:
III.ImmWidth = 6;
III.TruncateImmTo = 0;
III.ImmOpcode = PPC::SRADI_rec;
break;
}
break;
// Loads and stores:
case PPC::LBZX:
case PPC::LBZX8:
case PPC::LHZX:
case PPC::LHZX8:
case PPC::LHAX:
case PPC::LHAX8:
case PPC::LWZX:
case PPC::LWZX8:
case PPC::LWAX:
case PPC::LDX:
case PPC::LFSX:
case PPC::LFDX:
case PPC::STBX:
case PPC::STBX8:
case PPC::STHX:
case PPC::STHX8:
case PPC::STWX:
case PPC::STWX8:
case PPC::STDX:
case PPC::STFSX:
case PPC::STFDX:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 1;
III.ZeroIsSpecialNew = 2;
III.IsCommutative = true;
III.IsSummingOperands = true;
III.ImmOpNo = 1;
III.OpNoForForwarding = 2;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
case PPC::LWAX:
III.ImmOpcode = PPC::LWA;
III.ImmMustBeMultipleOf = 4;
break;
case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
case PPC::STBX: III.ImmOpcode = PPC::STB; break;
case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
case PPC::STHX: III.ImmOpcode = PPC::STH; break;
case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
case PPC::STWX: III.ImmOpcode = PPC::STW; break;
case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
case PPC::STDX:
III.ImmOpcode = PPC::STD;
III.ImmMustBeMultipleOf = 4;
break;
case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
}
break;
case PPC::LBZUX:
case PPC::LBZUX8:
case PPC::LHZUX:
case PPC::LHZUX8:
case PPC::LHAUX:
case PPC::LHAUX8:
case PPC::LWZUX:
case PPC::LWZUX8:
case PPC::LDUX:
case PPC::LFSUX:
case PPC::LFDUX:
case PPC::STBUX:
case PPC::STBUX8:
case PPC::STHUX:
case PPC::STHUX8:
case PPC::STWUX:
case PPC::STWUX8:
case PPC::STDUX:
case PPC::STFSUX:
case PPC::STFDUX:
III.SignedImm = true;
III.ZeroIsSpecialOrig = 2;
III.ZeroIsSpecialNew = 3;
III.IsCommutative = false;
III.IsSummingOperands = true;
III.ImmOpNo = 2;
III.OpNoForForwarding = 3;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
case PPC::LDUX:
III.ImmOpcode = PPC::LDU;
III.ImmMustBeMultipleOf = 4;
break;
case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
case PPC::STDUX:
III.ImmOpcode = PPC::STDU;
III.ImmMustBeMultipleOf = 4;
break;
case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
}
break;
// Power9 and up only. For some of these, the X-Form version has access to all
// 64 VSR's whereas the D-Form only has access to the VR's. We replace those
// with pseudo-ops pre-ra and for post-ra, we check that the register loaded
// into or stored from is one of the VR registers.
case PPC::LXVX:
case PPC::LXSSPX:
case PPC::LXSDX:
case PPC::STXVX:
case PPC::STXSSPX:
case PPC::STXSDX:
case PPC::XFLOADf32:
case PPC::XFLOADf64:
case PPC::XFSTOREf32:
case PPC::XFSTOREf64:
if (!Subtarget.hasP9Vector())
return false;
III.SignedImm = true;
III.ZeroIsSpecialOrig = 1;
III.ZeroIsSpecialNew = 2;
III.IsCommutative = true;
III.IsSummingOperands = true;
III.ImmOpNo = 1;
III.OpNoForForwarding = 2;
III.ImmMustBeMultipleOf = 4;
switch(Opc) {
default: llvm_unreachable("Unknown opcode");
case PPC::LXVX:
III.ImmOpcode = PPC::LXV;
III.ImmMustBeMultipleOf = 16;
break;
case PPC::LXSSPX:
if (PostRA) {
if (IsVFReg)
III.ImmOpcode = PPC::LXSSP;
else {
III.ImmOpcode = PPC::LFS;
III.ImmMustBeMultipleOf = 1;
}
break;
}
LLVM_FALLTHROUGH;
case PPC::XFLOADf32:
III.ImmOpcode = PPC::DFLOADf32;
break;
case PPC::LXSDX:
if (PostRA) {
if (IsVFReg)
III.ImmOpcode = PPC::LXSD;
else {
III.ImmOpcode = PPC::LFD;
III.ImmMustBeMultipleOf = 1;
}
break;
}
LLVM_FALLTHROUGH;
case PPC::XFLOADf64:
III.ImmOpcode = PPC::DFLOADf64;
break;
case PPC::STXVX:
III.ImmOpcode = PPC::STXV;
III.ImmMustBeMultipleOf = 16;
break;
case PPC::STXSSPX:
if (PostRA) {
if (IsVFReg)
III.ImmOpcode = PPC::STXSSP;
else {
III.ImmOpcode = PPC::STFS;
III.ImmMustBeMultipleOf = 1;
}
break;
}
LLVM_FALLTHROUGH;
case PPC::XFSTOREf32:
III.ImmOpcode = PPC::DFSTOREf32;
break;
case PPC::STXSDX:
if (PostRA) {
if (IsVFReg)
III.ImmOpcode = PPC::STXSD;
else {
III.ImmOpcode = PPC::STFD;
III.ImmMustBeMultipleOf = 1;
}
break;
}
LLVM_FALLTHROUGH;
case PPC::XFSTOREf64:
III.ImmOpcode = PPC::DFSTOREf64;
break;
}
break;
}
return true;
}
// Utility function for swaping two arbitrary operands of an instruction.
static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
assert(Op1 != Op2 && "Cannot swap operand with itself.");
unsigned MaxOp = std::max(Op1, Op2);
unsigned MinOp = std::min(Op1, Op2);
MachineOperand MOp1 = MI.getOperand(MinOp);
MachineOperand MOp2 = MI.getOperand(MaxOp);
MI.RemoveOperand(std::max(Op1, Op2));
MI.RemoveOperand(std::min(Op1, Op2));
// If the operands we are swapping are the two at the end (the common case)
// we can just remove both and add them in the opposite order.
if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
MI.addOperand(MOp2);
MI.addOperand(MOp1);
} else {
// Store all operands in a temporary vector, remove them and re-add in the
// right order.
SmallVector<MachineOperand, 2> MOps;
unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
MOps.push_back(MI.getOperand(i));
MI.RemoveOperand(i);
}
// MOp2 needs to be added next.
MI.addOperand(MOp2);
// Now add the rest.
for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
if (i == MaxOp)
MI.addOperand(MOp1);
else {
MI.addOperand(MOps.back());
MOps.pop_back();
}
}
}
}
// Check if the 'MI' that has the index OpNoForForwarding
// meets the requirement described in the ImmInstrInfo.
bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
const ImmInstrInfo &III,
unsigned OpNoForForwarding
) const {
// As the algorithm of checking for PPC::ZERO/PPC::ZERO8
// would not work pre-RA, we can only do the check post RA.
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
if (MRI.isSSA())
return false;
// Cannot do the transform if MI isn't summing the operands.
if (!III.IsSummingOperands)
return false;
// The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
if (!III.ZeroIsSpecialOrig)
return false;
// We cannot do the transform if the operand we are trying to replace
// isn't the same as the operand the instruction allows.
if (OpNoForForwarding != III.OpNoForForwarding)
return false;
// Check if the instruction we are trying to transform really has
// the special zero register as its operand.
if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
return false;
// This machine instruction is convertible if it is,
// 1. summing the operands.
// 2. one of the operands is special zero register.
// 3. the operand we are trying to replace is allowed by the MI.
return true;
}
// Check if the DefMI is the add inst and set the ImmMO and RegMO
// accordingly.
bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
const ImmInstrInfo &III,
MachineOperand *&ImmMO,
MachineOperand *&RegMO) const {
unsigned Opc = DefMI.getOpcode();
if (Opc != PPC::ADDItocL && Opc != PPC::ADDI && Opc != PPC::ADDI8)
return false;
assert(DefMI.getNumOperands() >= 3 &&
"Add inst must have at least three operands");
RegMO = &DefMI.getOperand(1);
ImmMO = &DefMI.getOperand(2);
// Before RA, ADDI first operand could be a frame index.
if (!RegMO->isReg())
return false;
// This DefMI is elgible for forwarding if it is:
// 1. add inst
// 2. one of the operands is Imm/CPI/Global.
return isAnImmediateOperand(*ImmMO);
}
bool PPCInstrInfo::isRegElgibleForForwarding(
const MachineOperand &RegMO, const MachineInstr &DefMI,
const MachineInstr &MI, bool KillDefMI,
bool &IsFwdFeederRegKilled) const {
// x = addi y, imm
// ...
// z = lfdx 0, x -> z = lfd imm(y)
// The Reg "y" can be forwarded to the MI(z) only when there is no DEF
// of "y" between the DEF of "x" and "z".
// The query is only valid post RA.
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
if (MRI.isSSA())
return false;
Register Reg = RegMO.getReg();
// Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
MachineBasicBlock::const_reverse_iterator It = MI;
MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
It++;
for (; It != E; ++It) {
if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
return false;
else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
IsFwdFeederRegKilled = true;
// Made it to DefMI without encountering a clobber.
if ((&*It) == &DefMI)
break;
}
assert((&*It) == &DefMI && "DefMI is missing");
// If DefMI also defines the register to be forwarded, we can only forward it
// if DefMI is being erased.
if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
return KillDefMI;
return true;
}
bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
const MachineInstr &DefMI,
const ImmInstrInfo &III,
int64_t &Imm,
int64_t BaseImm) const {
assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
if (DefMI.getOpcode() == PPC::ADDItocL) {
// The operand for ADDItocL is CPI, which isn't imm at compiling time,
// However, we know that, it is 16-bit width, and has the alignment of 4.
// Check if the instruction met the requirement.
if (III.ImmMustBeMultipleOf > 4 ||
III.TruncateImmTo || III.ImmWidth != 16)
return false;
// Going from XForm to DForm loads means that the displacement needs to be
// not just an immediate but also a multiple of 4, or 16 depending on the
// load. A DForm load cannot be represented if it is a multiple of say 2.
// XForm loads do not have this restriction.
if (ImmMO.isGlobal()) {
const DataLayout &DL = ImmMO.getGlobal()->getParent()->getDataLayout();
if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
return false;
}
return true;
}
if (ImmMO.isImm()) {
// It is Imm, we need to check if the Imm fit the range.
// Sign-extend to 64-bits.
// DefMI may be folded with another imm form instruction, the result Imm is
// the sum of Imm of DefMI and BaseImm which is from imm form instruction.
APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
return false;
if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
return false;
Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
if (Imm % III.ImmMustBeMultipleOf)
return false;
if (III.TruncateImmTo)
Imm &= ((1 << III.TruncateImmTo) - 1);
}
else
return false;
// This ImmMO is forwarded if it meets the requriement describle
// in ImmInstrInfo
return true;
}
bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
unsigned OpNoForForwarding,
MachineInstr **KilledDef) const {
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
!DefMI.getOperand(1).isImm())
return false;
MachineFunction *MF = MI.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
bool PostRA = !MRI->isSSA();
int64_t Immediate = DefMI.getOperand(1).getImm();
// Sign-extend to 64-bits.
int64_t SExtImm = SignExtend64<16>(Immediate);
bool IsForwardingOperandKilled = MI.getOperand(OpNoForForwarding).isKill();
Register ForwardingOperandReg = MI.getOperand(OpNoForForwarding).getReg();
bool ReplaceWithLI = false;
bool Is64BitLI = false;
int64_t NewImm = 0;
bool SetCR = false;
unsigned Opc = MI.getOpcode();
switch (Opc) {
default:
return false;
// FIXME: Any branches conditional on such a comparison can be made
// unconditional. At this time, this happens too infrequently to be worth
// the implementation effort, but if that ever changes, we could convert
// such a pattern here.
case PPC::CMPWI:
case PPC::CMPLWI:
case PPC::CMPDI:
case PPC::CMPLDI: {
// Doing this post-RA would require dataflow analysis to reliably find uses
// of the CR register set by the compare.
// No need to fixup killed/dead flag since this transformation is only valid
// before RA.
if (PostRA)
return false;
// If a compare-immediate is fed by an immediate and is itself an input of
// an ISEL (the most common case) into a COPY of the correct register.
bool Changed = false;
Register DefReg = MI.getOperand(0).getReg();
int64_t Comparand = MI.getOperand(2).getImm();
int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
? (Comparand | 0xFFFFFFFFFFFF0000)
: Comparand;
for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
unsigned UseOpc = CompareUseMI.getOpcode();
if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
continue;
unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
Register TrueReg = CompareUseMI.getOperand(1).getReg();
Register FalseReg = CompareUseMI.getOperand(2).getReg();
unsigned RegToCopy =
selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
if (RegToCopy == PPC::NoRegister)
continue;
// Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
replaceInstrOperandWithImm(CompareUseMI, 1, 0);
CompareUseMI.RemoveOperand(3);
CompareUseMI.RemoveOperand(2);
continue;
}
LLVM_DEBUG(
dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
LLVM_DEBUG(dbgs() << "Is converted to:\n");
// Convert to copy and remove unneeded operands.
CompareUseMI.setDesc(get(PPC::COPY));
CompareUseMI.RemoveOperand(3);
CompareUseMI.RemoveOperand(RegToCopy == TrueReg ? 2 : 1);
CmpIselsConverted++;
Changed = true;
LLVM_DEBUG(CompareUseMI.dump());
}
if (Changed)
return true;
// This may end up incremented multiple times since this function is called
// during a fixed-point transformation, but it is only meant to indicate the
// presence of this opportunity.
MissedConvertibleImmediateInstrs++;
return false;
}
// Immediate forms - may simply be convertable to an LI.
case PPC::ADDI:
case PPC::ADDI8: {
// Does the sum fit in a 16-bit signed field?
int64_t Addend = MI.getOperand(2).getImm();
if (isInt<16>(Addend + SExtImm)) {
ReplaceWithLI = true;
Is64BitLI = Opc == PPC::ADDI8;
NewImm = Addend + SExtImm;
break;
}
return false;
}
case PPC::SUBFIC:
case PPC::SUBFIC8: {
// Only transform this if the CARRY implicit operand is dead.
if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
return false;
int64_t Minuend = MI.getOperand(2).getImm();
if (isInt<16>(Minuend - SExtImm)) {
ReplaceWithLI = true;
Is64BitLI = Opc == PPC::SUBFIC8;
NewImm = Minuend - SExtImm;
break;
}
return false;
}
case PPC::RLDICL:
case PPC::RLDICL_rec:
case PPC::RLDICL_32:
case PPC::RLDICL_32_64: {
// Use APInt's rotate function.
int64_t SH = MI.getOperand(2).getImm();
int64_t MB = MI.getOperand(3).getImm();
APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
SExtImm, true);
InVal = InVal.rotl(SH);
uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
InVal &= Mask;
// Can't replace negative values with an LI as that will sign-extend
// and not clear the left bits. If we're setting the CR bit, we will use
// ANDI_rec which won't sign extend, so that's safe.
if (isUInt<15>(InVal.getSExtValue()) ||
(Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
ReplaceWithLI = true;
Is64BitLI = Opc != PPC::RLDICL_32;
NewImm = InVal.getSExtValue();
SetCR = Opc == PPC::RLDICL_rec;
break;
}
return false;
}
case PPC::RLWINM:
case PPC::RLWINM8:
case PPC::RLWINM_rec:
case PPC::RLWINM8_rec: {
int64_t SH = MI.getOperand(2).getImm();
int64_t MB = MI.getOperand(3).getImm();
int64_t ME = MI.getOperand(4).getImm();
APInt InVal(32, SExtImm, true);
InVal = InVal.rotl(SH);
APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
InVal &= Mask;
// Can't replace negative values with an LI as that will sign-extend
// and not clear the left bits. If we're setting the CR bit, we will use
// ANDI_rec which won't sign extend, so that's safe.
bool ValueFits = isUInt<15>(InVal.getSExtValue());
ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
isUInt<16>(InVal.getSExtValue()));
if (ValueFits) {
ReplaceWithLI = true;
Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
NewImm = InVal.getSExtValue();
SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
break;
}
return false;
}
case PPC::ORI:
case PPC::ORI8:
case PPC::XORI:
case PPC::XORI8: {
int64_t LogicalImm = MI.getOperand(2).getImm();
int64_t Result = 0;
if (Opc == PPC::ORI || Opc == PPC::ORI8)
Result = LogicalImm | SExtImm;
else
Result = LogicalImm ^ SExtImm;
if (isInt<16>(Result)) {
ReplaceWithLI = true;
Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
NewImm = Result;
break;
}
return false;
}
}
if (ReplaceWithLI) {
// We need to be careful with CR-setting instructions we're replacing.
if (SetCR) {
// We don't know anything about uses when we're out of SSA, so only
// replace if the new immediate will be reproduced.
bool ImmChanged = (SExtImm & NewImm) != NewImm;
if (PostRA && ImmChanged)
return false;
if (!PostRA) {
// If the defining load-immediate has no other uses, we can just replace
// the immediate with the new immediate.
if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
DefMI.getOperand(1).setImm(NewImm);
// If we're not using the GPR result of the CR-setting instruction, we
// just need to and with zero/non-zero depending on the new immediate.
else if (MRI->use_empty(MI.getOperand(0).getReg())) {
if (NewImm) {
assert(Immediate && "Transformation converted zero to non-zero?");
NewImm = Immediate;
}
} else if (ImmChanged)
return false;
}
}
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
LLVM_DEBUG(MI.dump());
LLVM_DEBUG(dbgs() << "Fed by:\n");
LLVM_DEBUG(DefMI.dump());
LoadImmediateInfo LII;
LII.Imm = NewImm;
LII.Is64Bit = Is64BitLI;
LII.SetCR = SetCR;
// If we're setting the CR, the original load-immediate must be kept (as an
// operand to ANDI_rec/ANDI8_rec).
if (KilledDef && SetCR)
*KilledDef = nullptr;
replaceInstrWithLI(MI, LII);
// Fixup killed/dead flag after transformation.
// Pattern:
// ForwardingOperandReg = LI imm1
// y = op2 imm2, ForwardingOperandReg(killed)
if (IsForwardingOperandKilled)
fixupIsDeadOrKill(&DefMI, &MI, ForwardingOperandReg);
LLVM_DEBUG(dbgs() << "With:\n");
LLVM_DEBUG(MI.dump());
return true;
}
return false;
}
bool PPCInstrInfo::transformToNewImmFormFedByAdd(
MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
bool PostRA = !MRI->isSSA();
// FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
// for post-ra.
if (PostRA)
return false;
// Only handle load/store.
if (!MI.mayLoadOrStore())
return false;
unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
"MI must have x-form opcode");
// get Imm Form info.
ImmInstrInfo III;
bool IsVFReg = MI.getOperand(0).isReg()
? isVFRegister(MI.getOperand(0).getReg())
: false;
if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
return false;
if (!III.IsSummingOperands)
return false;
if (OpNoForForwarding != III.OpNoForForwarding)
return false;
MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
if (!ImmOperandMI.isImm())
return false;
// Check DefMI.
MachineOperand *ImmMO = nullptr;
MachineOperand *RegMO = nullptr;
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
return false;
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
// Check Imm.
// Set ImmBase from imm instruction as base and get new Imm inside
// isImmElgibleForForwarding.
int64_t ImmBase = ImmOperandMI.getImm();
int64_t Imm = 0;
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
return false;
// Get killed info in case fixup needed after transformation.
unsigned ForwardKilledOperandReg = ~0U;
if (MI.getOperand(III.OpNoForForwarding).isKill())
ForwardKilledOperandReg = MI.getOperand(III.OpNoForForwarding).getReg();
// Do the transform
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
LLVM_DEBUG(MI.dump());
LLVM_DEBUG(dbgs() << "Fed by:\n");
LLVM_DEBUG(DefMI.dump());
MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
if (RegMO->isKill()) {
MI.getOperand(III.OpNoForForwarding).setIsKill(true);
// Clear the killed flag in RegMO. Doing this here can handle some cases
// that DefMI and MI are not in same basic block.
RegMO->setIsKill(false);
}
MI.getOperand(III.ImmOpNo).setImm(Imm);
// FIXME: fix kill/dead flag if MI and DefMI are not in same basic block.
if (DefMI.getParent() == MI.getParent()) {
// Check if reg is killed between MI and DefMI.
auto IsKilledFor = [&](unsigned Reg) {
MachineBasicBlock::const_reverse_iterator It = MI;
MachineBasicBlock::const_reverse_iterator E = DefMI;
It++;
for (; It != E; ++It) {
if (It->killsRegister(Reg))
return true;
}
return false;
};
// Update kill flag
if (RegMO->isKill() || IsKilledFor(RegMO->getReg()))
fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
if (ForwardKilledOperandReg != ~0U)
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
}
LLVM_DEBUG(dbgs() << "With:\n");
LLVM_DEBUG(MI.dump());
return true;
}
// If an X-Form instruction is fed by an add-immediate and one of its operands
// is the literal zero, attempt to forward the source of the add-immediate to
// the corresponding D-Form instruction with the displacement coming from
// the immediate being added.
bool PPCInstrInfo::transformToImmFormFedByAdd(
MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
MachineInstr &DefMI, bool KillDefMI) const {
// RegMO ImmMO
// | |
// x = addi reg, imm <----- DefMI
// y = op 0 , x <----- MI
// |
// OpNoForForwarding
// Check if the MI meet the requirement described in the III.
if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
return false;
// Check if the DefMI meet the requirement
// described in the III. If yes, set the ImmMO and RegMO accordingly.
MachineOperand *ImmMO = nullptr;
MachineOperand *RegMO = nullptr;
if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
return false;
assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
// As we get the Imm operand now, we need to check if the ImmMO meet
// the requirement described in the III. If yes set the Imm.
int64_t Imm = 0;
if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
return false;
bool IsFwdFeederRegKilled = false;
// Check if the RegMO can be forwarded to MI.
if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
IsFwdFeederRegKilled))
return false;
// Get killed info in case fixup needed after transformation.
unsigned ForwardKilledOperandReg = ~0U;
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
bool PostRA = !MRI.isSSA();
if (PostRA && MI.getOperand(OpNoForForwarding).isKill())
ForwardKilledOperandReg = MI.getOperand(OpNoForForwarding).getReg();
// We know that, the MI and DefMI both meet the pattern, and
// the Imm also meet the requirement with the new Imm-form.
// It is safe to do the transformation now.
LLVM_DEBUG(dbgs() << "Replacing instruction:\n");
LLVM_DEBUG(MI.dump());
LLVM_DEBUG(dbgs() << "Fed by:\n");
LLVM_DEBUG(DefMI.dump());
// Update the base reg first.
MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
false, false,
RegMO->isKill());
// Then, update the imm.
if (ImmMO->isImm()) {
// If the ImmMO is Imm, change the operand that has ZERO to that Imm
// directly.
replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
}
else {
// Otherwise, it is Constant Pool Index(CPI) or Global,
// which is relocation in fact. We need to replace the special zero
// register with ImmMO.
// Before that, we need to fixup the target flags for imm.
// For some reason, we miss to set the flag for the ImmMO if it is CPI.
if (DefMI.getOpcode() == PPC::ADDItocL)
ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
// MI didn't have the interface such as MI.setOperand(i) though
// it has MI.getOperand(i). To repalce the ZERO MachineOperand with
// ImmMO, we need to remove ZERO operand and all the operands behind it,
// and, add the ImmMO, then, move back all the operands behind ZERO.
SmallVector<MachineOperand, 2> MOps;
for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
MOps.push_back(MI.getOperand(i));
MI.RemoveOperand(i);
}
// Remove the last MO in the list, which is ZERO operand in fact.
MOps.pop_back();
// Add the imm operand.
MI.addOperand(*ImmMO);
// Now add the rest back.
for (auto &MO : MOps)
MI.addOperand(MO);
}
// Update the opcode.
MI.setDesc(get(III.ImmOpcode));
// Fix up killed/dead flag after transformation.
// Pattern 1:
// x = ADD KilledFwdFeederReg, imm
// n = opn KilledFwdFeederReg(killed), regn
// y = XOP 0, x
// Pattern 2:
// x = ADD reg(killed), imm
// y = XOP 0, x
if (IsFwdFeederRegKilled || RegMO->isKill())
fixupIsDeadOrKill(&DefMI, &MI, RegMO->getReg());
// Pattern 3:
// ForwardKilledOperandReg = ADD reg, imm
// y = XOP 0, ForwardKilledOperandReg(killed)
if (ForwardKilledOperandReg != ~0U)
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
LLVM_DEBUG(dbgs() << "With:\n");
LLVM_DEBUG(MI.dump());
return true;
}
bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
const ImmInstrInfo &III,
unsigned ConstantOpNo,
MachineInstr &DefMI) const {
// DefMI must be LI or LI8.
if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
!DefMI.getOperand(1).isImm())
return false;
// Get Imm operand and Sign-extend to 64-bits.
int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
bool PostRA = !MRI.isSSA();
// Exit early if we can't convert this.
if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
return false;
if (Imm % III.ImmMustBeMultipleOf)
return false;
if (III.TruncateImmTo)
Imm &= ((1 << III.TruncateImmTo) - 1);
if (III.SignedImm) {
APInt ActualValue(64, Imm, true);
if (!ActualValue.isSignedIntN(III.ImmWidth))
return false;
} else {
uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
if ((uint64_t)Imm > UnsignedMax)
return false;
}
// If we're post-RA, the instructions don't agree on whether register zero is
// special, we can transform this as long as the register operand that will
// end up in the location where zero is special isn't R0.
if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
III.ZeroIsSpecialNew + 1;
Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
// If R0 is in the operand where zero is special for the new instruction,
// it is unsafe to transform if the constant operand isn't that operand.
if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
ConstantOpNo != III.ZeroIsSpecialNew)
return false;
if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
ConstantOpNo != PosForOrigZero)
return false;
}
// Get killed info in case fixup needed after transformation.
unsigned ForwardKilledOperandReg = ~0U;
if (PostRA && MI.getOperand(ConstantOpNo).isKill())
ForwardKilledOperandReg = MI.getOperand(ConstantOpNo).getReg();
unsigned Opc = MI.getOpcode();
bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
Opc == PPC::SRW || Opc == PPC::SRW_rec ||
Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
Opc == PPC::SRD || Opc == PPC::SRD_rec;
bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
Opc == PPC::SRD_rec;
MI.setDesc(get(III.ImmOpcode));
if (ConstantOpNo == III.OpNoForForwarding) {
// Converting shifts to immediate form is a bit tricky since they may do
// one of three things:
// 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
// 2. If the shift amount is zero, the result is unchanged (save for maybe
// setting CR0)
// 3. If the shift amount is in [1, OpSize), it's just a shift
if (SpecialShift32 || SpecialShift64) {
LoadImmediateInfo LII;
LII.Imm = 0;
LII.SetCR = SetCR;
LII.Is64Bit = SpecialShift64;
uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
if (Imm & (SpecialShift32 ? 0x20 : 0x40))
replaceInstrWithLI(MI, LII);
// Shifts by zero don't change the value. If we don't need to set CR0,
// just convert this to a COPY. Can't do this post-RA since we've already
// cleaned up the copies.
else if (!SetCR && ShAmt == 0 && !PostRA) {
MI.RemoveOperand(2);
MI.setDesc(get(PPC::COPY));
} else {
// The 32 bit and 64 bit instructions are quite different.
if (SpecialShift32) {
// Left shifts use (N, 0, 31-N).
// Right shifts use (32-N, N, 31) if 0 < N < 32.
// use (0, 0, 31) if N == 0.
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
uint64_t MB = RightShift ? ShAmt : 0;
uint64_t ME = RightShift ? 31 : 31 - ShAmt;
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
.addImm(ME);
} else {
// Left shifts use (N, 63-N).
// Right shifts use (64-N, N) if 0 < N < 64.
// use (0, 0) if N == 0.
uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
}
}
} else
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
}
// Convert commutative instructions (switch the operands and convert the
// desired one to an immediate.
else if (III.IsCommutative) {
replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
} else
llvm_unreachable("Should have exited early!");
// For instructions for which the constant register replaces a different
// operand than where the immediate goes, we need to swap them.
if (III.OpNoForForwarding != III.ImmOpNo)
swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
// If the special R0/X0 register index are different for original instruction
// and new instruction, we need to fix up the register class in new
// instruction.
if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
if (III.ZeroIsSpecialNew) {
// If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
// need to fix up register class.
Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
if (Register::isVirtualRegister(RegToModify)) {
const TargetRegisterClass *NewRC =
MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
&PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
MRI.setRegClass(RegToModify, NewRC);
}
}
}
// Fix up killed/dead flag after transformation.
// Pattern:
// ForwardKilledOperandReg = LI imm
// y = XOP reg, ForwardKilledOperandReg(killed)
if (ForwardKilledOperandReg != ~0U)
fixupIsDeadOrKill(&DefMI, &MI, ForwardKilledOperandReg);
return true;
}
const TargetRegisterClass *
PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
return &PPC::VSRCRegClass;
return RC;
}
int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
return PPC::getRecordFormOpcode(Opcode);
}
// This function returns true if the machine instruction
// always outputs a value by sign-extending a 32 bit value,
// i.e. 0 to 31-th bits are same as 32-th bit.
static bool isSignExtendingOp(const MachineInstr &MI) {
int Opcode = MI.getOpcode();
if (Opcode == PPC::LI || Opcode == PPC::LI8 || Opcode == PPC::LIS ||
Opcode == PPC::LIS8 || Opcode == PPC::SRAW || Opcode == PPC::SRAW_rec ||
Opcode == PPC::SRAWI || Opcode == PPC::SRAWI_rec || Opcode == PPC::LWA ||
Opcode == PPC::LWAX || Opcode == PPC::LWA_32 || Opcode == PPC::LWAX_32 ||
Opcode == PPC::LHA || Opcode == PPC::LHAX || Opcode == PPC::LHA8 ||
Opcode == PPC::LHAX8 || Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 || Opcode == PPC::LBZU ||
Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
Opcode == PPC::LHZ || Opcode == PPC::LHZX || Opcode == PPC::LHZ8 ||
Opcode == PPC::LHZX8 || Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8 || Opcode == PPC::EXTSB ||
Opcode == PPC::EXTSB_rec || Opcode == PPC::EXTSH ||
Opcode == PPC::EXTSH_rec || Opcode == PPC::EXTSB8 ||
Opcode == PPC::EXTSH8 || Opcode == PPC::EXTSW ||
Opcode == PPC::EXTSW_rec || Opcode == PPC::SETB || Opcode == PPC::SETB8 ||
Opcode == PPC::EXTSH8_32_64 || Opcode == PPC::EXTSW_32_64 ||
Opcode == PPC::EXTSB8_32_64)
return true;
if (Opcode == PPC::RLDICL && MI.getOperand(3).getImm() >= 33)
return true;
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
MI.getOperand(3).getImm() > 0 &&
MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
return true;
return false;
}
// This function returns true if the machine instruction
// always outputs zeros in higher 32 bits.
static bool isZeroExtendingOp(const MachineInstr &MI) {
int Opcode = MI.getOpcode();
// The 16-bit immediate is sign-extended in li/lis.
// If the most significant bit is zero, all higher bits are zero.
if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
Opcode == PPC::LIS || Opcode == PPC::LIS8) {
int64_t Imm = MI.getOperand(1).getImm();
if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
return true;
}
// We have some variations of rotate-and-mask instructions
// that clear higher 32-bits.
if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
Opcode == PPC::RLDICL_32_64) &&
MI.getOperand(3).getImm() >= 32)
return true;
if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
MI.getOperand(3).getImm() >= 32 &&
MI.getOperand(3).getImm() <= 63 - MI.getOperand(2).getImm())
return true;
if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
MI.getOperand(3).getImm() <= MI.getOperand(4).getImm())
return true;
// There are other instructions that clear higher 32-bits.
if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZW_rec ||
Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZW_rec ||
Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8 ||
Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZD_rec ||
Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZD_rec ||
Opcode == PPC::POPCNTD || Opcode == PPC::POPCNTW || Opcode == PPC::SLW ||
Opcode == PPC::SLW_rec || Opcode == PPC::SRW || Opcode == PPC::SRW_rec ||
Opcode == PPC::SLW8 || Opcode == PPC::SRW8 || Opcode == PPC::SLWI ||
Opcode == PPC::SLWI_rec || Opcode == PPC::SRWI ||
Opcode == PPC::SRWI_rec || Opcode == PPC::LWZ || Opcode == PPC::LWZX ||
Opcode == PPC::LWZU || Opcode == PPC::LWZUX || Opcode == PPC::LWBRX ||
Opcode == PPC::LHBRX || Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
Opcode == PPC::LHZU || Opcode == PPC::LHZUX || Opcode == PPC::LBZ ||
Opcode == PPC::LBZX || Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
Opcode == PPC::LWZ8 || Opcode == PPC::LWZX8 || Opcode == PPC::LWZU8 ||
Opcode == PPC::LWZUX8 || Opcode == PPC::LWBRX8 || Opcode == PPC::LHBRX8 ||
Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 || Opcode == PPC::LHZU8 ||
Opcode == PPC::LHZUX8 || Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8 ||
Opcode == PPC::ANDI_rec || Opcode == PPC::ANDIS_rec ||
Opcode == PPC::ROTRWI || Opcode == PPC::ROTRWI_rec ||
Opcode == PPC::EXTLWI || Opcode == PPC::EXTLWI_rec ||
Opcode == PPC::MFVSRWZ)
return true;
return false;
}
// This function returns true if the input MachineInstr is a TOC save
// instruction.
bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
return false;
unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
unsigned StackOffset = MI.getOperand(1).getImm();
Register StackReg = MI.getOperand(2).getReg();
Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
if (StackReg == SPReg && StackOffset == TOCSaveOffset)
return true;
return false;
}
// We limit the max depth to track incoming values of PHIs or binary ops
// (e.g. AND) to avoid excessive cost.
const unsigned MAX_DEPTH = 1;
bool
PPCInstrInfo::isSignOrZeroExtended(const MachineInstr &MI, bool SignExt,
const unsigned Depth) const {
const MachineFunction *MF = MI.getParent()->getParent();
const MachineRegisterInfo *MRI = &MF->getRegInfo();
// If we know this instruction returns sign- or zero-extended result,
// return true.
if (SignExt ? isSignExtendingOp(MI):
isZeroExtendingOp(MI))
return true;
switch (MI.getOpcode()) {
case PPC::COPY: {
Register SrcReg = MI.getOperand(1).getReg();
// In both ELFv1 and v2 ABI, method parameters and the return value
// are sign- or zero-extended.
if (MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
// We check the ZExt/SExt flags for a method parameter.
if (MI.getParent()->getBasicBlock() ==
&MF->getFunction().getEntryBlock()) {
Register VReg = MI.getOperand(0).getReg();
if (MF->getRegInfo().isLiveIn(VReg))
return SignExt ? FuncInfo->isLiveInSExt(VReg) :
FuncInfo->isLiveInZExt(VReg);
}
// For a method return value, we check the ZExt/SExt flags in attribute.
// We assume the following code sequence for method call.
// ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
// BL8_NOP @func,...
// ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
// %5 = COPY %x3; G8RC:%5
if (SrcReg == PPC::X3) {
const MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock::const_instr_iterator II =
MachineBasicBlock::const_instr_iterator(&MI);
if (II != MBB->instr_begin() &&
(--II)->getOpcode() == PPC::ADJCALLSTACKUP) {
const MachineInstr &CallMI = *(--II);
if (CallMI.isCall() && CallMI.getOperand(0).isGlobal()) {
const Function *CalleeFn =
dyn_cast<Function>(CallMI.getOperand(0).getGlobal());
if (!CalleeFn)
return false;
const IntegerType *IntTy =
dyn_cast<IntegerType>(CalleeFn->getReturnType());
const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
if (IntTy && IntTy->getBitWidth() <= 32)
return Attrs.hasAttribute(SignExt ? Attribute::SExt :
Attribute::ZExt);
}
}
}
}
// If this is a copy from another register, we recursively check source.
if (!Register::isVirtualRegister(SrcReg))
return false;
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
if (SrcMI != NULL)
return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
return false;
}
case PPC::ANDI_rec:
case PPC::ANDIS_rec:
case PPC::ORI:
case PPC::ORIS:
case PPC::XORI:
case PPC::XORIS:
case PPC::ANDI8_rec:
case PPC::ANDIS8_rec:
case PPC::ORI8:
case PPC::ORIS8:
case PPC::XORI8:
case PPC::XORIS8: {
// logical operation with 16-bit immediate does not change the upper bits.
// So, we track the operand register as we do for register copy.
Register SrcReg = MI.getOperand(1).getReg();
if (!Register::isVirtualRegister(SrcReg))
return false;
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
if (SrcMI != NULL)
return isSignOrZeroExtended(*SrcMI, SignExt, Depth);
return false;
}
// If all incoming values are sign-/zero-extended,
// the output of OR, ISEL or PHI is also sign-/zero-extended.
case PPC::OR:
case PPC::OR8:
case PPC::ISEL:
case PPC::PHI: {
if (Depth >= MAX_DEPTH)
return false;
// The input registers for PHI are operand 1, 3, ...
// The input registers for others are operand 1 and 2.
unsigned E = 3, D = 1;
if (MI.getOpcode() == PPC::PHI) {
E = MI.getNumOperands();
D = 2;
}
for (unsigned I = 1; I != E; I += D) {
if (MI.getOperand(I).isReg()) {
Register SrcReg = MI.getOperand(I).getReg();
if (!Register::isVirtualRegister(SrcReg))
return false;
const MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
if (SrcMI == NULL || !isSignOrZeroExtended(*SrcMI, SignExt, Depth+1))
return false;
}
else
return false;
}
return true;
}
// If at least one of the incoming values of an AND is zero extended
// then the output is also zero-extended. If both of the incoming values
// are sign-extended then the output is also sign extended.
case PPC::AND:
case PPC::AND8: {
if (Depth >= MAX_DEPTH)
return false;
assert(MI.getOperand(1).isReg() && MI.getOperand(2).isReg());
Register SrcReg1 = MI.getOperand(1).getReg();
Register SrcReg2 = MI.getOperand(2).getReg();
if (!Register::isVirtualRegister(SrcReg1) ||
!Register::isVirtualRegister(SrcReg2))
return false;
const MachineInstr *MISrc1 = MRI->getVRegDef(SrcReg1);
const MachineInstr *MISrc2 = MRI->getVRegDef(SrcReg2);
if (!MISrc1 || !MISrc2)
return false;
if(SignExt)
return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) &&
isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
else
return isSignOrZeroExtended(*MISrc1, SignExt, Depth+1) ||
isSignOrZeroExtended(*MISrc2, SignExt, Depth+1);
}
default:
break;
}
return false;
}
bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
}
namespace {
class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
MachineInstr *Loop, *EndLoop, *LoopCount;
MachineFunction *MF;
const TargetInstrInfo *TII;
int64_t TripCount;
public:
PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
MachineInstr *LoopCount)
: Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
MF(Loop->getParent()->getParent()),
TII(MF->getSubtarget().getInstrInfo()) {
// Inspect the Loop instruction up-front, as it may be deleted when we call
// createTripCountGreaterCondition.
if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
TripCount = LoopCount->getOperand(1).getImm();
else
TripCount = -1;
}
bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
// Only ignore the terminator.
return MI == EndLoop;
}
Optional<bool>
createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
SmallVectorImpl<MachineOperand> &Cond) override {
if (TripCount == -1) {
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
// so we don't need to generate any thing here.
Cond.push_back(MachineOperand::CreateImm(0));
Cond.push_back(MachineOperand::CreateReg(
MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
true));
return {};
}
return TripCount > TC;
}
void setPreheader(MachineBasicBlock *NewPreheader) override {
// Do nothing. We want the LOOP setup instruction to stay in the *old*
// preheader, so we can use BDZ in the prologs to adapt the loop trip count.
}
void adjustTripCount(int TripCountAdjust) override {
// If the loop trip count is a compile-time value, then just change the
// value.
if (LoopCount->getOpcode() == PPC::LI8 ||
LoopCount->getOpcode() == PPC::LI) {
int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
LoopCount->getOperand(1).setImm(TripCount);
return;
}
// Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
// so we don't need to generate any thing here.
}
void disposed() override {
Loop->eraseFromParent();
// Ensure the loop setup instruction is deleted too.
LoopCount->eraseFromParent();
}
};
} // namespace
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
// We really "analyze" only hardware loops right now.
MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
MachineBasicBlock *Preheader = *LoopBB->pred_begin();
if (Preheader == LoopBB)
Preheader = *std::next(LoopBB->pred_begin());
MachineFunction *MF = Preheader->getParent();
if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
SmallPtrSet<MachineBasicBlock *, 8> Visited;
if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
Register LoopCountReg = LoopInst->getOperand(0).getReg();
MachineRegisterInfo &MRI = MF->getRegInfo();
MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
}
}
return nullptr;
}
MachineInstr *PPCInstrInfo::findLoopInstr(
MachineBasicBlock &PreHeader,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
// The loop set-up instruction should be in preheader
for (auto &I : PreHeader.instrs())
if (I.getOpcode() == LOOPi)
return &I;
return nullptr;
}
// Return true if get the base operand, byte offset of an instruction and the
// memory width. Width is the size of memory that is being loaded/stored.
bool PPCInstrInfo::getMemOperandWithOffsetWidth(
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
unsigned &Width, const TargetRegisterInfo *TRI) const {
if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
return false;
// Handle only loads/stores with base register followed by immediate offset.
if (!LdSt.getOperand(1).isImm() ||
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
return false;
if (!LdSt.getOperand(1).isImm() ||
(!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
return false;
if (!LdSt.hasOneMemOperand())
return false;
Width = (*LdSt.memoperands_begin())->getSize();
Offset = LdSt.getOperand(1).getImm();
BaseReg = &LdSt.getOperand(2);
return true;
}
bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
const MachineInstr &MIa, const MachineInstr &MIb) const {
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
return false;
// Retrieve the base register, offset from the base register and width. Width
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
// base registers are identical, and the offset of a lower memory access +
// the width doesn't overlap the offset of a higher memory access,
// then the memory accesses are different.
const TargetRegisterInfo *TRI = &getRegisterInfo();
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
int64_t OffsetA = 0, OffsetB = 0;
unsigned int WidthA = 0, WidthB = 0;
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
int LowOffset = std::min(OffsetA, OffsetB);
int HighOffset = std::max(OffsetA, OffsetB);
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
if (LowOffset + LowWidth <= HighOffset)
return true;
}
}
return false;
}