llvm-project/lldb/source/Core/Stream.cpp

787 lines
21 KiB
C++

//===-- Stream.cpp ----------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/Stream.h"
#include "lldb/Host/Endian.h"
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
using namespace lldb;
using namespace lldb_private;
Stream::Stream (uint32_t flags, uint32_t addr_size, ByteOrder byte_order) :
m_flags (flags),
m_addr_size (addr_size),
m_byte_order (byte_order),
m_indent_level(0)
{
}
Stream::Stream () :
m_flags (0),
m_addr_size (4),
m_byte_order (lldb::endian::InlHostByteOrder()),
m_indent_level(0)
{
}
//------------------------------------------------------------------
// Destructor
//------------------------------------------------------------------
Stream::~Stream ()
{
}
ByteOrder
Stream::SetByteOrder (ByteOrder byte_order)
{
ByteOrder old_byte_order = m_byte_order;
m_byte_order = byte_order;
return old_byte_order;
}
//------------------------------------------------------------------
// Put an offset "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
void
Stream::Offset (uint32_t uval, const char *format)
{
Printf (format, uval);
}
//------------------------------------------------------------------
// Put an SLEB128 "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
size_t
Stream::PutSLEB128 (int64_t sval)
{
size_t bytes_written = 0;
if (m_flags.Test(eBinary))
{
bool more = true;
while (more)
{
uint8_t byte = sval & 0x7fu;
sval >>= 7;
/* sign bit of byte is 2nd high order bit (0x40) */
if ((sval == 0 && !(byte & 0x40)) ||
(sval == -1 && (byte & 0x40)) )
more = false;
else
// more bytes to come
byte |= 0x80u;
bytes_written += Write(&byte, 1);
}
}
else
{
bytes_written = Printf ("0x%" PRIi64, sval);
}
return bytes_written;
}
//------------------------------------------------------------------
// Put an ULEB128 "uval" out to the stream using the printf format
// in "format".
//------------------------------------------------------------------
size_t
Stream::PutULEB128 (uint64_t uval)
{
size_t bytes_written = 0;
if (m_flags.Test(eBinary))
{
do
{
uint8_t byte = uval & 0x7fu;
uval >>= 7;
if (uval != 0)
{
// more bytes to come
byte |= 0x80u;
}
bytes_written += Write(&byte, 1);
} while (uval != 0);
}
else
{
bytes_written = Printf ("0x%" PRIx64, uval);
}
return bytes_written;
}
//------------------------------------------------------------------
// Print a raw NULL terminated C string to the stream.
//------------------------------------------------------------------
size_t
Stream::PutCString (const char *cstr)
{
size_t cstr_len = strlen(cstr);
// when in binary mode, emit the NULL terminator
if (m_flags.Test(eBinary))
++cstr_len;
return Write (cstr, cstr_len);
}
//------------------------------------------------------------------
// Print a double quoted NULL terminated C string to the stream
// using the printf format in "format".
//------------------------------------------------------------------
void
Stream::QuotedCString (const char *cstr, const char *format)
{
Printf (format, cstr);
}
//------------------------------------------------------------------
// Put an address "addr" out to the stream with optional prefix
// and suffix strings.
//------------------------------------------------------------------
void
Stream::Address (uint64_t addr, uint32_t addr_size, const char *prefix, const char *suffix)
{
if (prefix == NULL)
prefix = "";
if (suffix == NULL)
suffix = "";
// int addr_width = m_addr_size << 1;
// Printf ("%s0x%0*" PRIx64 "%s", prefix, addr_width, addr, suffix);
Printf ("%s0x%0*" PRIx64 "%s", prefix, addr_size * 2, (uint64_t)addr, suffix);
}
//------------------------------------------------------------------
// Put an address range out to the stream with optional prefix
// and suffix strings.
//------------------------------------------------------------------
void
Stream::AddressRange(uint64_t lo_addr, uint64_t hi_addr, uint32_t addr_size, const char *prefix, const char *suffix)
{
if (prefix && prefix[0])
PutCString (prefix);
Address (lo_addr, addr_size, "[");
Address (hi_addr, addr_size, "-", ")");
if (suffix && suffix[0])
PutCString (suffix);
}
size_t
Stream::PutChar (char ch)
{
return Write (&ch, 1);
}
//------------------------------------------------------------------
// Print some formatted output to the stream.
//------------------------------------------------------------------
size_t
Stream::Printf (const char *format, ...)
{
va_list args;
va_start (args, format);
size_t result = PrintfVarArg(format, args);
va_end (args);
return result;
}
//------------------------------------------------------------------
// Print some formatted output to the stream.
//------------------------------------------------------------------
size_t
Stream::PrintfVarArg (const char *format, va_list args)
{
char str[1024];
va_list args_copy;
va_copy (args_copy, args);
size_t bytes_written = 0;
// Try and format our string into a fixed buffer first and see if it fits
size_t length = ::vsnprintf (str, sizeof(str), format, args);
if (length < sizeof(str))
{
// Include the NULL termination byte for binary output
if (m_flags.Test(eBinary))
length += 1;
// The formatted string fit into our stack based buffer, so we can just
// append that to our packet
bytes_written = Write (str, length);
}
else
{
// Our stack buffer wasn't big enough to contain the entire formatted
// string, so lets let vasprintf create the string for us!
char *str_ptr = NULL;
length = ::vasprintf (&str_ptr, format, args_copy);
if (str_ptr)
{
// Include the NULL termination byte for binary output
if (m_flags.Test(eBinary))
length += 1;
bytes_written = Write (str_ptr, length);
::free (str_ptr);
}
}
va_end (args_copy);
return bytes_written;
}
//------------------------------------------------------------------
// Print and End of Line character to the stream
//------------------------------------------------------------------
size_t
Stream::EOL()
{
return PutChar ('\n');
}
//------------------------------------------------------------------
// Indent the current line using the current indentation level and
// print an optional string following the idenatation spaces.
//------------------------------------------------------------------
size_t
Stream::Indent(const char *s)
{
return Printf ("%*.*s%s", m_indent_level, m_indent_level, "", s ? s : "");
}
//------------------------------------------------------------------
// Stream a character "ch" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (char ch)
{
PutChar (ch);
return *this;
}
//------------------------------------------------------------------
// Stream the NULL terminated C string out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (const char *s)
{
Printf ("%s", s);
return *this;
}
//------------------------------------------------------------------
// Stream the pointer value out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (void *p)
{
Printf ("0x%.*tx", (int)sizeof(void*) * 2, (ptrdiff_t)p);
return *this;
}
//------------------------------------------------------------------
// Stream a uint8_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint8_t uval)
{
PutHex8(uval);
return *this;
}
//------------------------------------------------------------------
// Stream a uint16_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint16_t uval)
{
PutHex16(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a uint32_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint32_t uval)
{
PutHex32(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a uint64_t "uval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (uint64_t uval)
{
PutHex64(uval, m_byte_order);
return *this;
}
//------------------------------------------------------------------
// Stream a int8_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int8_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int16_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int16_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int32_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int32_t sval)
{
Printf ("%i", (int)sval);
return *this;
}
//------------------------------------------------------------------
// Stream a int64_t "sval" out to this stream.
//------------------------------------------------------------------
Stream&
Stream::operator<< (int64_t sval)
{
Printf ("%" PRIi64, sval);
return *this;
}
//------------------------------------------------------------------
// Get the current indentation level
//------------------------------------------------------------------
int
Stream::GetIndentLevel() const
{
return m_indent_level;
}
//------------------------------------------------------------------
// Set the current indentation level
//------------------------------------------------------------------
void
Stream::SetIndentLevel(int indent_level)
{
m_indent_level = indent_level;
}
//------------------------------------------------------------------
// Increment the current indentation level
//------------------------------------------------------------------
void
Stream::IndentMore(int amount)
{
m_indent_level += amount;
}
//------------------------------------------------------------------
// Decrement the current indentation level
//------------------------------------------------------------------
void
Stream::IndentLess (int amount)
{
if (m_indent_level >= amount)
m_indent_level -= amount;
else
m_indent_level = 0;
}
//------------------------------------------------------------------
// Get the address size in bytes
//------------------------------------------------------------------
uint32_t
Stream::GetAddressByteSize() const
{
return m_addr_size;
}
//------------------------------------------------------------------
// Set the address size in bytes
//------------------------------------------------------------------
void
Stream::SetAddressByteSize(uint32_t addr_size)
{
m_addr_size = addr_size;
}
//------------------------------------------------------------------
// Returns true if the verbose flag bit is set in this stream.
//------------------------------------------------------------------
bool
Stream::GetVerbose() const
{
return m_flags.Test(eVerbose);
}
//------------------------------------------------------------------
// Returns true if the debug flag bit is set in this stream.
//------------------------------------------------------------------
bool
Stream::GetDebug() const
{
return m_flags.Test(eDebug);
}
//------------------------------------------------------------------
// The flags get accessor
//------------------------------------------------------------------
Flags&
Stream::GetFlags()
{
return m_flags;
}
//------------------------------------------------------------------
// The flags const get accessor
//------------------------------------------------------------------
const Flags&
Stream::GetFlags() const
{
return m_flags;
}
//------------------------------------------------------------------
// The byte order get accessor
//------------------------------------------------------------------
lldb::ByteOrder
Stream::GetByteOrder() const
{
return m_byte_order;
}
size_t
Stream::PrintfAsRawHex8 (const char *format, ...)
{
va_list args;
va_list args_copy;
va_start (args, format);
va_copy (args, args_copy); // Copy this so we
char str[1024];
size_t bytes_written = 0;
// Try and format our string into a fixed buffer first and see if it fits
size_t length = ::vsnprintf (str, sizeof(str), format, args);
if (length < sizeof(str))
{
// The formatted string fit into our stack based buffer, so we can just
// append that to our packet
for (size_t i=0; i<length; ++i)
bytes_written += _PutHex8 (str[i], false);
}
else
{
// Our stack buffer wasn't big enough to contain the entire formatted
// string, so lets let vasprintf create the string for us!
char *str_ptr = NULL;
length = ::vasprintf (&str_ptr, format, args_copy);
if (str_ptr)
{
for (size_t i=0; i<length; ++i)
bytes_written += _PutHex8 (str_ptr[i], false);
::free (str_ptr);
}
}
va_end (args);
va_end (args_copy);
return bytes_written;
}
size_t
Stream::PutNHex8 (size_t n, uint8_t uvalue)
{
size_t bytes_written = 0;
for (size_t i=0; i<n; ++i)
bytes_written += _PutHex8 (uvalue, m_flags.Test(eAddPrefix));
return bytes_written;
}
size_t
Stream::_PutHex8 (uint8_t uvalue, bool add_prefix)
{
size_t bytes_written = 0;
if (m_flags.Test(eBinary))
{
bytes_written = Write (&uvalue, 1);
}
else
{
if (add_prefix)
PutCString("0x");
static char g_hex_to_ascii_hex_char[16] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' };
char nibble_chars[2];
nibble_chars[0] = g_hex_to_ascii_hex_char[(uvalue >> 4) & 0xf];
nibble_chars[1] = g_hex_to_ascii_hex_char[(uvalue >> 0) & 0xf];
bytes_written = Write (nibble_chars, sizeof(nibble_chars));
}
return bytes_written;
}
size_t
Stream::PutHex8 (uint8_t uvalue)
{
return _PutHex8 (uvalue, m_flags.Test(eAddPrefix));
}
size_t
Stream::PutHex16 (uint16_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
size_t bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
return bytes_written;
}
size_t
Stream::PutHex32(uint32_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
size_t bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
return bytes_written;
}
size_t
Stream::PutHex64(uint64_t uvalue, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
bool add_prefix = m_flags.Test(eAddPrefix);
size_t bytes_written = 0;
if (byte_order == eByteOrderLittle)
{
for (size_t byte = 0; byte < sizeof(uvalue); ++byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
else
{
for (size_t byte = sizeof(uvalue)-1; byte < sizeof(uvalue); --byte, add_prefix = false)
bytes_written += _PutHex8 ((uint8_t)(uvalue >> (byte * 8)), add_prefix);
}
return bytes_written;
}
size_t
Stream::PutMaxHex64
(
uint64_t uvalue,
size_t byte_size,
lldb::ByteOrder byte_order
)
{
switch (byte_size)
{
case 1: return PutHex8 ((uint8_t)uvalue);
case 2: return PutHex16 ((uint16_t)uvalue);
case 4: return PutHex32 ((uint32_t)uvalue);
case 8: return PutHex64 (uvalue);
}
return 0;
}
size_t
Stream::PutPointer (void *ptr)
{
return PutRawBytes (&ptr, sizeof(ptr), lldb::endian::InlHostByteOrder(), lldb::endian::InlHostByteOrder());
}
size_t
Stream::PutFloat(float f, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&f, sizeof(f), lldb::endian::InlHostByteOrder(), byte_order);
}
size_t
Stream::PutDouble(double d, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&d, sizeof(d), lldb::endian::InlHostByteOrder(), byte_order);
}
size_t
Stream::PutLongDouble(long double ld, ByteOrder byte_order)
{
if (byte_order == eByteOrderInvalid)
byte_order = m_byte_order;
return PutRawBytes (&ld, sizeof(ld), lldb::endian::InlHostByteOrder(), byte_order);
}
size_t
Stream::PutRawBytes (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order)
{
if (src_byte_order == eByteOrderInvalid)
src_byte_order = m_byte_order;
if (dst_byte_order == eByteOrderInvalid)
dst_byte_order = m_byte_order;
size_t bytes_written = 0;
const uint8_t *src = (const uint8_t *)s;
bool binary_was_set = m_flags.Test (eBinary);
if (!binary_was_set)
m_flags.Set (eBinary);
if (src_byte_order == dst_byte_order)
{
for (size_t i = 0; i < src_len; ++i)
bytes_written += _PutHex8 (src[i], false);
}
else
{
for (size_t i = src_len-1; i < src_len; --i)
bytes_written += _PutHex8 (src[i], false);
}
if (!binary_was_set)
m_flags.Clear (eBinary);
return bytes_written;
}
size_t
Stream::PutBytesAsRawHex8 (const void *s, size_t src_len, ByteOrder src_byte_order, ByteOrder dst_byte_order)
{
if (src_byte_order == eByteOrderInvalid)
src_byte_order = m_byte_order;
if (dst_byte_order == eByteOrderInvalid)
dst_byte_order = m_byte_order;
size_t bytes_written = 0;
const uint8_t *src = (const uint8_t *)s;
bool binary_is_set = m_flags.Test(eBinary);
m_flags.Clear(eBinary);
if (src_byte_order == dst_byte_order)
{
for (size_t i = 0; i < src_len; ++i)
bytes_written += _PutHex8 (src[i], false);
}
else
{
for (size_t i = src_len-1; i < src_len; --i)
bytes_written += _PutHex8 (src[i], false);
}
if (binary_is_set)
m_flags.Set(eBinary);
return bytes_written;
}
size_t
Stream::PutCStringAsRawHex8 (const char *s)
{
size_t bytes_written = 0;
bool binary_is_set = m_flags.Test(eBinary);
m_flags.Clear(eBinary);
do
{
bytes_written += _PutHex8 (*s, false);
++s;
} while (*s);
if (binary_is_set)
m_flags.Set(eBinary);
return bytes_written;
}
void
Stream::UnitTest(Stream *s)
{
s->PutHex8(0x12);
s->PutChar(' ');
s->PutHex16(0x3456, lldb::endian::InlHostByteOrder());
s->PutChar(' ');
s->PutHex16(0x3456, eByteOrderBig);
s->PutChar(' ');
s->PutHex16(0x3456, eByteOrderLittle);
s->PutChar(' ');
s->PutHex32(0x789abcde, lldb::endian::InlHostByteOrder());
s->PutChar(' ');
s->PutHex32(0x789abcde, eByteOrderBig);
s->PutChar(' ');
s->PutHex32(0x789abcde, eByteOrderLittle);
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, lldb::endian::InlHostByteOrder());
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, eByteOrderBig);
s->PutChar(' ');
s->PutHex64(0x1122334455667788ull, eByteOrderLittle);
const char *hola = "Hello World!!!";
s->PutChar(' ');
s->PutCString (hola);
s->PutChar(' ');
s->Write (hola, 5);
s->PutChar(' ');
s->PutCStringAsRawHex8 (hola);
s->PutChar(' ');
s->PutCStringAsRawHex8 ("01234");
s->PutChar(' ');
s->Printf ("pid=%i", 12733);
s->PutChar(' ');
s->PrintfAsRawHex8 ("pid=%i", 12733);
s->PutChar('\n');
}