forked from OSchip/llvm-project
2976 lines
114 KiB
C++
2976 lines
114 KiB
C++
//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This contains code dealing with C++ code generation of classes
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGBlocks.h"
|
|
#include "CGCXXABI.h"
|
|
#include "CGDebugInfo.h"
|
|
#include "CGRecordLayout.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "TargetInfo.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/CXXInheritance.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Basic/CodeGenOptions.h"
|
|
#include "clang/Basic/TargetBuiltins.h"
|
|
#include "clang/CodeGen/CGFunctionInfo.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/Transforms/Utils/SanitizerStats.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
/// Return the best known alignment for an unknown pointer to a
|
|
/// particular class.
|
|
CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
|
|
if (!RD->hasDefinition())
|
|
return CharUnits::One(); // Hopefully won't be used anywhere.
|
|
|
|
auto &layout = getContext().getASTRecordLayout(RD);
|
|
|
|
// If the class is final, then we know that the pointer points to an
|
|
// object of that type and can use the full alignment.
|
|
if (RD->isEffectivelyFinal())
|
|
return layout.getAlignment();
|
|
|
|
// Otherwise, we have to assume it could be a subclass.
|
|
return layout.getNonVirtualAlignment();
|
|
}
|
|
|
|
/// Return the smallest possible amount of storage that might be allocated
|
|
/// starting from the beginning of an object of a particular class.
|
|
///
|
|
/// This may be smaller than sizeof(RD) if RD has virtual base classes.
|
|
CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
|
|
if (!RD->hasDefinition())
|
|
return CharUnits::One();
|
|
|
|
auto &layout = getContext().getASTRecordLayout(RD);
|
|
|
|
// If the class is final, then we know that the pointer points to an
|
|
// object of that type and can use the full alignment.
|
|
if (RD->isEffectivelyFinal())
|
|
return layout.getSize();
|
|
|
|
// Otherwise, we have to assume it could be a subclass.
|
|
return std::max(layout.getNonVirtualSize(), CharUnits::One());
|
|
}
|
|
|
|
/// Return the best known alignment for a pointer to a virtual base,
|
|
/// given the alignment of a pointer to the derived class.
|
|
CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
|
|
const CXXRecordDecl *derivedClass,
|
|
const CXXRecordDecl *vbaseClass) {
|
|
// The basic idea here is that an underaligned derived pointer might
|
|
// indicate an underaligned base pointer.
|
|
|
|
assert(vbaseClass->isCompleteDefinition());
|
|
auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
|
|
CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
|
|
|
|
return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
|
|
expectedVBaseAlign);
|
|
}
|
|
|
|
CharUnits
|
|
CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
|
|
const CXXRecordDecl *baseDecl,
|
|
CharUnits expectedTargetAlign) {
|
|
// If the base is an incomplete type (which is, alas, possible with
|
|
// member pointers), be pessimistic.
|
|
if (!baseDecl->isCompleteDefinition())
|
|
return std::min(actualBaseAlign, expectedTargetAlign);
|
|
|
|
auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
|
|
CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
|
|
|
|
// If the class is properly aligned, assume the target offset is, too.
|
|
//
|
|
// This actually isn't necessarily the right thing to do --- if the
|
|
// class is a complete object, but it's only properly aligned for a
|
|
// base subobject, then the alignments of things relative to it are
|
|
// probably off as well. (Note that this requires the alignment of
|
|
// the target to be greater than the NV alignment of the derived
|
|
// class.)
|
|
//
|
|
// However, our approach to this kind of under-alignment can only
|
|
// ever be best effort; after all, we're never going to propagate
|
|
// alignments through variables or parameters. Note, in particular,
|
|
// that constructing a polymorphic type in an address that's less
|
|
// than pointer-aligned will generally trap in the constructor,
|
|
// unless we someday add some sort of attribute to change the
|
|
// assumed alignment of 'this'. So our goal here is pretty much
|
|
// just to allow the user to explicitly say that a pointer is
|
|
// under-aligned and then safely access its fields and vtables.
|
|
if (actualBaseAlign >= expectedBaseAlign) {
|
|
return expectedTargetAlign;
|
|
}
|
|
|
|
// Otherwise, we might be offset by an arbitrary multiple of the
|
|
// actual alignment. The correct adjustment is to take the min of
|
|
// the two alignments.
|
|
return std::min(actualBaseAlign, expectedTargetAlign);
|
|
}
|
|
|
|
Address CodeGenFunction::LoadCXXThisAddress() {
|
|
assert(CurFuncDecl && "loading 'this' without a func declaration?");
|
|
assert(isa<CXXMethodDecl>(CurFuncDecl));
|
|
|
|
// Lazily compute CXXThisAlignment.
|
|
if (CXXThisAlignment.isZero()) {
|
|
// Just use the best known alignment for the parent.
|
|
// TODO: if we're currently emitting a complete-object ctor/dtor,
|
|
// we can always use the complete-object alignment.
|
|
auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
|
|
CXXThisAlignment = CGM.getClassPointerAlignment(RD);
|
|
}
|
|
|
|
return Address(LoadCXXThis(), CXXThisAlignment);
|
|
}
|
|
|
|
/// Emit the address of a field using a member data pointer.
|
|
///
|
|
/// \param E Only used for emergency diagnostics
|
|
Address
|
|
CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
|
|
llvm::Value *memberPtr,
|
|
const MemberPointerType *memberPtrType,
|
|
LValueBaseInfo *BaseInfo,
|
|
TBAAAccessInfo *TBAAInfo) {
|
|
// Ask the ABI to compute the actual address.
|
|
llvm::Value *ptr =
|
|
CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
|
|
memberPtr, memberPtrType);
|
|
|
|
QualType memberType = memberPtrType->getPointeeType();
|
|
CharUnits memberAlign =
|
|
CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
|
|
memberAlign =
|
|
CGM.getDynamicOffsetAlignment(base.getAlignment(),
|
|
memberPtrType->getClass()->getAsCXXRecordDecl(),
|
|
memberAlign);
|
|
return Address(ptr, memberAlign);
|
|
}
|
|
|
|
CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
|
|
const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
|
|
CastExpr::path_const_iterator End) {
|
|
CharUnits Offset = CharUnits::Zero();
|
|
|
|
const ASTContext &Context = getContext();
|
|
const CXXRecordDecl *RD = DerivedClass;
|
|
|
|
for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
|
|
const CXXBaseSpecifier *Base = *I;
|
|
assert(!Base->isVirtual() && "Should not see virtual bases here!");
|
|
|
|
// Get the layout.
|
|
const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
|
|
|
|
const auto *BaseDecl =
|
|
cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
|
|
|
|
// Add the offset.
|
|
Offset += Layout.getBaseClassOffset(BaseDecl);
|
|
|
|
RD = BaseDecl;
|
|
}
|
|
|
|
return Offset;
|
|
}
|
|
|
|
llvm::Constant *
|
|
CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
CharUnits Offset =
|
|
computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
|
|
if (Offset.isZero())
|
|
return nullptr;
|
|
|
|
llvm::Type *PtrDiffTy =
|
|
Types.ConvertType(getContext().getPointerDiffType());
|
|
|
|
return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
|
|
}
|
|
|
|
/// Gets the address of a direct base class within a complete object.
|
|
/// This should only be used for (1) non-virtual bases or (2) virtual bases
|
|
/// when the type is known to be complete (e.g. in complete destructors).
|
|
///
|
|
/// The object pointed to by 'This' is assumed to be non-null.
|
|
Address
|
|
CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
|
|
const CXXRecordDecl *Derived,
|
|
const CXXRecordDecl *Base,
|
|
bool BaseIsVirtual) {
|
|
// 'this' must be a pointer (in some address space) to Derived.
|
|
assert(This.getElementType() == ConvertType(Derived));
|
|
|
|
// Compute the offset of the virtual base.
|
|
CharUnits Offset;
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
|
|
if (BaseIsVirtual)
|
|
Offset = Layout.getVBaseClassOffset(Base);
|
|
else
|
|
Offset = Layout.getBaseClassOffset(Base);
|
|
|
|
// Shift and cast down to the base type.
|
|
// TODO: for complete types, this should be possible with a GEP.
|
|
Address V = This;
|
|
if (!Offset.isZero()) {
|
|
V = Builder.CreateElementBitCast(V, Int8Ty);
|
|
V = Builder.CreateConstInBoundsByteGEP(V, Offset);
|
|
}
|
|
V = Builder.CreateElementBitCast(V, ConvertType(Base));
|
|
|
|
return V;
|
|
}
|
|
|
|
static Address
|
|
ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
|
|
CharUnits nonVirtualOffset,
|
|
llvm::Value *virtualOffset,
|
|
const CXXRecordDecl *derivedClass,
|
|
const CXXRecordDecl *nearestVBase) {
|
|
// Assert that we have something to do.
|
|
assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
|
|
|
|
// Compute the offset from the static and dynamic components.
|
|
llvm::Value *baseOffset;
|
|
if (!nonVirtualOffset.isZero()) {
|
|
llvm::Type *OffsetType =
|
|
(CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
|
|
CGF.CGM.getItaniumVTableContext().isRelativeLayout())
|
|
? CGF.Int32Ty
|
|
: CGF.PtrDiffTy;
|
|
baseOffset =
|
|
llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
|
|
if (virtualOffset) {
|
|
baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
|
|
}
|
|
} else {
|
|
baseOffset = virtualOffset;
|
|
}
|
|
|
|
// Apply the base offset.
|
|
llvm::Value *ptr = addr.getPointer();
|
|
unsigned AddrSpace = ptr->getType()->getPointerAddressSpace();
|
|
ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8Ty->getPointerTo(AddrSpace));
|
|
ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
|
|
|
|
// If we have a virtual component, the alignment of the result will
|
|
// be relative only to the known alignment of that vbase.
|
|
CharUnits alignment;
|
|
if (virtualOffset) {
|
|
assert(nearestVBase && "virtual offset without vbase?");
|
|
alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
|
|
derivedClass, nearestVBase);
|
|
} else {
|
|
alignment = addr.getAlignment();
|
|
}
|
|
alignment = alignment.alignmentAtOffset(nonVirtualOffset);
|
|
|
|
return Address(ptr, alignment);
|
|
}
|
|
|
|
Address CodeGenFunction::GetAddressOfBaseClass(
|
|
Address Value, const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
|
|
SourceLocation Loc) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
CastExpr::path_const_iterator Start = PathBegin;
|
|
const CXXRecordDecl *VBase = nullptr;
|
|
|
|
// Sema has done some convenient canonicalization here: if the
|
|
// access path involved any virtual steps, the conversion path will
|
|
// *start* with a step down to the correct virtual base subobject,
|
|
// and hence will not require any further steps.
|
|
if ((*Start)->isVirtual()) {
|
|
VBase = cast<CXXRecordDecl>(
|
|
(*Start)->getType()->castAs<RecordType>()->getDecl());
|
|
++Start;
|
|
}
|
|
|
|
// Compute the static offset of the ultimate destination within its
|
|
// allocating subobject (the virtual base, if there is one, or else
|
|
// the "complete" object that we see).
|
|
CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
|
|
VBase ? VBase : Derived, Start, PathEnd);
|
|
|
|
// If there's a virtual step, we can sometimes "devirtualize" it.
|
|
// For now, that's limited to when the derived type is final.
|
|
// TODO: "devirtualize" this for accesses to known-complete objects.
|
|
if (VBase && Derived->hasAttr<FinalAttr>()) {
|
|
const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
|
|
CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
|
|
NonVirtualOffset += vBaseOffset;
|
|
VBase = nullptr; // we no longer have a virtual step
|
|
}
|
|
|
|
// Get the base pointer type.
|
|
llvm::Type *BasePtrTy =
|
|
ConvertType((PathEnd[-1])->getType())
|
|
->getPointerTo(Value.getType()->getPointerAddressSpace());
|
|
|
|
QualType DerivedTy = getContext().getRecordType(Derived);
|
|
CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
|
|
|
|
// If the static offset is zero and we don't have a virtual step,
|
|
// just do a bitcast; null checks are unnecessary.
|
|
if (NonVirtualOffset.isZero() && !VBase) {
|
|
if (sanitizePerformTypeCheck()) {
|
|
SanitizerSet SkippedChecks;
|
|
SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
|
|
EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
|
|
DerivedTy, DerivedAlign, SkippedChecks);
|
|
}
|
|
return Builder.CreateBitCast(Value, BasePtrTy);
|
|
}
|
|
|
|
llvm::BasicBlock *origBB = nullptr;
|
|
llvm::BasicBlock *endBB = nullptr;
|
|
|
|
// Skip over the offset (and the vtable load) if we're supposed to
|
|
// null-check the pointer.
|
|
if (NullCheckValue) {
|
|
origBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
|
|
endBB = createBasicBlock("cast.end");
|
|
|
|
llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
|
|
Builder.CreateCondBr(isNull, endBB, notNullBB);
|
|
EmitBlock(notNullBB);
|
|
}
|
|
|
|
if (sanitizePerformTypeCheck()) {
|
|
SanitizerSet SkippedChecks;
|
|
SkippedChecks.set(SanitizerKind::Null, true);
|
|
EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
|
|
Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
|
|
}
|
|
|
|
// Compute the virtual offset.
|
|
llvm::Value *VirtualOffset = nullptr;
|
|
if (VBase) {
|
|
VirtualOffset =
|
|
CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
|
|
}
|
|
|
|
// Apply both offsets.
|
|
Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
|
|
VirtualOffset, Derived, VBase);
|
|
|
|
// Cast to the destination type.
|
|
Value = Builder.CreateBitCast(Value, BasePtrTy);
|
|
|
|
// Build a phi if we needed a null check.
|
|
if (NullCheckValue) {
|
|
llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
|
|
Builder.CreateBr(endBB);
|
|
EmitBlock(endBB);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
|
|
PHI->addIncoming(Value.getPointer(), notNullBB);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
|
|
Value = Address(PHI, Value.getAlignment());
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
Address
|
|
CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
|
|
const CXXRecordDecl *Derived,
|
|
CastExpr::path_const_iterator PathBegin,
|
|
CastExpr::path_const_iterator PathEnd,
|
|
bool NullCheckValue) {
|
|
assert(PathBegin != PathEnd && "Base path should not be empty!");
|
|
|
|
QualType DerivedTy =
|
|
getContext().getCanonicalType(getContext().getTagDeclType(Derived));
|
|
unsigned AddrSpace =
|
|
BaseAddr.getPointer()->getType()->getPointerAddressSpace();
|
|
llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(AddrSpace);
|
|
|
|
llvm::Value *NonVirtualOffset =
|
|
CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
|
|
|
|
if (!NonVirtualOffset) {
|
|
// No offset, we can just cast back.
|
|
return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
|
|
}
|
|
|
|
llvm::BasicBlock *CastNull = nullptr;
|
|
llvm::BasicBlock *CastNotNull = nullptr;
|
|
llvm::BasicBlock *CastEnd = nullptr;
|
|
|
|
if (NullCheckValue) {
|
|
CastNull = createBasicBlock("cast.null");
|
|
CastNotNull = createBasicBlock("cast.notnull");
|
|
CastEnd = createBasicBlock("cast.end");
|
|
|
|
llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
|
|
Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
|
|
EmitBlock(CastNotNull);
|
|
}
|
|
|
|
// Apply the offset.
|
|
llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
|
|
Value = Builder.CreateInBoundsGEP(
|
|
Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
|
|
|
|
// Just cast.
|
|
Value = Builder.CreateBitCast(Value, DerivedPtrTy);
|
|
|
|
// Produce a PHI if we had a null-check.
|
|
if (NullCheckValue) {
|
|
Builder.CreateBr(CastEnd);
|
|
EmitBlock(CastNull);
|
|
Builder.CreateBr(CastEnd);
|
|
EmitBlock(CastEnd);
|
|
|
|
llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
|
|
PHI->addIncoming(Value, CastNotNull);
|
|
PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
|
|
Value = PHI;
|
|
}
|
|
|
|
return Address(Value, CGM.getClassPointerAlignment(Derived));
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
|
|
bool ForVirtualBase,
|
|
bool Delegating) {
|
|
if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
|
|
// This constructor/destructor does not need a VTT parameter.
|
|
return nullptr;
|
|
}
|
|
|
|
const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
|
|
const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
|
|
|
|
uint64_t SubVTTIndex;
|
|
|
|
if (Delegating) {
|
|
// If this is a delegating constructor call, just load the VTT.
|
|
return LoadCXXVTT();
|
|
} else if (RD == Base) {
|
|
// If the record matches the base, this is the complete ctor/dtor
|
|
// variant calling the base variant in a class with virtual bases.
|
|
assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
|
|
"doing no-op VTT offset in base dtor/ctor?");
|
|
assert(!ForVirtualBase && "Can't have same class as virtual base!");
|
|
SubVTTIndex = 0;
|
|
} else {
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
CharUnits BaseOffset = ForVirtualBase ?
|
|
Layout.getVBaseClassOffset(Base) :
|
|
Layout.getBaseClassOffset(Base);
|
|
|
|
SubVTTIndex =
|
|
CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
|
|
assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
|
|
}
|
|
|
|
if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
|
|
// A VTT parameter was passed to the constructor, use it.
|
|
llvm::Value *VTT = LoadCXXVTT();
|
|
return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
|
|
} else {
|
|
// We're the complete constructor, so get the VTT by name.
|
|
llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
|
|
return Builder.CreateConstInBoundsGEP2_64(
|
|
VTT->getValueType(), VTT, 0, SubVTTIndex);
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Call the destructor for a direct base class.
|
|
struct CallBaseDtor final : EHScopeStack::Cleanup {
|
|
const CXXRecordDecl *BaseClass;
|
|
bool BaseIsVirtual;
|
|
CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
|
|
: BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
const CXXRecordDecl *DerivedClass =
|
|
cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
|
|
|
|
const CXXDestructorDecl *D = BaseClass->getDestructor();
|
|
// We are already inside a destructor, so presumably the object being
|
|
// destroyed should have the expected type.
|
|
QualType ThisTy = D->getThisObjectType();
|
|
Address Addr =
|
|
CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
|
|
DerivedClass, BaseClass,
|
|
BaseIsVirtual);
|
|
CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
|
|
/*Delegating=*/false, Addr, ThisTy);
|
|
}
|
|
};
|
|
|
|
/// A visitor which checks whether an initializer uses 'this' in a
|
|
/// way which requires the vtable to be properly set.
|
|
struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
|
|
typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
|
|
|
|
bool UsesThis;
|
|
|
|
DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
|
|
|
|
// Black-list all explicit and implicit references to 'this'.
|
|
//
|
|
// Do we need to worry about external references to 'this' derived
|
|
// from arbitrary code? If so, then anything which runs arbitrary
|
|
// external code might potentially access the vtable.
|
|
void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
|
|
DynamicThisUseChecker Checker(C);
|
|
Checker.Visit(Init);
|
|
return Checker.UsesThis;
|
|
}
|
|
|
|
static void EmitBaseInitializer(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *ClassDecl,
|
|
CXXCtorInitializer *BaseInit) {
|
|
assert(BaseInit->isBaseInitializer() &&
|
|
"Must have base initializer!");
|
|
|
|
Address ThisPtr = CGF.LoadCXXThisAddress();
|
|
|
|
const Type *BaseType = BaseInit->getBaseClass();
|
|
const auto *BaseClassDecl =
|
|
cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
|
|
|
|
bool isBaseVirtual = BaseInit->isBaseVirtual();
|
|
|
|
// If the initializer for the base (other than the constructor
|
|
// itself) accesses 'this' in any way, we need to initialize the
|
|
// vtables.
|
|
if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
|
|
CGF.InitializeVTablePointers(ClassDecl);
|
|
|
|
// We can pretend to be a complete class because it only matters for
|
|
// virtual bases, and we only do virtual bases for complete ctors.
|
|
Address V =
|
|
CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
|
|
BaseClassDecl,
|
|
isBaseVirtual);
|
|
AggValueSlot AggSlot =
|
|
AggValueSlot::forAddr(
|
|
V, Qualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased,
|
|
CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
|
|
|
|
CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
|
|
|
|
if (CGF.CGM.getLangOpts().Exceptions &&
|
|
!BaseClassDecl->hasTrivialDestructor())
|
|
CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
|
|
isBaseVirtual);
|
|
}
|
|
|
|
static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
|
|
auto *CD = dyn_cast<CXXConstructorDecl>(D);
|
|
if (!(CD && CD->isCopyOrMoveConstructor()) &&
|
|
!D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
|
|
return false;
|
|
|
|
// We can emit a memcpy for a trivial copy or move constructor/assignment.
|
|
if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
|
|
return true;
|
|
|
|
// We *must* emit a memcpy for a defaulted union copy or move op.
|
|
if (D->getParent()->isUnion() && D->isDefaulted())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
|
|
CXXCtorInitializer *MemberInit,
|
|
LValue &LHS) {
|
|
FieldDecl *Field = MemberInit->getAnyMember();
|
|
if (MemberInit->isIndirectMemberInitializer()) {
|
|
// If we are initializing an anonymous union field, drill down to the field.
|
|
IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
|
|
for (const auto *I : IndirectField->chain())
|
|
LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
|
|
} else {
|
|
LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
|
|
}
|
|
}
|
|
|
|
static void EmitMemberInitializer(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *ClassDecl,
|
|
CXXCtorInitializer *MemberInit,
|
|
const CXXConstructorDecl *Constructor,
|
|
FunctionArgList &Args) {
|
|
ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
|
|
assert(MemberInit->isAnyMemberInitializer() &&
|
|
"Must have member initializer!");
|
|
assert(MemberInit->getInit() && "Must have initializer!");
|
|
|
|
// non-static data member initializers.
|
|
FieldDecl *Field = MemberInit->getAnyMember();
|
|
QualType FieldType = Field->getType();
|
|
|
|
llvm::Value *ThisPtr = CGF.LoadCXXThis();
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
LValue LHS;
|
|
|
|
// If a base constructor is being emitted, create an LValue that has the
|
|
// non-virtual alignment.
|
|
if (CGF.CurGD.getCtorType() == Ctor_Base)
|
|
LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
|
|
else
|
|
LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
|
|
|
|
EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
|
|
|
|
// Special case: if we are in a copy or move constructor, and we are copying
|
|
// an array of PODs or classes with trivial copy constructors, ignore the
|
|
// AST and perform the copy we know is equivalent.
|
|
// FIXME: This is hacky at best... if we had a bit more explicit information
|
|
// in the AST, we could generalize it more easily.
|
|
const ConstantArrayType *Array
|
|
= CGF.getContext().getAsConstantArrayType(FieldType);
|
|
if (Array && Constructor->isDefaulted() &&
|
|
Constructor->isCopyOrMoveConstructor()) {
|
|
QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
|
|
CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
|
|
if (BaseElementTy.isPODType(CGF.getContext()) ||
|
|
(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
|
|
unsigned SrcArgIndex =
|
|
CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
|
|
llvm::Value *SrcPtr
|
|
= CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
|
|
LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
|
|
LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
|
|
|
|
// Copy the aggregate.
|
|
CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
|
|
LHS.isVolatileQualified());
|
|
// Ensure that we destroy the objects if an exception is thrown later in
|
|
// the constructor.
|
|
QualType::DestructionKind dtorKind = FieldType.isDestructedType();
|
|
if (CGF.needsEHCleanup(dtorKind))
|
|
CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
|
|
return;
|
|
}
|
|
}
|
|
|
|
CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
|
|
}
|
|
|
|
void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
|
|
Expr *Init) {
|
|
QualType FieldType = Field->getType();
|
|
switch (getEvaluationKind(FieldType)) {
|
|
case TEK_Scalar:
|
|
if (LHS.isSimple()) {
|
|
EmitExprAsInit(Init, Field, LHS, false);
|
|
} else {
|
|
RValue RHS = RValue::get(EmitScalarExpr(Init));
|
|
EmitStoreThroughLValue(RHS, LHS);
|
|
}
|
|
break;
|
|
case TEK_Complex:
|
|
EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
|
|
break;
|
|
case TEK_Aggregate: {
|
|
AggValueSlot Slot = AggValueSlot::forLValue(
|
|
LHS, *this, AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
|
|
getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
|
|
// Checks are made by the code that calls constructor.
|
|
AggValueSlot::IsSanitizerChecked);
|
|
EmitAggExpr(Init, Slot);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Ensure that we destroy this object if an exception is thrown
|
|
// later in the constructor.
|
|
QualType::DestructionKind dtorKind = FieldType.isDestructedType();
|
|
if (needsEHCleanup(dtorKind))
|
|
pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
|
|
}
|
|
|
|
/// Checks whether the given constructor is a valid subject for the
|
|
/// complete-to-base constructor delegation optimization, i.e.
|
|
/// emitting the complete constructor as a simple call to the base
|
|
/// constructor.
|
|
bool CodeGenFunction::IsConstructorDelegationValid(
|
|
const CXXConstructorDecl *Ctor) {
|
|
|
|
// Currently we disable the optimization for classes with virtual
|
|
// bases because (1) the addresses of parameter variables need to be
|
|
// consistent across all initializers but (2) the delegate function
|
|
// call necessarily creates a second copy of the parameter variable.
|
|
//
|
|
// The limiting example (purely theoretical AFAIK):
|
|
// struct A { A(int &c) { c++; } };
|
|
// struct B : virtual A {
|
|
// B(int count) : A(count) { printf("%d\n", count); }
|
|
// };
|
|
// ...although even this example could in principle be emitted as a
|
|
// delegation since the address of the parameter doesn't escape.
|
|
if (Ctor->getParent()->getNumVBases()) {
|
|
// TODO: white-list trivial vbase initializers. This case wouldn't
|
|
// be subject to the restrictions below.
|
|
|
|
// TODO: white-list cases where:
|
|
// - there are no non-reference parameters to the constructor
|
|
// - the initializers don't access any non-reference parameters
|
|
// - the initializers don't take the address of non-reference
|
|
// parameters
|
|
// - etc.
|
|
// If we ever add any of the above cases, remember that:
|
|
// - function-try-blocks will always exclude this optimization
|
|
// - we need to perform the constructor prologue and cleanup in
|
|
// EmitConstructorBody.
|
|
|
|
return false;
|
|
}
|
|
|
|
// We also disable the optimization for variadic functions because
|
|
// it's impossible to "re-pass" varargs.
|
|
if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
|
|
return false;
|
|
|
|
// FIXME: Decide if we can do a delegation of a delegating constructor.
|
|
if (Ctor->isDelegatingConstructor())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
|
|
// to poison the extra field paddings inserted under
|
|
// -fsanitize-address-field-padding=1|2.
|
|
void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
|
|
ASTContext &Context = getContext();
|
|
const CXXRecordDecl *ClassDecl =
|
|
Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
|
|
: cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
|
|
if (!ClassDecl->mayInsertExtraPadding()) return;
|
|
|
|
struct SizeAndOffset {
|
|
uint64_t Size;
|
|
uint64_t Offset;
|
|
};
|
|
|
|
unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
|
|
const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
|
|
|
|
// Populate sizes and offsets of fields.
|
|
SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
|
|
for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
|
|
SSV[i].Offset =
|
|
Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
|
|
|
|
size_t NumFields = 0;
|
|
for (const auto *Field : ClassDecl->fields()) {
|
|
const FieldDecl *D = Field;
|
|
auto FieldInfo = Context.getTypeInfoInChars(D->getType());
|
|
CharUnits FieldSize = FieldInfo.Width;
|
|
assert(NumFields < SSV.size());
|
|
SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
|
|
NumFields++;
|
|
}
|
|
assert(NumFields == SSV.size());
|
|
if (SSV.size() <= 1) return;
|
|
|
|
// We will insert calls to __asan_* run-time functions.
|
|
// LLVM AddressSanitizer pass may decide to inline them later.
|
|
llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(CGM.VoidTy, Args, false);
|
|
llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
|
|
FTy, Prologue ? "__asan_poison_intra_object_redzone"
|
|
: "__asan_unpoison_intra_object_redzone");
|
|
|
|
llvm::Value *ThisPtr = LoadCXXThis();
|
|
ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
|
|
uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
|
|
// For each field check if it has sufficient padding,
|
|
// if so (un)poison it with a call.
|
|
for (size_t i = 0; i < SSV.size(); i++) {
|
|
uint64_t AsanAlignment = 8;
|
|
uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
|
|
uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
|
|
uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
|
|
if (PoisonSize < AsanAlignment || !SSV[i].Size ||
|
|
(NextField % AsanAlignment) != 0)
|
|
continue;
|
|
Builder.CreateCall(
|
|
F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
|
|
Builder.getIntN(PtrSize, PoisonSize)});
|
|
}
|
|
}
|
|
|
|
/// EmitConstructorBody - Emits the body of the current constructor.
|
|
void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
|
|
EmitAsanPrologueOrEpilogue(true);
|
|
const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
|
|
CXXCtorType CtorType = CurGD.getCtorType();
|
|
|
|
assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
|
|
CtorType == Ctor_Complete) &&
|
|
"can only generate complete ctor for this ABI");
|
|
|
|
// Before we go any further, try the complete->base constructor
|
|
// delegation optimization.
|
|
if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
|
|
CGM.getTarget().getCXXABI().hasConstructorVariants()) {
|
|
EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
|
|
return;
|
|
}
|
|
|
|
const FunctionDecl *Definition = nullptr;
|
|
Stmt *Body = Ctor->getBody(Definition);
|
|
assert(Definition == Ctor && "emitting wrong constructor body");
|
|
|
|
// Enter the function-try-block before the constructor prologue if
|
|
// applicable.
|
|
bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
|
|
if (IsTryBody)
|
|
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
|
|
incrementProfileCounter(Body);
|
|
|
|
RunCleanupsScope RunCleanups(*this);
|
|
|
|
// TODO: in restricted cases, we can emit the vbase initializers of
|
|
// a complete ctor and then delegate to the base ctor.
|
|
|
|
// Emit the constructor prologue, i.e. the base and member
|
|
// initializers.
|
|
EmitCtorPrologue(Ctor, CtorType, Args);
|
|
|
|
// Emit the body of the statement.
|
|
if (IsTryBody)
|
|
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
|
|
else if (Body)
|
|
EmitStmt(Body);
|
|
|
|
// Emit any cleanup blocks associated with the member or base
|
|
// initializers, which includes (along the exceptional path) the
|
|
// destructors for those members and bases that were fully
|
|
// constructed.
|
|
RunCleanups.ForceCleanup();
|
|
|
|
if (IsTryBody)
|
|
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
}
|
|
|
|
namespace {
|
|
/// RAII object to indicate that codegen is copying the value representation
|
|
/// instead of the object representation. Useful when copying a struct or
|
|
/// class which has uninitialized members and we're only performing
|
|
/// lvalue-to-rvalue conversion on the object but not its members.
|
|
class CopyingValueRepresentation {
|
|
public:
|
|
explicit CopyingValueRepresentation(CodeGenFunction &CGF)
|
|
: CGF(CGF), OldSanOpts(CGF.SanOpts) {
|
|
CGF.SanOpts.set(SanitizerKind::Bool, false);
|
|
CGF.SanOpts.set(SanitizerKind::Enum, false);
|
|
}
|
|
~CopyingValueRepresentation() {
|
|
CGF.SanOpts = OldSanOpts;
|
|
}
|
|
private:
|
|
CodeGenFunction &CGF;
|
|
SanitizerSet OldSanOpts;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
namespace {
|
|
class FieldMemcpyizer {
|
|
public:
|
|
FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
|
|
const VarDecl *SrcRec)
|
|
: CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
|
|
RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
|
|
FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
|
|
LastFieldOffset(0), LastAddedFieldIndex(0) {}
|
|
|
|
bool isMemcpyableField(FieldDecl *F) const {
|
|
// Never memcpy fields when we are adding poisoned paddings.
|
|
if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
|
|
return false;
|
|
Qualifiers Qual = F->getType().getQualifiers();
|
|
if (Qual.hasVolatile() || Qual.hasObjCLifetime())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void addMemcpyableField(FieldDecl *F) {
|
|
if (F->isZeroSize(CGF.getContext()))
|
|
return;
|
|
if (!FirstField)
|
|
addInitialField(F);
|
|
else
|
|
addNextField(F);
|
|
}
|
|
|
|
CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
|
|
ASTContext &Ctx = CGF.getContext();
|
|
unsigned LastFieldSize =
|
|
LastField->isBitField()
|
|
? LastField->getBitWidthValue(Ctx)
|
|
: Ctx.toBits(
|
|
Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
|
|
uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
|
|
FirstByteOffset + Ctx.getCharWidth() - 1;
|
|
CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
|
|
return MemcpySize;
|
|
}
|
|
|
|
void emitMemcpy() {
|
|
// Give the subclass a chance to bail out if it feels the memcpy isn't
|
|
// worth it (e.g. Hasn't aggregated enough data).
|
|
if (!FirstField) {
|
|
return;
|
|
}
|
|
|
|
uint64_t FirstByteOffset;
|
|
if (FirstField->isBitField()) {
|
|
const CGRecordLayout &RL =
|
|
CGF.getTypes().getCGRecordLayout(FirstField->getParent());
|
|
const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
|
|
// FirstFieldOffset is not appropriate for bitfields,
|
|
// we need to use the storage offset instead.
|
|
FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
|
|
} else {
|
|
FirstByteOffset = FirstFieldOffset;
|
|
}
|
|
|
|
CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
Address ThisPtr = CGF.LoadCXXThisAddress();
|
|
LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
|
|
LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
|
|
llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
|
|
LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
|
|
LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
|
|
|
|
emitMemcpyIR(
|
|
Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
|
|
Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
|
|
MemcpySize);
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
FirstField = nullptr;
|
|
}
|
|
|
|
protected:
|
|
CodeGenFunction &CGF;
|
|
const CXXRecordDecl *ClassDecl;
|
|
|
|
private:
|
|
void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
|
|
llvm::PointerType *DPT = DestPtr.getType();
|
|
llvm::Type *DBP =
|
|
llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
|
|
DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
|
|
|
|
llvm::PointerType *SPT = SrcPtr.getType();
|
|
llvm::Type *SBP =
|
|
llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
|
|
SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
|
|
|
|
CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
|
|
}
|
|
|
|
void addInitialField(FieldDecl *F) {
|
|
FirstField = F;
|
|
LastField = F;
|
|
FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
|
|
LastFieldOffset = FirstFieldOffset;
|
|
LastAddedFieldIndex = F->getFieldIndex();
|
|
}
|
|
|
|
void addNextField(FieldDecl *F) {
|
|
// For the most part, the following invariant will hold:
|
|
// F->getFieldIndex() == LastAddedFieldIndex + 1
|
|
// The one exception is that Sema won't add a copy-initializer for an
|
|
// unnamed bitfield, which will show up here as a gap in the sequence.
|
|
assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
|
|
"Cannot aggregate fields out of order.");
|
|
LastAddedFieldIndex = F->getFieldIndex();
|
|
|
|
// The 'first' and 'last' fields are chosen by offset, rather than field
|
|
// index. This allows the code to support bitfields, as well as regular
|
|
// fields.
|
|
uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
|
|
if (FOffset < FirstFieldOffset) {
|
|
FirstField = F;
|
|
FirstFieldOffset = FOffset;
|
|
} else if (FOffset >= LastFieldOffset) {
|
|
LastField = F;
|
|
LastFieldOffset = FOffset;
|
|
}
|
|
}
|
|
|
|
const VarDecl *SrcRec;
|
|
const ASTRecordLayout &RecLayout;
|
|
FieldDecl *FirstField;
|
|
FieldDecl *LastField;
|
|
uint64_t FirstFieldOffset, LastFieldOffset;
|
|
unsigned LastAddedFieldIndex;
|
|
};
|
|
|
|
class ConstructorMemcpyizer : public FieldMemcpyizer {
|
|
private:
|
|
/// Get source argument for copy constructor. Returns null if not a copy
|
|
/// constructor.
|
|
static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
|
|
const CXXConstructorDecl *CD,
|
|
FunctionArgList &Args) {
|
|
if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
|
|
return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns true if a CXXCtorInitializer represents a member initialization
|
|
// that can be rolled into a memcpy.
|
|
bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
|
|
if (!MemcpyableCtor)
|
|
return false;
|
|
FieldDecl *Field = MemberInit->getMember();
|
|
assert(Field && "No field for member init.");
|
|
QualType FieldType = Field->getType();
|
|
CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
|
|
|
|
// Bail out on non-memcpyable, not-trivially-copyable members.
|
|
if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
|
|
!(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
|
|
FieldType->isReferenceType()))
|
|
return false;
|
|
|
|
// Bail out on volatile fields.
|
|
if (!isMemcpyableField(Field))
|
|
return false;
|
|
|
|
// Otherwise we're good.
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
|
|
FunctionArgList &Args)
|
|
: FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
|
|
ConstructorDecl(CD),
|
|
MemcpyableCtor(CD->isDefaulted() &&
|
|
CD->isCopyOrMoveConstructor() &&
|
|
CGF.getLangOpts().getGC() == LangOptions::NonGC),
|
|
Args(Args) { }
|
|
|
|
void addMemberInitializer(CXXCtorInitializer *MemberInit) {
|
|
if (isMemberInitMemcpyable(MemberInit)) {
|
|
AggregatedInits.push_back(MemberInit);
|
|
addMemcpyableField(MemberInit->getMember());
|
|
} else {
|
|
emitAggregatedInits();
|
|
EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
|
|
ConstructorDecl, Args);
|
|
}
|
|
}
|
|
|
|
void emitAggregatedInits() {
|
|
if (AggregatedInits.size() <= 1) {
|
|
// This memcpy is too small to be worthwhile. Fall back on default
|
|
// codegen.
|
|
if (!AggregatedInits.empty()) {
|
|
CopyingValueRepresentation CVR(CGF);
|
|
EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
|
|
AggregatedInits[0], ConstructorDecl, Args);
|
|
AggregatedInits.clear();
|
|
}
|
|
reset();
|
|
return;
|
|
}
|
|
|
|
pushEHDestructors();
|
|
emitMemcpy();
|
|
AggregatedInits.clear();
|
|
}
|
|
|
|
void pushEHDestructors() {
|
|
Address ThisPtr = CGF.LoadCXXThisAddress();
|
|
QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
|
|
LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
|
|
|
|
for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
|
|
CXXCtorInitializer *MemberInit = AggregatedInits[i];
|
|
QualType FieldType = MemberInit->getAnyMember()->getType();
|
|
QualType::DestructionKind dtorKind = FieldType.isDestructedType();
|
|
if (!CGF.needsEHCleanup(dtorKind))
|
|
continue;
|
|
LValue FieldLHS = LHS;
|
|
EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
|
|
CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
|
|
}
|
|
}
|
|
|
|
void finish() {
|
|
emitAggregatedInits();
|
|
}
|
|
|
|
private:
|
|
const CXXConstructorDecl *ConstructorDecl;
|
|
bool MemcpyableCtor;
|
|
FunctionArgList &Args;
|
|
SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
|
|
};
|
|
|
|
class AssignmentMemcpyizer : public FieldMemcpyizer {
|
|
private:
|
|
// Returns the memcpyable field copied by the given statement, if one
|
|
// exists. Otherwise returns null.
|
|
FieldDecl *getMemcpyableField(Stmt *S) {
|
|
if (!AssignmentsMemcpyable)
|
|
return nullptr;
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
|
|
// Recognise trivial assignments.
|
|
if (BO->getOpcode() != BO_Assign)
|
|
return nullptr;
|
|
MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
|
|
if (!ME)
|
|
return nullptr;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return nullptr;
|
|
Stmt *RHS = BO->getRHS();
|
|
if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
|
|
RHS = EC->getSubExpr();
|
|
if (!RHS)
|
|
return nullptr;
|
|
if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
|
|
if (ME2->getMemberDecl() == Field)
|
|
return Field;
|
|
}
|
|
return nullptr;
|
|
} else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
|
|
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
|
|
if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
|
|
return nullptr;
|
|
MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
|
|
if (!IOA)
|
|
return nullptr;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return nullptr;
|
|
MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
|
|
if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
|
|
return nullptr;
|
|
return Field;
|
|
} else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
|
|
if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
|
|
return nullptr;
|
|
Expr *DstPtr = CE->getArg(0);
|
|
if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
|
|
DstPtr = DC->getSubExpr();
|
|
UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
|
|
if (!DUO || DUO->getOpcode() != UO_AddrOf)
|
|
return nullptr;
|
|
MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
|
|
if (!ME)
|
|
return nullptr;
|
|
FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!Field || !isMemcpyableField(Field))
|
|
return nullptr;
|
|
Expr *SrcPtr = CE->getArg(1);
|
|
if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
|
|
SrcPtr = SC->getSubExpr();
|
|
UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
|
|
if (!SUO || SUO->getOpcode() != UO_AddrOf)
|
|
return nullptr;
|
|
MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
|
|
if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
|
|
return nullptr;
|
|
return Field;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
bool AssignmentsMemcpyable;
|
|
SmallVector<Stmt*, 16> AggregatedStmts;
|
|
|
|
public:
|
|
AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
|
|
FunctionArgList &Args)
|
|
: FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
|
|
AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
|
|
assert(Args.size() == 2);
|
|
}
|
|
|
|
void emitAssignment(Stmt *S) {
|
|
FieldDecl *F = getMemcpyableField(S);
|
|
if (F) {
|
|
addMemcpyableField(F);
|
|
AggregatedStmts.push_back(S);
|
|
} else {
|
|
emitAggregatedStmts();
|
|
CGF.EmitStmt(S);
|
|
}
|
|
}
|
|
|
|
void emitAggregatedStmts() {
|
|
if (AggregatedStmts.size() <= 1) {
|
|
if (!AggregatedStmts.empty()) {
|
|
CopyingValueRepresentation CVR(CGF);
|
|
CGF.EmitStmt(AggregatedStmts[0]);
|
|
}
|
|
reset();
|
|
}
|
|
|
|
emitMemcpy();
|
|
AggregatedStmts.clear();
|
|
}
|
|
|
|
void finish() {
|
|
emitAggregatedStmts();
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
|
|
const Type *BaseType = BaseInit->getBaseClass();
|
|
const auto *BaseClassDecl =
|
|
cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
|
|
return BaseClassDecl->isDynamicClass();
|
|
}
|
|
|
|
/// EmitCtorPrologue - This routine generates necessary code to initialize
|
|
/// base classes and non-static data members belonging to this constructor.
|
|
void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
|
|
CXXCtorType CtorType,
|
|
FunctionArgList &Args) {
|
|
if (CD->isDelegatingConstructor())
|
|
return EmitDelegatingCXXConstructorCall(CD, Args);
|
|
|
|
const CXXRecordDecl *ClassDecl = CD->getParent();
|
|
|
|
CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
|
|
E = CD->init_end();
|
|
|
|
// Virtual base initializers first, if any. They aren't needed if:
|
|
// - This is a base ctor variant
|
|
// - There are no vbases
|
|
// - The class is abstract, so a complete object of it cannot be constructed
|
|
//
|
|
// The check for an abstract class is necessary because sema may not have
|
|
// marked virtual base destructors referenced.
|
|
bool ConstructVBases = CtorType != Ctor_Base &&
|
|
ClassDecl->getNumVBases() != 0 &&
|
|
!ClassDecl->isAbstract();
|
|
|
|
// In the Microsoft C++ ABI, there are no constructor variants. Instead, the
|
|
// constructor of a class with virtual bases takes an additional parameter to
|
|
// conditionally construct the virtual bases. Emit that check here.
|
|
llvm::BasicBlock *BaseCtorContinueBB = nullptr;
|
|
if (ConstructVBases &&
|
|
!CGM.getTarget().getCXXABI().hasConstructorVariants()) {
|
|
BaseCtorContinueBB =
|
|
CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
|
|
assert(BaseCtorContinueBB);
|
|
}
|
|
|
|
llvm::Value *const OldThis = CXXThisValue;
|
|
for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
|
|
if (!ConstructVBases)
|
|
continue;
|
|
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
CGM.getCodeGenOpts().OptimizationLevel > 0 &&
|
|
isInitializerOfDynamicClass(*B))
|
|
CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
|
|
EmitBaseInitializer(*this, ClassDecl, *B);
|
|
}
|
|
|
|
if (BaseCtorContinueBB) {
|
|
// Complete object handler should continue to the remaining initializers.
|
|
Builder.CreateBr(BaseCtorContinueBB);
|
|
EmitBlock(BaseCtorContinueBB);
|
|
}
|
|
|
|
// Then, non-virtual base initializers.
|
|
for (; B != E && (*B)->isBaseInitializer(); B++) {
|
|
assert(!(*B)->isBaseVirtual());
|
|
|
|
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
CGM.getCodeGenOpts().OptimizationLevel > 0 &&
|
|
isInitializerOfDynamicClass(*B))
|
|
CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
|
|
EmitBaseInitializer(*this, ClassDecl, *B);
|
|
}
|
|
|
|
CXXThisValue = OldThis;
|
|
|
|
InitializeVTablePointers(ClassDecl);
|
|
|
|
// And finally, initialize class members.
|
|
FieldConstructionScope FCS(*this, LoadCXXThisAddress());
|
|
ConstructorMemcpyizer CM(*this, CD, Args);
|
|
for (; B != E; B++) {
|
|
CXXCtorInitializer *Member = (*B);
|
|
assert(!Member->isBaseInitializer());
|
|
assert(Member->isAnyMemberInitializer() &&
|
|
"Delegating initializer on non-delegating constructor");
|
|
CM.addMemberInitializer(Member);
|
|
}
|
|
CM.finish();
|
|
}
|
|
|
|
static bool
|
|
FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
|
|
|
|
static bool
|
|
HasTrivialDestructorBody(ASTContext &Context,
|
|
const CXXRecordDecl *BaseClassDecl,
|
|
const CXXRecordDecl *MostDerivedClassDecl)
|
|
{
|
|
// If the destructor is trivial we don't have to check anything else.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
return true;
|
|
|
|
if (!BaseClassDecl->getDestructor()->hasTrivialBody())
|
|
return false;
|
|
|
|
// Check fields.
|
|
for (const auto *Field : BaseClassDecl->fields())
|
|
if (!FieldHasTrivialDestructorBody(Context, Field))
|
|
return false;
|
|
|
|
// Check non-virtual bases.
|
|
for (const auto &I : BaseClassDecl->bases()) {
|
|
if (I.isVirtual())
|
|
continue;
|
|
|
|
const CXXRecordDecl *NonVirtualBase =
|
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
if (!HasTrivialDestructorBody(Context, NonVirtualBase,
|
|
MostDerivedClassDecl))
|
|
return false;
|
|
}
|
|
|
|
if (BaseClassDecl == MostDerivedClassDecl) {
|
|
// Check virtual bases.
|
|
for (const auto &I : BaseClassDecl->vbases()) {
|
|
const CXXRecordDecl *VirtualBase =
|
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
if (!HasTrivialDestructorBody(Context, VirtualBase,
|
|
MostDerivedClassDecl))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
FieldHasTrivialDestructorBody(ASTContext &Context,
|
|
const FieldDecl *Field)
|
|
{
|
|
QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
|
|
|
|
const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
|
|
if (!RT)
|
|
return true;
|
|
|
|
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
|
|
|
// The destructor for an implicit anonymous union member is never invoked.
|
|
if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
|
|
return false;
|
|
|
|
return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
|
|
}
|
|
|
|
/// CanSkipVTablePointerInitialization - Check whether we need to initialize
|
|
/// any vtable pointers before calling this destructor.
|
|
static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *Dtor) {
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
if (!ClassDecl->isDynamicClass())
|
|
return true;
|
|
|
|
if (!Dtor->hasTrivialBody())
|
|
return false;
|
|
|
|
// Check the fields.
|
|
for (const auto *Field : ClassDecl->fields())
|
|
if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// EmitDestructorBody - Emits the body of the current destructor.
|
|
void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
|
|
CXXDtorType DtorType = CurGD.getDtorType();
|
|
|
|
// For an abstract class, non-base destructors are never used (and can't
|
|
// be emitted in general, because vbase dtors may not have been validated
|
|
// by Sema), but the Itanium ABI doesn't make them optional and Clang may
|
|
// in fact emit references to them from other compilations, so emit them
|
|
// as functions containing a trap instruction.
|
|
if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
|
|
llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
|
|
TrapCall->setDoesNotReturn();
|
|
TrapCall->setDoesNotThrow();
|
|
Builder.CreateUnreachable();
|
|
Builder.ClearInsertionPoint();
|
|
return;
|
|
}
|
|
|
|
Stmt *Body = Dtor->getBody();
|
|
if (Body)
|
|
incrementProfileCounter(Body);
|
|
|
|
// The call to operator delete in a deleting destructor happens
|
|
// outside of the function-try-block, which means it's always
|
|
// possible to delegate the destructor body to the complete
|
|
// destructor. Do so.
|
|
if (DtorType == Dtor_Deleting) {
|
|
RunCleanupsScope DtorEpilogue(*this);
|
|
EnterDtorCleanups(Dtor, Dtor_Deleting);
|
|
if (HaveInsertPoint()) {
|
|
QualType ThisTy = Dtor->getThisObjectType();
|
|
EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the body is a function-try-block, enter the try before
|
|
// anything else.
|
|
bool isTryBody = (Body && isa<CXXTryStmt>(Body));
|
|
if (isTryBody)
|
|
EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
EmitAsanPrologueOrEpilogue(false);
|
|
|
|
// Enter the epilogue cleanups.
|
|
RunCleanupsScope DtorEpilogue(*this);
|
|
|
|
// If this is the complete variant, just invoke the base variant;
|
|
// the epilogue will destruct the virtual bases. But we can't do
|
|
// this optimization if the body is a function-try-block, because
|
|
// we'd introduce *two* handler blocks. In the Microsoft ABI, we
|
|
// always delegate because we might not have a definition in this TU.
|
|
switch (DtorType) {
|
|
case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
|
|
case Dtor_Deleting: llvm_unreachable("already handled deleting case");
|
|
|
|
case Dtor_Complete:
|
|
assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
|
|
"can't emit a dtor without a body for non-Microsoft ABIs");
|
|
|
|
// Enter the cleanup scopes for virtual bases.
|
|
EnterDtorCleanups(Dtor, Dtor_Complete);
|
|
|
|
if (!isTryBody) {
|
|
QualType ThisTy = Dtor->getThisObjectType();
|
|
EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
|
|
break;
|
|
}
|
|
|
|
// Fallthrough: act like we're in the base variant.
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case Dtor_Base:
|
|
assert(Body);
|
|
|
|
// Enter the cleanup scopes for fields and non-virtual bases.
|
|
EnterDtorCleanups(Dtor, Dtor_Base);
|
|
|
|
// Initialize the vtable pointers before entering the body.
|
|
if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
|
|
// Insert the llvm.launder.invariant.group intrinsic before initializing
|
|
// the vptrs to cancel any previous assumptions we might have made.
|
|
if (CGM.getCodeGenOpts().StrictVTablePointers &&
|
|
CGM.getCodeGenOpts().OptimizationLevel > 0)
|
|
CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
|
|
InitializeVTablePointers(Dtor->getParent());
|
|
}
|
|
|
|
if (isTryBody)
|
|
EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
|
|
else if (Body)
|
|
EmitStmt(Body);
|
|
else {
|
|
assert(Dtor->isImplicit() && "bodyless dtor not implicit");
|
|
// nothing to do besides what's in the epilogue
|
|
}
|
|
// -fapple-kext must inline any call to this dtor into
|
|
// the caller's body.
|
|
if (getLangOpts().AppleKext)
|
|
CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
|
|
|
|
break;
|
|
}
|
|
|
|
// Jump out through the epilogue cleanups.
|
|
DtorEpilogue.ForceCleanup();
|
|
|
|
// Exit the try if applicable.
|
|
if (isTryBody)
|
|
ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
|
|
}
|
|
|
|
void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
|
|
const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
|
|
const Stmt *RootS = AssignOp->getBody();
|
|
assert(isa<CompoundStmt>(RootS) &&
|
|
"Body of an implicit assignment operator should be compound stmt.");
|
|
const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
|
|
|
|
LexicalScope Scope(*this, RootCS->getSourceRange());
|
|
|
|
incrementProfileCounter(RootCS);
|
|
AssignmentMemcpyizer AM(*this, AssignOp, Args);
|
|
for (auto *I : RootCS->body())
|
|
AM.emitAssignment(I);
|
|
AM.finish();
|
|
}
|
|
|
|
namespace {
|
|
llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *DD) {
|
|
if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
|
|
return CGF.EmitScalarExpr(ThisArg);
|
|
return CGF.LoadCXXThis();
|
|
}
|
|
|
|
/// Call the operator delete associated with the current destructor.
|
|
struct CallDtorDelete final : EHScopeStack::Cleanup {
|
|
CallDtorDelete() {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
|
|
LoadThisForDtorDelete(CGF, Dtor),
|
|
CGF.getContext().getTagDeclType(ClassDecl));
|
|
}
|
|
};
|
|
|
|
void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
|
|
llvm::Value *ShouldDeleteCondition,
|
|
bool ReturnAfterDelete) {
|
|
llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
|
|
llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
|
|
llvm::Value *ShouldCallDelete
|
|
= CGF.Builder.CreateIsNull(ShouldDeleteCondition);
|
|
CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
|
|
|
|
CGF.EmitBlock(callDeleteBB);
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
|
|
const CXXRecordDecl *ClassDecl = Dtor->getParent();
|
|
CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
|
|
LoadThisForDtorDelete(CGF, Dtor),
|
|
CGF.getContext().getTagDeclType(ClassDecl));
|
|
assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
|
|
ReturnAfterDelete &&
|
|
"unexpected value for ReturnAfterDelete");
|
|
if (ReturnAfterDelete)
|
|
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
|
|
else
|
|
CGF.Builder.CreateBr(continueBB);
|
|
|
|
CGF.EmitBlock(continueBB);
|
|
}
|
|
|
|
struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
|
|
llvm::Value *ShouldDeleteCondition;
|
|
|
|
public:
|
|
CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
|
|
: ShouldDeleteCondition(ShouldDeleteCondition) {
|
|
assert(ShouldDeleteCondition != nullptr);
|
|
}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
|
|
/*ReturnAfterDelete*/false);
|
|
}
|
|
};
|
|
|
|
class DestroyField final : public EHScopeStack::Cleanup {
|
|
const FieldDecl *field;
|
|
CodeGenFunction::Destroyer *destroyer;
|
|
bool useEHCleanupForArray;
|
|
|
|
public:
|
|
DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
|
|
bool useEHCleanupForArray)
|
|
: field(field), destroyer(destroyer),
|
|
useEHCleanupForArray(useEHCleanupForArray) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
// Find the address of the field.
|
|
Address thisValue = CGF.LoadCXXThisAddress();
|
|
QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
|
|
LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
|
|
LValue LV = CGF.EmitLValueForField(ThisLV, field);
|
|
assert(LV.isSimple());
|
|
|
|
CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
|
|
flags.isForNormalCleanup() && useEHCleanupForArray);
|
|
}
|
|
};
|
|
|
|
static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
|
|
CharUnits::QuantityType PoisonSize) {
|
|
CodeGenFunction::SanitizerScope SanScope(&CGF);
|
|
// Pass in void pointer and size of region as arguments to runtime
|
|
// function
|
|
llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
|
|
llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
|
|
|
|
llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
|
|
|
|
llvm::FunctionType *FnType =
|
|
llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
|
|
llvm::FunctionCallee Fn =
|
|
CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
|
|
CGF.EmitNounwindRuntimeCall(Fn, Args);
|
|
}
|
|
|
|
class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
|
|
public:
|
|
SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
|
|
|
|
// Generate function call for handling object poisoning.
|
|
// Disables tail call elimination, to prevent the current stack frame
|
|
// from disappearing from the stack trace.
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
const ASTRecordLayout &Layout =
|
|
CGF.getContext().getASTRecordLayout(Dtor->getParent());
|
|
|
|
// Nothing to poison.
|
|
if (Layout.getFieldCount() == 0)
|
|
return;
|
|
|
|
// Prevent the current stack frame from disappearing from the stack trace.
|
|
CGF.CurFn->addFnAttr("disable-tail-calls", "true");
|
|
|
|
// Construct pointer to region to begin poisoning, and calculate poison
|
|
// size, so that only members declared in this class are poisoned.
|
|
ASTContext &Context = CGF.getContext();
|
|
|
|
const RecordDecl *Decl = Dtor->getParent();
|
|
auto Fields = Decl->fields();
|
|
auto IsTrivial = [&](const FieldDecl *F) {
|
|
return FieldHasTrivialDestructorBody(Context, F);
|
|
};
|
|
|
|
auto IsZeroSize = [&](const FieldDecl *F) {
|
|
return F->isZeroSize(Context);
|
|
};
|
|
|
|
// Poison blocks of fields with trivial destructors making sure that block
|
|
// begin and end do not point to zero-sized fields. They don't have
|
|
// correct offsets so can't be used to calculate poisoning range.
|
|
for (auto It = Fields.begin(); It != Fields.end();) {
|
|
It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) {
|
|
return IsTrivial(F) && !IsZeroSize(F);
|
|
});
|
|
if (It == Fields.end())
|
|
break;
|
|
auto Start = It++;
|
|
It = std::find_if(It, Fields.end(), [&](const FieldDecl *F) {
|
|
return !IsTrivial(F) && !IsZeroSize(F);
|
|
});
|
|
|
|
PoisonMembers(CGF, (*Start)->getFieldIndex(),
|
|
It == Fields.end() ? -1 : (*It)->getFieldIndex());
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// \param layoutStartOffset index of the ASTRecordLayout field to
|
|
/// start poisoning (inclusive)
|
|
/// \param layoutEndOffset index of the ASTRecordLayout field to
|
|
/// end poisoning (exclusive)
|
|
void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
|
|
unsigned layoutEndOffset) {
|
|
ASTContext &Context = CGF.getContext();
|
|
const ASTRecordLayout &Layout =
|
|
Context.getASTRecordLayout(Dtor->getParent());
|
|
|
|
// It's a first trivia field so it should be at the begining of char,
|
|
// still round up start offset just in case.
|
|
CharUnits PoisonStart =
|
|
Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset) +
|
|
Context.getCharWidth() - 1);
|
|
llvm::ConstantInt *OffsetSizePtr =
|
|
llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
|
|
|
|
llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
|
|
CGF.Int8Ty,
|
|
CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
|
|
OffsetSizePtr);
|
|
|
|
CharUnits PoisonEnd;
|
|
if (layoutEndOffset >= Layout.getFieldCount()) {
|
|
PoisonEnd = Layout.getNonVirtualSize();
|
|
} else {
|
|
PoisonEnd =
|
|
Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutEndOffset));
|
|
}
|
|
CharUnits PoisonSize = PoisonEnd - PoisonStart;
|
|
if (!PoisonSize.isPositive())
|
|
return;
|
|
|
|
EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
|
|
}
|
|
};
|
|
|
|
class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
|
|
public:
|
|
SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
|
|
|
|
// Generate function call for handling vtable pointer poisoning.
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
assert(Dtor->getParent()->isDynamicClass());
|
|
(void)Dtor;
|
|
ASTContext &Context = CGF.getContext();
|
|
// Poison vtable and vtable ptr if they exist for this class.
|
|
llvm::Value *VTablePtr = CGF.LoadCXXThis();
|
|
|
|
CharUnits::QuantityType PoisonSize =
|
|
Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
|
|
// Pass in void pointer and size of region as arguments to runtime
|
|
// function
|
|
EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Emit all code that comes at the end of class's
|
|
/// destructor. This is to call destructors on members and base classes
|
|
/// in reverse order of their construction.
|
|
///
|
|
/// For a deleting destructor, this also handles the case where a destroying
|
|
/// operator delete completely overrides the definition.
|
|
void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
|
|
CXXDtorType DtorType) {
|
|
assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
|
|
"Should not emit dtor epilogue for non-exported trivial dtor!");
|
|
|
|
// The deleting-destructor phase just needs to call the appropriate
|
|
// operator delete that Sema picked up.
|
|
if (DtorType == Dtor_Deleting) {
|
|
assert(DD->getOperatorDelete() &&
|
|
"operator delete missing - EnterDtorCleanups");
|
|
if (CXXStructorImplicitParamValue) {
|
|
// If there is an implicit param to the deleting dtor, it's a boolean
|
|
// telling whether this is a deleting destructor.
|
|
if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
|
|
EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
|
|
/*ReturnAfterDelete*/true);
|
|
else
|
|
EHStack.pushCleanup<CallDtorDeleteConditional>(
|
|
NormalAndEHCleanup, CXXStructorImplicitParamValue);
|
|
} else {
|
|
if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
|
|
const CXXRecordDecl *ClassDecl = DD->getParent();
|
|
EmitDeleteCall(DD->getOperatorDelete(),
|
|
LoadThisForDtorDelete(*this, DD),
|
|
getContext().getTagDeclType(ClassDecl));
|
|
EmitBranchThroughCleanup(ReturnBlock);
|
|
} else {
|
|
EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
const CXXRecordDecl *ClassDecl = DD->getParent();
|
|
|
|
// Unions have no bases and do not call field destructors.
|
|
if (ClassDecl->isUnion())
|
|
return;
|
|
|
|
// The complete-destructor phase just destructs all the virtual bases.
|
|
if (DtorType == Dtor_Complete) {
|
|
// Poison the vtable pointer such that access after the base
|
|
// and member destructors are invoked is invalid.
|
|
if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
|
|
SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
|
|
ClassDecl->isPolymorphic())
|
|
EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
|
|
|
|
// We push them in the forward order so that they'll be popped in
|
|
// the reverse order.
|
|
for (const auto &Base : ClassDecl->vbases()) {
|
|
auto *BaseClassDecl =
|
|
cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
|
|
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
|
|
BaseClassDecl,
|
|
/*BaseIsVirtual*/ true);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(DtorType == Dtor_Base);
|
|
// Poison the vtable pointer if it has no virtual bases, but inherits
|
|
// virtual functions.
|
|
if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
|
|
SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
|
|
ClassDecl->isPolymorphic())
|
|
EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
|
|
|
|
// Destroy non-virtual bases.
|
|
for (const auto &Base : ClassDecl->bases()) {
|
|
// Ignore virtual bases.
|
|
if (Base.isVirtual())
|
|
continue;
|
|
|
|
CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
|
|
|
|
// Ignore trivial destructors.
|
|
if (BaseClassDecl->hasTrivialDestructor())
|
|
continue;
|
|
|
|
EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
|
|
BaseClassDecl,
|
|
/*BaseIsVirtual*/ false);
|
|
}
|
|
|
|
// Poison fields such that access after their destructors are
|
|
// invoked, and before the base class destructor runs, is invalid.
|
|
if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
|
|
SanOpts.has(SanitizerKind::Memory))
|
|
EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
|
|
|
|
// Destroy direct fields.
|
|
for (const auto *Field : ClassDecl->fields()) {
|
|
QualType type = Field->getType();
|
|
QualType::DestructionKind dtorKind = type.isDestructedType();
|
|
if (!dtorKind) continue;
|
|
|
|
// Anonymous union members do not have their destructors called.
|
|
const RecordType *RT = type->getAsUnionType();
|
|
if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
|
|
|
|
CleanupKind cleanupKind = getCleanupKind(dtorKind);
|
|
EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
|
|
getDestroyer(dtorKind),
|
|
cleanupKind & EHCleanup);
|
|
}
|
|
}
|
|
|
|
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
|
|
/// constructor for each of several members of an array.
|
|
///
|
|
/// \param ctor the constructor to call for each element
|
|
/// \param arrayType the type of the array to initialize
|
|
/// \param arrayBegin an arrayType*
|
|
/// \param zeroInitialize true if each element should be
|
|
/// zero-initialized before it is constructed
|
|
void CodeGenFunction::EmitCXXAggrConstructorCall(
|
|
const CXXConstructorDecl *ctor, const ArrayType *arrayType,
|
|
Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
|
|
bool zeroInitialize) {
|
|
QualType elementType;
|
|
llvm::Value *numElements =
|
|
emitArrayLength(arrayType, elementType, arrayBegin);
|
|
|
|
EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
|
|
NewPointerIsChecked, zeroInitialize);
|
|
}
|
|
|
|
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
|
|
/// constructor for each of several members of an array.
|
|
///
|
|
/// \param ctor the constructor to call for each element
|
|
/// \param numElements the number of elements in the array;
|
|
/// may be zero
|
|
/// \param arrayBase a T*, where T is the type constructed by ctor
|
|
/// \param zeroInitialize true if each element should be
|
|
/// zero-initialized before it is constructed
|
|
void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
|
|
llvm::Value *numElements,
|
|
Address arrayBase,
|
|
const CXXConstructExpr *E,
|
|
bool NewPointerIsChecked,
|
|
bool zeroInitialize) {
|
|
// It's legal for numElements to be zero. This can happen both
|
|
// dynamically, because x can be zero in 'new A[x]', and statically,
|
|
// because of GCC extensions that permit zero-length arrays. There
|
|
// are probably legitimate places where we could assume that this
|
|
// doesn't happen, but it's not clear that it's worth it.
|
|
llvm::BranchInst *zeroCheckBranch = nullptr;
|
|
|
|
// Optimize for a constant count.
|
|
llvm::ConstantInt *constantCount
|
|
= dyn_cast<llvm::ConstantInt>(numElements);
|
|
if (constantCount) {
|
|
// Just skip out if the constant count is zero.
|
|
if (constantCount->isZero()) return;
|
|
|
|
// Otherwise, emit the check.
|
|
} else {
|
|
llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
|
|
llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
|
|
zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
|
|
EmitBlock(loopBB);
|
|
}
|
|
|
|
// Find the end of the array.
|
|
llvm::Type *elementType = arrayBase.getElementType();
|
|
llvm::Value *arrayBegin = arrayBase.getPointer();
|
|
llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
|
|
elementType, arrayBegin, numElements, "arrayctor.end");
|
|
|
|
// Enter the loop, setting up a phi for the current location to initialize.
|
|
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
|
|
EmitBlock(loopBB);
|
|
llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
|
|
"arrayctor.cur");
|
|
cur->addIncoming(arrayBegin, entryBB);
|
|
|
|
// Inside the loop body, emit the constructor call on the array element.
|
|
|
|
// The alignment of the base, adjusted by the size of a single element,
|
|
// provides a conservative estimate of the alignment of every element.
|
|
// (This assumes we never start tracking offsetted alignments.)
|
|
//
|
|
// Note that these are complete objects and so we don't need to
|
|
// use the non-virtual size or alignment.
|
|
QualType type = getContext().getTypeDeclType(ctor->getParent());
|
|
CharUnits eltAlignment =
|
|
arrayBase.getAlignment()
|
|
.alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
|
|
Address curAddr = Address(cur, eltAlignment);
|
|
|
|
// Zero initialize the storage, if requested.
|
|
if (zeroInitialize)
|
|
EmitNullInitialization(curAddr, type);
|
|
|
|
// C++ [class.temporary]p4:
|
|
// There are two contexts in which temporaries are destroyed at a different
|
|
// point than the end of the full-expression. The first context is when a
|
|
// default constructor is called to initialize an element of an array.
|
|
// If the constructor has one or more default arguments, the destruction of
|
|
// every temporary created in a default argument expression is sequenced
|
|
// before the construction of the next array element, if any.
|
|
|
|
{
|
|
RunCleanupsScope Scope(*this);
|
|
|
|
// Evaluate the constructor and its arguments in a regular
|
|
// partial-destroy cleanup.
|
|
if (getLangOpts().Exceptions &&
|
|
!ctor->getParent()->hasTrivialDestructor()) {
|
|
Destroyer *destroyer = destroyCXXObject;
|
|
pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
|
|
*destroyer);
|
|
}
|
|
auto currAVS = AggValueSlot::forAddr(
|
|
curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
|
|
AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
|
|
NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
|
|
: AggValueSlot::IsNotSanitizerChecked);
|
|
EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, currAVS, E);
|
|
}
|
|
|
|
// Go to the next element.
|
|
llvm::Value *next = Builder.CreateInBoundsGEP(
|
|
elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
|
|
cur->addIncoming(next, Builder.GetInsertBlock());
|
|
|
|
// Check whether that's the end of the loop.
|
|
llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
|
|
llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
|
|
Builder.CreateCondBr(done, contBB, loopBB);
|
|
|
|
// Patch the earlier check to skip over the loop.
|
|
if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
|
|
|
|
EmitBlock(contBB);
|
|
}
|
|
|
|
void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
|
|
Address addr,
|
|
QualType type) {
|
|
const RecordType *rtype = type->castAs<RecordType>();
|
|
const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
|
|
const CXXDestructorDecl *dtor = record->getDestructor();
|
|
assert(!dtor->isTrivial());
|
|
CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
|
|
/*Delegating=*/false, addr, type);
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
bool ForVirtualBase,
|
|
bool Delegating,
|
|
AggValueSlot ThisAVS,
|
|
const CXXConstructExpr *E) {
|
|
CallArgList Args;
|
|
Address This = ThisAVS.getAddress();
|
|
LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
|
|
QualType ThisType = D->getThisType();
|
|
LangAS ThisAS = ThisType.getTypePtr()->getPointeeType().getAddressSpace();
|
|
llvm::Value *ThisPtr = This.getPointer();
|
|
|
|
if (SlotAS != ThisAS) {
|
|
unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
|
|
llvm::Type *NewType =
|
|
ThisPtr->getType()->getPointerElementType()->getPointerTo(TargetThisAS);
|
|
ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
|
|
ThisAS, SlotAS, NewType);
|
|
}
|
|
|
|
// Push the this ptr.
|
|
Args.add(RValue::get(ThisPtr), D->getThisType());
|
|
|
|
// If this is a trivial constructor, emit a memcpy now before we lose
|
|
// the alignment information on the argument.
|
|
// FIXME: It would be better to preserve alignment information into CallArg.
|
|
if (isMemcpyEquivalentSpecialMember(D)) {
|
|
assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
|
|
|
|
const Expr *Arg = E->getArg(0);
|
|
LValue Src = EmitLValue(Arg);
|
|
QualType DestTy = getContext().getTypeDeclType(D->getParent());
|
|
LValue Dest = MakeAddrLValue(This, DestTy);
|
|
EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
|
|
return;
|
|
}
|
|
|
|
// Add the rest of the user-supplied arguments.
|
|
const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
|
|
EvaluationOrder Order = E->isListInitialization()
|
|
? EvaluationOrder::ForceLeftToRight
|
|
: EvaluationOrder::Default;
|
|
EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
|
|
/*ParamsToSkip*/ 0, Order);
|
|
|
|
EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
|
|
ThisAVS.mayOverlap(), E->getExprLoc(),
|
|
ThisAVS.isSanitizerChecked());
|
|
}
|
|
|
|
static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
|
|
const CXXConstructorDecl *Ctor,
|
|
CXXCtorType Type, CallArgList &Args) {
|
|
// We can't forward a variadic call.
|
|
if (Ctor->isVariadic())
|
|
return false;
|
|
|
|
if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
|
|
// If the parameters are callee-cleanup, it's not safe to forward.
|
|
for (auto *P : Ctor->parameters())
|
|
if (P->needsDestruction(CGF.getContext()))
|
|
return false;
|
|
|
|
// Likewise if they're inalloca.
|
|
const CGFunctionInfo &Info =
|
|
CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
|
|
if (Info.usesInAlloca())
|
|
return false;
|
|
}
|
|
|
|
// Anything else should be OK.
|
|
return true;
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
|
|
CXXCtorType Type,
|
|
bool ForVirtualBase,
|
|
bool Delegating,
|
|
Address This,
|
|
CallArgList &Args,
|
|
AggValueSlot::Overlap_t Overlap,
|
|
SourceLocation Loc,
|
|
bool NewPointerIsChecked) {
|
|
const CXXRecordDecl *ClassDecl = D->getParent();
|
|
|
|
if (!NewPointerIsChecked)
|
|
EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
|
|
getContext().getRecordType(ClassDecl), CharUnits::Zero());
|
|
|
|
if (D->isTrivial() && D->isDefaultConstructor()) {
|
|
assert(Args.size() == 1 && "trivial default ctor with args");
|
|
return;
|
|
}
|
|
|
|
// If this is a trivial constructor, just emit what's needed. If this is a
|
|
// union copy constructor, we must emit a memcpy, because the AST does not
|
|
// model that copy.
|
|
if (isMemcpyEquivalentSpecialMember(D)) {
|
|
assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
|
|
|
|
QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
|
|
Address Src(Args[1].getRValue(*this).getScalarVal(),
|
|
CGM.getNaturalTypeAlignment(SrcTy));
|
|
LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
|
|
QualType DestTy = getContext().getTypeDeclType(ClassDecl);
|
|
LValue DestLVal = MakeAddrLValue(This, DestTy);
|
|
EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
|
|
return;
|
|
}
|
|
|
|
bool PassPrototypeArgs = true;
|
|
// Check whether we can actually emit the constructor before trying to do so.
|
|
if (auto Inherited = D->getInheritedConstructor()) {
|
|
PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
|
|
if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
|
|
EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
|
|
Delegating, Args);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Insert any ABI-specific implicit constructor arguments.
|
|
CGCXXABI::AddedStructorArgCounts ExtraArgs =
|
|
CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
|
|
Delegating, Args);
|
|
|
|
// Emit the call.
|
|
llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
|
|
const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
|
|
Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
|
|
CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
|
|
EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
|
|
|
|
// Generate vtable assumptions if we're constructing a complete object
|
|
// with a vtable. We don't do this for base subobjects for two reasons:
|
|
// first, it's incorrect for classes with virtual bases, and second, we're
|
|
// about to overwrite the vptrs anyway.
|
|
// We also have to make sure if we can refer to vtable:
|
|
// - Otherwise we can refer to vtable if it's safe to speculatively emit.
|
|
// FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
|
|
// sure that definition of vtable is not hidden,
|
|
// then we are always safe to refer to it.
|
|
// FIXME: It looks like InstCombine is very inefficient on dealing with
|
|
// assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
|
|
if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
|
|
ClassDecl->isDynamicClass() && Type != Ctor_Base &&
|
|
CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
|
|
CGM.getCodeGenOpts().StrictVTablePointers)
|
|
EmitVTableAssumptionLoads(ClassDecl, This);
|
|
}
|
|
|
|
void CodeGenFunction::EmitInheritedCXXConstructorCall(
|
|
const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
|
|
bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
|
|
CallArgList Args;
|
|
CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
|
|
|
|
// Forward the parameters.
|
|
if (InheritedFromVBase &&
|
|
CGM.getTarget().getCXXABI().hasConstructorVariants()) {
|
|
// Nothing to do; this construction is not responsible for constructing
|
|
// the base class containing the inherited constructor.
|
|
// FIXME: Can we just pass undef's for the remaining arguments if we don't
|
|
// have constructor variants?
|
|
Args.push_back(ThisArg);
|
|
} else if (!CXXInheritedCtorInitExprArgs.empty()) {
|
|
// The inheriting constructor was inlined; just inject its arguments.
|
|
assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
|
|
"wrong number of parameters for inherited constructor call");
|
|
Args = CXXInheritedCtorInitExprArgs;
|
|
Args[0] = ThisArg;
|
|
} else {
|
|
// The inheriting constructor was not inlined. Emit delegating arguments.
|
|
Args.push_back(ThisArg);
|
|
const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
|
|
assert(OuterCtor->getNumParams() == D->getNumParams());
|
|
assert(!OuterCtor->isVariadic() && "should have been inlined");
|
|
|
|
for (const auto *Param : OuterCtor->parameters()) {
|
|
assert(getContext().hasSameUnqualifiedType(
|
|
OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
|
|
Param->getType()));
|
|
EmitDelegateCallArg(Args, Param, E->getLocation());
|
|
|
|
// Forward __attribute__(pass_object_size).
|
|
if (Param->hasAttr<PassObjectSizeAttr>()) {
|
|
auto *POSParam = SizeArguments[Param];
|
|
assert(POSParam && "missing pass_object_size value for forwarding");
|
|
EmitDelegateCallArg(Args, POSParam, E->getLocation());
|
|
}
|
|
}
|
|
}
|
|
|
|
EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
|
|
This, Args, AggValueSlot::MayOverlap,
|
|
E->getLocation(), /*NewPointerIsChecked*/true);
|
|
}
|
|
|
|
void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
|
|
const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
|
|
bool Delegating, CallArgList &Args) {
|
|
GlobalDecl GD(Ctor, CtorType);
|
|
InlinedInheritingConstructorScope Scope(*this, GD);
|
|
ApplyInlineDebugLocation DebugScope(*this, GD);
|
|
RunCleanupsScope RunCleanups(*this);
|
|
|
|
// Save the arguments to be passed to the inherited constructor.
|
|
CXXInheritedCtorInitExprArgs = Args;
|
|
|
|
FunctionArgList Params;
|
|
QualType RetType = BuildFunctionArgList(CurGD, Params);
|
|
FnRetTy = RetType;
|
|
|
|
// Insert any ABI-specific implicit constructor arguments.
|
|
CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
|
|
ForVirtualBase, Delegating, Args);
|
|
|
|
// Emit a simplified prolog. We only need to emit the implicit params.
|
|
assert(Args.size() >= Params.size() && "too few arguments for call");
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
|
|
const RValue &RV = Args[I].getRValue(*this);
|
|
assert(!RV.isComplex() && "complex indirect params not supported");
|
|
ParamValue Val = RV.isScalar()
|
|
? ParamValue::forDirect(RV.getScalarVal())
|
|
: ParamValue::forIndirect(RV.getAggregateAddress());
|
|
EmitParmDecl(*Params[I], Val, I + 1);
|
|
}
|
|
}
|
|
|
|
// Create a return value slot if the ABI implementation wants one.
|
|
// FIXME: This is dumb, we should ask the ABI not to try to set the return
|
|
// value instead.
|
|
if (!RetType->isVoidType())
|
|
ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
|
|
|
|
CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
|
|
CXXThisValue = CXXABIThisValue;
|
|
|
|
// Directly emit the constructor initializers.
|
|
EmitCtorPrologue(Ctor, CtorType, Params);
|
|
}
|
|
|
|
void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
|
|
llvm::Value *VTableGlobal =
|
|
CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
|
|
if (!VTableGlobal)
|
|
return;
|
|
|
|
// We can just use the base offset in the complete class.
|
|
CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
|
|
|
|
if (!NonVirtualOffset.isZero())
|
|
This =
|
|
ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
|
|
Vptr.VTableClass, Vptr.NearestVBase);
|
|
|
|
llvm::Value *VPtrValue =
|
|
GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
|
|
llvm::Value *Cmp =
|
|
Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
|
|
Builder.CreateAssumption(Cmp);
|
|
}
|
|
|
|
void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
|
|
Address This) {
|
|
if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
|
|
for (const VPtr &Vptr : getVTablePointers(ClassDecl))
|
|
EmitVTableAssumptionLoad(Vptr, This);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
|
|
Address This, Address Src,
|
|
const CXXConstructExpr *E) {
|
|
const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
|
|
|
|
CallArgList Args;
|
|
|
|
// Push the this ptr.
|
|
Args.add(RValue::get(This.getPointer()), D->getThisType());
|
|
|
|
// Push the src ptr.
|
|
QualType QT = *(FPT->param_type_begin());
|
|
llvm::Type *t = CGM.getTypes().ConvertType(QT);
|
|
Src = Builder.CreateBitCast(Src, t);
|
|
Args.add(RValue::get(Src.getPointer()), QT);
|
|
|
|
// Skip over first argument (Src).
|
|
EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
|
|
/*ParamsToSkip*/ 1);
|
|
|
|
EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
|
|
/*Delegating*/false, This, Args,
|
|
AggValueSlot::MayOverlap, E->getExprLoc(),
|
|
/*NewPointerIsChecked*/false);
|
|
}
|
|
|
|
void
|
|
CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType CtorType,
|
|
const FunctionArgList &Args,
|
|
SourceLocation Loc) {
|
|
CallArgList DelegateArgs;
|
|
|
|
FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
|
|
assert(I != E && "no parameters to constructor");
|
|
|
|
// this
|
|
Address This = LoadCXXThisAddress();
|
|
DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
|
|
++I;
|
|
|
|
// FIXME: The location of the VTT parameter in the parameter list is
|
|
// specific to the Itanium ABI and shouldn't be hardcoded here.
|
|
if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
|
|
assert(I != E && "cannot skip vtt parameter, already done with args");
|
|
assert((*I)->getType()->isPointerType() &&
|
|
"skipping parameter not of vtt type");
|
|
++I;
|
|
}
|
|
|
|
// Explicit arguments.
|
|
for (; I != E; ++I) {
|
|
const VarDecl *param = *I;
|
|
// FIXME: per-argument source location
|
|
EmitDelegateCallArg(DelegateArgs, param, Loc);
|
|
}
|
|
|
|
EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/true, This, DelegateArgs,
|
|
AggValueSlot::MayOverlap, Loc,
|
|
/*NewPointerIsChecked=*/true);
|
|
}
|
|
|
|
namespace {
|
|
struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
Address Addr;
|
|
CXXDtorType Type;
|
|
|
|
CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
|
|
CXXDtorType Type)
|
|
: Dtor(D), Addr(Addr), Type(Type) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
// We are calling the destructor from within the constructor.
|
|
// Therefore, "this" should have the expected type.
|
|
QualType ThisTy = Dtor->getThisObjectType();
|
|
CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
|
|
/*Delegating=*/true, Addr, ThisTy);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void
|
|
CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
|
|
const FunctionArgList &Args) {
|
|
assert(Ctor->isDelegatingConstructor());
|
|
|
|
Address ThisPtr = LoadCXXThisAddress();
|
|
|
|
AggValueSlot AggSlot =
|
|
AggValueSlot::forAddr(ThisPtr, Qualifiers(),
|
|
AggValueSlot::IsDestructed,
|
|
AggValueSlot::DoesNotNeedGCBarriers,
|
|
AggValueSlot::IsNotAliased,
|
|
AggValueSlot::MayOverlap,
|
|
AggValueSlot::IsNotZeroed,
|
|
// Checks are made by the code that calls constructor.
|
|
AggValueSlot::IsSanitizerChecked);
|
|
|
|
EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
|
|
|
|
const CXXRecordDecl *ClassDecl = Ctor->getParent();
|
|
if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
|
|
CXXDtorType Type =
|
|
CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
|
|
|
|
EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
|
|
ClassDecl->getDestructor(),
|
|
ThisPtr, Type);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
|
|
CXXDtorType Type,
|
|
bool ForVirtualBase,
|
|
bool Delegating, Address This,
|
|
QualType ThisTy) {
|
|
CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
|
|
Delegating, This, ThisTy);
|
|
}
|
|
|
|
namespace {
|
|
struct CallLocalDtor final : EHScopeStack::Cleanup {
|
|
const CXXDestructorDecl *Dtor;
|
|
Address Addr;
|
|
QualType Ty;
|
|
|
|
CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
|
|
: Dtor(D), Addr(Addr), Ty(Ty) {}
|
|
|
|
void Emit(CodeGenFunction &CGF, Flags flags) override {
|
|
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
|
|
/*ForVirtualBase=*/false,
|
|
/*Delegating=*/false, Addr, Ty);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
|
|
QualType T, Address Addr) {
|
|
EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
|
|
}
|
|
|
|
void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
|
|
CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
|
|
if (!ClassDecl) return;
|
|
if (ClassDecl->hasTrivialDestructor()) return;
|
|
|
|
const CXXDestructorDecl *D = ClassDecl->getDestructor();
|
|
assert(D && D->isUsed() && "destructor not marked as used!");
|
|
PushDestructorCleanup(D, T, Addr);
|
|
}
|
|
|
|
void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
|
|
// Compute the address point.
|
|
llvm::Value *VTableAddressPoint =
|
|
CGM.getCXXABI().getVTableAddressPointInStructor(
|
|
*this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
|
|
|
|
if (!VTableAddressPoint)
|
|
return;
|
|
|
|
// Compute where to store the address point.
|
|
llvm::Value *VirtualOffset = nullptr;
|
|
CharUnits NonVirtualOffset = CharUnits::Zero();
|
|
|
|
if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
|
|
// We need to use the virtual base offset offset because the virtual base
|
|
// might have a different offset in the most derived class.
|
|
|
|
VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
|
|
*this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
|
|
NonVirtualOffset = Vptr.OffsetFromNearestVBase;
|
|
} else {
|
|
// We can just use the base offset in the complete class.
|
|
NonVirtualOffset = Vptr.Base.getBaseOffset();
|
|
}
|
|
|
|
// Apply the offsets.
|
|
Address VTableField = LoadCXXThisAddress();
|
|
|
|
if (!NonVirtualOffset.isZero() || VirtualOffset)
|
|
VTableField = ApplyNonVirtualAndVirtualOffset(
|
|
*this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
|
|
Vptr.NearestVBase);
|
|
|
|
// Finally, store the address point. Use the same LLVM types as the field to
|
|
// support optimization.
|
|
unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
|
|
unsigned ProgAS = CGM.getDataLayout().getProgramAddressSpace();
|
|
llvm::Type *VTablePtrTy =
|
|
llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
|
|
->getPointerTo(ProgAS)
|
|
->getPointerTo(GlobalsAS);
|
|
// vtable field is is derived from `this` pointer, therefore it should be in
|
|
// default address space.
|
|
VTableField = Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
VTableField, VTablePtrTy->getPointerTo());
|
|
VTableAddressPoint = Builder.CreatePointerBitCastOrAddrSpaceCast(
|
|
VTableAddressPoint, VTablePtrTy);
|
|
|
|
llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
|
|
TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrTy);
|
|
CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
|
|
if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
|
|
CGM.getCodeGenOpts().StrictVTablePointers)
|
|
CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
|
|
}
|
|
|
|
CodeGenFunction::VPtrsVector
|
|
CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
|
|
CodeGenFunction::VPtrsVector VPtrsResult;
|
|
VisitedVirtualBasesSetTy VBases;
|
|
getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
|
|
/*NearestVBase=*/nullptr,
|
|
/*OffsetFromNearestVBase=*/CharUnits::Zero(),
|
|
/*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
|
|
VPtrsResult);
|
|
return VPtrsResult;
|
|
}
|
|
|
|
void CodeGenFunction::getVTablePointers(BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase,
|
|
CharUnits OffsetFromNearestVBase,
|
|
bool BaseIsNonVirtualPrimaryBase,
|
|
const CXXRecordDecl *VTableClass,
|
|
VisitedVirtualBasesSetTy &VBases,
|
|
VPtrsVector &Vptrs) {
|
|
// If this base is a non-virtual primary base the address point has already
|
|
// been set.
|
|
if (!BaseIsNonVirtualPrimaryBase) {
|
|
// Initialize the vtable pointer for this base.
|
|
VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
|
|
Vptrs.push_back(Vptr);
|
|
}
|
|
|
|
const CXXRecordDecl *RD = Base.getBase();
|
|
|
|
// Traverse bases.
|
|
for (const auto &I : RD->bases()) {
|
|
auto *BaseDecl =
|
|
cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
|
|
|
|
// Ignore classes without a vtable.
|
|
if (!BaseDecl->isDynamicClass())
|
|
continue;
|
|
|
|
CharUnits BaseOffset;
|
|
CharUnits BaseOffsetFromNearestVBase;
|
|
bool BaseDeclIsNonVirtualPrimaryBase;
|
|
|
|
if (I.isVirtual()) {
|
|
// Check if we've visited this virtual base before.
|
|
if (!VBases.insert(BaseDecl).second)
|
|
continue;
|
|
|
|
const ASTRecordLayout &Layout =
|
|
getContext().getASTRecordLayout(VTableClass);
|
|
|
|
BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
|
|
BaseOffsetFromNearestVBase = CharUnits::Zero();
|
|
BaseDeclIsNonVirtualPrimaryBase = false;
|
|
} else {
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
|
|
BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
|
|
BaseOffsetFromNearestVBase =
|
|
OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
|
|
BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
|
|
}
|
|
|
|
getVTablePointers(
|
|
BaseSubobject(BaseDecl, BaseOffset),
|
|
I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
|
|
BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
|
|
// Ignore classes without a vtable.
|
|
if (!RD->isDynamicClass())
|
|
return;
|
|
|
|
// Initialize the vtable pointers for this class and all of its bases.
|
|
if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
|
|
for (const VPtr &Vptr : getVTablePointers(RD))
|
|
InitializeVTablePointer(Vptr);
|
|
|
|
if (RD->getNumVBases())
|
|
CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
|
|
llvm::Type *VTableTy,
|
|
const CXXRecordDecl *RD) {
|
|
Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
|
|
llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
|
|
TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
|
|
CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
|
|
|
|
if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
|
|
CGM.getCodeGenOpts().StrictVTablePointers)
|
|
CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
|
|
|
|
return VTable;
|
|
}
|
|
|
|
// If a class has a single non-virtual base and does not introduce or override
|
|
// virtual member functions or fields, it will have the same layout as its base.
|
|
// This function returns the least derived such class.
|
|
//
|
|
// Casting an instance of a base class to such a derived class is technically
|
|
// undefined behavior, but it is a relatively common hack for introducing member
|
|
// functions on class instances with specific properties (e.g. llvm::Operator)
|
|
// that works under most compilers and should not have security implications, so
|
|
// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
|
|
static const CXXRecordDecl *
|
|
LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
|
|
if (!RD->field_empty())
|
|
return RD;
|
|
|
|
if (RD->getNumVBases() != 0)
|
|
return RD;
|
|
|
|
if (RD->getNumBases() != 1)
|
|
return RD;
|
|
|
|
for (const CXXMethodDecl *MD : RD->methods()) {
|
|
if (MD->isVirtual()) {
|
|
// Virtual member functions are only ok if they are implicit destructors
|
|
// because the implicit destructor will have the same semantics as the
|
|
// base class's destructor if no fields are added.
|
|
if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
|
|
continue;
|
|
return RD;
|
|
}
|
|
}
|
|
|
|
return LeastDerivedClassWithSameLayout(
|
|
RD->bases_begin()->getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
|
|
llvm::Value *VTable,
|
|
SourceLocation Loc) {
|
|
if (SanOpts.has(SanitizerKind::CFIVCall))
|
|
EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
|
|
else if (CGM.getCodeGenOpts().WholeProgramVTables &&
|
|
// Don't insert type test assumes if we are forcing public std
|
|
// visibility.
|
|
!CGM.HasLTOVisibilityPublicStd(RD)) {
|
|
llvm::Metadata *MD =
|
|
CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
|
|
llvm::Value *TypeId =
|
|
llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
|
|
|
|
llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
|
|
llvm::Value *TypeTest =
|
|
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
|
|
{CastedVTable, TypeId});
|
|
Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
|
|
llvm::Value *VTable,
|
|
CFITypeCheckKind TCK,
|
|
SourceLocation Loc) {
|
|
if (!SanOpts.has(SanitizerKind::CFICastStrict))
|
|
RD = LeastDerivedClassWithSameLayout(RD);
|
|
|
|
EmitVTablePtrCheck(RD, VTable, TCK, Loc);
|
|
}
|
|
|
|
void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
|
|
llvm::Value *Derived,
|
|
bool MayBeNull,
|
|
CFITypeCheckKind TCK,
|
|
SourceLocation Loc) {
|
|
if (!getLangOpts().CPlusPlus)
|
|
return;
|
|
|
|
auto *ClassTy = T->getAs<RecordType>();
|
|
if (!ClassTy)
|
|
return;
|
|
|
|
const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
|
|
|
|
if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
|
|
return;
|
|
|
|
if (!SanOpts.has(SanitizerKind::CFICastStrict))
|
|
ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
|
|
|
|
llvm::BasicBlock *ContBlock = nullptr;
|
|
|
|
if (MayBeNull) {
|
|
llvm::Value *DerivedNotNull =
|
|
Builder.CreateIsNotNull(Derived, "cast.nonnull");
|
|
|
|
llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
|
|
ContBlock = createBasicBlock("cast.cont");
|
|
|
|
Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
|
|
|
|
EmitBlock(CheckBlock);
|
|
}
|
|
|
|
llvm::Value *VTable;
|
|
std::tie(VTable, ClassDecl) = CGM.getCXXABI().LoadVTablePtr(
|
|
*this, Address(Derived, getPointerAlign()), ClassDecl);
|
|
|
|
EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
|
|
|
|
if (MayBeNull) {
|
|
Builder.CreateBr(ContBlock);
|
|
EmitBlock(ContBlock);
|
|
}
|
|
}
|
|
|
|
void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
|
|
llvm::Value *VTable,
|
|
CFITypeCheckKind TCK,
|
|
SourceLocation Loc) {
|
|
if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
|
|
!CGM.HasHiddenLTOVisibility(RD))
|
|
return;
|
|
|
|
SanitizerMask M;
|
|
llvm::SanitizerStatKind SSK;
|
|
switch (TCK) {
|
|
case CFITCK_VCall:
|
|
M = SanitizerKind::CFIVCall;
|
|
SSK = llvm::SanStat_CFI_VCall;
|
|
break;
|
|
case CFITCK_NVCall:
|
|
M = SanitizerKind::CFINVCall;
|
|
SSK = llvm::SanStat_CFI_NVCall;
|
|
break;
|
|
case CFITCK_DerivedCast:
|
|
M = SanitizerKind::CFIDerivedCast;
|
|
SSK = llvm::SanStat_CFI_DerivedCast;
|
|
break;
|
|
case CFITCK_UnrelatedCast:
|
|
M = SanitizerKind::CFIUnrelatedCast;
|
|
SSK = llvm::SanStat_CFI_UnrelatedCast;
|
|
break;
|
|
case CFITCK_ICall:
|
|
case CFITCK_NVMFCall:
|
|
case CFITCK_VMFCall:
|
|
llvm_unreachable("unexpected sanitizer kind");
|
|
}
|
|
|
|
std::string TypeName = RD->getQualifiedNameAsString();
|
|
if (getContext().getNoSanitizeList().containsType(M, TypeName))
|
|
return;
|
|
|
|
SanitizerScope SanScope(this);
|
|
EmitSanitizerStatReport(SSK);
|
|
|
|
llvm::Metadata *MD =
|
|
CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
|
|
llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
|
|
|
|
llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
|
|
llvm::Value *TypeTest = Builder.CreateCall(
|
|
CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
|
|
|
|
llvm::Constant *StaticData[] = {
|
|
llvm::ConstantInt::get(Int8Ty, TCK),
|
|
EmitCheckSourceLocation(Loc),
|
|
EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
|
|
};
|
|
|
|
auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
|
|
if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
|
|
EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
|
|
return;
|
|
}
|
|
|
|
if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
|
|
EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
|
|
return;
|
|
}
|
|
|
|
llvm::Value *AllVtables = llvm::MetadataAsValue::get(
|
|
CGM.getLLVMContext(),
|
|
llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
|
|
llvm::Value *ValidVtable = Builder.CreateCall(
|
|
CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
|
|
EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
|
|
StaticData, {CastedVTable, ValidVtable});
|
|
}
|
|
|
|
bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
|
|
if (!CGM.getCodeGenOpts().WholeProgramVTables ||
|
|
!CGM.HasHiddenLTOVisibility(RD))
|
|
return false;
|
|
|
|
if (CGM.getCodeGenOpts().VirtualFunctionElimination)
|
|
return true;
|
|
|
|
if (!SanOpts.has(SanitizerKind::CFIVCall) ||
|
|
!CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
|
|
return false;
|
|
|
|
std::string TypeName = RD->getQualifiedNameAsString();
|
|
return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
|
|
TypeName);
|
|
}
|
|
|
|
llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
|
|
const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
|
|
SanitizerScope SanScope(this);
|
|
|
|
EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
|
|
|
|
llvm::Metadata *MD =
|
|
CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
|
|
llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
|
|
|
|
llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
|
|
llvm::Value *CheckedLoad = Builder.CreateCall(
|
|
CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
|
|
{CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
|
|
TypeId});
|
|
llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
|
|
|
|
std::string TypeName = RD->getQualifiedNameAsString();
|
|
if (SanOpts.has(SanitizerKind::CFIVCall) &&
|
|
!getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
|
|
TypeName)) {
|
|
EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
|
|
SanitizerHandler::CFICheckFail, {}, {});
|
|
}
|
|
|
|
return Builder.CreateBitCast(
|
|
Builder.CreateExtractValue(CheckedLoad, 0),
|
|
cast<llvm::PointerType>(VTable->getType())->getElementType());
|
|
}
|
|
|
|
void CodeGenFunction::EmitForwardingCallToLambda(
|
|
const CXXMethodDecl *callOperator,
|
|
CallArgList &callArgs) {
|
|
// Get the address of the call operator.
|
|
const CGFunctionInfo &calleeFnInfo =
|
|
CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
|
|
llvm::Constant *calleePtr =
|
|
CGM.GetAddrOfFunction(GlobalDecl(callOperator),
|
|
CGM.getTypes().GetFunctionType(calleeFnInfo));
|
|
|
|
// Prepare the return slot.
|
|
const FunctionProtoType *FPT =
|
|
callOperator->getType()->castAs<FunctionProtoType>();
|
|
QualType resultType = FPT->getReturnType();
|
|
ReturnValueSlot returnSlot;
|
|
if (!resultType->isVoidType() &&
|
|
calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
|
|
!hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
|
|
returnSlot =
|
|
ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
|
|
/*IsUnused=*/false, /*IsExternallyDestructed=*/true);
|
|
|
|
// We don't need to separately arrange the call arguments because
|
|
// the call can't be variadic anyway --- it's impossible to forward
|
|
// variadic arguments.
|
|
|
|
// Now emit our call.
|
|
auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
|
|
RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
|
|
|
|
// If necessary, copy the returned value into the slot.
|
|
if (!resultType->isVoidType() && returnSlot.isNull()) {
|
|
if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
|
|
RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
|
|
}
|
|
EmitReturnOfRValue(RV, resultType);
|
|
} else
|
|
EmitBranchThroughCleanup(ReturnBlock);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaBlockInvokeBody() {
|
|
const BlockDecl *BD = BlockInfo->getBlockDecl();
|
|
const VarDecl *variable = BD->capture_begin()->getVariable();
|
|
const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
|
|
const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
|
|
if (CallOp->isVariadic()) {
|
|
// FIXME: Making this work correctly is nasty because it requires either
|
|
// cloning the body of the call operator or making the call operator
|
|
// forward.
|
|
CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
|
|
return;
|
|
}
|
|
|
|
// Start building arguments for forwarding call
|
|
CallArgList CallArgs;
|
|
|
|
QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
|
|
Address ThisPtr = GetAddrOfBlockDecl(variable);
|
|
CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
|
|
|
|
// Add the rest of the parameters.
|
|
for (auto param : BD->parameters())
|
|
EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
|
|
|
|
assert(!Lambda->isGenericLambda() &&
|
|
"generic lambda interconversion to block not implemented");
|
|
EmitForwardingCallToLambda(CallOp, CallArgs);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
|
|
const CXXRecordDecl *Lambda = MD->getParent();
|
|
|
|
// Start building arguments for forwarding call
|
|
CallArgList CallArgs;
|
|
|
|
QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
|
|
llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
|
|
CallArgs.add(RValue::get(ThisPtr), ThisType);
|
|
|
|
// Add the rest of the parameters.
|
|
for (auto Param : MD->parameters())
|
|
EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
|
|
|
|
const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
|
|
// For a generic lambda, find the corresponding call operator specialization
|
|
// to which the call to the static-invoker shall be forwarded.
|
|
if (Lambda->isGenericLambda()) {
|
|
assert(MD->isFunctionTemplateSpecialization());
|
|
const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
|
|
FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
|
|
void *InsertPos = nullptr;
|
|
FunctionDecl *CorrespondingCallOpSpecialization =
|
|
CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
|
|
assert(CorrespondingCallOpSpecialization);
|
|
CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
|
|
}
|
|
EmitForwardingCallToLambda(CallOp, CallArgs);
|
|
}
|
|
|
|
void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
|
|
if (MD->isVariadic()) {
|
|
// FIXME: Making this work correctly is nasty because it requires either
|
|
// cloning the body of the call operator or making the call operator forward.
|
|
CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
|
|
return;
|
|
}
|
|
|
|
EmitLambdaDelegatingInvokeBody(MD);
|
|
}
|