llvm-project/llvm/lib/Target/Mips/MipsFastISel.cpp

1371 lines
42 KiB
C++

//===-- MipsastISel.cpp - Mips FastISel implementation
//---------------------===//
#include "MipsCCState.h"
#include "MipsInstrInfo.h"
#include "MipsISelLowering.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
namespace {
class MipsFastISel final : public FastISel {
// All possible address modes.
class Address {
public:
typedef enum { RegBase, FrameIndexBase } BaseKind;
private:
BaseKind Kind;
union {
unsigned Reg;
int FI;
} Base;
int64_t Offset;
const GlobalValue *GV;
public:
// Innocuous defaults for our address.
Address() : Kind(RegBase), Offset(0), GV(0) { Base.Reg = 0; }
void setKind(BaseKind K) { Kind = K; }
BaseKind getKind() const { return Kind; }
bool isRegBase() const { return Kind == RegBase; }
bool isFIBase() const { return Kind == FrameIndexBase; }
void setReg(unsigned Reg) {
assert(isRegBase() && "Invalid base register access!");
Base.Reg = Reg;
}
unsigned getReg() const {
assert(isRegBase() && "Invalid base register access!");
return Base.Reg;
}
void setFI(unsigned FI) {
assert(isFIBase() && "Invalid base frame index access!");
Base.FI = FI;
}
unsigned getFI() const {
assert(isFIBase() && "Invalid base frame index access!");
return Base.FI;
}
void setOffset(int64_t Offset_) { Offset = Offset_; }
int64_t getOffset() const { return Offset; }
void setGlobalValue(const GlobalValue *G) { GV = G; }
const GlobalValue *getGlobalValue() { return GV; }
};
/// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
/// make the right decision when generating code for different targets.
const TargetMachine &TM;
const MipsSubtarget *Subtarget;
const TargetInstrInfo &TII;
const TargetLowering &TLI;
MipsFunctionInfo *MFI;
// Convenience variables to avoid some queries.
LLVMContext *Context;
bool fastLowerCall(CallLoweringInfo &CLI) override;
bool TargetSupported;
bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
// floating point but not reject doing fast-isel in other
// situations
private:
// Selection routines.
bool selectLoad(const Instruction *I);
bool selectStore(const Instruction *I);
bool selectBranch(const Instruction *I);
bool selectCmp(const Instruction *I);
bool selectFPExt(const Instruction *I);
bool selectFPTrunc(const Instruction *I);
bool selectFPToInt(const Instruction *I, bool IsSigned);
bool selectRet(const Instruction *I);
bool selectTrunc(const Instruction *I);
bool selectIntExt(const Instruction *I);
// Utility helper routines.
bool isTypeLegal(Type *Ty, MVT &VT);
bool isLoadTypeLegal(Type *Ty, MVT &VT);
bool computeAddress(const Value *Obj, Address &Addr);
bool computeCallAddress(const Value *V, Address &Addr);
void simplifyAddress(Address &Addr);
// Emit helper routines.
bool emitCmp(unsigned DestReg, const CmpInst *CI);
bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment = 0);
bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
MachineMemOperand *MMO = nullptr);
bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment = 0);
unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
bool IsZExt);
bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg);
bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg);
unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
unsigned materializeFP(const ConstantFP *CFP, MVT VT);
unsigned materializeGV(const GlobalValue *GV, MVT VT);
unsigned materializeInt(const Constant *C, MVT VT);
unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
MachineInstrBuilder emitInst(unsigned Opc) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
}
MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
DstReg);
}
MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
unsigned MemReg, int64_t MemOffset) {
return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
}
MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
unsigned MemReg, int64_t MemOffset) {
return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
}
// for some reason, this default is not generated by tablegen
// so we explicitly generate it here.
//
unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
unsigned Op0, bool Op0IsKill, uint64_t imm1,
uint64_t imm2, unsigned Op3, bool Op3IsKill) {
return 0;
}
// Call handling routines.
private:
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
unsigned &NumBytes);
bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
public:
// Backend specific FastISel code.
explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo)
: FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
Context = &funcInfo.Fn->getContext();
TargetSupported =
((TM.getRelocationModel() == Reloc::PIC_) &&
((Subtarget->hasMips32r2() || Subtarget->hasMips32()) &&
(static_cast<const MipsTargetMachine &>(TM).getABI().IsO32())));
UnsupportedFPMode = Subtarget->isFP64bit();
}
unsigned fastMaterializeConstant(const Constant *C) override;
bool fastSelectInstruction(const Instruction *I) override;
#include "MipsGenFastISel.inc"
};
} // end anonymous namespace.
static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State) LLVM_ATTRIBUTE_UNUSED;
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
llvm_unreachable("should not be called");
}
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
llvm_unreachable("should not be called");
}
#include "MipsGenCallingConv.inc"
CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
return CC_MipsO32;
}
unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
const ConstantInt *CI = cast<ConstantInt>(C);
int64_t Imm;
if ((VT != MVT::i1) && CI->isNegative())
Imm = CI->getSExtValue();
else
Imm = CI->getZExtValue();
return materialize32BitInt(Imm, RC);
}
unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
const TargetRegisterClass *RC) {
unsigned ResultReg = createResultReg(RC);
if (isInt<16>(Imm)) {
unsigned Opc = Mips::ADDiu;
emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
} else if (isUInt<16>(Imm)) {
emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
return ResultReg;
}
unsigned Lo = Imm & 0xFFFF;
unsigned Hi = (Imm >> 16) & 0xFFFF;
if (Lo) {
// Both Lo and Hi have nonzero bits.
unsigned TmpReg = createResultReg(RC);
emitInst(Mips::LUi, TmpReg).addImm(Hi);
emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
} else {
emitInst(Mips::LUi, ResultReg).addImm(Hi);
}
return ResultReg;
}
unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
if (UnsupportedFPMode)
return 0;
int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (VT == MVT::f32) {
const TargetRegisterClass *RC = &Mips::FGR32RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
emitInst(Mips::MTC1, DestReg).addReg(TempReg);
return DestReg;
} else if (VT == MVT::f64) {
const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
unsigned DestReg = createResultReg(RC);
unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
unsigned TempReg2 =
materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
return DestReg;
}
return 0;
}
unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
// For now 32-bit only.
if (VT != MVT::i32)
return 0;
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
unsigned DestReg = createResultReg(RC);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
bool IsThreadLocal = GVar && GVar->isThreadLocal();
// TLS not supported at this time.
if (IsThreadLocal)
return 0;
emitInst(Mips::LW, DestReg)
.addReg(MFI->getGlobalBaseReg())
.addGlobalAddress(GV, 0, MipsII::MO_GOT);
if ((GV->hasInternalLinkage() ||
(GV->hasLocalLinkage() && !isa<Function>(GV)))) {
unsigned TempReg = createResultReg(RC);
emitInst(Mips::ADDiu, TempReg)
.addReg(DestReg)
.addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
DestReg = TempReg;
}
return DestReg;
}
// Materialize a constant into a register, and return the register
// number (or zero if we failed to handle it).
unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
EVT CEVT = TLI.getValueType(C->getType(), true);
// Only handle simple types.
if (!CEVT.isSimple())
return 0;
MVT VT = CEVT.getSimpleVT();
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
return materializeGV(GV, VT);
else if (isa<ConstantInt>(C))
return materializeInt(C, VT);
return 0;
}
bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
const User *U = nullptr;
unsigned Opcode = Instruction::UserOp1;
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
// Don't walk into other basic blocks unless the object is an alloca from
// another block, otherwise it may not have a virtual register assigned.
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
Opcode = I->getOpcode();
U = I;
}
} else if (isa<ConstantExpr>(Obj))
return false;
switch (Opcode) {
default:
break;
case Instruction::BitCast: {
// Look through bitcasts.
return computeAddress(U->getOperand(0), Addr);
}
case Instruction::GetElementPtr: {
Address SavedAddr = Addr;
uint64_t TmpOffset = Addr.getOffset();
// Iterate through the GEP folding the constants into offsets where
// we can.
gep_type_iterator GTI = gep_type_begin(U);
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
++i, ++GTI) {
const Value *Op = *i;
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
const StructLayout *SL = DL.getStructLayout(STy);
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
TmpOffset += SL->getElementOffset(Idx);
} else {
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
for (;;) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
TmpOffset += CI->getSExtValue() * S;
break;
}
if (canFoldAddIntoGEP(U, Op)) {
// A compatible add with a constant operand. Fold the constant.
ConstantInt *CI =
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
TmpOffset += CI->getSExtValue() * S;
// Iterate on the other operand.
Op = cast<AddOperator>(Op)->getOperand(0);
continue;
}
// Unsupported
goto unsupported_gep;
}
}
}
// Try to grab the base operand now.
Addr.setOffset(TmpOffset);
if (computeAddress(U->getOperand(0), Addr))
return true;
// We failed, restore everything and try the other options.
Addr = SavedAddr;
unsupported_gep:
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(Obj);
DenseMap<const AllocaInst *, int>::iterator SI =
FuncInfo.StaticAllocaMap.find(AI);
if (SI != FuncInfo.StaticAllocaMap.end()) {
Addr.setKind(Address::FrameIndexBase);
Addr.setFI(SI->second);
return true;
}
break;
}
}
Addr.setReg(getRegForValue(Obj));
return Addr.getReg() != 0;
}
bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
const GlobalValue *GV = dyn_cast<GlobalValue>(V);
if (GV && isa<Function>(GV) && dyn_cast<Function>(GV)->isIntrinsic())
return false;
if (!GV)
return false;
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
Addr.setGlobalValue(GV);
return true;
}
return false;
}
bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
EVT evt = TLI.getValueType(Ty, true);
// Only handle simple types.
if (evt == MVT::Other || !evt.isSimple())
return false;
VT = evt.getSimpleVT();
// Handle all legal types, i.e. a register that will directly hold this
// value.
return TLI.isTypeLegal(VT);
}
bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
if (isTypeLegal(Ty, VT))
return true;
// We will extend this in a later patch:
// If this is a type than can be sign or zero-extended to a basic operation
// go ahead and accept it now.
if (VT == MVT::i8 || VT == MVT::i16)
return true;
return false;
}
// Because of how EmitCmp is called with fast-isel, you can
// end up with redundant "andi" instructions after the sequences emitted below.
// We should try and solve this issue in the future.
//
bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
bool IsUnsigned = CI->isUnsigned();
unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
if (LeftReg == 0)
return false;
unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
if (RightReg == 0)
return false;
CmpInst::Predicate P = CI->getPredicate();
switch (P) {
default:
return false;
case CmpInst::ICMP_EQ: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
break;
}
case CmpInst::ICMP_NE: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
break;
}
case CmpInst::ICMP_UGT: {
emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
break;
}
case CmpInst::ICMP_ULT: {
emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
break;
}
case CmpInst::ICMP_UGE: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
break;
}
case CmpInst::ICMP_ULE: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
break;
}
case CmpInst::ICMP_SGT: {
emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
break;
}
case CmpInst::ICMP_SLT: {
emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
break;
}
case CmpInst::ICMP_SGE: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
break;
}
case CmpInst::ICMP_SLE: {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
break;
}
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_UNE:
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE: {
if (UnsupportedFPMode)
return false;
bool IsFloat = Left->getType()->isFloatTy();
bool IsDouble = Left->getType()->isDoubleTy();
if (!IsFloat && !IsDouble)
return false;
unsigned Opc, CondMovOpc;
switch (P) {
case CmpInst::FCMP_OEQ:
Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
CondMovOpc = Mips::MOVT_I;
break;
case CmpInst::FCMP_UNE:
Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
CondMovOpc = Mips::MOVF_I;
break;
case CmpInst::FCMP_OLT:
Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
CondMovOpc = Mips::MOVT_I;
break;
case CmpInst::FCMP_OLE:
Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
CondMovOpc = Mips::MOVT_I;
break;
case CmpInst::FCMP_OGT:
Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
CondMovOpc = Mips::MOVF_I;
break;
case CmpInst::FCMP_OGE:
Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
CondMovOpc = Mips::MOVF_I;
break;
default:
llvm_unreachable("Only switching of a subset of CCs.");
}
unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
emitInst(Opc).addReg(LeftReg).addReg(RightReg).addReg(
Mips::FCC0, RegState::ImplicitDefine);
MachineInstrBuilder MI = emitInst(CondMovOpc, ResultReg)
.addReg(RegWithOne)
.addReg(Mips::FCC0)
.addReg(RegWithZero, RegState::Implicit);
MI->tieOperands(0, 3);
break;
}
}
return true;
}
bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i32: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LW;
break;
}
case MVT::i16: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LHu;
break;
}
case MVT::i8: {
ResultReg = createResultReg(&Mips::GPR32RegClass);
Opc = Mips::LBu;
break;
}
case MVT::f32: {
if (UnsupportedFPMode)
return false;
ResultReg = createResultReg(&Mips::FGR32RegClass);
Opc = Mips::LWC1;
break;
}
case MVT::f64: {
if (UnsupportedFPMode)
return false;
ResultReg = createResultReg(&Mips::AFGR64RegClass);
Opc = Mips::LDC1;
break;
}
default:
return false;
}
if (Addr.isRegBase()) {
simplifyAddress(Addr);
emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
return true;
}
if (Addr.isFIBase()) {
unsigned FI = Addr.getFI();
unsigned Align = 4;
unsigned Offset = Addr.getOffset();
MachineFrameInfo &MFI = *MF->getFrameInfo();
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), Align);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
.addFrameIndex(FI)
.addImm(Offset)
.addMemOperand(MMO);
return true;
}
return false;
}
bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
unsigned Alignment) {
//
// more cases will be handled here in following patches.
//
unsigned Opc;
switch (VT.SimpleTy) {
case MVT::i8:
Opc = Mips::SB;
break;
case MVT::i16:
Opc = Mips::SH;
break;
case MVT::i32:
Opc = Mips::SW;
break;
case MVT::f32:
if (UnsupportedFPMode)
return false;
Opc = Mips::SWC1;
break;
case MVT::f64:
if (UnsupportedFPMode)
return false;
Opc = Mips::SDC1;
break;
default:
return false;
}
if (Addr.isRegBase()) {
simplifyAddress(Addr);
emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
return true;
}
if (Addr.isFIBase()) {
unsigned FI = Addr.getFI();
unsigned Align = 4;
unsigned Offset = Addr.getOffset();
MachineFrameInfo &MFI = *MF->getFrameInfo();
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), Align);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
.addReg(SrcReg)
.addFrameIndex(FI)
.addImm(Offset)
.addMemOperand(MMO);
return true;
}
return false;
}
bool MipsFastISel::selectLoad(const Instruction *I) {
// Atomic loads need special handling.
if (cast<LoadInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getType(), VT))
return false;
// See if we can handle this address.
Address Addr;
if (!computeAddress(I->getOperand(0), Addr))
return false;
unsigned ResultReg;
if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
return false;
updateValueMap(I, ResultReg);
return true;
}
bool MipsFastISel::selectStore(const Instruction *I) {
Value *Op0 = I->getOperand(0);
unsigned SrcReg = 0;
// Atomic stores need special handling.
if (cast<StoreInst>(I)->isAtomic())
return false;
// Verify we have a legal type before going any further.
MVT VT;
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
return false;
// Get the value to be stored into a register.
SrcReg = getRegForValue(Op0);
if (SrcReg == 0)
return false;
// See if we can handle this address.
Address Addr;
if (!computeAddress(I->getOperand(1), Addr))
return false;
if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
return false;
return true;
}
//
// This can cause a redundant sltiu to be generated.
// FIXME: try and eliminate this in a future patch.
//
bool MipsFastISel::selectBranch(const Instruction *I) {
const BranchInst *BI = cast<BranchInst>(I);
MachineBasicBlock *BrBB = FuncInfo.MBB;
//
// TBB is the basic block for the case where the comparison is true.
// FBB is the basic block for the case where the comparison is false.
// if (cond) goto TBB
// goto FBB
// TBB:
//
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
BI->getCondition();
// For now, just try the simplest case where it's fed by a compare.
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
unsigned CondReg = createResultReg(&Mips::GPR32RegClass);
if (!emitCmp(CondReg, CI))
return false;
BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
.addReg(CondReg)
.addMBB(TBB);
fastEmitBranch(FBB, DbgLoc);
FuncInfo.MBB->addSuccessor(TBB);
return true;
}
return false;
}
bool MipsFastISel::selectCmp(const Instruction *I) {
const CmpInst *CI = cast<CmpInst>(I);
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
if (!emitCmp(ResultReg, CI))
return false;
updateValueMap(I, ResultReg);
return true;
}
// Attempt to fast-select a floating-point extend instruction.
bool MipsFastISel::selectFPExt(const Instruction *I) {
if (UnsupportedFPMode)
return false;
Value *Src = I->getOperand(0);
EVT SrcVT = TLI.getValueType(Src->getType(), true);
EVT DestVT = TLI.getValueType(I->getType(), true);
if (SrcVT != MVT::f32 || DestVT != MVT::f64)
return false;
unsigned SrcReg =
getRegForValue(Src); // his must be a 32 bit floating point register class
// maybe we should handle this differently
if (!SrcReg)
return false;
unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
updateValueMap(I, DestReg);
return true;
}
// Attempt to fast-select a floating-point truncate instruction.
bool MipsFastISel::selectFPTrunc(const Instruction *I) {
if (UnsupportedFPMode)
return false;
Value *Src = I->getOperand(0);
EVT SrcVT = TLI.getValueType(Src->getType(), true);
EVT DestVT = TLI.getValueType(I->getType(), true);
if (SrcVT != MVT::f64 || DestVT != MVT::f32)
return false;
unsigned SrcReg = getRegForValue(Src);
if (!SrcReg)
return false;
unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
if (!DestReg)
return false;
emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
updateValueMap(I, DestReg);
return true;
}
// Attempt to fast-select a floating-point-to-integer conversion.
bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
if (UnsupportedFPMode)
return false;
MVT DstVT, SrcVT;
if (!IsSigned)
return false; // We don't handle this case yet. There is no native
// instruction for this but it can be synthesized.
Type *DstTy = I->getType();
if (!isTypeLegal(DstTy, DstVT))
return false;
if (DstVT != MVT::i32)
return false;
Value *Src = I->getOperand(0);
Type *SrcTy = Src->getType();
if (!isTypeLegal(SrcTy, SrcVT))
return false;
if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
return false;
unsigned SrcReg = getRegForValue(Src);
if (SrcReg == 0)
return false;
// Determine the opcode for the conversion, which takes place
// entirely within FPRs.
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
unsigned Opc;
if (SrcVT == MVT::f32)
Opc = Mips::TRUNC_W_S;
else
Opc = Mips::TRUNC_W_D32;
// Generate the convert.
emitInst(Opc, TempReg).addReg(SrcReg);
emitInst(Mips::MFC1, DestReg).addReg(TempReg);
updateValueMap(I, DestReg);
return true;
}
//
bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
SmallVectorImpl<MVT> &OutVTs,
unsigned &NumBytes) {
CallingConv::ID CC = CLI.CallConv;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
// Get a count of how many bytes are to be pushed on the stack.
NumBytes = CCInfo.getNextStackOffset();
// This is the minimum argument area used for A0-A3.
if (NumBytes < 16)
NumBytes = 16;
emitInst(Mips::ADJCALLSTACKDOWN).addImm(16);
// Process the args.
MVT firstMVT;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
const Value *ArgVal = CLI.OutVals[VA.getValNo()];
MVT ArgVT = OutVTs[VA.getValNo()];
if (i == 0) {
firstMVT = ArgVT;
if (ArgVT == MVT::f32) {
VA.convertToReg(Mips::F12);
} else if (ArgVT == MVT::f64) {
VA.convertToReg(Mips::D6);
}
} else if (i == 1) {
if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
if (ArgVT == MVT::f32) {
VA.convertToReg(Mips::F14);
} else if (ArgVT == MVT::f64) {
VA.convertToReg(Mips::D7);
}
}
}
if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32)) && VA.isMemLoc()) {
switch (VA.getLocMemOffset()) {
case 0:
VA.convertToReg(Mips::A0);
break;
case 4:
VA.convertToReg(Mips::A1);
break;
case 8:
VA.convertToReg(Mips::A2);
break;
case 12:
VA.convertToReg(Mips::A3);
break;
default:
break;
}
}
unsigned ArgReg = getRegForValue(ArgVal);
if (!ArgReg)
return false;
// Handle arg promotion: SExt, ZExt, AExt.
switch (VA.getLocInfo()) {
case CCValAssign::Full:
break;
case CCValAssign::AExt:
case CCValAssign::SExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
if (!ArgReg)
return false;
break;
}
case CCValAssign::ZExt: {
MVT DestVT = VA.getLocVT();
MVT SrcVT = ArgVT;
ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
if (!ArgReg)
return false;
break;
}
default:
llvm_unreachable("Unknown arg promotion!");
}
// Now copy/store arg to correct locations.
if (VA.isRegLoc() && !VA.needsCustom()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
CLI.OutRegs.push_back(VA.getLocReg());
} else if (VA.needsCustom()) {
llvm_unreachable("Mips does not use custom args.");
return false;
} else {
//
// FIXME: This path will currently return false. It was copied
// from the AArch64 port and should be essentially fine for Mips too.
// The work to finish up this path will be done in a follow-on patch.
//
assert(VA.isMemLoc() && "Assuming store on stack.");
// Don't emit stores for undef values.
if (isa<UndefValue>(ArgVal))
continue;
// Need to store on the stack.
// FIXME: This alignment is incorrect but this path is disabled
// for now (will return false). We need to determine the right alignment
// based on the normal alignment for the underlying machine type.
//
unsigned ArgSize = RoundUpToAlignment(ArgVT.getSizeInBits(), 4);
unsigned BEAlign = 0;
if (ArgSize < 8 && !Subtarget->isLittle())
BEAlign = 8 - ArgSize;
Address Addr;
Addr.setKind(Address::RegBase);
Addr.setReg(Mips::SP);
Addr.setOffset(VA.getLocMemOffset() + BEAlign);
unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
MachinePointerInfo::getStack(Addr.getOffset()),
MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
(void)(MMO);
// if (!emitStore(ArgVT, ArgReg, Addr, MMO))
return false; // can't store on the stack yet.
}
}
return true;
}
bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
unsigned NumBytes) {
CallingConv::ID CC = CLI.CallConv;
emitInst(Mips::ADJCALLSTACKUP).addImm(16);
if (RetVT != MVT::isVoid) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
CCInfo.AnalyzeCallResult(RetVT, RetCC_Mips);
// Only handle a single return value.
if (RVLocs.size() != 1)
return false;
// Copy all of the result registers out of their specified physreg.
MVT CopyVT = RVLocs[0].getValVT();
// Special handling for extended integers.
if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
CopyVT = MVT::i32;
unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY),
ResultReg).addReg(RVLocs[0].getLocReg());
CLI.InRegs.push_back(RVLocs[0].getLocReg());
CLI.ResultReg = ResultReg;
CLI.NumResultRegs = 1;
}
return true;
}
bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
CallingConv::ID CC = CLI.CallConv;
bool IsTailCall = CLI.IsTailCall;
bool IsVarArg = CLI.IsVarArg;
const Value *Callee = CLI.Callee;
// const char *SymName = CLI.SymName;
// Allow SelectionDAG isel to handle tail calls.
if (IsTailCall)
return false;
// Let SDISel handle vararg functions.
if (IsVarArg)
return false;
// FIXME: Only handle *simple* calls for now.
MVT RetVT;
if (CLI.RetTy->isVoidTy())
RetVT = MVT::isVoid;
else if (!isTypeLegal(CLI.RetTy, RetVT))
return false;
for (auto Flag : CLI.OutFlags)
if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
return false;
// Set up the argument vectors.
SmallVector<MVT, 16> OutVTs;
OutVTs.reserve(CLI.OutVals.size());
for (auto *Val : CLI.OutVals) {
MVT VT;
if (!isTypeLegal(Val->getType(), VT) &&
!(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
return false;
// We don't handle vector parameters yet.
if (VT.isVector() || VT.getSizeInBits() > 64)
return false;
OutVTs.push_back(VT);
}
Address Addr;
if (!computeCallAddress(Callee, Addr))
return false;
// Handle the arguments now that we've gotten them.
unsigned NumBytes;
if (!processCallArgs(CLI, OutVTs, NumBytes))
return false;
// Issue the call.
unsigned DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
MachineInstrBuilder MIB =
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
Mips::RA).addReg(Mips::T9);
// Add implicit physical register uses to the call.
for (auto Reg : CLI.OutRegs)
MIB.addReg(Reg, RegState::Implicit);
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(CC));
CLI.Call = MIB;
// Finish off the call including any return values.
return finishCall(CLI, RetVT, NumBytes);
}
bool MipsFastISel::selectRet(const Instruction *I) {
const Function &F = *I->getParent()->getParent();
const ReturnInst *Ret = cast<ReturnInst>(I);
if (!FuncInfo.CanLowerReturn)
return false;
// Build a list of return value registers.
SmallVector<unsigned, 4> RetRegs;
if (Ret->getNumOperands() > 0) {
CallingConv::ID CC = F.getCallingConv();
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ValLocs;
MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
I->getContext());
CCAssignFn *RetCC = RetCC_Mips;
CCInfo.AnalyzeReturn(Outs, RetCC);
// Only handle a single return value for now.
if (ValLocs.size() != 1)
return false;
CCValAssign &VA = ValLocs[0];
const Value *RV = Ret->getOperand(0);
// Don't bother handling odd stuff for now.
if ((VA.getLocInfo() != CCValAssign::Full) &&
(VA.getLocInfo() != CCValAssign::BCvt))
return false;
// Only handle register returns for now.
if (!VA.isRegLoc())
return false;
unsigned Reg = getRegForValue(RV);
if (Reg == 0)
return false;
unsigned SrcReg = Reg + VA.getValNo();
unsigned DestReg = VA.getLocReg();
// Avoid a cross-class copy. This is very unlikely.
if (!MRI.getRegClass(SrcReg)->contains(DestReg))
return false;
EVT RVEVT = TLI.getValueType(RV->getType());
if (!RVEVT.isSimple())
return false;
if (RVEVT.isVector())
return false;
MVT RVVT = RVEVT.getSimpleVT();
if (RVVT == MVT::f128)
return false;
MVT DestVT = VA.getValVT();
// Special handling for extended integers.
if (RVVT != DestVT) {
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
return false;
if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
return false;
bool IsZExt = Outs[0].Flags.isZExt();
SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
if (SrcReg == 0)
return false;
}
// Make the copy.
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
// Add register to return instruction.
RetRegs.push_back(VA.getLocReg());
}
MachineInstrBuilder MIB = emitInst(Mips::RetRA);
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
MIB.addReg(RetRegs[i], RegState::Implicit);
return true;
}
bool MipsFastISel::selectTrunc(const Instruction *I) {
// The high bits for a type smaller than the register size are assumed to be
// undefined.
Value *Op = I->getOperand(0);
EVT SrcVT, DestVT;
SrcVT = TLI.getValueType(Op->getType(), true);
DestVT = TLI.getValueType(I->getType(), true);
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
return false;
if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
return false;
unsigned SrcReg = getRegForValue(Op);
if (!SrcReg)
return false;
// Because the high bits are undefined, a truncate doesn't generate
// any code.
updateValueMap(I, SrcReg);
return true;
}
bool MipsFastISel::selectIntExt(const Instruction *I) {
Type *DestTy = I->getType();
Value *Src = I->getOperand(0);
Type *SrcTy = Src->getType();
bool isZExt = isa<ZExtInst>(I);
unsigned SrcReg = getRegForValue(Src);
if (!SrcReg)
return false;
EVT SrcEVT, DestEVT;
SrcEVT = TLI.getValueType(SrcTy, true);
DestEVT = TLI.getValueType(DestTy, true);
if (!SrcEVT.isSimple())
return false;
if (!DestEVT.isSimple())
return false;
MVT SrcVT = SrcEVT.getSimpleVT();
MVT DestVT = DestEVT.getSimpleVT();
unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
return false;
updateValueMap(I, ResultReg);
return true;
}
bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg) {
unsigned ShiftAmt;
switch (SrcVT.SimpleTy) {
default:
return false;
case MVT::i8:
ShiftAmt = 24;
break;
case MVT::i16:
ShiftAmt = 16;
break;
}
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
return true;
}
bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg) {
switch (SrcVT.SimpleTy) {
default:
return false;
case MVT::i8:
emitInst(Mips::SEB, DestReg).addReg(SrcReg);
break;
case MVT::i16:
emitInst(Mips::SEH, DestReg).addReg(SrcReg);
break;
}
return true;
}
bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg) {
if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
return false;
if (Subtarget->hasMips32r2())
return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
}
bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg) {
switch (SrcVT.SimpleTy) {
default:
return false;
case MVT::i1:
emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(1);
break;
case MVT::i8:
emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xff);
break;
case MVT::i16:
emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(0xffff);
break;
}
return true;
}
bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
unsigned DestReg, bool IsZExt) {
if (IsZExt)
return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
}
unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
bool isZExt) {
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
return Success ? DestReg : 0;
}
bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
if (!TargetSupported)
return false;
switch (I->getOpcode()) {
default:
break;
case Instruction::Load:
return selectLoad(I);
case Instruction::Store:
return selectStore(I);
case Instruction::Br:
return selectBranch(I);
case Instruction::Ret:
return selectRet(I);
case Instruction::Trunc:
return selectTrunc(I);
case Instruction::ZExt:
case Instruction::SExt:
return selectIntExt(I);
case Instruction::FPTrunc:
return selectFPTrunc(I);
case Instruction::FPExt:
return selectFPExt(I);
case Instruction::FPToSI:
return selectFPToInt(I, /*isSigned*/ true);
case Instruction::FPToUI:
return selectFPToInt(I, /*isSigned*/ false);
case Instruction::ICmp:
case Instruction::FCmp:
return selectCmp(I);
}
return false;
}
unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
bool IsUnsigned) {
unsigned VReg = getRegForValue(V);
if (VReg == 0)
return 0;
MVT VMVT = TLI.getValueType(V->getType(), true).getSimpleVT();
if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
return 0;
VReg = TempReg;
}
return VReg;
}
void MipsFastISel::simplifyAddress(Address &Addr) {
if (!isInt<16>(Addr.getOffset())) {
unsigned TempReg =
materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
Addr.setReg(DestReg);
Addr.setOffset(0);
}
}
namespace llvm {
FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) {
return new MipsFastISel(funcInfo, libInfo);
}
}