forked from OSchip/llvm-project
11986 lines
538 KiB
C++
11986 lines
538 KiB
C++
//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the Sema class, which performs semantic analysis and
|
|
// builds ASTs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_SEMA_SEMA_H
|
|
#define LLVM_CLANG_SEMA_SEMA_H
|
|
|
|
#include "clang/AST/ASTConcept.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Availability.h"
|
|
#include "clang/AST/ComparisonCategories.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ExternalASTSource.h"
|
|
#include "clang/AST/LocInfoType.h"
|
|
#include "clang/AST/MangleNumberingContext.h"
|
|
#include "clang/AST/NSAPI.h"
|
|
#include "clang/AST/PrettyPrinter.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeOrdering.h"
|
|
#include "clang/Basic/BitmaskEnum.h"
|
|
#include "clang/Basic/ExpressionTraits.h"
|
|
#include "clang/Basic/Module.h"
|
|
#include "clang/Basic/OpenMPKinds.h"
|
|
#include "clang/Basic/PragmaKinds.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TemplateKinds.h"
|
|
#include "clang/Basic/TypeTraits.h"
|
|
#include "clang/Sema/AnalysisBasedWarnings.h"
|
|
#include "clang/Sema/CleanupInfo.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/ExternalSemaSource.h"
|
|
#include "clang/Sema/IdentifierResolver.h"
|
|
#include "clang/Sema/ObjCMethodList.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/SemaConcept.h"
|
|
#include "clang/Sema/TypoCorrection.h"
|
|
#include "clang/Sema/Weak.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/Frontend/OpenMP/OMPConstants.h"
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
class APSInt;
|
|
template <typename ValueT> struct DenseMapInfo;
|
|
template <typename ValueT, typename ValueInfoT> class DenseSet;
|
|
class SmallBitVector;
|
|
struct InlineAsmIdentifierInfo;
|
|
}
|
|
|
|
namespace clang {
|
|
class ADLResult;
|
|
class ASTConsumer;
|
|
class ASTContext;
|
|
class ASTMutationListener;
|
|
class ASTReader;
|
|
class ASTWriter;
|
|
class ArrayType;
|
|
class ParsedAttr;
|
|
class BindingDecl;
|
|
class BlockDecl;
|
|
class CapturedDecl;
|
|
class CXXBasePath;
|
|
class CXXBasePaths;
|
|
class CXXBindTemporaryExpr;
|
|
typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
|
|
class CXXConstructorDecl;
|
|
class CXXConversionDecl;
|
|
class CXXDeleteExpr;
|
|
class CXXDestructorDecl;
|
|
class CXXFieldCollector;
|
|
class CXXMemberCallExpr;
|
|
class CXXMethodDecl;
|
|
class CXXScopeSpec;
|
|
class CXXTemporary;
|
|
class CXXTryStmt;
|
|
class CallExpr;
|
|
class ClassTemplateDecl;
|
|
class ClassTemplatePartialSpecializationDecl;
|
|
class ClassTemplateSpecializationDecl;
|
|
class VarTemplatePartialSpecializationDecl;
|
|
class CodeCompleteConsumer;
|
|
class CodeCompletionAllocator;
|
|
class CodeCompletionTUInfo;
|
|
class CodeCompletionResult;
|
|
class CoroutineBodyStmt;
|
|
class Decl;
|
|
class DeclAccessPair;
|
|
class DeclContext;
|
|
class DeclRefExpr;
|
|
class DeclaratorDecl;
|
|
class DeducedTemplateArgument;
|
|
class DependentDiagnostic;
|
|
class DesignatedInitExpr;
|
|
class Designation;
|
|
class EnableIfAttr;
|
|
class EnumConstantDecl;
|
|
class Expr;
|
|
class ExtVectorType;
|
|
class FormatAttr;
|
|
class FriendDecl;
|
|
class FunctionDecl;
|
|
class FunctionProtoType;
|
|
class FunctionTemplateDecl;
|
|
class ImplicitConversionSequence;
|
|
typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
|
|
class InitListExpr;
|
|
class InitializationKind;
|
|
class InitializationSequence;
|
|
class InitializedEntity;
|
|
class IntegerLiteral;
|
|
class LabelStmt;
|
|
class LambdaExpr;
|
|
class LangOptions;
|
|
class LocalInstantiationScope;
|
|
class LookupResult;
|
|
class MacroInfo;
|
|
typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
|
|
class ModuleLoader;
|
|
class MultiLevelTemplateArgumentList;
|
|
class NamedDecl;
|
|
class ObjCCategoryDecl;
|
|
class ObjCCategoryImplDecl;
|
|
class ObjCCompatibleAliasDecl;
|
|
class ObjCContainerDecl;
|
|
class ObjCImplDecl;
|
|
class ObjCImplementationDecl;
|
|
class ObjCInterfaceDecl;
|
|
class ObjCIvarDecl;
|
|
template <class T> class ObjCList;
|
|
class ObjCMessageExpr;
|
|
class ObjCMethodDecl;
|
|
class ObjCPropertyDecl;
|
|
class ObjCProtocolDecl;
|
|
class OMPThreadPrivateDecl;
|
|
class OMPRequiresDecl;
|
|
class OMPDeclareReductionDecl;
|
|
class OMPDeclareSimdDecl;
|
|
class OMPClause;
|
|
struct OMPVarListLocTy;
|
|
struct OverloadCandidate;
|
|
enum class OverloadCandidateParamOrder : char;
|
|
enum OverloadCandidateRewriteKind : unsigned;
|
|
class OverloadCandidateSet;
|
|
class OverloadExpr;
|
|
class ParenListExpr;
|
|
class ParmVarDecl;
|
|
class Preprocessor;
|
|
class PseudoDestructorTypeStorage;
|
|
class PseudoObjectExpr;
|
|
class QualType;
|
|
class StandardConversionSequence;
|
|
class Stmt;
|
|
class StringLiteral;
|
|
class SwitchStmt;
|
|
class TemplateArgument;
|
|
class TemplateArgumentList;
|
|
class TemplateArgumentLoc;
|
|
class TemplateDecl;
|
|
class TemplateInstantiationCallback;
|
|
class TemplateParameterList;
|
|
class TemplatePartialOrderingContext;
|
|
class TemplateTemplateParmDecl;
|
|
class Token;
|
|
class TypeAliasDecl;
|
|
class TypedefDecl;
|
|
class TypedefNameDecl;
|
|
class TypeLoc;
|
|
class TypoCorrectionConsumer;
|
|
class UnqualifiedId;
|
|
class UnresolvedLookupExpr;
|
|
class UnresolvedMemberExpr;
|
|
class UnresolvedSetImpl;
|
|
class UnresolvedSetIterator;
|
|
class UsingDecl;
|
|
class UsingShadowDecl;
|
|
class ValueDecl;
|
|
class VarDecl;
|
|
class VarTemplateSpecializationDecl;
|
|
class VisibilityAttr;
|
|
class VisibleDeclConsumer;
|
|
class IndirectFieldDecl;
|
|
struct DeductionFailureInfo;
|
|
class TemplateSpecCandidateSet;
|
|
|
|
namespace sema {
|
|
class AccessedEntity;
|
|
class BlockScopeInfo;
|
|
class Capture;
|
|
class CapturedRegionScopeInfo;
|
|
class CapturingScopeInfo;
|
|
class CompoundScopeInfo;
|
|
class DelayedDiagnostic;
|
|
class DelayedDiagnosticPool;
|
|
class FunctionScopeInfo;
|
|
class LambdaScopeInfo;
|
|
class PossiblyUnreachableDiag;
|
|
class SemaPPCallbacks;
|
|
class TemplateDeductionInfo;
|
|
}
|
|
|
|
namespace threadSafety {
|
|
class BeforeSet;
|
|
void threadSafetyCleanup(BeforeSet* Cache);
|
|
}
|
|
|
|
// FIXME: No way to easily map from TemplateTypeParmTypes to
|
|
// TemplateTypeParmDecls, so we have this horrible PointerUnion.
|
|
typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
|
|
SourceLocation> UnexpandedParameterPack;
|
|
|
|
/// Describes whether we've seen any nullability information for the given
|
|
/// file.
|
|
struct FileNullability {
|
|
/// The first pointer declarator (of any pointer kind) in the file that does
|
|
/// not have a corresponding nullability annotation.
|
|
SourceLocation PointerLoc;
|
|
|
|
/// The end location for the first pointer declarator in the file. Used for
|
|
/// placing fix-its.
|
|
SourceLocation PointerEndLoc;
|
|
|
|
/// Which kind of pointer declarator we saw.
|
|
uint8_t PointerKind;
|
|
|
|
/// Whether we saw any type nullability annotations in the given file.
|
|
bool SawTypeNullability = false;
|
|
};
|
|
|
|
/// A mapping from file IDs to a record of whether we've seen nullability
|
|
/// information in that file.
|
|
class FileNullabilityMap {
|
|
/// A mapping from file IDs to the nullability information for each file ID.
|
|
llvm::DenseMap<FileID, FileNullability> Map;
|
|
|
|
/// A single-element cache based on the file ID.
|
|
struct {
|
|
FileID File;
|
|
FileNullability Nullability;
|
|
} Cache;
|
|
|
|
public:
|
|
FileNullability &operator[](FileID file) {
|
|
// Check the single-element cache.
|
|
if (file == Cache.File)
|
|
return Cache.Nullability;
|
|
|
|
// It's not in the single-element cache; flush the cache if we have one.
|
|
if (!Cache.File.isInvalid()) {
|
|
Map[Cache.File] = Cache.Nullability;
|
|
}
|
|
|
|
// Pull this entry into the cache.
|
|
Cache.File = file;
|
|
Cache.Nullability = Map[file];
|
|
return Cache.Nullability;
|
|
}
|
|
};
|
|
|
|
/// Keeps track of expected type during expression parsing. The type is tied to
|
|
/// a particular token, all functions that update or consume the type take a
|
|
/// start location of the token they are looking at as a parameter. This allows
|
|
/// to avoid updating the type on hot paths in the parser.
|
|
class PreferredTypeBuilder {
|
|
public:
|
|
PreferredTypeBuilder() = default;
|
|
explicit PreferredTypeBuilder(QualType Type) : Type(Type) {}
|
|
|
|
void enterCondition(Sema &S, SourceLocation Tok);
|
|
void enterReturn(Sema &S, SourceLocation Tok);
|
|
void enterVariableInit(SourceLocation Tok, Decl *D);
|
|
/// Computing a type for the function argument may require running
|
|
/// overloading, so we postpone its computation until it is actually needed.
|
|
///
|
|
/// Clients should be very careful when using this funciton, as it stores a
|
|
/// function_ref, clients should make sure all calls to get() with the same
|
|
/// location happen while function_ref is alive.
|
|
void enterFunctionArgument(SourceLocation Tok,
|
|
llvm::function_ref<QualType()> ComputeType);
|
|
|
|
void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
|
|
void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
|
|
SourceLocation OpLoc);
|
|
void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
|
|
void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
|
|
void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
|
|
/// Handles all type casts, including C-style cast, C++ casts, etc.
|
|
void enterTypeCast(SourceLocation Tok, QualType CastType);
|
|
|
|
QualType get(SourceLocation Tok) const {
|
|
if (Tok != ExpectedLoc)
|
|
return QualType();
|
|
if (!Type.isNull())
|
|
return Type;
|
|
if (ComputeType)
|
|
return ComputeType();
|
|
return QualType();
|
|
}
|
|
|
|
private:
|
|
/// Start position of a token for which we store expected type.
|
|
SourceLocation ExpectedLoc;
|
|
/// Expected type for a token starting at ExpectedLoc.
|
|
QualType Type;
|
|
/// A function to compute expected type at ExpectedLoc. It is only considered
|
|
/// if Type is null.
|
|
llvm::function_ref<QualType()> ComputeType;
|
|
};
|
|
|
|
/// Sema - This implements semantic analysis and AST building for C.
|
|
class Sema final {
|
|
Sema(const Sema &) = delete;
|
|
void operator=(const Sema &) = delete;
|
|
|
|
/// A key method to reduce duplicate debug info from Sema.
|
|
virtual void anchor();
|
|
|
|
///Source of additional semantic information.
|
|
ExternalSemaSource *ExternalSource;
|
|
|
|
///Whether Sema has generated a multiplexer and has to delete it.
|
|
bool isMultiplexExternalSource;
|
|
|
|
static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
|
|
|
|
bool isVisibleSlow(const NamedDecl *D);
|
|
|
|
/// Determine whether two declarations should be linked together, given that
|
|
/// the old declaration might not be visible and the new declaration might
|
|
/// not have external linkage.
|
|
bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
|
|
const NamedDecl *New) {
|
|
if (isVisible(Old))
|
|
return true;
|
|
// See comment in below overload for why it's safe to compute the linkage
|
|
// of the new declaration here.
|
|
if (New->isExternallyDeclarable()) {
|
|
assert(Old->isExternallyDeclarable() &&
|
|
"should not have found a non-externally-declarable previous decl");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
|
|
|
|
void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
|
|
QualType ResultTy,
|
|
ArrayRef<QualType> Args);
|
|
|
|
public:
|
|
typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
|
|
typedef OpaquePtr<TemplateName> TemplateTy;
|
|
typedef OpaquePtr<QualType> TypeTy;
|
|
|
|
OpenCLOptions OpenCLFeatures;
|
|
FPOptions FPFeatures;
|
|
|
|
const LangOptions &LangOpts;
|
|
Preprocessor &PP;
|
|
ASTContext &Context;
|
|
ASTConsumer &Consumer;
|
|
DiagnosticsEngine &Diags;
|
|
SourceManager &SourceMgr;
|
|
|
|
/// Flag indicating whether or not to collect detailed statistics.
|
|
bool CollectStats;
|
|
|
|
/// Code-completion consumer.
|
|
CodeCompleteConsumer *CodeCompleter;
|
|
|
|
/// CurContext - This is the current declaration context of parsing.
|
|
DeclContext *CurContext;
|
|
|
|
/// Generally null except when we temporarily switch decl contexts,
|
|
/// like in \see ActOnObjCTemporaryExitContainerContext.
|
|
DeclContext *OriginalLexicalContext;
|
|
|
|
/// VAListTagName - The declaration name corresponding to __va_list_tag.
|
|
/// This is used as part of a hack to omit that class from ADL results.
|
|
DeclarationName VAListTagName;
|
|
|
|
bool MSStructPragmaOn; // True when \#pragma ms_struct on
|
|
|
|
/// Controls member pointer representation format under the MS ABI.
|
|
LangOptions::PragmaMSPointersToMembersKind
|
|
MSPointerToMemberRepresentationMethod;
|
|
|
|
/// Stack of active SEH __finally scopes. Can be empty.
|
|
SmallVector<Scope*, 2> CurrentSEHFinally;
|
|
|
|
/// Source location for newly created implicit MSInheritanceAttrs
|
|
SourceLocation ImplicitMSInheritanceAttrLoc;
|
|
|
|
/// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
|
|
/// `TransformTypos` in order to keep track of any TypoExprs that are created
|
|
/// recursively during typo correction and wipe them away if the correction
|
|
/// fails.
|
|
llvm::SmallVector<TypoExpr *, 2> TypoExprs;
|
|
|
|
/// pragma clang section kind
|
|
enum PragmaClangSectionKind {
|
|
PCSK_Invalid = 0,
|
|
PCSK_BSS = 1,
|
|
PCSK_Data = 2,
|
|
PCSK_Rodata = 3,
|
|
PCSK_Text = 4,
|
|
PCSK_Relro = 5
|
|
};
|
|
|
|
enum PragmaClangSectionAction {
|
|
PCSA_Set = 0,
|
|
PCSA_Clear = 1
|
|
};
|
|
|
|
struct PragmaClangSection {
|
|
std::string SectionName;
|
|
bool Valid = false;
|
|
SourceLocation PragmaLocation;
|
|
|
|
void Act(SourceLocation PragmaLocation,
|
|
PragmaClangSectionAction Action,
|
|
StringLiteral* Name);
|
|
};
|
|
|
|
PragmaClangSection PragmaClangBSSSection;
|
|
PragmaClangSection PragmaClangDataSection;
|
|
PragmaClangSection PragmaClangRodataSection;
|
|
PragmaClangSection PragmaClangRelroSection;
|
|
PragmaClangSection PragmaClangTextSection;
|
|
|
|
enum PragmaMsStackAction {
|
|
PSK_Reset = 0x0, // #pragma ()
|
|
PSK_Set = 0x1, // #pragma (value)
|
|
PSK_Push = 0x2, // #pragma (push[, id])
|
|
PSK_Pop = 0x4, // #pragma (pop[, id])
|
|
PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
|
|
PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
|
|
PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
|
|
};
|
|
|
|
template<typename ValueType>
|
|
struct PragmaStack {
|
|
struct Slot {
|
|
llvm::StringRef StackSlotLabel;
|
|
ValueType Value;
|
|
SourceLocation PragmaLocation;
|
|
SourceLocation PragmaPushLocation;
|
|
Slot(llvm::StringRef StackSlotLabel, ValueType Value,
|
|
SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
|
|
: StackSlotLabel(StackSlotLabel), Value(Value),
|
|
PragmaLocation(PragmaLocation),
|
|
PragmaPushLocation(PragmaPushLocation) {}
|
|
};
|
|
void Act(SourceLocation PragmaLocation,
|
|
PragmaMsStackAction Action,
|
|
llvm::StringRef StackSlotLabel,
|
|
ValueType Value);
|
|
|
|
// MSVC seems to add artificial slots to #pragma stacks on entering a C++
|
|
// method body to restore the stacks on exit, so it works like this:
|
|
//
|
|
// struct S {
|
|
// #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
|
|
// void Method {}
|
|
// #pragma <name>(pop, InternalPragmaSlot)
|
|
// };
|
|
//
|
|
// It works even with #pragma vtordisp, although MSVC doesn't support
|
|
// #pragma vtordisp(push [, id], n)
|
|
// syntax.
|
|
//
|
|
// Push / pop a named sentinel slot.
|
|
void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
|
|
assert((Action == PSK_Push || Action == PSK_Pop) &&
|
|
"Can only push / pop #pragma stack sentinels!");
|
|
Act(CurrentPragmaLocation, Action, Label, CurrentValue);
|
|
}
|
|
|
|
// Constructors.
|
|
explicit PragmaStack(const ValueType &Default)
|
|
: DefaultValue(Default), CurrentValue(Default) {}
|
|
|
|
bool hasValue() const { return CurrentValue != DefaultValue; }
|
|
|
|
SmallVector<Slot, 2> Stack;
|
|
ValueType DefaultValue; // Value used for PSK_Reset action.
|
|
ValueType CurrentValue;
|
|
SourceLocation CurrentPragmaLocation;
|
|
};
|
|
// FIXME: We should serialize / deserialize these if they occur in a PCH (but
|
|
// we shouldn't do so if they're in a module).
|
|
|
|
/// Whether to insert vtordisps prior to virtual bases in the Microsoft
|
|
/// C++ ABI. Possible values are 0, 1, and 2, which mean:
|
|
///
|
|
/// 0: Suppress all vtordisps
|
|
/// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
|
|
/// structors
|
|
/// 2: Always insert vtordisps to support RTTI on partially constructed
|
|
/// objects
|
|
PragmaStack<MSVtorDispMode> VtorDispStack;
|
|
// #pragma pack.
|
|
// Sentinel to represent when the stack is set to mac68k alignment.
|
|
static const unsigned kMac68kAlignmentSentinel = ~0U;
|
|
PragmaStack<unsigned> PackStack;
|
|
// The current #pragma pack values and locations at each #include.
|
|
struct PackIncludeState {
|
|
unsigned CurrentValue;
|
|
SourceLocation CurrentPragmaLocation;
|
|
bool HasNonDefaultValue, ShouldWarnOnInclude;
|
|
};
|
|
SmallVector<PackIncludeState, 8> PackIncludeStack;
|
|
// Segment #pragmas.
|
|
PragmaStack<StringLiteral *> DataSegStack;
|
|
PragmaStack<StringLiteral *> BSSSegStack;
|
|
PragmaStack<StringLiteral *> ConstSegStack;
|
|
PragmaStack<StringLiteral *> CodeSegStack;
|
|
|
|
// RAII object to push / pop sentinel slots for all MS #pragma stacks.
|
|
// Actions should be performed only if we enter / exit a C++ method body.
|
|
class PragmaStackSentinelRAII {
|
|
public:
|
|
PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
|
|
~PragmaStackSentinelRAII();
|
|
|
|
private:
|
|
Sema &S;
|
|
StringRef SlotLabel;
|
|
bool ShouldAct;
|
|
};
|
|
|
|
/// A mapping that describes the nullability we've seen in each header file.
|
|
FileNullabilityMap NullabilityMap;
|
|
|
|
/// Last section used with #pragma init_seg.
|
|
StringLiteral *CurInitSeg;
|
|
SourceLocation CurInitSegLoc;
|
|
|
|
/// VisContext - Manages the stack for \#pragma GCC visibility.
|
|
void *VisContext; // Really a "PragmaVisStack*"
|
|
|
|
/// This an attribute introduced by \#pragma clang attribute.
|
|
struct PragmaAttributeEntry {
|
|
SourceLocation Loc;
|
|
ParsedAttr *Attribute;
|
|
SmallVector<attr::SubjectMatchRule, 4> MatchRules;
|
|
bool IsUsed;
|
|
};
|
|
|
|
/// A push'd group of PragmaAttributeEntries.
|
|
struct PragmaAttributeGroup {
|
|
/// The location of the push attribute.
|
|
SourceLocation Loc;
|
|
/// The namespace of this push group.
|
|
const IdentifierInfo *Namespace;
|
|
SmallVector<PragmaAttributeEntry, 2> Entries;
|
|
};
|
|
|
|
SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
|
|
|
|
/// The declaration that is currently receiving an attribute from the
|
|
/// #pragma attribute stack.
|
|
const Decl *PragmaAttributeCurrentTargetDecl;
|
|
|
|
/// This represents the last location of a "#pragma clang optimize off"
|
|
/// directive if such a directive has not been closed by an "on" yet. If
|
|
/// optimizations are currently "on", this is set to an invalid location.
|
|
SourceLocation OptimizeOffPragmaLocation;
|
|
|
|
/// Flag indicating if Sema is building a recovery call expression.
|
|
///
|
|
/// This flag is used to avoid building recovery call expressions
|
|
/// if Sema is already doing so, which would cause infinite recursions.
|
|
bool IsBuildingRecoveryCallExpr;
|
|
|
|
/// Used to control the generation of ExprWithCleanups.
|
|
CleanupInfo Cleanup;
|
|
|
|
/// ExprCleanupObjects - This is the stack of objects requiring
|
|
/// cleanup that are created by the current full expression. The
|
|
/// element type here is ExprWithCleanups::Object.
|
|
SmallVector<BlockDecl*, 8> ExprCleanupObjects;
|
|
|
|
/// Store a set of either DeclRefExprs or MemberExprs that contain a reference
|
|
/// to a variable (constant) that may or may not be odr-used in this Expr, and
|
|
/// we won't know until all lvalue-to-rvalue and discarded value conversions
|
|
/// have been applied to all subexpressions of the enclosing full expression.
|
|
/// This is cleared at the end of each full expression.
|
|
using MaybeODRUseExprSet = llvm::SmallPtrSet<Expr *, 2>;
|
|
MaybeODRUseExprSet MaybeODRUseExprs;
|
|
|
|
std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
|
|
|
|
/// Stack containing information about each of the nested
|
|
/// function, block, and method scopes that are currently active.
|
|
SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
|
|
|
|
typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadExtVectorDecls, 2, 2>
|
|
ExtVectorDeclsType;
|
|
|
|
/// ExtVectorDecls - This is a list all the extended vector types. This allows
|
|
/// us to associate a raw vector type with one of the ext_vector type names.
|
|
/// This is only necessary for issuing pretty diagnostics.
|
|
ExtVectorDeclsType ExtVectorDecls;
|
|
|
|
/// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
|
|
std::unique_ptr<CXXFieldCollector> FieldCollector;
|
|
|
|
typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
|
|
|
|
/// Set containing all declared private fields that are not used.
|
|
NamedDeclSetType UnusedPrivateFields;
|
|
|
|
/// Set containing all typedefs that are likely unused.
|
|
llvm::SmallSetVector<const TypedefNameDecl *, 4>
|
|
UnusedLocalTypedefNameCandidates;
|
|
|
|
/// Delete-expressions to be analyzed at the end of translation unit
|
|
///
|
|
/// This list contains class members, and locations of delete-expressions
|
|
/// that could not be proven as to whether they mismatch with new-expression
|
|
/// used in initializer of the field.
|
|
typedef std::pair<SourceLocation, bool> DeleteExprLoc;
|
|
typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
|
|
llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
|
|
|
|
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
|
|
|
|
/// PureVirtualClassDiagSet - a set of class declarations which we have
|
|
/// emitted a list of pure virtual functions. Used to prevent emitting the
|
|
/// same list more than once.
|
|
std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
|
|
|
|
/// ParsingInitForAutoVars - a set of declarations with auto types for which
|
|
/// we are currently parsing the initializer.
|
|
llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
|
|
|
|
/// Look for a locally scoped extern "C" declaration by the given name.
|
|
NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
|
|
|
|
typedef LazyVector<VarDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
|
|
TentativeDefinitionsType;
|
|
|
|
/// All the tentative definitions encountered in the TU.
|
|
TentativeDefinitionsType TentativeDefinitions;
|
|
|
|
/// All the external declarations encoutered and used in the TU.
|
|
SmallVector<VarDecl *, 4> ExternalDeclarations;
|
|
|
|
typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
|
|
UnusedFileScopedDeclsType;
|
|
|
|
/// The set of file scoped decls seen so far that have not been used
|
|
/// and must warn if not used. Only contains the first declaration.
|
|
UnusedFileScopedDeclsType UnusedFileScopedDecls;
|
|
|
|
typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
|
|
&ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
|
|
DelegatingCtorDeclsType;
|
|
|
|
/// All the delegating constructors seen so far in the file, used for
|
|
/// cycle detection at the end of the TU.
|
|
DelegatingCtorDeclsType DelegatingCtorDecls;
|
|
|
|
/// All the overriding functions seen during a class definition
|
|
/// that had their exception spec checks delayed, plus the overridden
|
|
/// function.
|
|
SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
|
|
DelayedOverridingExceptionSpecChecks;
|
|
|
|
/// All the function redeclarations seen during a class definition that had
|
|
/// their exception spec checks delayed, plus the prior declaration they
|
|
/// should be checked against. Except during error recovery, the new decl
|
|
/// should always be a friend declaration, as that's the only valid way to
|
|
/// redeclare a special member before its class is complete.
|
|
SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
|
|
DelayedEquivalentExceptionSpecChecks;
|
|
|
|
typedef llvm::MapVector<const FunctionDecl *,
|
|
std::unique_ptr<LateParsedTemplate>>
|
|
LateParsedTemplateMapT;
|
|
LateParsedTemplateMapT LateParsedTemplateMap;
|
|
|
|
/// Callback to the parser to parse templated functions when needed.
|
|
typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
|
|
typedef void LateTemplateParserCleanupCB(void *P);
|
|
LateTemplateParserCB *LateTemplateParser;
|
|
LateTemplateParserCleanupCB *LateTemplateParserCleanup;
|
|
void *OpaqueParser;
|
|
|
|
void SetLateTemplateParser(LateTemplateParserCB *LTP,
|
|
LateTemplateParserCleanupCB *LTPCleanup,
|
|
void *P) {
|
|
LateTemplateParser = LTP;
|
|
LateTemplateParserCleanup = LTPCleanup;
|
|
OpaqueParser = P;
|
|
}
|
|
|
|
class DelayedDiagnostics;
|
|
|
|
class DelayedDiagnosticsState {
|
|
sema::DelayedDiagnosticPool *SavedPool;
|
|
friend class Sema::DelayedDiagnostics;
|
|
};
|
|
typedef DelayedDiagnosticsState ParsingDeclState;
|
|
typedef DelayedDiagnosticsState ProcessingContextState;
|
|
|
|
/// A class which encapsulates the logic for delaying diagnostics
|
|
/// during parsing and other processing.
|
|
class DelayedDiagnostics {
|
|
/// The current pool of diagnostics into which delayed
|
|
/// diagnostics should go.
|
|
sema::DelayedDiagnosticPool *CurPool;
|
|
|
|
public:
|
|
DelayedDiagnostics() : CurPool(nullptr) {}
|
|
|
|
/// Adds a delayed diagnostic.
|
|
void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
|
|
|
|
/// Determines whether diagnostics should be delayed.
|
|
bool shouldDelayDiagnostics() { return CurPool != nullptr; }
|
|
|
|
/// Returns the current delayed-diagnostics pool.
|
|
sema::DelayedDiagnosticPool *getCurrentPool() const {
|
|
return CurPool;
|
|
}
|
|
|
|
/// Enter a new scope. Access and deprecation diagnostics will be
|
|
/// collected in this pool.
|
|
DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
|
|
DelayedDiagnosticsState state;
|
|
state.SavedPool = CurPool;
|
|
CurPool = &pool;
|
|
return state;
|
|
}
|
|
|
|
/// Leave a delayed-diagnostic state that was previously pushed.
|
|
/// Do not emit any of the diagnostics. This is performed as part
|
|
/// of the bookkeeping of popping a pool "properly".
|
|
void popWithoutEmitting(DelayedDiagnosticsState state) {
|
|
CurPool = state.SavedPool;
|
|
}
|
|
|
|
/// Enter a new scope where access and deprecation diagnostics are
|
|
/// not delayed.
|
|
DelayedDiagnosticsState pushUndelayed() {
|
|
DelayedDiagnosticsState state;
|
|
state.SavedPool = CurPool;
|
|
CurPool = nullptr;
|
|
return state;
|
|
}
|
|
|
|
/// Undo a previous pushUndelayed().
|
|
void popUndelayed(DelayedDiagnosticsState state) {
|
|
assert(CurPool == nullptr);
|
|
CurPool = state.SavedPool;
|
|
}
|
|
} DelayedDiagnostics;
|
|
|
|
/// A RAII object to temporarily push a declaration context.
|
|
class ContextRAII {
|
|
private:
|
|
Sema &S;
|
|
DeclContext *SavedContext;
|
|
ProcessingContextState SavedContextState;
|
|
QualType SavedCXXThisTypeOverride;
|
|
|
|
public:
|
|
ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
|
|
: S(S), SavedContext(S.CurContext),
|
|
SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
|
|
SavedCXXThisTypeOverride(S.CXXThisTypeOverride)
|
|
{
|
|
assert(ContextToPush && "pushing null context");
|
|
S.CurContext = ContextToPush;
|
|
if (NewThisContext)
|
|
S.CXXThisTypeOverride = QualType();
|
|
}
|
|
|
|
void pop() {
|
|
if (!SavedContext) return;
|
|
S.CurContext = SavedContext;
|
|
S.DelayedDiagnostics.popUndelayed(SavedContextState);
|
|
S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
|
|
SavedContext = nullptr;
|
|
}
|
|
|
|
~ContextRAII() {
|
|
pop();
|
|
}
|
|
};
|
|
|
|
/// Used to change context to isConstantEvaluated without pushing a heavy
|
|
/// ExpressionEvaluationContextRecord object.
|
|
bool isConstantEvaluatedOverride;
|
|
|
|
bool isConstantEvaluated() {
|
|
return ExprEvalContexts.back().isConstantEvaluated() ||
|
|
isConstantEvaluatedOverride;
|
|
}
|
|
|
|
/// RAII object to handle the state changes required to synthesize
|
|
/// a function body.
|
|
class SynthesizedFunctionScope {
|
|
Sema &S;
|
|
Sema::ContextRAII SavedContext;
|
|
bool PushedCodeSynthesisContext = false;
|
|
|
|
public:
|
|
SynthesizedFunctionScope(Sema &S, DeclContext *DC)
|
|
: S(S), SavedContext(S, DC) {
|
|
S.PushFunctionScope();
|
|
S.PushExpressionEvaluationContext(
|
|
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
if (auto *FD = dyn_cast<FunctionDecl>(DC))
|
|
FD->setWillHaveBody(true);
|
|
else
|
|
assert(isa<ObjCMethodDecl>(DC));
|
|
}
|
|
|
|
void addContextNote(SourceLocation UseLoc) {
|
|
assert(!PushedCodeSynthesisContext);
|
|
|
|
Sema::CodeSynthesisContext Ctx;
|
|
Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
|
|
Ctx.PointOfInstantiation = UseLoc;
|
|
Ctx.Entity = cast<Decl>(S.CurContext);
|
|
S.pushCodeSynthesisContext(Ctx);
|
|
|
|
PushedCodeSynthesisContext = true;
|
|
}
|
|
|
|
~SynthesizedFunctionScope() {
|
|
if (PushedCodeSynthesisContext)
|
|
S.popCodeSynthesisContext();
|
|
if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
|
|
FD->setWillHaveBody(false);
|
|
S.PopExpressionEvaluationContext();
|
|
S.PopFunctionScopeInfo();
|
|
}
|
|
};
|
|
|
|
/// WeakUndeclaredIdentifiers - Identifiers contained in
|
|
/// \#pragma weak before declared. rare. may alias another
|
|
/// identifier, declared or undeclared
|
|
llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
|
|
|
|
/// ExtnameUndeclaredIdentifiers - Identifiers contained in
|
|
/// \#pragma redefine_extname before declared. Used in Solaris system headers
|
|
/// to define functions that occur in multiple standards to call the version
|
|
/// in the currently selected standard.
|
|
llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
|
|
|
|
|
|
/// Load weak undeclared identifiers from the external source.
|
|
void LoadExternalWeakUndeclaredIdentifiers();
|
|
|
|
/// WeakTopLevelDecl - Translation-unit scoped declarations generated by
|
|
/// \#pragma weak during processing of other Decls.
|
|
/// I couldn't figure out a clean way to generate these in-line, so
|
|
/// we store them here and handle separately -- which is a hack.
|
|
/// It would be best to refactor this.
|
|
SmallVector<Decl*,2> WeakTopLevelDecl;
|
|
|
|
IdentifierResolver IdResolver;
|
|
|
|
/// Translation Unit Scope - useful to Objective-C actions that need
|
|
/// to lookup file scope declarations in the "ordinary" C decl namespace.
|
|
/// For example, user-defined classes, built-in "id" type, etc.
|
|
Scope *TUScope;
|
|
|
|
/// The C++ "std" namespace, where the standard library resides.
|
|
LazyDeclPtr StdNamespace;
|
|
|
|
/// The C++ "std::bad_alloc" class, which is defined by the C++
|
|
/// standard library.
|
|
LazyDeclPtr StdBadAlloc;
|
|
|
|
/// The C++ "std::align_val_t" enum class, which is defined by the C++
|
|
/// standard library.
|
|
LazyDeclPtr StdAlignValT;
|
|
|
|
/// The C++ "std::experimental" namespace, where the experimental parts
|
|
/// of the standard library resides.
|
|
NamespaceDecl *StdExperimentalNamespaceCache;
|
|
|
|
/// The C++ "std::initializer_list" template, which is defined in
|
|
/// \<initializer_list>.
|
|
ClassTemplateDecl *StdInitializerList;
|
|
|
|
/// The C++ "std::coroutine_traits" template, which is defined in
|
|
/// \<coroutine_traits>
|
|
ClassTemplateDecl *StdCoroutineTraitsCache;
|
|
|
|
/// The C++ "type_info" declaration, which is defined in \<typeinfo>.
|
|
RecordDecl *CXXTypeInfoDecl;
|
|
|
|
/// The MSVC "_GUID" struct, which is defined in MSVC header files.
|
|
RecordDecl *MSVCGuidDecl;
|
|
|
|
/// Caches identifiers/selectors for NSFoundation APIs.
|
|
std::unique_ptr<NSAPI> NSAPIObj;
|
|
|
|
/// The declaration of the Objective-C NSNumber class.
|
|
ObjCInterfaceDecl *NSNumberDecl;
|
|
|
|
/// The declaration of the Objective-C NSValue class.
|
|
ObjCInterfaceDecl *NSValueDecl;
|
|
|
|
/// Pointer to NSNumber type (NSNumber *).
|
|
QualType NSNumberPointer;
|
|
|
|
/// Pointer to NSValue type (NSValue *).
|
|
QualType NSValuePointer;
|
|
|
|
/// The Objective-C NSNumber methods used to create NSNumber literals.
|
|
ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
|
|
|
|
/// The declaration of the Objective-C NSString class.
|
|
ObjCInterfaceDecl *NSStringDecl;
|
|
|
|
/// Pointer to NSString type (NSString *).
|
|
QualType NSStringPointer;
|
|
|
|
/// The declaration of the stringWithUTF8String: method.
|
|
ObjCMethodDecl *StringWithUTF8StringMethod;
|
|
|
|
/// The declaration of the valueWithBytes:objCType: method.
|
|
ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
|
|
|
|
/// The declaration of the Objective-C NSArray class.
|
|
ObjCInterfaceDecl *NSArrayDecl;
|
|
|
|
/// The declaration of the arrayWithObjects:count: method.
|
|
ObjCMethodDecl *ArrayWithObjectsMethod;
|
|
|
|
/// The declaration of the Objective-C NSDictionary class.
|
|
ObjCInterfaceDecl *NSDictionaryDecl;
|
|
|
|
/// The declaration of the dictionaryWithObjects:forKeys:count: method.
|
|
ObjCMethodDecl *DictionaryWithObjectsMethod;
|
|
|
|
/// id<NSCopying> type.
|
|
QualType QIDNSCopying;
|
|
|
|
/// will hold 'respondsToSelector:'
|
|
Selector RespondsToSelectorSel;
|
|
|
|
/// A flag to remember whether the implicit forms of operator new and delete
|
|
/// have been declared.
|
|
bool GlobalNewDeleteDeclared;
|
|
|
|
/// A flag to indicate that we're in a context that permits abstract
|
|
/// references to fields. This is really a
|
|
bool AllowAbstractFieldReference;
|
|
|
|
/// Describes how the expressions currently being parsed are
|
|
/// evaluated at run-time, if at all.
|
|
enum class ExpressionEvaluationContext {
|
|
/// The current expression and its subexpressions occur within an
|
|
/// unevaluated operand (C++11 [expr]p7), such as the subexpression of
|
|
/// \c sizeof, where the type of the expression may be significant but
|
|
/// no code will be generated to evaluate the value of the expression at
|
|
/// run time.
|
|
Unevaluated,
|
|
|
|
/// The current expression occurs within a braced-init-list within
|
|
/// an unevaluated operand. This is mostly like a regular unevaluated
|
|
/// context, except that we still instantiate constexpr functions that are
|
|
/// referenced here so that we can perform narrowing checks correctly.
|
|
UnevaluatedList,
|
|
|
|
/// The current expression occurs within a discarded statement.
|
|
/// This behaves largely similarly to an unevaluated operand in preventing
|
|
/// definitions from being required, but not in other ways.
|
|
DiscardedStatement,
|
|
|
|
/// The current expression occurs within an unevaluated
|
|
/// operand that unconditionally permits abstract references to
|
|
/// fields, such as a SIZE operator in MS-style inline assembly.
|
|
UnevaluatedAbstract,
|
|
|
|
/// The current context is "potentially evaluated" in C++11 terms,
|
|
/// but the expression is evaluated at compile-time (like the values of
|
|
/// cases in a switch statement).
|
|
ConstantEvaluated,
|
|
|
|
/// The current expression is potentially evaluated at run time,
|
|
/// which means that code may be generated to evaluate the value of the
|
|
/// expression at run time.
|
|
PotentiallyEvaluated,
|
|
|
|
/// The current expression is potentially evaluated, but any
|
|
/// declarations referenced inside that expression are only used if
|
|
/// in fact the current expression is used.
|
|
///
|
|
/// This value is used when parsing default function arguments, for which
|
|
/// we would like to provide diagnostics (e.g., passing non-POD arguments
|
|
/// through varargs) but do not want to mark declarations as "referenced"
|
|
/// until the default argument is used.
|
|
PotentiallyEvaluatedIfUsed
|
|
};
|
|
|
|
/// Data structure used to record current or nested
|
|
/// expression evaluation contexts.
|
|
struct ExpressionEvaluationContextRecord {
|
|
/// The expression evaluation context.
|
|
ExpressionEvaluationContext Context;
|
|
|
|
/// Whether the enclosing context needed a cleanup.
|
|
CleanupInfo ParentCleanup;
|
|
|
|
/// Whether we are in a decltype expression.
|
|
bool IsDecltype;
|
|
|
|
/// The number of active cleanup objects when we entered
|
|
/// this expression evaluation context.
|
|
unsigned NumCleanupObjects;
|
|
|
|
/// The number of typos encountered during this expression evaluation
|
|
/// context (i.e. the number of TypoExprs created).
|
|
unsigned NumTypos;
|
|
|
|
MaybeODRUseExprSet SavedMaybeODRUseExprs;
|
|
|
|
/// The lambdas that are present within this context, if it
|
|
/// is indeed an unevaluated context.
|
|
SmallVector<LambdaExpr *, 2> Lambdas;
|
|
|
|
/// The declaration that provides context for lambda expressions
|
|
/// and block literals if the normal declaration context does not
|
|
/// suffice, e.g., in a default function argument.
|
|
Decl *ManglingContextDecl;
|
|
|
|
/// If we are processing a decltype type, a set of call expressions
|
|
/// for which we have deferred checking the completeness of the return type.
|
|
SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
|
|
|
|
/// If we are processing a decltype type, a set of temporary binding
|
|
/// expressions for which we have deferred checking the destructor.
|
|
SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
|
|
|
|
llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
|
|
|
|
/// Expressions appearing as the LHS of a volatile assignment in this
|
|
/// context. We produce a warning for these when popping the context if
|
|
/// they are not discarded-value expressions nor unevaluated operands.
|
|
SmallVector<Expr*, 2> VolatileAssignmentLHSs;
|
|
|
|
/// \brief Describes whether we are in an expression constext which we have
|
|
/// to handle differently.
|
|
enum ExpressionKind {
|
|
EK_Decltype, EK_TemplateArgument, EK_Other
|
|
} ExprContext;
|
|
|
|
ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
|
|
unsigned NumCleanupObjects,
|
|
CleanupInfo ParentCleanup,
|
|
Decl *ManglingContextDecl,
|
|
ExpressionKind ExprContext)
|
|
: Context(Context), ParentCleanup(ParentCleanup),
|
|
NumCleanupObjects(NumCleanupObjects), NumTypos(0),
|
|
ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
|
|
|
|
bool isUnevaluated() const {
|
|
return Context == ExpressionEvaluationContext::Unevaluated ||
|
|
Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
|
|
Context == ExpressionEvaluationContext::UnevaluatedList;
|
|
}
|
|
bool isConstantEvaluated() const {
|
|
return Context == ExpressionEvaluationContext::ConstantEvaluated;
|
|
}
|
|
};
|
|
|
|
/// A stack of expression evaluation contexts.
|
|
SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
|
|
|
|
/// Emit a warning for all pending noderef expressions that we recorded.
|
|
void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
|
|
|
|
/// Compute the mangling number context for a lambda expression or
|
|
/// block literal. Also return the extra mangling decl if any.
|
|
///
|
|
/// \param DC - The DeclContext containing the lambda expression or
|
|
/// block literal.
|
|
std::tuple<MangleNumberingContext *, Decl *>
|
|
getCurrentMangleNumberContext(const DeclContext *DC);
|
|
|
|
|
|
/// SpecialMemberOverloadResult - The overloading result for a special member
|
|
/// function.
|
|
///
|
|
/// This is basically a wrapper around PointerIntPair. The lowest bits of the
|
|
/// integer are used to determine whether overload resolution succeeded.
|
|
class SpecialMemberOverloadResult {
|
|
public:
|
|
enum Kind {
|
|
NoMemberOrDeleted,
|
|
Ambiguous,
|
|
Success
|
|
};
|
|
|
|
private:
|
|
llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
|
|
|
|
public:
|
|
SpecialMemberOverloadResult() : Pair() {}
|
|
SpecialMemberOverloadResult(CXXMethodDecl *MD)
|
|
: Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
|
|
|
|
CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
|
|
void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
|
|
|
|
Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
|
|
void setKind(Kind K) { Pair.setInt(K); }
|
|
};
|
|
|
|
class SpecialMemberOverloadResultEntry
|
|
: public llvm::FastFoldingSetNode,
|
|
public SpecialMemberOverloadResult {
|
|
public:
|
|
SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
|
|
: FastFoldingSetNode(ID)
|
|
{}
|
|
};
|
|
|
|
/// A cache of special member function overload resolution results
|
|
/// for C++ records.
|
|
llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
|
|
|
|
/// A cache of the flags available in enumerations with the flag_bits
|
|
/// attribute.
|
|
mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
|
|
|
|
/// The kind of translation unit we are processing.
|
|
///
|
|
/// When we're processing a complete translation unit, Sema will perform
|
|
/// end-of-translation-unit semantic tasks (such as creating
|
|
/// initializers for tentative definitions in C) once parsing has
|
|
/// completed. Modules and precompiled headers perform different kinds of
|
|
/// checks.
|
|
TranslationUnitKind TUKind;
|
|
|
|
llvm::BumpPtrAllocator BumpAlloc;
|
|
|
|
/// The number of SFINAE diagnostics that have been trapped.
|
|
unsigned NumSFINAEErrors;
|
|
|
|
typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
|
|
UnparsedDefaultArgInstantiationsMap;
|
|
|
|
/// A mapping from parameters with unparsed default arguments to the
|
|
/// set of instantiations of each parameter.
|
|
///
|
|
/// This mapping is a temporary data structure used when parsing
|
|
/// nested class templates or nested classes of class templates,
|
|
/// where we might end up instantiating an inner class before the
|
|
/// default arguments of its methods have been parsed.
|
|
UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
|
|
|
|
// Contains the locations of the beginning of unparsed default
|
|
// argument locations.
|
|
llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
|
|
|
|
/// UndefinedInternals - all the used, undefined objects which require a
|
|
/// definition in this translation unit.
|
|
llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
|
|
|
|
/// Determine if VD, which must be a variable or function, is an external
|
|
/// symbol that nonetheless can't be referenced from outside this translation
|
|
/// unit because its type has no linkage and it's not extern "C".
|
|
bool isExternalWithNoLinkageType(ValueDecl *VD);
|
|
|
|
/// Obtain a sorted list of functions that are undefined but ODR-used.
|
|
void getUndefinedButUsed(
|
|
SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
|
|
|
|
/// Retrieves list of suspicious delete-expressions that will be checked at
|
|
/// the end of translation unit.
|
|
const llvm::MapVector<FieldDecl *, DeleteLocs> &
|
|
getMismatchingDeleteExpressions() const;
|
|
|
|
typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
|
|
typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
|
|
|
|
/// Method Pool - allows efficient lookup when typechecking messages to "id".
|
|
/// We need to maintain a list, since selectors can have differing signatures
|
|
/// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
|
|
/// of selectors are "overloaded").
|
|
/// At the head of the list it is recorded whether there were 0, 1, or >= 2
|
|
/// methods inside categories with a particular selector.
|
|
GlobalMethodPool MethodPool;
|
|
|
|
/// Method selectors used in a \@selector expression. Used for implementation
|
|
/// of -Wselector.
|
|
llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
|
|
|
|
/// List of SourceLocations where 'self' is implicitly retained inside a
|
|
/// block.
|
|
llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
|
|
ImplicitlyRetainedSelfLocs;
|
|
|
|
/// Kinds of C++ special members.
|
|
enum CXXSpecialMember {
|
|
CXXDefaultConstructor,
|
|
CXXCopyConstructor,
|
|
CXXMoveConstructor,
|
|
CXXCopyAssignment,
|
|
CXXMoveAssignment,
|
|
CXXDestructor,
|
|
CXXInvalid
|
|
};
|
|
|
|
typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
|
|
SpecialMemberDecl;
|
|
|
|
/// The C++ special members which we are currently in the process of
|
|
/// declaring. If this process recursively triggers the declaration of the
|
|
/// same special member, we should act as if it is not yet declared.
|
|
llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
|
|
|
|
/// Kinds of defaulted comparison operator functions.
|
|
enum class DefaultedComparisonKind : unsigned char {
|
|
/// This is not a defaultable comparison operator.
|
|
None,
|
|
/// This is an operator== that should be implemented as a series of
|
|
/// subobject comparisons.
|
|
Equal,
|
|
/// This is an operator<=> that should be implemented as a series of
|
|
/// subobject comparisons.
|
|
ThreeWay,
|
|
/// This is an operator!= that should be implemented as a rewrite in terms
|
|
/// of a == comparison.
|
|
NotEqual,
|
|
/// This is an <, <=, >, or >= that should be implemented as a rewrite in
|
|
/// terms of a <=> comparison.
|
|
Relational,
|
|
};
|
|
|
|
/// The function definitions which were renamed as part of typo-correction
|
|
/// to match their respective declarations. We want to keep track of them
|
|
/// to ensure that we don't emit a "redefinition" error if we encounter a
|
|
/// correctly named definition after the renamed definition.
|
|
llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
|
|
|
|
/// Stack of types that correspond to the parameter entities that are
|
|
/// currently being copy-initialized. Can be empty.
|
|
llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
|
|
|
|
void ReadMethodPool(Selector Sel);
|
|
void updateOutOfDateSelector(Selector Sel);
|
|
|
|
/// Private Helper predicate to check for 'self'.
|
|
bool isSelfExpr(Expr *RExpr);
|
|
bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
|
|
|
|
/// Cause the active diagnostic on the DiagosticsEngine to be
|
|
/// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
|
|
/// should not be used elsewhere.
|
|
void EmitCurrentDiagnostic(unsigned DiagID);
|
|
|
|
/// Records and restores the FP_CONTRACT state on entry/exit of compound
|
|
/// statements.
|
|
class FPContractStateRAII {
|
|
public:
|
|
FPContractStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.FPFeatures) {}
|
|
~FPContractStateRAII() { S.FPFeatures = OldFPFeaturesState; }
|
|
|
|
private:
|
|
Sema& S;
|
|
FPOptions OldFPFeaturesState;
|
|
};
|
|
|
|
void addImplicitTypedef(StringRef Name, QualType T);
|
|
|
|
bool WarnedStackExhausted = false;
|
|
|
|
public:
|
|
Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
|
|
TranslationUnitKind TUKind = TU_Complete,
|
|
CodeCompleteConsumer *CompletionConsumer = nullptr);
|
|
~Sema();
|
|
|
|
/// Perform initialization that occurs after the parser has been
|
|
/// initialized but before it parses anything.
|
|
void Initialize();
|
|
|
|
const LangOptions &getLangOpts() const { return LangOpts; }
|
|
OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
|
|
FPOptions &getFPOptions() { return FPFeatures; }
|
|
|
|
DiagnosticsEngine &getDiagnostics() const { return Diags; }
|
|
SourceManager &getSourceManager() const { return SourceMgr; }
|
|
Preprocessor &getPreprocessor() const { return PP; }
|
|
ASTContext &getASTContext() const { return Context; }
|
|
ASTConsumer &getASTConsumer() const { return Consumer; }
|
|
ASTMutationListener *getASTMutationListener() const;
|
|
ExternalSemaSource* getExternalSource() const { return ExternalSource; }
|
|
|
|
///Registers an external source. If an external source already exists,
|
|
/// creates a multiplex external source and appends to it.
|
|
///
|
|
///\param[in] E - A non-null external sema source.
|
|
///
|
|
void addExternalSource(ExternalSemaSource *E);
|
|
|
|
void PrintStats() const;
|
|
|
|
/// Warn that the stack is nearly exhausted.
|
|
void warnStackExhausted(SourceLocation Loc);
|
|
|
|
/// Run some code with "sufficient" stack space. (Currently, at least 256K is
|
|
/// guaranteed). Produces a warning if we're low on stack space and allocates
|
|
/// more in that case. Use this in code that may recurse deeply (for example,
|
|
/// in template instantiation) to avoid stack overflow.
|
|
void runWithSufficientStackSpace(SourceLocation Loc,
|
|
llvm::function_ref<void()> Fn);
|
|
|
|
/// Helper class that creates diagnostics with optional
|
|
/// template instantiation stacks.
|
|
///
|
|
/// This class provides a wrapper around the basic DiagnosticBuilder
|
|
/// class that emits diagnostics. SemaDiagnosticBuilder is
|
|
/// responsible for emitting the diagnostic (as DiagnosticBuilder
|
|
/// does) and, if the diagnostic comes from inside a template
|
|
/// instantiation, printing the template instantiation stack as
|
|
/// well.
|
|
class SemaDiagnosticBuilder : public DiagnosticBuilder {
|
|
Sema &SemaRef;
|
|
unsigned DiagID;
|
|
|
|
public:
|
|
SemaDiagnosticBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
|
|
: DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) { }
|
|
|
|
// This is a cunning lie. DiagnosticBuilder actually performs move
|
|
// construction in its copy constructor (but due to varied uses, it's not
|
|
// possible to conveniently express this as actual move construction). So
|
|
// the default copy ctor here is fine, because the base class disables the
|
|
// source anyway, so the user-defined ~SemaDiagnosticBuilder is a safe no-op
|
|
// in that case anwyay.
|
|
SemaDiagnosticBuilder(const SemaDiagnosticBuilder&) = default;
|
|
|
|
~SemaDiagnosticBuilder() {
|
|
// If we aren't active, there is nothing to do.
|
|
if (!isActive()) return;
|
|
|
|
// Otherwise, we need to emit the diagnostic. First flush the underlying
|
|
// DiagnosticBuilder data, and clear the diagnostic builder itself so it
|
|
// won't emit the diagnostic in its own destructor.
|
|
//
|
|
// This seems wasteful, in that as written the DiagnosticBuilder dtor will
|
|
// do its own needless checks to see if the diagnostic needs to be
|
|
// emitted. However, because we take care to ensure that the builder
|
|
// objects never escape, a sufficiently smart compiler will be able to
|
|
// eliminate that code.
|
|
FlushCounts();
|
|
Clear();
|
|
|
|
// Dispatch to Sema to emit the diagnostic.
|
|
SemaRef.EmitCurrentDiagnostic(DiagID);
|
|
}
|
|
|
|
/// Teach operator<< to produce an object of the correct type.
|
|
template<typename T>
|
|
friend const SemaDiagnosticBuilder &operator<<(
|
|
const SemaDiagnosticBuilder &Diag, const T &Value) {
|
|
const DiagnosticBuilder &BaseDiag = Diag;
|
|
BaseDiag << Value;
|
|
return Diag;
|
|
}
|
|
};
|
|
|
|
/// Emit a diagnostic.
|
|
SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID) {
|
|
DiagnosticBuilder DB = Diags.Report(Loc, DiagID);
|
|
return SemaDiagnosticBuilder(DB, *this, DiagID);
|
|
}
|
|
|
|
/// Emit a partial diagnostic.
|
|
SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic& PD);
|
|
|
|
/// Build a partial diagnostic.
|
|
PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
|
|
|
|
bool findMacroSpelling(SourceLocation &loc, StringRef name);
|
|
|
|
/// Get a string to suggest for zero-initialization of a type.
|
|
std::string
|
|
getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
|
|
std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
|
|
|
|
/// Calls \c Lexer::getLocForEndOfToken()
|
|
SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
|
|
|
|
/// Retrieve the module loader associated with the preprocessor.
|
|
ModuleLoader &getModuleLoader() const;
|
|
|
|
void emitAndClearUnusedLocalTypedefWarnings();
|
|
|
|
enum TUFragmentKind {
|
|
/// The global module fragment, between 'module;' and a module-declaration.
|
|
Global,
|
|
/// A normal translation unit fragment. For a non-module unit, this is the
|
|
/// entire translation unit. Otherwise, it runs from the module-declaration
|
|
/// to the private-module-fragment (if any) or the end of the TU (if not).
|
|
Normal,
|
|
/// The private module fragment, between 'module :private;' and the end of
|
|
/// the translation unit.
|
|
Private
|
|
};
|
|
|
|
void ActOnStartOfTranslationUnit();
|
|
void ActOnEndOfTranslationUnit();
|
|
void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
|
|
|
|
void CheckDelegatingCtorCycles();
|
|
|
|
Scope *getScopeForContext(DeclContext *Ctx);
|
|
|
|
void PushFunctionScope();
|
|
void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
|
|
sema::LambdaScopeInfo *PushLambdaScope();
|
|
|
|
/// This is used to inform Sema what the current TemplateParameterDepth
|
|
/// is during Parsing. Currently it is used to pass on the depth
|
|
/// when parsing generic lambda 'auto' parameters.
|
|
void RecordParsingTemplateParameterDepth(unsigned Depth);
|
|
|
|
void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
|
|
RecordDecl *RD, CapturedRegionKind K,
|
|
unsigned OpenMPCaptureLevel = 0);
|
|
|
|
/// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
|
|
/// time after they've been popped.
|
|
class PoppedFunctionScopeDeleter {
|
|
Sema *Self;
|
|
|
|
public:
|
|
explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
|
|
void operator()(sema::FunctionScopeInfo *Scope) const;
|
|
};
|
|
|
|
using PoppedFunctionScopePtr =
|
|
std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
|
|
|
|
PoppedFunctionScopePtr
|
|
PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
|
|
const Decl *D = nullptr,
|
|
QualType BlockType = QualType());
|
|
|
|
sema::FunctionScopeInfo *getCurFunction() const {
|
|
return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
|
|
}
|
|
|
|
sema::FunctionScopeInfo *getEnclosingFunction() const;
|
|
|
|
void setFunctionHasBranchIntoScope();
|
|
void setFunctionHasBranchProtectedScope();
|
|
void setFunctionHasIndirectGoto();
|
|
|
|
void PushCompoundScope(bool IsStmtExpr);
|
|
void PopCompoundScope();
|
|
|
|
sema::CompoundScopeInfo &getCurCompoundScope() const;
|
|
|
|
bool hasAnyUnrecoverableErrorsInThisFunction() const;
|
|
|
|
/// Retrieve the current block, if any.
|
|
sema::BlockScopeInfo *getCurBlock();
|
|
|
|
/// Get the innermost lambda enclosing the current location, if any. This
|
|
/// looks through intervening non-lambda scopes such as local functions and
|
|
/// blocks.
|
|
sema::LambdaScopeInfo *getEnclosingLambda() const;
|
|
|
|
/// Retrieve the current lambda scope info, if any.
|
|
/// \param IgnoreNonLambdaCapturingScope true if should find the top-most
|
|
/// lambda scope info ignoring all inner capturing scopes that are not
|
|
/// lambda scopes.
|
|
sema::LambdaScopeInfo *
|
|
getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
|
|
|
|
/// Retrieve the current generic lambda info, if any.
|
|
sema::LambdaScopeInfo *getCurGenericLambda();
|
|
|
|
/// Retrieve the current captured region, if any.
|
|
sema::CapturedRegionScopeInfo *getCurCapturedRegion();
|
|
|
|
/// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
|
|
SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
|
|
|
|
void ActOnComment(SourceRange Comment);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Type Analysis / Processing: SemaType.cpp.
|
|
//
|
|
|
|
QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
|
|
const DeclSpec *DS = nullptr);
|
|
QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
|
|
const DeclSpec *DS = nullptr);
|
|
QualType BuildPointerType(QualType T,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
QualType BuildReferenceType(QualType T, bool LValueRef,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
|
|
Expr *ArraySize, unsigned Quals,
|
|
SourceRange Brackets, DeclarationName Entity);
|
|
QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
|
|
QualType BuildExtVectorType(QualType T, Expr *ArraySize,
|
|
SourceLocation AttrLoc);
|
|
QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
|
|
SourceLocation AttrLoc);
|
|
|
|
/// Same as above, but constructs the AddressSpace index if not provided.
|
|
QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
|
|
SourceLocation AttrLoc);
|
|
|
|
bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
|
|
|
|
bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
|
|
|
|
/// Build a function type.
|
|
///
|
|
/// This routine checks the function type according to C++ rules and
|
|
/// under the assumption that the result type and parameter types have
|
|
/// just been instantiated from a template. It therefore duplicates
|
|
/// some of the behavior of GetTypeForDeclarator, but in a much
|
|
/// simpler form that is only suitable for this narrow use case.
|
|
///
|
|
/// \param T The return type of the function.
|
|
///
|
|
/// \param ParamTypes The parameter types of the function. This array
|
|
/// will be modified to account for adjustments to the types of the
|
|
/// function parameters.
|
|
///
|
|
/// \param Loc The location of the entity whose type involves this
|
|
/// function type or, if there is no such entity, the location of the
|
|
/// type that will have function type.
|
|
///
|
|
/// \param Entity The name of the entity that involves the function
|
|
/// type, if known.
|
|
///
|
|
/// \param EPI Extra information about the function type. Usually this will
|
|
/// be taken from an existing function with the same prototype.
|
|
///
|
|
/// \returns A suitable function type, if there are no errors. The
|
|
/// unqualified type will always be a FunctionProtoType.
|
|
/// Otherwise, returns a NULL type.
|
|
QualType BuildFunctionType(QualType T,
|
|
MutableArrayRef<QualType> ParamTypes,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
const FunctionProtoType::ExtProtoInfo &EPI);
|
|
|
|
QualType BuildMemberPointerType(QualType T, QualType Class,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity);
|
|
QualType BuildBlockPointerType(QualType T,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
QualType BuildParenType(QualType T);
|
|
QualType BuildAtomicType(QualType T, SourceLocation Loc);
|
|
QualType BuildReadPipeType(QualType T,
|
|
SourceLocation Loc);
|
|
QualType BuildWritePipeType(QualType T,
|
|
SourceLocation Loc);
|
|
|
|
TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
|
|
TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
|
|
|
|
/// Package the given type and TSI into a ParsedType.
|
|
ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
|
|
DeclarationNameInfo GetNameForDeclarator(Declarator &D);
|
|
DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
|
|
static QualType GetTypeFromParser(ParsedType Ty,
|
|
TypeSourceInfo **TInfo = nullptr);
|
|
CanThrowResult canThrow(const Stmt *E);
|
|
const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
|
|
const FunctionProtoType *FPT);
|
|
void UpdateExceptionSpec(FunctionDecl *FD,
|
|
const FunctionProtoType::ExceptionSpecInfo &ESI);
|
|
bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
|
|
bool CheckDistantExceptionSpec(QualType T);
|
|
bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
|
|
bool CheckEquivalentExceptionSpec(
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc);
|
|
bool CheckEquivalentExceptionSpec(
|
|
const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
|
|
const FunctionProtoType *Old, SourceLocation OldLoc,
|
|
const FunctionProtoType *New, SourceLocation NewLoc);
|
|
bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
|
|
bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
|
|
const PartialDiagnostic &NestedDiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const PartialDiagnostic &NoThrowDiagID,
|
|
const FunctionProtoType *Superset,
|
|
SourceLocation SuperLoc,
|
|
const FunctionProtoType *Subset,
|
|
SourceLocation SubLoc);
|
|
bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
|
|
const PartialDiagnostic &NoteID,
|
|
const FunctionProtoType *Target,
|
|
SourceLocation TargetLoc,
|
|
const FunctionProtoType *Source,
|
|
SourceLocation SourceLoc);
|
|
|
|
TypeResult ActOnTypeName(Scope *S, Declarator &D);
|
|
|
|
/// The parser has parsed the context-sensitive type 'instancetype'
|
|
/// in an Objective-C message declaration. Return the appropriate type.
|
|
ParsedType ActOnObjCInstanceType(SourceLocation Loc);
|
|
|
|
/// Abstract class used to diagnose incomplete types.
|
|
struct TypeDiagnoser {
|
|
TypeDiagnoser() {}
|
|
|
|
virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
virtual ~TypeDiagnoser() {}
|
|
};
|
|
|
|
static int getPrintable(int I) { return I; }
|
|
static unsigned getPrintable(unsigned I) { return I; }
|
|
static bool getPrintable(bool B) { return B; }
|
|
static const char * getPrintable(const char *S) { return S; }
|
|
static StringRef getPrintable(StringRef S) { return S; }
|
|
static const std::string &getPrintable(const std::string &S) { return S; }
|
|
static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
|
|
return II;
|
|
}
|
|
static DeclarationName getPrintable(DeclarationName N) { return N; }
|
|
static QualType getPrintable(QualType T) { return T; }
|
|
static SourceRange getPrintable(SourceRange R) { return R; }
|
|
static SourceRange getPrintable(SourceLocation L) { return L; }
|
|
static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
|
|
static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
|
|
|
|
template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
|
|
unsigned DiagID;
|
|
std::tuple<const Ts &...> Args;
|
|
|
|
template <std::size_t... Is>
|
|
void emit(const SemaDiagnosticBuilder &DB,
|
|
std::index_sequence<Is...>) const {
|
|
// Apply all tuple elements to the builder in order.
|
|
bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
|
|
(void)Dummy;
|
|
}
|
|
|
|
public:
|
|
BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
|
|
: TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
|
|
assert(DiagID != 0 && "no diagnostic for type diagnoser");
|
|
}
|
|
|
|
void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
|
|
const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
|
|
emit(DB, std::index_sequence_for<Ts...>());
|
|
DB << T;
|
|
}
|
|
};
|
|
|
|
private:
|
|
/// Methods for marking which expressions involve dereferencing a pointer
|
|
/// marked with the 'noderef' attribute. Expressions are checked bottom up as
|
|
/// they are parsed, meaning that a noderef pointer may not be accessed. For
|
|
/// example, in `&*p` where `p` is a noderef pointer, we will first parse the
|
|
/// `*p`, but need to check that `address of` is called on it. This requires
|
|
/// keeping a container of all pending expressions and checking if the address
|
|
/// of them are eventually taken.
|
|
void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
|
|
void CheckAddressOfNoDeref(const Expr *E);
|
|
void CheckMemberAccessOfNoDeref(const MemberExpr *E);
|
|
|
|
bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser *Diagnoser);
|
|
|
|
struct ModuleScope {
|
|
SourceLocation BeginLoc;
|
|
clang::Module *Module = nullptr;
|
|
bool ModuleInterface = false;
|
|
bool ImplicitGlobalModuleFragment = false;
|
|
VisibleModuleSet OuterVisibleModules;
|
|
};
|
|
/// The modules we're currently parsing.
|
|
llvm::SmallVector<ModuleScope, 16> ModuleScopes;
|
|
|
|
/// Namespace definitions that we will export when they finish.
|
|
llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
|
|
|
|
/// Get the module whose scope we are currently within.
|
|
Module *getCurrentModule() const {
|
|
return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
|
|
}
|
|
|
|
VisibleModuleSet VisibleModules;
|
|
|
|
public:
|
|
/// Get the module owning an entity.
|
|
Module *getOwningModule(Decl *Entity) { return Entity->getOwningModule(); }
|
|
|
|
/// Make a merged definition of an existing hidden definition \p ND
|
|
/// visible at the specified location.
|
|
void makeMergedDefinitionVisible(NamedDecl *ND);
|
|
|
|
bool isModuleVisible(const Module *M, bool ModulePrivate = false);
|
|
|
|
/// Determine whether a declaration is visible to name lookup.
|
|
bool isVisible(const NamedDecl *D) {
|
|
return !D->isHidden() || isVisibleSlow(D);
|
|
}
|
|
|
|
/// Determine whether any declaration of an entity is visible.
|
|
bool
|
|
hasVisibleDeclaration(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
|
|
return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
|
|
}
|
|
bool hasVisibleDeclarationSlow(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules);
|
|
|
|
bool hasVisibleMergedDefinition(NamedDecl *Def);
|
|
bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
|
|
|
|
/// Determine if \p D and \p Suggested have a structurally compatible
|
|
/// layout as described in C11 6.2.7/1.
|
|
bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
|
|
|
|
/// Determine if \p D has a visible definition. If not, suggest a declaration
|
|
/// that should be made visible to expose the definition.
|
|
bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
|
|
bool OnlyNeedComplete = false);
|
|
bool hasVisibleDefinition(const NamedDecl *D) {
|
|
NamedDecl *Hidden;
|
|
return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
|
|
}
|
|
|
|
/// Determine if the template parameter \p D has a visible default argument.
|
|
bool
|
|
hasVisibleDefaultArgument(const NamedDecl *D,
|
|
llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
/// Determine if there is a visible declaration of \p D that is an explicit
|
|
/// specialization declaration for a specialization of a template. (For a
|
|
/// member specialization, use hasVisibleMemberSpecialization.)
|
|
bool hasVisibleExplicitSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
/// Determine if there is a visible declaration of \p D that is a member
|
|
/// specialization declaration (as opposed to an instantiated declaration).
|
|
bool hasVisibleMemberSpecialization(
|
|
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
|
|
|
|
/// Determine if \p A and \p B are equivalent internal linkage declarations
|
|
/// from different modules, and thus an ambiguity error can be downgraded to
|
|
/// an extension warning.
|
|
bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
|
|
const NamedDecl *B);
|
|
void diagnoseEquivalentInternalLinkageDeclarations(
|
|
SourceLocation Loc, const NamedDecl *D,
|
|
ArrayRef<const NamedDecl *> Equiv);
|
|
|
|
bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
|
|
|
|
bool isCompleteType(SourceLocation Loc, QualType T) {
|
|
return !RequireCompleteTypeImpl(Loc, T, nullptr);
|
|
}
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser);
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T,
|
|
unsigned DiagID);
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
void completeExprArrayBound(Expr *E);
|
|
bool RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser);
|
|
bool RequireCompleteExprType(Expr *E, unsigned DiagID);
|
|
|
|
template <typename... Ts>
|
|
bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireCompleteExprType(E, Diagnoser);
|
|
}
|
|
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser);
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
|
|
|
|
template <typename... Ts>
|
|
bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireLiteralType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
|
|
const CXXScopeSpec &SS, QualType T,
|
|
TagDecl *OwnedTagDecl = nullptr);
|
|
|
|
QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
|
|
/// If AsUnevaluated is false, E is treated as though it were an evaluated
|
|
/// context, such as when building a type for decltype(auto).
|
|
QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
|
|
bool AsUnevaluated = true);
|
|
QualType BuildUnaryTransformType(QualType BaseType,
|
|
UnaryTransformType::UTTKind UKind,
|
|
SourceLocation Loc);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Symbol table / Decl tracking callbacks: SemaDecl.cpp.
|
|
//
|
|
|
|
struct SkipBodyInfo {
|
|
SkipBodyInfo()
|
|
: ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
|
|
New(nullptr) {}
|
|
bool ShouldSkip;
|
|
bool CheckSameAsPrevious;
|
|
NamedDecl *Previous;
|
|
NamedDecl *New;
|
|
};
|
|
|
|
DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
|
|
|
|
void DiagnoseUseOfUnimplementedSelectors();
|
|
|
|
bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
|
|
|
|
ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec *SS = nullptr,
|
|
bool isClassName = false, bool HasTrailingDot = false,
|
|
ParsedType ObjectType = nullptr,
|
|
bool IsCtorOrDtorName = false,
|
|
bool WantNontrivialTypeSourceInfo = false,
|
|
bool IsClassTemplateDeductionContext = true,
|
|
IdentifierInfo **CorrectedII = nullptr);
|
|
TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
|
|
bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
|
|
void DiagnoseUnknownTypeName(IdentifierInfo *&II,
|
|
SourceLocation IILoc,
|
|
Scope *S,
|
|
CXXScopeSpec *SS,
|
|
ParsedType &SuggestedType,
|
|
bool IsTemplateName = false);
|
|
|
|
/// Attempt to behave like MSVC in situations where lookup of an unqualified
|
|
/// type name has failed in a dependent context. In these situations, we
|
|
/// automatically form a DependentTypeName that will retry lookup in a related
|
|
/// scope during instantiation.
|
|
ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
|
|
SourceLocation NameLoc,
|
|
bool IsTemplateTypeArg);
|
|
|
|
/// Describes the result of the name lookup and resolution performed
|
|
/// by \c ClassifyName().
|
|
enum NameClassificationKind {
|
|
/// This name is not a type or template in this context, but might be
|
|
/// something else.
|
|
NC_Unknown,
|
|
/// Classification failed; an error has been produced.
|
|
NC_Error,
|
|
/// The name has been typo-corrected to a keyword.
|
|
NC_Keyword,
|
|
/// The name was classified as a type.
|
|
NC_Type,
|
|
/// The name was classified as a specific non-type, non-template
|
|
/// declaration. ActOnNameClassifiedAsNonType should be called to
|
|
/// convert the declaration to an expression.
|
|
NC_NonType,
|
|
/// The name was classified as an ADL-only function name.
|
|
/// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
|
|
/// result to an expression.
|
|
NC_UndeclaredNonType,
|
|
/// The name denotes a member of a dependent type that could not be
|
|
/// resolved. ActOnNameClassifiedAsDependentNonType should be called to
|
|
/// convert the result to an expression.
|
|
NC_DependentNonType,
|
|
/// The name was classified as a non-type, and an expression representing
|
|
/// that name has been formed.
|
|
NC_ContextIndependentExpr,
|
|
/// The name was classified as a template whose specializations are types.
|
|
NC_TypeTemplate,
|
|
/// The name was classified as a variable template name.
|
|
NC_VarTemplate,
|
|
/// The name was classified as a function template name.
|
|
NC_FunctionTemplate,
|
|
/// The name was classified as an ADL-only function template name.
|
|
NC_UndeclaredTemplate,
|
|
};
|
|
|
|
class NameClassification {
|
|
NameClassificationKind Kind;
|
|
union {
|
|
ExprResult Expr;
|
|
NamedDecl *NonTypeDecl;
|
|
TemplateName Template;
|
|
ParsedType Type;
|
|
};
|
|
|
|
explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
|
|
|
|
public:
|
|
NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
|
|
|
|
NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
|
|
|
|
static NameClassification Error() {
|
|
return NameClassification(NC_Error);
|
|
}
|
|
|
|
static NameClassification Unknown() {
|
|
return NameClassification(NC_Unknown);
|
|
}
|
|
|
|
static NameClassification ContextIndependentExpr(ExprResult E) {
|
|
NameClassification Result(NC_ContextIndependentExpr);
|
|
Result.Expr = E;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification NonType(NamedDecl *D) {
|
|
NameClassification Result(NC_NonType);
|
|
Result.NonTypeDecl = D;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification UndeclaredNonType() {
|
|
return NameClassification(NC_UndeclaredNonType);
|
|
}
|
|
|
|
static NameClassification DependentNonType() {
|
|
return NameClassification(NC_DependentNonType);
|
|
}
|
|
|
|
static NameClassification TypeTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_TypeTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification VarTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_VarTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification FunctionTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_FunctionTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
static NameClassification UndeclaredTemplate(TemplateName Name) {
|
|
NameClassification Result(NC_UndeclaredTemplate);
|
|
Result.Template = Name;
|
|
return Result;
|
|
}
|
|
|
|
NameClassificationKind getKind() const { return Kind; }
|
|
|
|
ExprResult getExpression() const {
|
|
assert(Kind == NC_ContextIndependentExpr);
|
|
return Expr;
|
|
}
|
|
|
|
ParsedType getType() const {
|
|
assert(Kind == NC_Type);
|
|
return Type;
|
|
}
|
|
|
|
NamedDecl *getNonTypeDecl() const {
|
|
assert(Kind == NC_NonType);
|
|
return NonTypeDecl;
|
|
}
|
|
|
|
TemplateName getTemplateName() const {
|
|
assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||
|
|
Kind == NC_VarTemplate || Kind == NC_UndeclaredTemplate);
|
|
return Template;
|
|
}
|
|
|
|
TemplateNameKind getTemplateNameKind() const {
|
|
switch (Kind) {
|
|
case NC_TypeTemplate:
|
|
return TNK_Type_template;
|
|
case NC_FunctionTemplate:
|
|
return TNK_Function_template;
|
|
case NC_VarTemplate:
|
|
return TNK_Var_template;
|
|
case NC_UndeclaredTemplate:
|
|
return TNK_Undeclared_template;
|
|
default:
|
|
llvm_unreachable("unsupported name classification.");
|
|
}
|
|
}
|
|
};
|
|
|
|
/// Perform name lookup on the given name, classifying it based on
|
|
/// the results of name lookup and the following token.
|
|
///
|
|
/// This routine is used by the parser to resolve identifiers and help direct
|
|
/// parsing. When the identifier cannot be found, this routine will attempt
|
|
/// to correct the typo and classify based on the resulting name.
|
|
///
|
|
/// \param S The scope in which we're performing name lookup.
|
|
///
|
|
/// \param SS The nested-name-specifier that precedes the name.
|
|
///
|
|
/// \param Name The identifier. If typo correction finds an alternative name,
|
|
/// this pointer parameter will be updated accordingly.
|
|
///
|
|
/// \param NameLoc The location of the identifier.
|
|
///
|
|
/// \param NextToken The token following the identifier. Used to help
|
|
/// disambiguate the name.
|
|
///
|
|
/// \param CCC The correction callback, if typo correction is desired.
|
|
NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
|
|
IdentifierInfo *&Name, SourceLocation NameLoc,
|
|
const Token &NextToken,
|
|
CorrectionCandidateCallback *CCC = nullptr);
|
|
|
|
/// Act on the result of classifying a name as an undeclared (ADL-only)
|
|
/// non-type declaration.
|
|
ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
|
|
SourceLocation NameLoc);
|
|
/// Act on the result of classifying a name as an undeclared member of a
|
|
/// dependent base class.
|
|
ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
bool IsAddressOfOperand);
|
|
/// Act on the result of classifying a name as a specific non-type
|
|
/// declaration.
|
|
ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
|
|
NamedDecl *Found,
|
|
SourceLocation NameLoc,
|
|
const Token &NextToken);
|
|
|
|
/// Describes the detailed kind of a template name. Used in diagnostics.
|
|
enum class TemplateNameKindForDiagnostics {
|
|
ClassTemplate,
|
|
FunctionTemplate,
|
|
VarTemplate,
|
|
AliasTemplate,
|
|
TemplateTemplateParam,
|
|
Concept,
|
|
DependentTemplate
|
|
};
|
|
TemplateNameKindForDiagnostics
|
|
getTemplateNameKindForDiagnostics(TemplateName Name);
|
|
|
|
/// Determine whether it's plausible that E was intended to be a
|
|
/// template-name.
|
|
bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
|
|
if (!getLangOpts().CPlusPlus || E.isInvalid())
|
|
return false;
|
|
Dependent = false;
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
|
|
return !DRE->hasExplicitTemplateArgs();
|
|
if (auto *ME = dyn_cast<MemberExpr>(E.get()))
|
|
return !ME->hasExplicitTemplateArgs();
|
|
Dependent = true;
|
|
if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
|
|
return !DSDRE->hasExplicitTemplateArgs();
|
|
if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
|
|
return !DSME->hasExplicitTemplateArgs();
|
|
// Any additional cases recognized here should also be handled by
|
|
// diagnoseExprIntendedAsTemplateName.
|
|
return false;
|
|
}
|
|
void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
|
|
SourceLocation Less,
|
|
SourceLocation Greater);
|
|
|
|
Decl *ActOnDeclarator(Scope *S, Declarator &D);
|
|
|
|
NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists);
|
|
void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
|
|
bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
|
|
bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
|
|
DeclarationName Name, SourceLocation Loc,
|
|
bool IsTemplateId);
|
|
void
|
|
diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
|
|
SourceLocation FallbackLoc,
|
|
SourceLocation ConstQualLoc = SourceLocation(),
|
|
SourceLocation VolatileQualLoc = SourceLocation(),
|
|
SourceLocation RestrictQualLoc = SourceLocation(),
|
|
SourceLocation AtomicQualLoc = SourceLocation(),
|
|
SourceLocation UnalignedQualLoc = SourceLocation());
|
|
|
|
static bool adjustContextForLocalExternDecl(DeclContext *&DC);
|
|
void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
|
|
NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
|
|
const LookupResult &R);
|
|
NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
|
|
void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
|
|
const LookupResult &R);
|
|
void CheckShadow(Scope *S, VarDecl *D);
|
|
|
|
/// Warn if 'E', which is an expression that is about to be modified, refers
|
|
/// to a shadowing declaration.
|
|
void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
|
|
|
|
void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
|
|
|
|
private:
|
|
/// Map of current shadowing declarations to shadowed declarations. Warn if
|
|
/// it looks like the user is trying to modify the shadowing declaration.
|
|
llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
|
|
|
|
public:
|
|
void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
|
|
void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
|
|
void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
|
|
TypedefNameDecl *NewTD);
|
|
void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
|
|
NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
TypeSourceInfo *TInfo,
|
|
LookupResult &Previous);
|
|
NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
|
|
LookupResult &Previous, bool &Redeclaration);
|
|
NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
|
|
TypeSourceInfo *TInfo,
|
|
LookupResult &Previous,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope,
|
|
ArrayRef<BindingDecl *> Bindings = None);
|
|
NamedDecl *
|
|
ActOnDecompositionDeclarator(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists);
|
|
// Returns true if the variable declaration is a redeclaration
|
|
bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
|
|
void CheckVariableDeclarationType(VarDecl *NewVD);
|
|
bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
|
|
Expr *Init);
|
|
void CheckCompleteVariableDeclaration(VarDecl *VD);
|
|
void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
|
|
void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
|
|
|
|
NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
|
|
TypeSourceInfo *TInfo,
|
|
LookupResult &Previous,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
bool &AddToScope);
|
|
bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
|
|
|
|
enum class CheckConstexprKind {
|
|
/// Diagnose issues that are non-constant or that are extensions.
|
|
Diagnose,
|
|
/// Identify whether this function satisfies the formal rules for constexpr
|
|
/// functions in the current lanugage mode (with no extensions).
|
|
CheckValid
|
|
};
|
|
|
|
bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
|
|
CheckConstexprKind Kind);
|
|
|
|
void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
|
|
void FindHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
|
|
void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
|
|
SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
|
|
// Returns true if the function declaration is a redeclaration
|
|
bool CheckFunctionDeclaration(Scope *S,
|
|
FunctionDecl *NewFD, LookupResult &Previous,
|
|
bool IsMemberSpecialization);
|
|
bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
|
|
bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
|
|
QualType NewT, QualType OldT);
|
|
void CheckMain(FunctionDecl *FD, const DeclSpec &D);
|
|
void CheckMSVCRTEntryPoint(FunctionDecl *FD);
|
|
Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
|
|
bool IsDefinition);
|
|
void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
|
|
Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
|
|
ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
|
|
SourceLocation Loc,
|
|
QualType T);
|
|
ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
|
|
SourceLocation NameLoc, IdentifierInfo *Name,
|
|
QualType T, TypeSourceInfo *TSInfo,
|
|
StorageClass SC);
|
|
void ActOnParamDefaultArgument(Decl *param,
|
|
SourceLocation EqualLoc,
|
|
Expr *defarg);
|
|
void ActOnParamUnparsedDefaultArgument(Decl *param,
|
|
SourceLocation EqualLoc,
|
|
SourceLocation ArgLoc);
|
|
void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
|
|
bool SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
|
|
SourceLocation EqualLoc);
|
|
|
|
// Contexts where using non-trivial C union types can be disallowed. This is
|
|
// passed to err_non_trivial_c_union_in_invalid_context.
|
|
enum NonTrivialCUnionContext {
|
|
// Function parameter.
|
|
NTCUC_FunctionParam,
|
|
// Function return.
|
|
NTCUC_FunctionReturn,
|
|
// Default-initialized object.
|
|
NTCUC_DefaultInitializedObject,
|
|
// Variable with automatic storage duration.
|
|
NTCUC_AutoVar,
|
|
// Initializer expression that might copy from another object.
|
|
NTCUC_CopyInit,
|
|
// Assignment.
|
|
NTCUC_Assignment,
|
|
// Compound literal.
|
|
NTCUC_CompoundLiteral,
|
|
// Block capture.
|
|
NTCUC_BlockCapture,
|
|
// lvalue-to-rvalue conversion of volatile type.
|
|
NTCUC_LValueToRValueVolatile,
|
|
};
|
|
|
|
/// Emit diagnostics if the initializer or any of its explicit or
|
|
/// implicitly-generated subexpressions require copying or
|
|
/// default-initializing a type that is or contains a C union type that is
|
|
/// non-trivial to copy or default-initialize.
|
|
void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
|
|
|
|
// These flags are passed to checkNonTrivialCUnion.
|
|
enum NonTrivialCUnionKind {
|
|
NTCUK_Init = 0x1,
|
|
NTCUK_Destruct = 0x2,
|
|
NTCUK_Copy = 0x4,
|
|
};
|
|
|
|
/// Emit diagnostics if a non-trivial C union type or a struct that contains
|
|
/// a non-trivial C union is used in an invalid context.
|
|
void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
|
|
NonTrivialCUnionContext UseContext,
|
|
unsigned NonTrivialKind);
|
|
|
|
void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
|
|
void ActOnUninitializedDecl(Decl *dcl);
|
|
void ActOnInitializerError(Decl *Dcl);
|
|
|
|
void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
|
|
void ActOnCXXForRangeDecl(Decl *D);
|
|
StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident,
|
|
ParsedAttributes &Attrs,
|
|
SourceLocation AttrEnd);
|
|
void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
|
|
void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
|
|
void CheckStaticLocalForDllExport(VarDecl *VD);
|
|
void FinalizeDeclaration(Decl *D);
|
|
DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
|
|
ArrayRef<Decl *> Group);
|
|
DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
|
|
|
|
/// Should be called on all declarations that might have attached
|
|
/// documentation comments.
|
|
void ActOnDocumentableDecl(Decl *D);
|
|
void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
|
|
|
|
void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
|
|
SourceLocation LocAfterDecls);
|
|
void CheckForFunctionRedefinition(
|
|
FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParamLists,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
|
|
ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
|
|
void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
|
|
bool isObjCMethodDecl(Decl *D) {
|
|
return D && isa<ObjCMethodDecl>(D);
|
|
}
|
|
|
|
/// Determine whether we can delay parsing the body of a function or
|
|
/// function template until it is used, assuming we don't care about emitting
|
|
/// code for that function.
|
|
///
|
|
/// This will be \c false if we may need the body of the function in the
|
|
/// middle of parsing an expression (where it's impractical to switch to
|
|
/// parsing a different function), for instance, if it's constexpr in C++11
|
|
/// or has an 'auto' return type in C++14. These cases are essentially bugs.
|
|
bool canDelayFunctionBody(const Declarator &D);
|
|
|
|
/// Determine whether we can skip parsing the body of a function
|
|
/// definition, assuming we don't care about analyzing its body or emitting
|
|
/// code for that function.
|
|
///
|
|
/// This will be \c false only if we may need the body of the function in
|
|
/// order to parse the rest of the program (for instance, if it is
|
|
/// \c constexpr in C++11 or has an 'auto' return type in C++14).
|
|
bool canSkipFunctionBody(Decl *D);
|
|
|
|
void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
|
|
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
|
|
Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
|
|
Decl *ActOnSkippedFunctionBody(Decl *Decl);
|
|
void ActOnFinishInlineFunctionDef(FunctionDecl *D);
|
|
|
|
/// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
|
|
/// attribute for which parsing is delayed.
|
|
void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
|
|
|
|
/// Diagnose any unused parameters in the given sequence of
|
|
/// ParmVarDecl pointers.
|
|
void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
|
|
|
|
/// Diagnose whether the size of parameters or return value of a
|
|
/// function or obj-c method definition is pass-by-value and larger than a
|
|
/// specified threshold.
|
|
void
|
|
DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
|
|
QualType ReturnTy, NamedDecl *D);
|
|
|
|
void DiagnoseInvalidJumps(Stmt *Body);
|
|
Decl *ActOnFileScopeAsmDecl(Expr *expr,
|
|
SourceLocation AsmLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// Handle a C++11 empty-declaration and attribute-declaration.
|
|
Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
|
|
SourceLocation SemiLoc);
|
|
|
|
enum class ModuleDeclKind {
|
|
Interface, ///< 'export module X;'
|
|
Implementation, ///< 'module X;'
|
|
};
|
|
|
|
/// The parser has processed a module-declaration that begins the definition
|
|
/// of a module interface or implementation.
|
|
DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
|
|
SourceLocation ModuleLoc, ModuleDeclKind MDK,
|
|
ModuleIdPath Path, bool IsFirstDecl);
|
|
|
|
/// The parser has processed a global-module-fragment declaration that begins
|
|
/// the definition of the global module fragment of the current module unit.
|
|
/// \param ModuleLoc The location of the 'module' keyword.
|
|
DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
|
|
|
|
/// The parser has processed a private-module-fragment declaration that begins
|
|
/// the definition of the private module fragment of the current module unit.
|
|
/// \param ModuleLoc The location of the 'module' keyword.
|
|
/// \param PrivateLoc The location of the 'private' keyword.
|
|
DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
|
|
SourceLocation PrivateLoc);
|
|
|
|
/// The parser has processed a module import declaration.
|
|
///
|
|
/// \param StartLoc The location of the first token in the declaration. This
|
|
/// could be the location of an '@', 'export', or 'import'.
|
|
/// \param ExportLoc The location of the 'export' keyword, if any.
|
|
/// \param ImportLoc The location of the 'import' keyword.
|
|
/// \param Path The module access path.
|
|
DeclResult ActOnModuleImport(SourceLocation StartLoc,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation ImportLoc, ModuleIdPath Path);
|
|
DeclResult ActOnModuleImport(SourceLocation StartLoc,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation ImportLoc, Module *M,
|
|
ModuleIdPath Path = {});
|
|
|
|
/// The parser has processed a module import translated from a
|
|
/// #include or similar preprocessing directive.
|
|
void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
|
|
void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
|
|
|
|
/// The parsed has entered a submodule.
|
|
void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
|
|
/// The parser has left a submodule.
|
|
void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
|
|
|
|
/// Create an implicit import of the given module at the given
|
|
/// source location, for error recovery, if possible.
|
|
///
|
|
/// This routine is typically used when an entity found by name lookup
|
|
/// is actually hidden within a module that we know about but the user
|
|
/// has forgotten to import.
|
|
void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
|
|
Module *Mod);
|
|
|
|
/// Kinds of missing import. Note, the values of these enumerators correspond
|
|
/// to %select values in diagnostics.
|
|
enum class MissingImportKind {
|
|
Declaration,
|
|
Definition,
|
|
DefaultArgument,
|
|
ExplicitSpecialization,
|
|
PartialSpecialization
|
|
};
|
|
|
|
/// Diagnose that the specified declaration needs to be visible but
|
|
/// isn't, and suggest a module import that would resolve the problem.
|
|
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
|
|
MissingImportKind MIK, bool Recover = true);
|
|
void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
|
|
SourceLocation DeclLoc, ArrayRef<Module *> Modules,
|
|
MissingImportKind MIK, bool Recover);
|
|
|
|
Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
|
|
SourceLocation LBraceLoc);
|
|
Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
|
|
SourceLocation RBraceLoc);
|
|
|
|
/// We've found a use of a templated declaration that would trigger an
|
|
/// implicit instantiation. Check that any relevant explicit specializations
|
|
/// and partial specializations are visible, and diagnose if not.
|
|
void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
|
|
|
|
/// We've found a use of a template specialization that would select a
|
|
/// partial specialization. Check that the partial specialization is visible,
|
|
/// and diagnose if not.
|
|
void checkPartialSpecializationVisibility(SourceLocation Loc,
|
|
NamedDecl *Spec);
|
|
|
|
/// Retrieve a suitable printing policy for diagnostics.
|
|
PrintingPolicy getPrintingPolicy() const {
|
|
return getPrintingPolicy(Context, PP);
|
|
}
|
|
|
|
/// Retrieve a suitable printing policy for diagnostics.
|
|
static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
|
|
const Preprocessor &PP);
|
|
|
|
/// Scope actions.
|
|
void ActOnPopScope(SourceLocation Loc, Scope *S);
|
|
void ActOnTranslationUnitScope(Scope *S);
|
|
|
|
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
RecordDecl *&AnonRecord);
|
|
Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
bool IsExplicitInstantiation,
|
|
RecordDecl *&AnonRecord);
|
|
|
|
Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
|
|
AccessSpecifier AS,
|
|
RecordDecl *Record,
|
|
const PrintingPolicy &Policy);
|
|
|
|
Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
|
|
RecordDecl *Record);
|
|
|
|
/// Common ways to introduce type names without a tag for use in diagnostics.
|
|
/// Keep in sync with err_tag_reference_non_tag.
|
|
enum NonTagKind {
|
|
NTK_NonStruct,
|
|
NTK_NonClass,
|
|
NTK_NonUnion,
|
|
NTK_NonEnum,
|
|
NTK_Typedef,
|
|
NTK_TypeAlias,
|
|
NTK_Template,
|
|
NTK_TypeAliasTemplate,
|
|
NTK_TemplateTemplateArgument,
|
|
};
|
|
|
|
/// Given a non-tag type declaration, returns an enum useful for indicating
|
|
/// what kind of non-tag type this is.
|
|
NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
|
|
|
|
bool isAcceptableTagRedeclaration(const TagDecl *Previous,
|
|
TagTypeKind NewTag, bool isDefinition,
|
|
SourceLocation NewTagLoc,
|
|
const IdentifierInfo *Name);
|
|
|
|
enum TagUseKind {
|
|
TUK_Reference, // Reference to a tag: 'struct foo *X;'
|
|
TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
|
|
TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
|
|
TUK_Friend // Friend declaration: 'friend struct foo;'
|
|
};
|
|
|
|
Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation NameLoc, const ParsedAttributesView &Attr,
|
|
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
|
|
MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
|
|
bool &IsDependent, SourceLocation ScopedEnumKWLoc,
|
|
bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
|
|
bool IsTypeSpecifier, bool IsTemplateParamOrArg,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
|
|
unsigned TagSpec, SourceLocation TagLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr,
|
|
MultiTemplateParamsArg TempParamLists);
|
|
|
|
TypeResult ActOnDependentTag(Scope *S,
|
|
unsigned TagSpec,
|
|
TagUseKind TUK,
|
|
const CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation TagLoc,
|
|
SourceLocation NameLoc);
|
|
|
|
void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
|
|
IdentifierInfo *ClassName,
|
|
SmallVectorImpl<Decl *> &Decls);
|
|
Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth);
|
|
|
|
FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth,
|
|
InClassInitStyle InitStyle,
|
|
AccessSpecifier AS);
|
|
MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
|
|
SourceLocation DeclStart, Declarator &D,
|
|
Expr *BitfieldWidth,
|
|
InClassInitStyle InitStyle,
|
|
AccessSpecifier AS,
|
|
const ParsedAttr &MSPropertyAttr);
|
|
|
|
FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
|
|
TypeSourceInfo *TInfo,
|
|
RecordDecl *Record, SourceLocation Loc,
|
|
bool Mutable, Expr *BitfieldWidth,
|
|
InClassInitStyle InitStyle,
|
|
SourceLocation TSSL,
|
|
AccessSpecifier AS, NamedDecl *PrevDecl,
|
|
Declarator *D = nullptr);
|
|
|
|
bool CheckNontrivialField(FieldDecl *FD);
|
|
void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
|
|
|
|
enum TrivialABIHandling {
|
|
/// The triviality of a method unaffected by "trivial_abi".
|
|
TAH_IgnoreTrivialABI,
|
|
|
|
/// The triviality of a method affected by "trivial_abi".
|
|
TAH_ConsiderTrivialABI
|
|
};
|
|
|
|
bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
|
|
TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
|
|
bool Diagnose = false);
|
|
|
|
/// For a defaulted function, the kind of defaulted function that it is.
|
|
class DefaultedFunctionKind {
|
|
CXXSpecialMember SpecialMember : 8;
|
|
DefaultedComparisonKind Comparison : 8;
|
|
|
|
public:
|
|
DefaultedFunctionKind()
|
|
: SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
|
|
}
|
|
DefaultedFunctionKind(CXXSpecialMember CSM)
|
|
: SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
|
|
DefaultedFunctionKind(DefaultedComparisonKind Comp)
|
|
: SpecialMember(CXXInvalid), Comparison(Comp) {}
|
|
|
|
bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
|
|
bool isComparison() const {
|
|
return Comparison != DefaultedComparisonKind::None;
|
|
}
|
|
|
|
explicit operator bool() const {
|
|
return isSpecialMember() || isComparison();
|
|
}
|
|
|
|
CXXSpecialMember asSpecialMember() const { return SpecialMember; }
|
|
DefaultedComparisonKind asComparison() const { return Comparison; }
|
|
|
|
/// Get the index of this function kind for use in diagnostics.
|
|
unsigned getDiagnosticIndex() const {
|
|
static_assert(CXXInvalid > CXXDestructor,
|
|
"invalid should have highest index");
|
|
static_assert((unsigned)DefaultedComparisonKind::None == 0,
|
|
"none should be equal to zero");
|
|
return SpecialMember + (unsigned)Comparison;
|
|
}
|
|
};
|
|
|
|
DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
|
|
|
|
CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
|
|
return getDefaultedFunctionKind(MD).asSpecialMember();
|
|
}
|
|
DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
|
|
return getDefaultedFunctionKind(FD).asComparison();
|
|
}
|
|
|
|
void ActOnLastBitfield(SourceLocation DeclStart,
|
|
SmallVectorImpl<Decl *> &AllIvarDecls);
|
|
Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
|
|
Declarator &D, Expr *BitfieldWidth,
|
|
tok::ObjCKeywordKind visibility);
|
|
|
|
// This is used for both record definitions and ObjC interface declarations.
|
|
void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
|
|
ArrayRef<Decl *> Fields, SourceLocation LBrac,
|
|
SourceLocation RBrac, const ParsedAttributesView &AttrList);
|
|
|
|
/// ActOnTagStartDefinition - Invoked when we have entered the
|
|
/// scope of a tag's definition (e.g., for an enumeration, class,
|
|
/// struct, or union).
|
|
void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
|
|
|
|
/// Perform ODR-like check for C/ObjC when merging tag types from modules.
|
|
/// Differently from C++, actually parse the body and reject / error out
|
|
/// in case of a structural mismatch.
|
|
bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
|
|
SkipBodyInfo &SkipBody);
|
|
|
|
typedef void *SkippedDefinitionContext;
|
|
|
|
/// Invoked when we enter a tag definition that we're skipping.
|
|
SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
|
|
|
|
Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
|
|
|
|
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
|
|
/// C++ record definition's base-specifiers clause and are starting its
|
|
/// member declarations.
|
|
void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
|
|
SourceLocation FinalLoc,
|
|
bool IsFinalSpelledSealed,
|
|
SourceLocation LBraceLoc);
|
|
|
|
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
|
|
/// the definition of a tag (enumeration, class, struct, or union).
|
|
void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
|
|
SourceRange BraceRange);
|
|
|
|
void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
|
|
|
|
void ActOnObjCContainerFinishDefinition();
|
|
|
|
/// Invoked when we must temporarily exit the objective-c container
|
|
/// scope for parsing/looking-up C constructs.
|
|
///
|
|
/// Must be followed by a call to \see ActOnObjCReenterContainerContext
|
|
void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
|
|
void ActOnObjCReenterContainerContext(DeclContext *DC);
|
|
|
|
/// ActOnTagDefinitionError - Invoked when there was an unrecoverable
|
|
/// error parsing the definition of a tag.
|
|
void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
|
|
|
|
EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
|
|
EnumConstantDecl *LastEnumConst,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id,
|
|
Expr *val);
|
|
bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
|
|
bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
|
|
QualType EnumUnderlyingTy, bool IsFixed,
|
|
const EnumDecl *Prev);
|
|
|
|
/// Determine whether the body of an anonymous enumeration should be skipped.
|
|
/// \param II The name of the first enumerator.
|
|
SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
|
|
SourceLocation IILoc);
|
|
|
|
Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
const ParsedAttributesView &Attrs,
|
|
SourceLocation EqualLoc, Expr *Val);
|
|
void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
|
|
Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
|
|
const ParsedAttributesView &Attr);
|
|
|
|
DeclContext *getContainingDC(DeclContext *DC);
|
|
|
|
/// Set the current declaration context until it gets popped.
|
|
void PushDeclContext(Scope *S, DeclContext *DC);
|
|
void PopDeclContext();
|
|
|
|
/// EnterDeclaratorContext - Used when we must lookup names in the context
|
|
/// of a declarator's nested name specifier.
|
|
void EnterDeclaratorContext(Scope *S, DeclContext *DC);
|
|
void ExitDeclaratorContext(Scope *S);
|
|
|
|
/// Push the parameters of D, which must be a function, into scope.
|
|
void ActOnReenterFunctionContext(Scope* S, Decl* D);
|
|
void ActOnExitFunctionContext();
|
|
|
|
DeclContext *getFunctionLevelDeclContext();
|
|
|
|
/// getCurFunctionDecl - If inside of a function body, this returns a pointer
|
|
/// to the function decl for the function being parsed. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
FunctionDecl *getCurFunctionDecl();
|
|
|
|
/// getCurMethodDecl - If inside of a method body, this returns a pointer to
|
|
/// the method decl for the method being parsed. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
ObjCMethodDecl *getCurMethodDecl();
|
|
|
|
/// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
|
|
/// or C function we're in, otherwise return null. If we're currently
|
|
/// in a 'block', this returns the containing context.
|
|
NamedDecl *getCurFunctionOrMethodDecl();
|
|
|
|
/// Add this decl to the scope shadowed decl chains.
|
|
void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
|
|
|
|
/// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
|
|
/// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
|
|
/// true if 'D' belongs to the given declaration context.
|
|
///
|
|
/// \param AllowInlineNamespace If \c true, allow the declaration to be in the
|
|
/// enclosing namespace set of the context, rather than contained
|
|
/// directly within it.
|
|
bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
|
|
bool AllowInlineNamespace = false);
|
|
|
|
/// Finds the scope corresponding to the given decl context, if it
|
|
/// happens to be an enclosing scope. Otherwise return NULL.
|
|
static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
|
|
|
|
/// Subroutines of ActOnDeclarator().
|
|
TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
|
|
TypeSourceInfo *TInfo);
|
|
bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
|
|
|
|
/// Describes the kind of merge to perform for availability
|
|
/// attributes (including "deprecated", "unavailable", and "availability").
|
|
enum AvailabilityMergeKind {
|
|
/// Don't merge availability attributes at all.
|
|
AMK_None,
|
|
/// Merge availability attributes for a redeclaration, which requires
|
|
/// an exact match.
|
|
AMK_Redeclaration,
|
|
/// Merge availability attributes for an override, which requires
|
|
/// an exact match or a weakening of constraints.
|
|
AMK_Override,
|
|
/// Merge availability attributes for an implementation of
|
|
/// a protocol requirement.
|
|
AMK_ProtocolImplementation,
|
|
};
|
|
|
|
/// Describes the kind of priority given to an availability attribute.
|
|
///
|
|
/// The sum of priorities deteremines the final priority of the attribute.
|
|
/// The final priority determines how the attribute will be merged.
|
|
/// An attribute with a lower priority will always remove higher priority
|
|
/// attributes for the specified platform when it is being applied. An
|
|
/// attribute with a higher priority will not be applied if the declaration
|
|
/// already has an availability attribute with a lower priority for the
|
|
/// specified platform. The final prirority values are not expected to match
|
|
/// the values in this enumeration, but instead should be treated as a plain
|
|
/// integer value. This enumeration just names the priority weights that are
|
|
/// used to calculate that final vaue.
|
|
enum AvailabilityPriority : int {
|
|
/// The availability attribute was specified explicitly next to the
|
|
/// declaration.
|
|
AP_Explicit = 0,
|
|
|
|
/// The availability attribute was applied using '#pragma clang attribute'.
|
|
AP_PragmaClangAttribute = 1,
|
|
|
|
/// The availability attribute for a specific platform was inferred from
|
|
/// an availability attribute for another platform.
|
|
AP_InferredFromOtherPlatform = 2
|
|
};
|
|
|
|
/// Attribute merging methods. Return true if a new attribute was added.
|
|
AvailabilityAttr *
|
|
mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
|
|
IdentifierInfo *Platform, bool Implicit,
|
|
VersionTuple Introduced, VersionTuple Deprecated,
|
|
VersionTuple Obsoleted, bool IsUnavailable,
|
|
StringRef Message, bool IsStrict, StringRef Replacement,
|
|
AvailabilityMergeKind AMK, int Priority);
|
|
TypeVisibilityAttr *
|
|
mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
TypeVisibilityAttr::VisibilityType Vis);
|
|
VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
VisibilityAttr::VisibilityType Vis);
|
|
UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Uuid);
|
|
DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
|
|
const AttributeCommonInfo &CI,
|
|
bool BestCase,
|
|
MSInheritanceModel Model);
|
|
FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
IdentifierInfo *Format, int FormatIdx,
|
|
int FirstArg);
|
|
SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Name);
|
|
CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
StringRef Name);
|
|
AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
|
|
const AttributeCommonInfo &CI,
|
|
const IdentifierInfo *Ident);
|
|
MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
|
|
NoSpeculativeLoadHardeningAttr *
|
|
mergeNoSpeculativeLoadHardeningAttr(Decl *D,
|
|
const NoSpeculativeLoadHardeningAttr &AL);
|
|
SpeculativeLoadHardeningAttr *
|
|
mergeSpeculativeLoadHardeningAttr(Decl *D,
|
|
const SpeculativeLoadHardeningAttr &AL);
|
|
OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
|
|
const AttributeCommonInfo &CI);
|
|
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
|
|
InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
|
|
const InternalLinkageAttr &AL);
|
|
CommonAttr *mergeCommonAttr(Decl *D, const ParsedAttr &AL);
|
|
CommonAttr *mergeCommonAttr(Decl *D, const CommonAttr &AL);
|
|
|
|
void mergeDeclAttributes(NamedDecl *New, Decl *Old,
|
|
AvailabilityMergeKind AMK = AMK_Redeclaration);
|
|
void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
|
|
LookupResult &OldDecls);
|
|
bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
|
|
bool MergeTypeWithOld);
|
|
bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
|
|
Scope *S, bool MergeTypeWithOld);
|
|
void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
|
|
void MergeVarDecl(VarDecl *New, LookupResult &Previous);
|
|
void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
|
|
void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
|
|
bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
|
|
void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
|
|
bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
|
|
|
|
// AssignmentAction - This is used by all the assignment diagnostic functions
|
|
// to represent what is actually causing the operation
|
|
enum AssignmentAction {
|
|
AA_Assigning,
|
|
AA_Passing,
|
|
AA_Returning,
|
|
AA_Converting,
|
|
AA_Initializing,
|
|
AA_Sending,
|
|
AA_Casting,
|
|
AA_Passing_CFAudited
|
|
};
|
|
|
|
/// C++ Overloading.
|
|
enum OverloadKind {
|
|
/// This is a legitimate overload: the existing declarations are
|
|
/// functions or function templates with different signatures.
|
|
Ovl_Overload,
|
|
|
|
/// This is not an overload because the signature exactly matches
|
|
/// an existing declaration.
|
|
Ovl_Match,
|
|
|
|
/// This is not an overload because the lookup results contain a
|
|
/// non-function.
|
|
Ovl_NonFunction
|
|
};
|
|
OverloadKind CheckOverload(Scope *S,
|
|
FunctionDecl *New,
|
|
const LookupResult &OldDecls,
|
|
NamedDecl *&OldDecl,
|
|
bool IsForUsingDecl);
|
|
bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
|
|
bool ConsiderCudaAttrs = true,
|
|
bool ConsiderRequiresClauses = true);
|
|
|
|
ImplicitConversionSequence
|
|
TryImplicitConversion(Expr *From, QualType ToType,
|
|
bool SuppressUserConversions,
|
|
bool AllowExplicit,
|
|
bool InOverloadResolution,
|
|
bool CStyle,
|
|
bool AllowObjCWritebackConversion);
|
|
|
|
bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
|
|
bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
|
|
bool IsComplexPromotion(QualType FromType, QualType ToType);
|
|
bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType& ConvertedType, bool &IncompatibleObjC);
|
|
bool isObjCPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType, bool &IncompatibleObjC);
|
|
bool isObjCWritebackConversion(QualType FromType, QualType ToType,
|
|
QualType &ConvertedType);
|
|
bool IsBlockPointerConversion(QualType FromType, QualType ToType,
|
|
QualType& ConvertedType);
|
|
bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
|
|
const FunctionProtoType *NewType,
|
|
unsigned *ArgPos = nullptr);
|
|
void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
|
|
QualType FromType, QualType ToType);
|
|
|
|
void maybeExtendBlockObject(ExprResult &E);
|
|
CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
|
|
bool CheckPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath& BasePath,
|
|
bool IgnoreBaseAccess,
|
|
bool Diagnose = true);
|
|
bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
|
|
bool InOverloadResolution,
|
|
QualType &ConvertedType);
|
|
bool CheckMemberPointerConversion(Expr *From, QualType ToType,
|
|
CastKind &Kind,
|
|
CXXCastPath &BasePath,
|
|
bool IgnoreBaseAccess);
|
|
bool IsQualificationConversion(QualType FromType, QualType ToType,
|
|
bool CStyle, bool &ObjCLifetimeConversion);
|
|
bool IsFunctionConversion(QualType FromType, QualType ToType,
|
|
QualType &ResultTy);
|
|
bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
|
|
bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
|
|
|
|
ExprResult PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
|
|
const VarDecl *NRVOCandidate,
|
|
QualType ResultType,
|
|
Expr *Value,
|
|
bool AllowNRVO = true);
|
|
|
|
bool CanPerformAggregateInitializationForOverloadResolution(
|
|
const InitializedEntity &Entity, InitListExpr *From);
|
|
|
|
bool CanPerformCopyInitialization(const InitializedEntity &Entity,
|
|
ExprResult Init);
|
|
ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
|
|
SourceLocation EqualLoc,
|
|
ExprResult Init,
|
|
bool TopLevelOfInitList = false,
|
|
bool AllowExplicit = false);
|
|
ExprResult PerformObjectArgumentInitialization(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
CXXMethodDecl *Method);
|
|
|
|
/// Check that the lifetime of the initializer (and its subobjects) is
|
|
/// sufficient for initializing the entity, and perform lifetime extension
|
|
/// (when permitted) if not.
|
|
void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
|
|
|
|
ExprResult PerformContextuallyConvertToBool(Expr *From);
|
|
ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
|
|
|
|
/// Contexts in which a converted constant expression is required.
|
|
enum CCEKind {
|
|
CCEK_CaseValue, ///< Expression in a case label.
|
|
CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
|
|
CCEK_TemplateArg, ///< Value of a non-type template parameter.
|
|
CCEK_NewExpr, ///< Constant expression in a noptr-new-declarator.
|
|
CCEK_ConstexprIf, ///< Condition in a constexpr if statement.
|
|
CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier.
|
|
};
|
|
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
llvm::APSInt &Value, CCEKind CCE);
|
|
ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
|
|
APValue &Value, CCEKind CCE);
|
|
|
|
/// Abstract base class used to perform a contextual implicit
|
|
/// conversion from an expression to any type passing a filter.
|
|
class ContextualImplicitConverter {
|
|
public:
|
|
bool Suppress;
|
|
bool SuppressConversion;
|
|
|
|
ContextualImplicitConverter(bool Suppress = false,
|
|
bool SuppressConversion = false)
|
|
: Suppress(Suppress), SuppressConversion(SuppressConversion) {}
|
|
|
|
/// Determine whether the specified type is a valid destination type
|
|
/// for this conversion.
|
|
virtual bool match(QualType T) = 0;
|
|
|
|
/// Emits a diagnostic complaining that the expression does not have
|
|
/// integral or enumeration type.
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
|
|
/// Emits a diagnostic when the expression has incomplete class type.
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
|
|
/// Emits a diagnostic when the only matching conversion function
|
|
/// is explicit.
|
|
virtual SemaDiagnosticBuilder diagnoseExplicitConv(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
|
|
|
|
/// Emits a note for the explicit conversion function.
|
|
virtual SemaDiagnosticBuilder
|
|
noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
|
|
|
|
/// Emits a diagnostic when there are multiple possible conversion
|
|
/// functions.
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
|
|
/// Emits a note for one of the candidate conversions.
|
|
virtual SemaDiagnosticBuilder
|
|
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
|
|
|
|
/// Emits a diagnostic when we picked a conversion function
|
|
/// (for cases when we are not allowed to pick a conversion function).
|
|
virtual SemaDiagnosticBuilder diagnoseConversion(
|
|
Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
|
|
|
|
virtual ~ContextualImplicitConverter() {}
|
|
};
|
|
|
|
class ICEConvertDiagnoser : public ContextualImplicitConverter {
|
|
bool AllowScopedEnumerations;
|
|
|
|
public:
|
|
ICEConvertDiagnoser(bool AllowScopedEnumerations,
|
|
bool Suppress, bool SuppressConversion)
|
|
: ContextualImplicitConverter(Suppress, SuppressConversion),
|
|
AllowScopedEnumerations(AllowScopedEnumerations) {}
|
|
|
|
/// Match an integral or (possibly scoped) enumeration type.
|
|
bool match(QualType T) override;
|
|
|
|
SemaDiagnosticBuilder
|
|
diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
|
|
return diagnoseNotInt(S, Loc, T);
|
|
}
|
|
|
|
/// Emits a diagnostic complaining that the expression does not have
|
|
/// integral or enumeration type.
|
|
virtual SemaDiagnosticBuilder
|
|
diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
|
|
};
|
|
|
|
/// Perform a contextual implicit conversion.
|
|
ExprResult PerformContextualImplicitConversion(
|
|
SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
|
|
|
|
|
|
enum ObjCSubscriptKind {
|
|
OS_Array,
|
|
OS_Dictionary,
|
|
OS_Error
|
|
};
|
|
ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
|
|
|
|
// Note that LK_String is intentionally after the other literals, as
|
|
// this is used for diagnostics logic.
|
|
enum ObjCLiteralKind {
|
|
LK_Array,
|
|
LK_Dictionary,
|
|
LK_Numeric,
|
|
LK_Boxed,
|
|
LK_String,
|
|
LK_Block,
|
|
LK_None
|
|
};
|
|
ObjCLiteralKind CheckLiteralKind(Expr *FromE);
|
|
|
|
ExprResult PerformObjectMemberConversion(Expr *From,
|
|
NestedNameSpecifier *Qualifier,
|
|
NamedDecl *FoundDecl,
|
|
NamedDecl *Member);
|
|
|
|
// Members have to be NamespaceDecl* or TranslationUnitDecl*.
|
|
// TODO: make this is a typesafe union.
|
|
typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
|
|
typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
|
|
|
|
using ADLCallKind = CallExpr::ADLCallKind;
|
|
|
|
void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false,
|
|
bool AllowExplicit = true,
|
|
bool AllowExplicitConversion = false,
|
|
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
|
|
ConversionSequenceList EarlyConversions = None,
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
|
|
bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false,
|
|
bool FirstArgumentIsBase = false);
|
|
void AddMethodCandidate(DeclAccessPair FoundDecl,
|
|
QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversion = false,
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddMethodCandidate(CXXMethodDecl *Method,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false,
|
|
ConversionSequenceList EarlyConversions = None,
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
QualType ObjectType,
|
|
Expr::Classification ObjectClassification,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false,
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddTemplateOverloadCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
|
|
bool PartialOverloading = false, bool AllowExplicit = true,
|
|
ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
|
|
OverloadCandidateParamOrder PO = {});
|
|
bool CheckNonDependentConversions(
|
|
FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
|
|
ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
|
|
ConversionSequenceList &Conversions, bool SuppressUserConversions,
|
|
CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
|
|
Expr::Classification ObjectClassification = {},
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddConversionCandidate(
|
|
CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion = true);
|
|
void AddTemplateConversionCandidate(
|
|
FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
|
|
OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
|
|
bool AllowExplicit, bool AllowResultConversion = true);
|
|
void AddSurrogateCandidate(CXXConversionDecl *Conversion,
|
|
DeclAccessPair FoundDecl,
|
|
CXXRecordDecl *ActingContext,
|
|
const FunctionProtoType *Proto,
|
|
Expr *Object, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet);
|
|
void AddNonMemberOperatorCandidates(
|
|
const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
|
|
void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
OverloadCandidateParamOrder PO = {});
|
|
void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool IsAssignmentOperator = false,
|
|
unsigned NumContextualBoolArguments = 0);
|
|
void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
|
|
SourceLocation OpLoc, ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet& CandidateSet);
|
|
void AddArgumentDependentLookupCandidates(DeclarationName Name,
|
|
SourceLocation Loc,
|
|
ArrayRef<Expr *> Args,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
OverloadCandidateSet& CandidateSet,
|
|
bool PartialOverloading = false);
|
|
|
|
// Emit as a 'note' the specific overload candidate
|
|
void NoteOverloadCandidate(
|
|
NamedDecl *Found, FunctionDecl *Fn,
|
|
OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
|
|
QualType DestType = QualType(), bool TakingAddress = false);
|
|
|
|
// Emit as a series of 'note's all template and non-templates identified by
|
|
// the expression Expr
|
|
void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
|
|
bool TakingAddress = false);
|
|
|
|
/// Check the enable_if expressions on the given function. Returns the first
|
|
/// failing attribute, or NULL if they were all successful.
|
|
EnableIfAttr *CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
|
|
bool MissingImplicitThis = false);
|
|
|
|
/// Find the failed Boolean condition within a given Boolean
|
|
/// constant expression, and describe it with a string.
|
|
std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
|
|
|
|
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
|
|
/// non-ArgDependent DiagnoseIfAttrs.
|
|
///
|
|
/// Argument-dependent diagnose_if attributes should be checked each time a
|
|
/// function is used as a direct callee of a function call.
|
|
///
|
|
/// Returns true if any errors were emitted.
|
|
bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
|
|
const Expr *ThisArg,
|
|
ArrayRef<const Expr *> Args,
|
|
SourceLocation Loc);
|
|
|
|
/// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
|
|
/// ArgDependent DiagnoseIfAttrs.
|
|
///
|
|
/// Argument-independent diagnose_if attributes should be checked on every use
|
|
/// of a function.
|
|
///
|
|
/// Returns true if any errors were emitted.
|
|
bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
|
|
SourceLocation Loc);
|
|
|
|
/// Returns whether the given function's address can be taken or not,
|
|
/// optionally emitting a diagnostic if the address can't be taken.
|
|
///
|
|
/// Returns false if taking the address of the function is illegal.
|
|
bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
|
|
bool Complain = false,
|
|
SourceLocation Loc = SourceLocation());
|
|
|
|
// [PossiblyAFunctionType] --> [Return]
|
|
// NonFunctionType --> NonFunctionType
|
|
// R (A) --> R(A)
|
|
// R (*)(A) --> R (A)
|
|
// R (&)(A) --> R (A)
|
|
// R (S::*)(A) --> R (A)
|
|
QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
|
|
|
|
FunctionDecl *
|
|
ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
|
|
QualType TargetType,
|
|
bool Complain,
|
|
DeclAccessPair &Found,
|
|
bool *pHadMultipleCandidates = nullptr);
|
|
|
|
FunctionDecl *
|
|
resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
|
|
|
|
bool resolveAndFixAddressOfSingleOverloadCandidate(
|
|
ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
|
|
|
|
FunctionDecl *
|
|
ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
|
|
bool Complain = false,
|
|
DeclAccessPair *Found = nullptr);
|
|
|
|
bool ResolveAndFixSingleFunctionTemplateSpecialization(
|
|
ExprResult &SrcExpr,
|
|
bool DoFunctionPointerConverion = false,
|
|
bool Complain = false,
|
|
SourceRange OpRangeForComplaining = SourceRange(),
|
|
QualType DestTypeForComplaining = QualType(),
|
|
unsigned DiagIDForComplaining = 0);
|
|
|
|
|
|
Expr *FixOverloadedFunctionReference(Expr *E,
|
|
DeclAccessPair FoundDecl,
|
|
FunctionDecl *Fn);
|
|
ExprResult FixOverloadedFunctionReference(ExprResult,
|
|
DeclAccessPair FoundDecl,
|
|
FunctionDecl *Fn);
|
|
|
|
void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
|
|
ArrayRef<Expr *> Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
bool PartialOverloading = false);
|
|
|
|
// An enum used to represent the different possible results of building a
|
|
// range-based for loop.
|
|
enum ForRangeStatus {
|
|
FRS_Success,
|
|
FRS_NoViableFunction,
|
|
FRS_DiagnosticIssued
|
|
};
|
|
|
|
ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
|
|
SourceLocation RangeLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
LookupResult &MemberLookup,
|
|
OverloadCandidateSet *CandidateSet,
|
|
Expr *Range, ExprResult *CallExpr);
|
|
|
|
ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
|
|
UnresolvedLookupExpr *ULE,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc,
|
|
Expr *ExecConfig,
|
|
bool AllowTypoCorrection=true,
|
|
bool CalleesAddressIsTaken=false);
|
|
|
|
bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
|
|
MultiExprArg Args, SourceLocation RParenLoc,
|
|
OverloadCandidateSet *CandidateSet,
|
|
ExprResult *Result);
|
|
|
|
ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *input, bool RequiresADL = true);
|
|
|
|
void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
|
|
OverloadedOperatorKind Op,
|
|
const UnresolvedSetImpl &Fns,
|
|
ArrayRef<Expr *> Args, bool RequiresADL = true);
|
|
ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *LHS, Expr *RHS,
|
|
bool RequiresADL = true,
|
|
bool AllowRewrittenCandidates = true,
|
|
FunctionDecl *DefaultedFn = nullptr);
|
|
ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
|
|
const UnresolvedSetImpl &Fns,
|
|
Expr *LHS, Expr *RHS,
|
|
FunctionDecl *DefaultedFn);
|
|
|
|
ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
|
|
SourceLocation RLoc,
|
|
Expr *Base,Expr *Idx);
|
|
|
|
ExprResult
|
|
BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc);
|
|
ExprResult
|
|
BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
|
|
MultiExprArg Args,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
bool *NoArrowOperatorFound = nullptr);
|
|
|
|
/// CheckCallReturnType - Checks that a call expression's return type is
|
|
/// complete. Returns true on failure. The location passed in is the location
|
|
/// that best represents the call.
|
|
bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
|
|
CallExpr *CE, FunctionDecl *FD);
|
|
|
|
/// Helpers for dealing with blocks and functions.
|
|
bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
|
|
bool CheckParameterNames);
|
|
void CheckCXXDefaultArguments(FunctionDecl *FD);
|
|
void CheckExtraCXXDefaultArguments(Declarator &D);
|
|
Scope *getNonFieldDeclScope(Scope *S);
|
|
|
|
/// \name Name lookup
|
|
///
|
|
/// These routines provide name lookup that is used during semantic
|
|
/// analysis to resolve the various kinds of names (identifiers,
|
|
/// overloaded operator names, constructor names, etc.) into zero or
|
|
/// more declarations within a particular scope. The major entry
|
|
/// points are LookupName, which performs unqualified name lookup,
|
|
/// and LookupQualifiedName, which performs qualified name lookup.
|
|
///
|
|
/// All name lookup is performed based on some specific criteria,
|
|
/// which specify what names will be visible to name lookup and how
|
|
/// far name lookup should work. These criteria are important both
|
|
/// for capturing language semantics (certain lookups will ignore
|
|
/// certain names, for example) and for performance, since name
|
|
/// lookup is often a bottleneck in the compilation of C++. Name
|
|
/// lookup criteria is specified via the LookupCriteria enumeration.
|
|
///
|
|
/// The results of name lookup can vary based on the kind of name
|
|
/// lookup performed, the current language, and the translation
|
|
/// unit. In C, for example, name lookup will either return nothing
|
|
/// (no entity found) or a single declaration. In C++, name lookup
|
|
/// can additionally refer to a set of overloaded functions or
|
|
/// result in an ambiguity. All of the possible results of name
|
|
/// lookup are captured by the LookupResult class, which provides
|
|
/// the ability to distinguish among them.
|
|
//@{
|
|
|
|
/// Describes the kind of name lookup to perform.
|
|
enum LookupNameKind {
|
|
/// Ordinary name lookup, which finds ordinary names (functions,
|
|
/// variables, typedefs, etc.) in C and most kinds of names
|
|
/// (functions, variables, members, types, etc.) in C++.
|
|
LookupOrdinaryName = 0,
|
|
/// Tag name lookup, which finds the names of enums, classes,
|
|
/// structs, and unions.
|
|
LookupTagName,
|
|
/// Label name lookup.
|
|
LookupLabel,
|
|
/// Member name lookup, which finds the names of
|
|
/// class/struct/union members.
|
|
LookupMemberName,
|
|
/// Look up of an operator name (e.g., operator+) for use with
|
|
/// operator overloading. This lookup is similar to ordinary name
|
|
/// lookup, but will ignore any declarations that are class members.
|
|
LookupOperatorName,
|
|
/// Look up of a name that precedes the '::' scope resolution
|
|
/// operator in C++. This lookup completely ignores operator, object,
|
|
/// function, and enumerator names (C++ [basic.lookup.qual]p1).
|
|
LookupNestedNameSpecifierName,
|
|
/// Look up a namespace name within a C++ using directive or
|
|
/// namespace alias definition, ignoring non-namespace names (C++
|
|
/// [basic.lookup.udir]p1).
|
|
LookupNamespaceName,
|
|
/// Look up all declarations in a scope with the given name,
|
|
/// including resolved using declarations. This is appropriate
|
|
/// for checking redeclarations for a using declaration.
|
|
LookupUsingDeclName,
|
|
/// Look up an ordinary name that is going to be redeclared as a
|
|
/// name with linkage. This lookup ignores any declarations that
|
|
/// are outside of the current scope unless they have linkage. See
|
|
/// C99 6.2.2p4-5 and C++ [basic.link]p6.
|
|
LookupRedeclarationWithLinkage,
|
|
/// Look up a friend of a local class. This lookup does not look
|
|
/// outside the innermost non-class scope. See C++11 [class.friend]p11.
|
|
LookupLocalFriendName,
|
|
/// Look up the name of an Objective-C protocol.
|
|
LookupObjCProtocolName,
|
|
/// Look up implicit 'self' parameter of an objective-c method.
|
|
LookupObjCImplicitSelfParam,
|
|
/// Look up the name of an OpenMP user-defined reduction operation.
|
|
LookupOMPReductionName,
|
|
/// Look up the name of an OpenMP user-defined mapper.
|
|
LookupOMPMapperName,
|
|
/// Look up any declaration with any name.
|
|
LookupAnyName
|
|
};
|
|
|
|
/// Specifies whether (or how) name lookup is being performed for a
|
|
/// redeclaration (vs. a reference).
|
|
enum RedeclarationKind {
|
|
/// The lookup is a reference to this name that is not for the
|
|
/// purpose of redeclaring the name.
|
|
NotForRedeclaration = 0,
|
|
/// The lookup results will be used for redeclaration of a name,
|
|
/// if an entity by that name already exists and is visible.
|
|
ForVisibleRedeclaration,
|
|
/// The lookup results will be used for redeclaration of a name
|
|
/// with external linkage; non-visible lookup results with external linkage
|
|
/// may also be found.
|
|
ForExternalRedeclaration
|
|
};
|
|
|
|
RedeclarationKind forRedeclarationInCurContext() {
|
|
// A declaration with an owning module for linkage can never link against
|
|
// anything that is not visible. We don't need to check linkage here; if
|
|
// the context has internal linkage, redeclaration lookup won't find things
|
|
// from other TUs, and we can't safely compute linkage yet in general.
|
|
if (cast<Decl>(CurContext)
|
|
->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
|
|
return ForVisibleRedeclaration;
|
|
return ForExternalRedeclaration;
|
|
}
|
|
|
|
/// The possible outcomes of name lookup for a literal operator.
|
|
enum LiteralOperatorLookupResult {
|
|
/// The lookup resulted in an error.
|
|
LOLR_Error,
|
|
/// The lookup found no match but no diagnostic was issued.
|
|
LOLR_ErrorNoDiagnostic,
|
|
/// The lookup found a single 'cooked' literal operator, which
|
|
/// expects a normal literal to be built and passed to it.
|
|
LOLR_Cooked,
|
|
/// The lookup found a single 'raw' literal operator, which expects
|
|
/// a string literal containing the spelling of the literal token.
|
|
LOLR_Raw,
|
|
/// The lookup found an overload set of literal operator templates,
|
|
/// which expect the characters of the spelling of the literal token to be
|
|
/// passed as a non-type template argument pack.
|
|
LOLR_Template,
|
|
/// The lookup found an overload set of literal operator templates,
|
|
/// which expect the character type and characters of the spelling of the
|
|
/// string literal token to be passed as template arguments.
|
|
LOLR_StringTemplate
|
|
};
|
|
|
|
SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
|
|
CXXSpecialMember SM,
|
|
bool ConstArg,
|
|
bool VolatileArg,
|
|
bool RValueThis,
|
|
bool ConstThis,
|
|
bool VolatileThis);
|
|
|
|
typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
|
|
typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
|
|
TypoRecoveryCallback;
|
|
|
|
private:
|
|
bool CppLookupName(LookupResult &R, Scope *S);
|
|
|
|
struct TypoExprState {
|
|
std::unique_ptr<TypoCorrectionConsumer> Consumer;
|
|
TypoDiagnosticGenerator DiagHandler;
|
|
TypoRecoveryCallback RecoveryHandler;
|
|
TypoExprState();
|
|
TypoExprState(TypoExprState &&other) noexcept;
|
|
TypoExprState &operator=(TypoExprState &&other) noexcept;
|
|
};
|
|
|
|
/// The set of unhandled TypoExprs and their associated state.
|
|
llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
|
|
|
|
/// Creates a new TypoExpr AST node.
|
|
TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
|
|
TypoDiagnosticGenerator TDG,
|
|
TypoRecoveryCallback TRC);
|
|
|
|
// The set of known/encountered (unique, canonicalized) NamespaceDecls.
|
|
//
|
|
// The boolean value will be true to indicate that the namespace was loaded
|
|
// from an AST/PCH file, or false otherwise.
|
|
llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
|
|
|
|
/// Whether we have already loaded known namespaces from an extenal
|
|
/// source.
|
|
bool LoadedExternalKnownNamespaces;
|
|
|
|
/// Helper for CorrectTypo and CorrectTypoDelayed used to create and
|
|
/// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
|
|
/// should be skipped entirely.
|
|
std::unique_ptr<TypoCorrectionConsumer>
|
|
makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
|
|
Sema::LookupNameKind LookupKind, Scope *S,
|
|
CXXScopeSpec *SS,
|
|
CorrectionCandidateCallback &CCC,
|
|
DeclContext *MemberContext, bool EnteringContext,
|
|
const ObjCObjectPointerType *OPT,
|
|
bool ErrorRecovery);
|
|
|
|
public:
|
|
const TypoExprState &getTypoExprState(TypoExpr *TE) const;
|
|
|
|
/// Clears the state of the given TypoExpr.
|
|
void clearDelayedTypo(TypoExpr *TE);
|
|
|
|
/// Look up a name, looking for a single declaration. Return
|
|
/// null if the results were absent, ambiguous, or overloaded.
|
|
///
|
|
/// It is preferable to use the elaborated form and explicitly handle
|
|
/// ambiguity and overloaded.
|
|
NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
|
|
SourceLocation Loc,
|
|
LookupNameKind NameKind,
|
|
RedeclarationKind Redecl
|
|
= NotForRedeclaration);
|
|
bool LookupBuiltin(LookupResult &R);
|
|
bool LookupName(LookupResult &R, Scope *S,
|
|
bool AllowBuiltinCreation = false);
|
|
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
|
bool InUnqualifiedLookup = false);
|
|
bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
|
CXXScopeSpec &SS);
|
|
bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
|
|
bool AllowBuiltinCreation = false,
|
|
bool EnteringContext = false);
|
|
ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
|
|
RedeclarationKind Redecl
|
|
= NotForRedeclaration);
|
|
bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
|
|
|
|
void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
|
|
QualType T1, QualType T2,
|
|
UnresolvedSetImpl &Functions);
|
|
|
|
LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
|
|
SourceLocation GnuLabelLoc = SourceLocation());
|
|
|
|
DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
|
|
CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
|
|
CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
|
|
unsigned Quals);
|
|
CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
|
|
bool RValueThis, unsigned ThisQuals);
|
|
CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
|
|
unsigned Quals);
|
|
CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
|
|
bool RValueThis, unsigned ThisQuals);
|
|
CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
|
|
|
|
bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id);
|
|
LiteralOperatorLookupResult LookupLiteralOperator(Scope *S, LookupResult &R,
|
|
ArrayRef<QualType> ArgTys,
|
|
bool AllowRaw,
|
|
bool AllowTemplate,
|
|
bool AllowStringTemplate,
|
|
bool DiagnoseMissing);
|
|
bool isKnownName(StringRef name);
|
|
|
|
/// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
|
|
enum class FunctionEmissionStatus {
|
|
Emitted,
|
|
CUDADiscarded, // Discarded due to CUDA/HIP hostness
|
|
OMPDiscarded, // Discarded due to OpenMP hostness
|
|
TemplateDiscarded, // Discarded due to uninstantiated templates
|
|
Unknown,
|
|
};
|
|
FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl);
|
|
|
|
// Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
|
|
bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
|
|
|
|
void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
|
|
ArrayRef<Expr *> Args, ADLResult &Functions);
|
|
|
|
void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
|
|
VisibleDeclConsumer &Consumer,
|
|
bool IncludeGlobalScope = true,
|
|
bool LoadExternal = true);
|
|
void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
|
|
VisibleDeclConsumer &Consumer,
|
|
bool IncludeGlobalScope = true,
|
|
bool IncludeDependentBases = false,
|
|
bool LoadExternal = true);
|
|
|
|
enum CorrectTypoKind {
|
|
CTK_NonError, // CorrectTypo used in a non error recovery situation.
|
|
CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
|
|
};
|
|
|
|
TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
|
|
Sema::LookupNameKind LookupKind,
|
|
Scope *S, CXXScopeSpec *SS,
|
|
CorrectionCandidateCallback &CCC,
|
|
CorrectTypoKind Mode,
|
|
DeclContext *MemberContext = nullptr,
|
|
bool EnteringContext = false,
|
|
const ObjCObjectPointerType *OPT = nullptr,
|
|
bool RecordFailure = true);
|
|
|
|
TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
|
|
Sema::LookupNameKind LookupKind, Scope *S,
|
|
CXXScopeSpec *SS,
|
|
CorrectionCandidateCallback &CCC,
|
|
TypoDiagnosticGenerator TDG,
|
|
TypoRecoveryCallback TRC, CorrectTypoKind Mode,
|
|
DeclContext *MemberContext = nullptr,
|
|
bool EnteringContext = false,
|
|
const ObjCObjectPointerType *OPT = nullptr);
|
|
|
|
/// Process any TypoExprs in the given Expr and its children,
|
|
/// generating diagnostics as appropriate and returning a new Expr if there
|
|
/// were typos that were all successfully corrected and ExprError if one or
|
|
/// more typos could not be corrected.
|
|
///
|
|
/// \param E The Expr to check for TypoExprs.
|
|
///
|
|
/// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
|
|
/// initializer.
|
|
///
|
|
/// \param Filter A function applied to a newly rebuilt Expr to determine if
|
|
/// it is an acceptable/usable result from a single combination of typo
|
|
/// corrections. As long as the filter returns ExprError, different
|
|
/// combinations of corrections will be tried until all are exhausted.
|
|
ExprResult
|
|
CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl = nullptr,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter =
|
|
[](Expr *E) -> ExprResult { return E; });
|
|
|
|
ExprResult
|
|
CorrectDelayedTyposInExpr(Expr *E,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter) {
|
|
return CorrectDelayedTyposInExpr(E, nullptr, Filter);
|
|
}
|
|
|
|
ExprResult
|
|
CorrectDelayedTyposInExpr(ExprResult ER, VarDecl *InitDecl = nullptr,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter =
|
|
[](Expr *E) -> ExprResult { return E; }) {
|
|
return ER.isInvalid() ? ER : CorrectDelayedTyposInExpr(ER.get(), Filter);
|
|
}
|
|
|
|
ExprResult
|
|
CorrectDelayedTyposInExpr(ExprResult ER,
|
|
llvm::function_ref<ExprResult(Expr *)> Filter) {
|
|
return CorrectDelayedTyposInExpr(ER, nullptr, Filter);
|
|
}
|
|
|
|
void diagnoseTypo(const TypoCorrection &Correction,
|
|
const PartialDiagnostic &TypoDiag,
|
|
bool ErrorRecovery = true);
|
|
|
|
void diagnoseTypo(const TypoCorrection &Correction,
|
|
const PartialDiagnostic &TypoDiag,
|
|
const PartialDiagnostic &PrevNote,
|
|
bool ErrorRecovery = true);
|
|
|
|
void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
|
|
|
|
void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
|
|
ArrayRef<Expr *> Args,
|
|
AssociatedNamespaceSet &AssociatedNamespaces,
|
|
AssociatedClassSet &AssociatedClasses);
|
|
|
|
void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
|
|
bool ConsiderLinkage, bool AllowInlineNamespace);
|
|
|
|
bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
|
|
|
|
void DiagnoseAmbiguousLookup(LookupResult &Result);
|
|
//@}
|
|
|
|
ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
|
|
SourceLocation IdLoc,
|
|
bool TypoCorrection = false);
|
|
NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
|
|
Scope *S, bool ForRedeclaration,
|
|
SourceLocation Loc);
|
|
NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
|
|
Scope *S);
|
|
void AddKnownFunctionAttributes(FunctionDecl *FD);
|
|
|
|
// More parsing and symbol table subroutines.
|
|
|
|
void ProcessPragmaWeak(Scope *S, Decl *D);
|
|
// Decl attributes - this routine is the top level dispatcher.
|
|
void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
|
|
// Helper for delayed processing of attributes.
|
|
void ProcessDeclAttributeDelayed(Decl *D,
|
|
const ParsedAttributesView &AttrList);
|
|
void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
|
|
bool IncludeCXX11Attributes = true);
|
|
bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
void checkUnusedDeclAttributes(Declarator &D);
|
|
|
|
/// Determine if type T is a valid subject for a nonnull and similar
|
|
/// attributes. By default, we look through references (the behavior used by
|
|
/// nonnull), but if the second parameter is true, then we treat a reference
|
|
/// type as valid.
|
|
bool isValidPointerAttrType(QualType T, bool RefOkay = false);
|
|
|
|
bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
|
|
bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
|
|
const FunctionDecl *FD = nullptr);
|
|
bool CheckAttrTarget(const ParsedAttr &CurrAttr);
|
|
bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
|
|
bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
|
|
StringRef &Str,
|
|
SourceLocation *ArgLocation = nullptr);
|
|
bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
|
|
bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
|
|
bool checkMSInheritanceAttrOnDefinition(
|
|
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
|
|
MSInheritanceModel SemanticSpelling);
|
|
|
|
void CheckAlignasUnderalignment(Decl *D);
|
|
|
|
/// Adjust the calling convention of a method to be the ABI default if it
|
|
/// wasn't specified explicitly. This handles method types formed from
|
|
/// function type typedefs and typename template arguments.
|
|
void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
|
|
SourceLocation Loc);
|
|
|
|
// Check if there is an explicit attribute, but only look through parens.
|
|
// The intent is to look for an attribute on the current declarator, but not
|
|
// one that came from a typedef.
|
|
bool hasExplicitCallingConv(QualType T);
|
|
|
|
/// Get the outermost AttributedType node that sets a calling convention.
|
|
/// Valid types should not have multiple attributes with different CCs.
|
|
const AttributedType *getCallingConvAttributedType(QualType T) const;
|
|
|
|
/// Stmt attributes - this routine is the top level dispatcher.
|
|
StmtResult ProcessStmtAttributes(Stmt *Stmt,
|
|
const ParsedAttributesView &Attrs,
|
|
SourceRange Range);
|
|
|
|
void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
|
|
ObjCMethodDecl *MethodDecl,
|
|
bool IsProtocolMethodDecl);
|
|
|
|
void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
|
|
ObjCMethodDecl *Overridden,
|
|
bool IsProtocolMethodDecl);
|
|
|
|
/// WarnExactTypedMethods - This routine issues a warning if method
|
|
/// implementation declaration matches exactly that of its declaration.
|
|
void WarnExactTypedMethods(ObjCMethodDecl *Method,
|
|
ObjCMethodDecl *MethodDecl,
|
|
bool IsProtocolMethodDecl);
|
|
|
|
typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
|
|
|
|
/// CheckImplementationIvars - This routine checks if the instance variables
|
|
/// listed in the implelementation match those listed in the interface.
|
|
void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
|
|
ObjCIvarDecl **Fields, unsigned nIvars,
|
|
SourceLocation Loc);
|
|
|
|
/// ImplMethodsVsClassMethods - This is main routine to warn if any method
|
|
/// remains unimplemented in the class or category \@implementation.
|
|
void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
|
|
ObjCContainerDecl* IDecl,
|
|
bool IncompleteImpl = false);
|
|
|
|
/// DiagnoseUnimplementedProperties - This routine warns on those properties
|
|
/// which must be implemented by this implementation.
|
|
void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
|
|
ObjCContainerDecl *CDecl,
|
|
bool SynthesizeProperties);
|
|
|
|
/// Diagnose any null-resettable synthesized setters.
|
|
void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
|
|
|
|
/// DefaultSynthesizeProperties - This routine default synthesizes all
|
|
/// properties which must be synthesized in the class's \@implementation.
|
|
void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
|
|
ObjCInterfaceDecl *IDecl,
|
|
SourceLocation AtEnd);
|
|
void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
|
|
|
|
/// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
|
|
/// an ivar synthesized for 'Method' and 'Method' is a property accessor
|
|
/// declared in class 'IFace'.
|
|
bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
|
|
ObjCMethodDecl *Method, ObjCIvarDecl *IV);
|
|
|
|
/// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
|
|
/// backs the property is not used in the property's accessor.
|
|
void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
|
|
const ObjCImplementationDecl *ImplD);
|
|
|
|
/// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
|
|
/// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
|
|
/// It also returns ivar's property on success.
|
|
ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
|
|
const ObjCPropertyDecl *&PDecl) const;
|
|
|
|
/// Called by ActOnProperty to handle \@property declarations in
|
|
/// class extensions.
|
|
ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
|
|
SourceLocation AtLoc,
|
|
SourceLocation LParenLoc,
|
|
FieldDeclarator &FD,
|
|
Selector GetterSel,
|
|
SourceLocation GetterNameLoc,
|
|
Selector SetterSel,
|
|
SourceLocation SetterNameLoc,
|
|
const bool isReadWrite,
|
|
unsigned &Attributes,
|
|
const unsigned AttributesAsWritten,
|
|
QualType T,
|
|
TypeSourceInfo *TSI,
|
|
tok::ObjCKeywordKind MethodImplKind);
|
|
|
|
/// Called by ActOnProperty and HandlePropertyInClassExtension to
|
|
/// handle creating the ObjcPropertyDecl for a category or \@interface.
|
|
ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
|
|
ObjCContainerDecl *CDecl,
|
|
SourceLocation AtLoc,
|
|
SourceLocation LParenLoc,
|
|
FieldDeclarator &FD,
|
|
Selector GetterSel,
|
|
SourceLocation GetterNameLoc,
|
|
Selector SetterSel,
|
|
SourceLocation SetterNameLoc,
|
|
const bool isReadWrite,
|
|
const unsigned Attributes,
|
|
const unsigned AttributesAsWritten,
|
|
QualType T,
|
|
TypeSourceInfo *TSI,
|
|
tok::ObjCKeywordKind MethodImplKind,
|
|
DeclContext *lexicalDC = nullptr);
|
|
|
|
/// AtomicPropertySetterGetterRules - This routine enforces the rule (via
|
|
/// warning) when atomic property has one but not the other user-declared
|
|
/// setter or getter.
|
|
void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
|
|
ObjCInterfaceDecl* IDecl);
|
|
|
|
void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
|
|
|
|
void DiagnoseMissingDesignatedInitOverrides(
|
|
const ObjCImplementationDecl *ImplD,
|
|
const ObjCInterfaceDecl *IFD);
|
|
|
|
void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
|
|
|
|
enum MethodMatchStrategy {
|
|
MMS_loose,
|
|
MMS_strict
|
|
};
|
|
|
|
/// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
|
|
/// true, or false, accordingly.
|
|
bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
|
|
const ObjCMethodDecl *PrevMethod,
|
|
MethodMatchStrategy strategy = MMS_strict);
|
|
|
|
/// MatchAllMethodDeclarations - Check methods declaraed in interface or
|
|
/// or protocol against those declared in their implementations.
|
|
void MatchAllMethodDeclarations(const SelectorSet &InsMap,
|
|
const SelectorSet &ClsMap,
|
|
SelectorSet &InsMapSeen,
|
|
SelectorSet &ClsMapSeen,
|
|
ObjCImplDecl* IMPDecl,
|
|
ObjCContainerDecl* IDecl,
|
|
bool &IncompleteImpl,
|
|
bool ImmediateClass,
|
|
bool WarnCategoryMethodImpl=false);
|
|
|
|
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
|
|
/// category matches with those implemented in its primary class and
|
|
/// warns each time an exact match is found.
|
|
void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
|
|
|
|
/// Add the given method to the list of globally-known methods.
|
|
void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
|
|
|
|
/// Returns default addr space for method qualifiers.
|
|
LangAS getDefaultCXXMethodAddrSpace() const;
|
|
|
|
private:
|
|
/// AddMethodToGlobalPool - Add an instance or factory method to the global
|
|
/// pool. See descriptoin of AddInstanceMethodToGlobalPool.
|
|
void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
|
|
|
|
/// LookupMethodInGlobalPool - Returns the instance or factory method and
|
|
/// optionally warns if there are multiple signatures.
|
|
ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
|
|
bool receiverIdOrClass,
|
|
bool instance);
|
|
|
|
public:
|
|
/// - Returns instance or factory methods in global method pool for
|
|
/// given selector. It checks the desired kind first, if none is found, and
|
|
/// parameter checkTheOther is set, it then checks the other kind. If no such
|
|
/// method or only one method is found, function returns false; otherwise, it
|
|
/// returns true.
|
|
bool
|
|
CollectMultipleMethodsInGlobalPool(Selector Sel,
|
|
SmallVectorImpl<ObjCMethodDecl*>& Methods,
|
|
bool InstanceFirst, bool CheckTheOther,
|
|
const ObjCObjectType *TypeBound = nullptr);
|
|
|
|
bool
|
|
AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
|
|
SourceRange R, bool receiverIdOrClass,
|
|
SmallVectorImpl<ObjCMethodDecl*>& Methods);
|
|
|
|
void
|
|
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
|
|
Selector Sel, SourceRange R,
|
|
bool receiverIdOrClass);
|
|
|
|
private:
|
|
/// - Returns a selector which best matches given argument list or
|
|
/// nullptr if none could be found
|
|
ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
|
|
bool IsInstance,
|
|
SmallVectorImpl<ObjCMethodDecl*>& Methods);
|
|
|
|
|
|
/// Record the typo correction failure and return an empty correction.
|
|
TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
|
|
bool RecordFailure = true) {
|
|
if (RecordFailure)
|
|
TypoCorrectionFailures[Typo].insert(TypoLoc);
|
|
return TypoCorrection();
|
|
}
|
|
|
|
public:
|
|
/// AddInstanceMethodToGlobalPool - All instance methods in a translation
|
|
/// unit are added to a global pool. This allows us to efficiently associate
|
|
/// a selector with a method declaraation for purposes of typechecking
|
|
/// messages sent to "id" (where the class of the object is unknown).
|
|
void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
|
|
AddMethodToGlobalPool(Method, impl, /*instance*/true);
|
|
}
|
|
|
|
/// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
|
|
void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
|
|
AddMethodToGlobalPool(Method, impl, /*instance*/false);
|
|
}
|
|
|
|
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
|
|
/// pool.
|
|
void AddAnyMethodToGlobalPool(Decl *D);
|
|
|
|
/// LookupInstanceMethodInGlobalPool - Returns the method and warns if
|
|
/// there are multiple signatures.
|
|
ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
|
|
bool receiverIdOrClass=false) {
|
|
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
|
|
/*instance*/true);
|
|
}
|
|
|
|
/// LookupFactoryMethodInGlobalPool - Returns the method and warns if
|
|
/// there are multiple signatures.
|
|
ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
|
|
bool receiverIdOrClass=false) {
|
|
return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
|
|
/*instance*/false);
|
|
}
|
|
|
|
const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
|
|
QualType ObjectType=QualType());
|
|
/// LookupImplementedMethodInGlobalPool - Returns the method which has an
|
|
/// implementation.
|
|
ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
|
|
|
|
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
|
|
/// initialization.
|
|
void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
|
|
SmallVectorImpl<ObjCIvarDecl*> &Ivars);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Statement Parsing Callbacks: SemaStmt.cpp.
|
|
public:
|
|
class FullExprArg {
|
|
public:
|
|
FullExprArg() : E(nullptr) { }
|
|
FullExprArg(Sema &actions) : E(nullptr) { }
|
|
|
|
ExprResult release() {
|
|
return E;
|
|
}
|
|
|
|
Expr *get() const { return E; }
|
|
|
|
Expr *operator->() {
|
|
return E;
|
|
}
|
|
|
|
private:
|
|
// FIXME: No need to make the entire Sema class a friend when it's just
|
|
// Sema::MakeFullExpr that needs access to the constructor below.
|
|
friend class Sema;
|
|
|
|
explicit FullExprArg(Expr *expr) : E(expr) {}
|
|
|
|
Expr *E;
|
|
};
|
|
|
|
FullExprArg MakeFullExpr(Expr *Arg) {
|
|
return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
|
|
}
|
|
FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
|
|
return FullExprArg(
|
|
ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
|
|
}
|
|
FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
|
|
ExprResult FE =
|
|
ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
|
|
/*DiscardedValue*/ true);
|
|
return FullExprArg(FE.get());
|
|
}
|
|
|
|
StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
|
|
StmtResult ActOnExprStmtError();
|
|
|
|
StmtResult ActOnNullStmt(SourceLocation SemiLoc,
|
|
bool HasLeadingEmptyMacro = false);
|
|
|
|
void ActOnStartOfCompoundStmt(bool IsStmtExpr);
|
|
void ActOnFinishOfCompoundStmt();
|
|
StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
|
|
ArrayRef<Stmt *> Elts, bool isStmtExpr);
|
|
|
|
/// A RAII object to enter scope of a compound statement.
|
|
class CompoundScopeRAII {
|
|
public:
|
|
CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
|
|
S.ActOnStartOfCompoundStmt(IsStmtExpr);
|
|
}
|
|
|
|
~CompoundScopeRAII() {
|
|
S.ActOnFinishOfCompoundStmt();
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
};
|
|
|
|
/// An RAII helper that pops function a function scope on exit.
|
|
struct FunctionScopeRAII {
|
|
Sema &S;
|
|
bool Active;
|
|
FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
|
|
~FunctionScopeRAII() {
|
|
if (Active)
|
|
S.PopFunctionScopeInfo();
|
|
}
|
|
void disable() { Active = false; }
|
|
};
|
|
|
|
StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
|
|
StmtResult ActOnForEachLValueExpr(Expr *E);
|
|
ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
|
|
StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
|
|
SourceLocation DotDotDotLoc, ExprResult RHS,
|
|
SourceLocation ColonLoc);
|
|
void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
|
|
|
|
StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
|
|
SourceLocation ColonLoc,
|
|
Stmt *SubStmt, Scope *CurScope);
|
|
StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
|
|
SourceLocation ColonLoc, Stmt *SubStmt);
|
|
|
|
StmtResult ActOnAttributedStmt(SourceLocation AttrLoc,
|
|
ArrayRef<const Attr*> Attrs,
|
|
Stmt *SubStmt);
|
|
|
|
class ConditionResult;
|
|
StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
|
|
Stmt *InitStmt,
|
|
ConditionResult Cond, Stmt *ThenVal,
|
|
SourceLocation ElseLoc, Stmt *ElseVal);
|
|
StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
|
|
Stmt *InitStmt,
|
|
ConditionResult Cond, Stmt *ThenVal,
|
|
SourceLocation ElseLoc, Stmt *ElseVal);
|
|
StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
|
|
Stmt *InitStmt,
|
|
ConditionResult Cond);
|
|
StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
|
|
Stmt *Switch, Stmt *Body);
|
|
StmtResult ActOnWhileStmt(SourceLocation WhileLoc, ConditionResult Cond,
|
|
Stmt *Body);
|
|
StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
|
|
SourceLocation WhileLoc, SourceLocation CondLParen,
|
|
Expr *Cond, SourceLocation CondRParen);
|
|
|
|
StmtResult ActOnForStmt(SourceLocation ForLoc,
|
|
SourceLocation LParenLoc,
|
|
Stmt *First,
|
|
ConditionResult Second,
|
|
FullExprArg Third,
|
|
SourceLocation RParenLoc,
|
|
Stmt *Body);
|
|
ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
|
|
Expr *collection);
|
|
StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
|
|
Stmt *First, Expr *collection,
|
|
SourceLocation RParenLoc);
|
|
StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
|
|
|
|
enum BuildForRangeKind {
|
|
/// Initial building of a for-range statement.
|
|
BFRK_Build,
|
|
/// Instantiation or recovery rebuild of a for-range statement. Don't
|
|
/// attempt any typo-correction.
|
|
BFRK_Rebuild,
|
|
/// Determining whether a for-range statement could be built. Avoid any
|
|
/// unnecessary or irreversible actions.
|
|
BFRK_Check
|
|
};
|
|
|
|
StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
|
|
SourceLocation CoawaitLoc,
|
|
Stmt *InitStmt,
|
|
Stmt *LoopVar,
|
|
SourceLocation ColonLoc, Expr *Collection,
|
|
SourceLocation RParenLoc,
|
|
BuildForRangeKind Kind);
|
|
StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
|
|
SourceLocation CoawaitLoc,
|
|
Stmt *InitStmt,
|
|
SourceLocation ColonLoc,
|
|
Stmt *RangeDecl, Stmt *Begin, Stmt *End,
|
|
Expr *Cond, Expr *Inc,
|
|
Stmt *LoopVarDecl,
|
|
SourceLocation RParenLoc,
|
|
BuildForRangeKind Kind);
|
|
StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
|
|
|
|
StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation LabelLoc,
|
|
LabelDecl *TheDecl);
|
|
StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
|
|
SourceLocation StarLoc,
|
|
Expr *DestExp);
|
|
StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
|
|
StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
|
|
|
|
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
|
|
CapturedRegionKind Kind, unsigned NumParams);
|
|
typedef std::pair<StringRef, QualType> CapturedParamNameType;
|
|
void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
|
|
CapturedRegionKind Kind,
|
|
ArrayRef<CapturedParamNameType> Params,
|
|
unsigned OpenMPCaptureLevel = 0);
|
|
StmtResult ActOnCapturedRegionEnd(Stmt *S);
|
|
void ActOnCapturedRegionError();
|
|
RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
|
|
SourceLocation Loc,
|
|
unsigned NumParams);
|
|
|
|
enum CopyElisionSemanticsKind {
|
|
CES_Strict = 0,
|
|
CES_AllowParameters = 1,
|
|
CES_AllowDifferentTypes = 2,
|
|
CES_AllowExceptionVariables = 4,
|
|
CES_FormerDefault = (CES_AllowParameters),
|
|
CES_Default = (CES_AllowParameters | CES_AllowDifferentTypes),
|
|
CES_AsIfByStdMove = (CES_AllowParameters | CES_AllowDifferentTypes |
|
|
CES_AllowExceptionVariables),
|
|
};
|
|
|
|
VarDecl *getCopyElisionCandidate(QualType ReturnType, Expr *E,
|
|
CopyElisionSemanticsKind CESK);
|
|
bool isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
|
|
CopyElisionSemanticsKind CESK);
|
|
|
|
StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
|
|
Scope *CurScope);
|
|
StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
|
|
StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
|
|
|
|
StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg Constraints, MultiExprArg Exprs,
|
|
Expr *AsmString, MultiExprArg Clobbers,
|
|
unsigned NumLabels,
|
|
SourceLocation RParenLoc);
|
|
|
|
void FillInlineAsmIdentifierInfo(Expr *Res,
|
|
llvm::InlineAsmIdentifierInfo &Info);
|
|
ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Id,
|
|
bool IsUnevaluatedContext);
|
|
bool LookupInlineAsmField(StringRef Base, StringRef Member,
|
|
unsigned &Offset, SourceLocation AsmLoc);
|
|
ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
|
|
SourceLocation AsmLoc);
|
|
StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
|
|
ArrayRef<Token> AsmToks,
|
|
StringRef AsmString,
|
|
unsigned NumOutputs, unsigned NumInputs,
|
|
ArrayRef<StringRef> Constraints,
|
|
ArrayRef<StringRef> Clobbers,
|
|
ArrayRef<Expr*> Exprs,
|
|
SourceLocation EndLoc);
|
|
LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
|
|
SourceLocation Location,
|
|
bool AlwaysCreate);
|
|
|
|
VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc, IdentifierInfo *Id,
|
|
bool Invalid = false);
|
|
|
|
Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
|
|
|
|
StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
|
|
Decl *Parm, Stmt *Body);
|
|
|
|
StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
|
|
|
|
StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
|
|
MultiStmtArg Catch, Stmt *Finally);
|
|
|
|
StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
|
|
StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
|
|
Scope *CurScope);
|
|
ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
|
|
Expr *operand);
|
|
StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
|
|
Expr *SynchExpr,
|
|
Stmt *SynchBody);
|
|
|
|
StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
|
|
|
|
VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
|
|
SourceLocation StartLoc,
|
|
SourceLocation IdLoc,
|
|
IdentifierInfo *Id);
|
|
|
|
Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
|
|
|
|
StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
|
|
Decl *ExDecl, Stmt *HandlerBlock);
|
|
StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
|
|
ArrayRef<Stmt *> Handlers);
|
|
|
|
StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
|
|
SourceLocation TryLoc, Stmt *TryBlock,
|
|
Stmt *Handler);
|
|
StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
|
|
Expr *FilterExpr,
|
|
Stmt *Block);
|
|
void ActOnStartSEHFinallyBlock();
|
|
void ActOnAbortSEHFinallyBlock();
|
|
StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
|
|
StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
|
|
|
|
void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
|
|
|
|
bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
|
|
|
|
/// If it's a file scoped decl that must warn if not used, keep track
|
|
/// of it.
|
|
void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
|
|
|
|
/// DiagnoseUnusedExprResult - If the statement passed in is an expression
|
|
/// whose result is unused, warn.
|
|
void DiagnoseUnusedExprResult(const Stmt *S);
|
|
void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
|
|
void DiagnoseUnusedDecl(const NamedDecl *ND);
|
|
|
|
/// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
|
|
/// statement as a \p Body, and it is located on the same line.
|
|
///
|
|
/// This helps prevent bugs due to typos, such as:
|
|
/// if (condition);
|
|
/// do_stuff();
|
|
void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
|
|
const Stmt *Body,
|
|
unsigned DiagID);
|
|
|
|
/// Warn if a for/while loop statement \p S, which is followed by
|
|
/// \p PossibleBody, has a suspicious null statement as a body.
|
|
void DiagnoseEmptyLoopBody(const Stmt *S,
|
|
const Stmt *PossibleBody);
|
|
|
|
/// Warn if a value is moved to itself.
|
|
void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
|
|
SourceLocation OpLoc);
|
|
|
|
/// Warn if we're implicitly casting from a _Nullable pointer type to a
|
|
/// _Nonnull one.
|
|
void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
|
|
SourceLocation Loc);
|
|
|
|
/// Warn when implicitly casting 0 to nullptr.
|
|
void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
|
|
|
|
ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
|
|
return DelayedDiagnostics.push(pool);
|
|
}
|
|
void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
|
|
|
|
typedef ProcessingContextState ParsingClassState;
|
|
ParsingClassState PushParsingClass() {
|
|
ParsingClassDepth++;
|
|
return DelayedDiagnostics.pushUndelayed();
|
|
}
|
|
void PopParsingClass(ParsingClassState state) {
|
|
ParsingClassDepth--;
|
|
DelayedDiagnostics.popUndelayed(state);
|
|
}
|
|
|
|
void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
|
|
|
|
void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass,
|
|
bool ObjCPropertyAccess,
|
|
bool AvoidPartialAvailabilityChecks = false,
|
|
ObjCInterfaceDecl *ClassReceiver = nullptr);
|
|
|
|
bool makeUnavailableInSystemHeader(SourceLocation loc,
|
|
UnavailableAttr::ImplicitReason reason);
|
|
|
|
/// Issue any -Wunguarded-availability warnings in \c FD
|
|
void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Expression Parsing Callbacks: SemaExpr.cpp.
|
|
|
|
bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
|
|
bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
|
|
const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
|
|
bool ObjCPropertyAccess = false,
|
|
bool AvoidPartialAvailabilityChecks = false,
|
|
ObjCInterfaceDecl *ClassReciever = nullptr);
|
|
void NoteDeletedFunction(FunctionDecl *FD);
|
|
void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
|
|
bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
|
|
ObjCMethodDecl *Getter,
|
|
SourceLocation Loc);
|
|
void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
|
|
ArrayRef<Expr *> Args);
|
|
|
|
void PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
|
|
ExpressionEvaluationContextRecord::ExpressionKind Type =
|
|
ExpressionEvaluationContextRecord::EK_Other);
|
|
enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
|
|
void PushExpressionEvaluationContext(
|
|
ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
|
|
ExpressionEvaluationContextRecord::ExpressionKind Type =
|
|
ExpressionEvaluationContextRecord::EK_Other);
|
|
void PopExpressionEvaluationContext();
|
|
|
|
void DiscardCleanupsInEvaluationContext();
|
|
|
|
ExprResult TransformToPotentiallyEvaluated(Expr *E);
|
|
ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
|
|
|
|
ExprResult CheckUnevaluatedOperand(Expr *E);
|
|
void CheckUnusedVolatileAssignment(Expr *E);
|
|
|
|
ExprResult ActOnConstantExpression(ExprResult Res);
|
|
|
|
// Functions for marking a declaration referenced. These functions also
|
|
// contain the relevant logic for marking if a reference to a function or
|
|
// variable is an odr-use (in the C++11 sense). There are separate variants
|
|
// for expressions referring to a decl; these exist because odr-use marking
|
|
// needs to be delayed for some constant variables when we build one of the
|
|
// named expressions.
|
|
//
|
|
// MightBeOdrUse indicates whether the use could possibly be an odr-use, and
|
|
// should usually be true. This only needs to be set to false if the lack of
|
|
// odr-use cannot be determined from the current context (for instance,
|
|
// because the name denotes a virtual function and was written without an
|
|
// explicit nested-name-specifier).
|
|
void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
|
|
void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
|
|
bool MightBeOdrUse = true);
|
|
void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
|
|
void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
|
|
void MarkMemberReferenced(MemberExpr *E);
|
|
void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
|
|
void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
|
|
unsigned CapturingScopeIndex);
|
|
|
|
ExprResult CheckLValueToRValueConversionOperand(Expr *E);
|
|
void CleanupVarDeclMarking();
|
|
|
|
enum TryCaptureKind {
|
|
TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
|
|
};
|
|
|
|
/// Try to capture the given variable.
|
|
///
|
|
/// \param Var The variable to capture.
|
|
///
|
|
/// \param Loc The location at which the capture occurs.
|
|
///
|
|
/// \param Kind The kind of capture, which may be implicit (for either a
|
|
/// block or a lambda), or explicit by-value or by-reference (for a lambda).
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis, if one is provided in
|
|
/// an explicit lambda capture.
|
|
///
|
|
/// \param BuildAndDiagnose Whether we are actually supposed to add the
|
|
/// captures or diagnose errors. If false, this routine merely check whether
|
|
/// the capture can occur without performing the capture itself or complaining
|
|
/// if the variable cannot be captured.
|
|
///
|
|
/// \param CaptureType Will be set to the type of the field used to capture
|
|
/// this variable in the innermost block or lambda. Only valid when the
|
|
/// variable can be captured.
|
|
///
|
|
/// \param DeclRefType Will be set to the type of a reference to the capture
|
|
/// from within the current scope. Only valid when the variable can be
|
|
/// captured.
|
|
///
|
|
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
|
|
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
|
|
/// This is useful when enclosing lambdas must speculatively capture
|
|
/// variables that may or may not be used in certain specializations of
|
|
/// a nested generic lambda.
|
|
///
|
|
/// \returns true if an error occurred (i.e., the variable cannot be
|
|
/// captured) and false if the capture succeeded.
|
|
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
|
|
SourceLocation EllipsisLoc, bool BuildAndDiagnose,
|
|
QualType &CaptureType,
|
|
QualType &DeclRefType,
|
|
const unsigned *const FunctionScopeIndexToStopAt);
|
|
|
|
/// Try to capture the given variable.
|
|
bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
|
|
TryCaptureKind Kind = TryCapture_Implicit,
|
|
SourceLocation EllipsisLoc = SourceLocation());
|
|
|
|
/// Checks if the variable must be captured.
|
|
bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
|
|
|
|
/// Given a variable, determine the type that a reference to that
|
|
/// variable will have in the given scope.
|
|
QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
|
|
|
|
/// Mark all of the declarations referenced within a particular AST node as
|
|
/// referenced. Used when template instantiation instantiates a non-dependent
|
|
/// type -- entities referenced by the type are now referenced.
|
|
void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
|
|
void MarkDeclarationsReferencedInExpr(Expr *E,
|
|
bool SkipLocalVariables = false);
|
|
|
|
/// Try to recover by turning the given expression into a
|
|
/// call. Returns true if recovery was attempted or an error was
|
|
/// emitted; this may also leave the ExprResult invalid.
|
|
bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
|
|
bool ForceComplain = false,
|
|
bool (*IsPlausibleResult)(QualType) = nullptr);
|
|
|
|
/// Figure out if an expression could be turned into a call.
|
|
bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
|
|
UnresolvedSetImpl &NonTemplateOverloads);
|
|
|
|
/// Conditionally issue a diagnostic based on the current
|
|
/// evaluation context.
|
|
///
|
|
/// \param Statement If Statement is non-null, delay reporting the
|
|
/// diagnostic until the function body is parsed, and then do a basic
|
|
/// reachability analysis to determine if the statement is reachable.
|
|
/// If it is unreachable, the diagnostic will not be emitted.
|
|
bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
|
|
const PartialDiagnostic &PD);
|
|
/// Similar, but diagnostic is only produced if all the specified statements
|
|
/// are reachable.
|
|
bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
|
|
const PartialDiagnostic &PD);
|
|
|
|
// Primary Expressions.
|
|
SourceRange getExprRange(Expr *E) const;
|
|
|
|
ExprResult ActOnIdExpression(
|
|
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
|
|
CorrectionCandidateCallback *CCC = nullptr,
|
|
bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
|
|
|
|
void DecomposeUnqualifiedId(const UnqualifiedId &Id,
|
|
TemplateArgumentListInfo &Buffer,
|
|
DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *&TemplateArgs);
|
|
|
|
bool
|
|
DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
|
|
CorrectionCandidateCallback &CCC,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
|
|
ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
|
|
|
|
DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
|
|
IdentifierInfo *II);
|
|
ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
|
|
|
|
ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
|
|
IdentifierInfo *II,
|
|
bool AllowBuiltinCreation=false);
|
|
|
|
ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool isAddressOfOperand,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
/// If \p D cannot be odr-used in the current expression evaluation context,
|
|
/// return a reason explaining why. Otherwise, return NOUR_None.
|
|
NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
|
|
|
|
DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
SourceLocation Loc,
|
|
const CXXScopeSpec *SS = nullptr);
|
|
DeclRefExpr *
|
|
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const CXXScopeSpec *SS = nullptr,
|
|
NamedDecl *FoundD = nullptr,
|
|
SourceLocation TemplateKWLoc = SourceLocation(),
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
DeclRefExpr *
|
|
BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
|
|
const DeclarationNameInfo &NameInfo,
|
|
NestedNameSpecifierLoc NNS,
|
|
NamedDecl *FoundD = nullptr,
|
|
SourceLocation TemplateKWLoc = SourceLocation(),
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
|
|
ExprResult
|
|
BuildAnonymousStructUnionMemberReference(
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation nameLoc,
|
|
IndirectFieldDecl *indirectField,
|
|
DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
|
|
Expr *baseObjectExpr = nullptr,
|
|
SourceLocation opLoc = SourceLocation());
|
|
|
|
ExprResult BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
const Scope *S);
|
|
ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
bool IsDefiniteInstance,
|
|
const Scope *S);
|
|
bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
|
|
const LookupResult &R,
|
|
bool HasTrailingLParen);
|
|
|
|
ExprResult
|
|
BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool IsAddressOfOperand, const Scope *S,
|
|
TypeSourceInfo **RecoveryTSI = nullptr);
|
|
|
|
ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
|
|
LookupResult &R,
|
|
bool NeedsADL,
|
|
bool AcceptInvalidDecl = false);
|
|
ExprResult BuildDeclarationNameExpr(
|
|
const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
|
|
NamedDecl *FoundD = nullptr,
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr,
|
|
bool AcceptInvalidDecl = false);
|
|
|
|
ExprResult BuildLiteralOperatorCall(LookupResult &R,
|
|
DeclarationNameInfo &SuffixInfo,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation LitEndLoc,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
|
|
|
|
ExprResult BuildPredefinedExpr(SourceLocation Loc,
|
|
PredefinedExpr::IdentKind IK);
|
|
ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
|
|
ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
|
|
|
|
bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
|
|
|
|
ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
|
|
ExprResult ActOnCharacterConstant(const Token &Tok,
|
|
Scope *UDLScope = nullptr);
|
|
ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
|
|
ExprResult ActOnParenListExpr(SourceLocation L,
|
|
SourceLocation R,
|
|
MultiExprArg Val);
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz").
|
|
ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
|
|
Scope *UDLScope = nullptr);
|
|
|
|
ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
Expr *ControllingExpr,
|
|
ArrayRef<ParsedType> ArgTypes,
|
|
ArrayRef<Expr *> ArgExprs);
|
|
ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
|
|
SourceLocation DefaultLoc,
|
|
SourceLocation RParenLoc,
|
|
Expr *ControllingExpr,
|
|
ArrayRef<TypeSourceInfo *> Types,
|
|
ArrayRef<Expr *> Exprs);
|
|
|
|
// Binary/Unary Operators. 'Tok' is the token for the operator.
|
|
ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
|
|
Expr *InputExpr);
|
|
ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
UnaryOperatorKind Opc, Expr *Input);
|
|
ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, Expr *Input);
|
|
|
|
bool isQualifiedMemberAccess(Expr *E);
|
|
QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
|
|
|
|
ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
|
|
SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
SourceRange R);
|
|
ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind);
|
|
ExprResult
|
|
ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
|
|
UnaryExprOrTypeTrait ExprKind,
|
|
bool IsType, void *TyOrEx,
|
|
SourceRange ArgRange);
|
|
|
|
ExprResult CheckPlaceholderExpr(Expr *E);
|
|
bool CheckVecStepExpr(Expr *E);
|
|
|
|
bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
|
|
bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
|
|
SourceRange ExprRange,
|
|
UnaryExprOrTypeTrait ExprKind);
|
|
ExprResult ActOnSizeofParameterPackExpr(Scope *S,
|
|
SourceLocation OpLoc,
|
|
IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
SourceLocation RParenLoc);
|
|
ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind, Expr *Input);
|
|
|
|
ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc);
|
|
ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
|
|
Expr *Idx, SourceLocation RLoc);
|
|
ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
|
|
Expr *LowerBound, SourceLocation ColonLoc,
|
|
Expr *Length, SourceLocation RBLoc);
|
|
|
|
// This struct is for use by ActOnMemberAccess to allow
|
|
// BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
|
|
// changing the access operator from a '.' to a '->' (to see if that is the
|
|
// change needed to fix an error about an unknown member, e.g. when the class
|
|
// defines a custom operator->).
|
|
struct ActOnMemberAccessExtraArgs {
|
|
Scope *S;
|
|
UnqualifiedId &Id;
|
|
Decl *ObjCImpDecl;
|
|
};
|
|
|
|
ExprResult BuildMemberReferenceExpr(
|
|
Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
|
|
CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
const Scope *S,
|
|
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
|
|
|
|
ExprResult
|
|
BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
|
|
bool IsArrow, const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope, LookupResult &R,
|
|
const TemplateArgumentListInfo *TemplateArgs,
|
|
const Scope *S,
|
|
bool SuppressQualifierCheck = false,
|
|
ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
|
|
|
|
ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
|
|
SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS, FieldDecl *Field,
|
|
DeclAccessPair FoundDecl,
|
|
const DeclarationNameInfo &MemberNameInfo);
|
|
|
|
ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
|
|
|
|
bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
|
|
const CXXScopeSpec &SS,
|
|
const LookupResult &R);
|
|
|
|
ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
|
|
bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
NamedDecl *FirstQualifierInScope,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Member,
|
|
Decl *ObjCImpDecl);
|
|
|
|
MemberExpr *
|
|
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
|
|
const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
|
|
ValueDecl *Member, DeclAccessPair FoundDecl,
|
|
bool HadMultipleCandidates,
|
|
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
MemberExpr *
|
|
BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
|
|
NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
|
|
ValueDecl *Member, DeclAccessPair FoundDecl,
|
|
bool HadMultipleCandidates,
|
|
const DeclarationNameInfo &MemberNameInfo, QualType Ty,
|
|
ExprValueKind VK, ExprObjectKind OK,
|
|
const TemplateArgumentListInfo *TemplateArgs = nullptr);
|
|
|
|
void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
|
|
bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
bool ExecConfig = false);
|
|
void CheckStaticArrayArgument(SourceLocation CallLoc,
|
|
ParmVarDecl *Param,
|
|
const Expr *ArgExpr);
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig = nullptr);
|
|
ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
|
|
MultiExprArg ArgExprs, SourceLocation RParenLoc,
|
|
Expr *ExecConfig = nullptr,
|
|
bool IsExecConfig = false);
|
|
enum class AtomicArgumentOrder { API, AST };
|
|
ExprResult
|
|
BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
|
|
SourceLocation RParenLoc, MultiExprArg Args,
|
|
AtomicExpr::AtomicOp Op,
|
|
AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
|
|
ExprResult
|
|
BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
|
|
ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
|
|
Expr *Config = nullptr, bool IsExecConfig = false,
|
|
ADLCallKind UsesADL = ADLCallKind::NotADL);
|
|
|
|
ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
|
|
MultiExprArg ExecConfig,
|
|
SourceLocation GGGLoc);
|
|
|
|
ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
|
|
Declarator &D, ParsedType &Ty,
|
|
SourceLocation RParenLoc, Expr *CastExpr);
|
|
ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *Ty,
|
|
SourceLocation RParenLoc,
|
|
Expr *Op);
|
|
CastKind PrepareScalarCast(ExprResult &src, QualType destType);
|
|
|
|
/// Build an altivec or OpenCL literal.
|
|
ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc, Expr *E,
|
|
TypeSourceInfo *TInfo);
|
|
|
|
ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
|
|
|
|
ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
|
|
ParsedType Ty,
|
|
SourceLocation RParenLoc,
|
|
Expr *InitExpr);
|
|
|
|
ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation RParenLoc,
|
|
Expr *LiteralExpr);
|
|
|
|
ExprResult ActOnInitList(SourceLocation LBraceLoc,
|
|
MultiExprArg InitArgList,
|
|
SourceLocation RBraceLoc);
|
|
|
|
ExprResult BuildInitList(SourceLocation LBraceLoc,
|
|
MultiExprArg InitArgList,
|
|
SourceLocation RBraceLoc);
|
|
|
|
ExprResult ActOnDesignatedInitializer(Designation &Desig,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
ExprResult Init);
|
|
|
|
private:
|
|
static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
|
|
|
|
public:
|
|
ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
|
|
ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
|
|
BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
|
|
ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
|
|
Expr *LHSExpr, Expr *RHSExpr);
|
|
|
|
void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
|
|
LabelDecl *TheDecl);
|
|
|
|
void ActOnStartStmtExpr();
|
|
ExprResult ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
|
|
SourceLocation RPLoc); // "({..})"
|
|
// Handle the final expression in a statement expression.
|
|
ExprResult ActOnStmtExprResult(ExprResult E);
|
|
void ActOnStmtExprError();
|
|
|
|
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
|
|
struct OffsetOfComponent {
|
|
SourceLocation LocStart, LocEnd;
|
|
bool isBrackets; // true if [expr], false if .ident
|
|
union {
|
|
IdentifierInfo *IdentInfo;
|
|
Expr *E;
|
|
} U;
|
|
};
|
|
|
|
/// __builtin_offsetof(type, a.b[123][456].c)
|
|
ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
TypeSourceInfo *TInfo,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc);
|
|
ExprResult ActOnBuiltinOffsetOf(Scope *S,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
ParsedType ParsedArgTy,
|
|
ArrayRef<OffsetOfComponent> Components,
|
|
SourceLocation RParenLoc);
|
|
|
|
// __builtin_choose_expr(constExpr, expr1, expr2)
|
|
ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
|
|
Expr *CondExpr, Expr *LHSExpr,
|
|
Expr *RHSExpr, SourceLocation RPLoc);
|
|
|
|
// __builtin_va_arg(expr, type)
|
|
ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
|
|
SourceLocation RPLoc);
|
|
ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
|
|
TypeSourceInfo *TInfo, SourceLocation RPLoc);
|
|
|
|
// __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
|
|
// __builtin_COLUMN()
|
|
ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RPLoc);
|
|
|
|
// Build a potentially resolved SourceLocExpr.
|
|
ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
|
|
SourceLocation BuiltinLoc, SourceLocation RPLoc,
|
|
DeclContext *ParentContext);
|
|
|
|
// __null
|
|
ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
|
|
|
|
bool CheckCaseExpression(Expr *E);
|
|
|
|
/// Describes the result of an "if-exists" condition check.
|
|
enum IfExistsResult {
|
|
/// The symbol exists.
|
|
IER_Exists,
|
|
|
|
/// The symbol does not exist.
|
|
IER_DoesNotExist,
|
|
|
|
/// The name is a dependent name, so the results will differ
|
|
/// from one instantiation to the next.
|
|
IER_Dependent,
|
|
|
|
/// An error occurred.
|
|
IER_Error
|
|
};
|
|
|
|
IfExistsResult
|
|
CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &TargetNameInfo);
|
|
|
|
IfExistsResult
|
|
CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
|
|
bool IsIfExists, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name);
|
|
|
|
StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
|
|
bool IsIfExists,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
DeclarationNameInfo NameInfo,
|
|
Stmt *Nested);
|
|
StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
|
|
bool IsIfExists,
|
|
CXXScopeSpec &SS, UnqualifiedId &Name,
|
|
Stmt *Nested);
|
|
|
|
//===------------------------- "Block" Extension ------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is
|
|
/// started.
|
|
void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
|
|
|
|
/// ActOnBlockArguments - This callback allows processing of block arguments.
|
|
/// If there are no arguments, this is still invoked.
|
|
void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
|
|
Scope *CurScope);
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
|
|
Scope *CurScope);
|
|
|
|
//===---------------------------- Clang Extensions ----------------------===//
|
|
|
|
/// __builtin_convertvector(...)
|
|
ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
//===---------------------------- OpenCL Features -----------------------===//
|
|
|
|
/// __builtin_astype(...)
|
|
ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
//===---------------------------- C++ Features --------------------------===//
|
|
|
|
// Act on C++ namespaces
|
|
Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation IdentLoc, IdentifierInfo *Ident,
|
|
SourceLocation LBrace,
|
|
const ParsedAttributesView &AttrList,
|
|
UsingDirectiveDecl *&UsingDecl);
|
|
void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
|
|
|
|
NamespaceDecl *getStdNamespace() const;
|
|
NamespaceDecl *getOrCreateStdNamespace();
|
|
|
|
NamespaceDecl *lookupStdExperimentalNamespace();
|
|
|
|
CXXRecordDecl *getStdBadAlloc() const;
|
|
EnumDecl *getStdAlignValT() const;
|
|
|
|
private:
|
|
// A cache representing if we've fully checked the various comparison category
|
|
// types stored in ASTContext. The bit-index corresponds to the integer value
|
|
// of a ComparisonCategoryType enumerator.
|
|
llvm::SmallBitVector FullyCheckedComparisonCategories;
|
|
|
|
ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
|
|
CXXScopeSpec &SS,
|
|
ParsedType TemplateTypeTy,
|
|
IdentifierInfo *MemberOrBase);
|
|
|
|
public:
|
|
enum class ComparisonCategoryUsage {
|
|
/// The '<=>' operator was used in an expression and a builtin operator
|
|
/// was selected.
|
|
OperatorInExpression,
|
|
/// A defaulted 'operator<=>' needed the comparison category. This
|
|
/// typically only applies to 'std::strong_ordering', due to the implicit
|
|
/// fallback return value.
|
|
DefaultedOperator,
|
|
};
|
|
|
|
/// Lookup the specified comparison category types in the standard
|
|
/// library, an check the VarDecls possibly returned by the operator<=>
|
|
/// builtins for that type.
|
|
///
|
|
/// \return The type of the comparison category type corresponding to the
|
|
/// specified Kind, or a null type if an error occurs
|
|
QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
|
|
SourceLocation Loc,
|
|
ComparisonCategoryUsage Usage);
|
|
|
|
/// Tests whether Ty is an instance of std::initializer_list and, if
|
|
/// it is and Element is not NULL, assigns the element type to Element.
|
|
bool isStdInitializerList(QualType Ty, QualType *Element);
|
|
|
|
/// Looks for the std::initializer_list template and instantiates it
|
|
/// with Element, or emits an error if it's not found.
|
|
///
|
|
/// \returns The instantiated template, or null on error.
|
|
QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
|
|
|
|
/// Determine whether Ctor is an initializer-list constructor, as
|
|
/// defined in [dcl.init.list]p2.
|
|
bool isInitListConstructor(const FunctionDecl *Ctor);
|
|
|
|
Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
|
|
SourceLocation NamespcLoc, CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *NamespcName,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
|
|
|
|
Decl *ActOnNamespaceAliasDef(Scope *CurScope,
|
|
SourceLocation NamespaceLoc,
|
|
SourceLocation AliasLoc,
|
|
IdentifierInfo *Alias,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation IdentLoc,
|
|
IdentifierInfo *Ident);
|
|
|
|
void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
|
|
bool CheckUsingShadowDecl(UsingDecl *UD, NamedDecl *Target,
|
|
const LookupResult &PreviousDecls,
|
|
UsingShadowDecl *&PrevShadow);
|
|
UsingShadowDecl *BuildUsingShadowDecl(Scope *S, UsingDecl *UD,
|
|
NamedDecl *Target,
|
|
UsingShadowDecl *PrevDecl);
|
|
|
|
bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
const LookupResult &Previous);
|
|
bool CheckUsingDeclQualifier(SourceLocation UsingLoc,
|
|
bool HasTypename,
|
|
const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
SourceLocation NameLoc);
|
|
|
|
NamedDecl *BuildUsingDeclaration(
|
|
Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
|
|
bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
|
|
DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
|
|
const ParsedAttributesView &AttrList, bool IsInstantiation);
|
|
NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
|
|
ArrayRef<NamedDecl *> Expansions);
|
|
|
|
bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
|
|
|
|
/// Given a derived-class using shadow declaration for a constructor and the
|
|
/// correspnding base class constructor, find or create the implicit
|
|
/// synthesized derived class constructor to use for this initialization.
|
|
CXXConstructorDecl *
|
|
findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
|
|
ConstructorUsingShadowDecl *DerivedShadow);
|
|
|
|
Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
|
|
SourceLocation UsingLoc,
|
|
SourceLocation TypenameLoc, CXXScopeSpec &SS,
|
|
UnqualifiedId &Name, SourceLocation EllipsisLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
|
|
MultiTemplateParamsArg TemplateParams,
|
|
SourceLocation UsingLoc, UnqualifiedId &Name,
|
|
const ParsedAttributesView &AttrList,
|
|
TypeResult Type, Decl *DeclFromDeclSpec);
|
|
|
|
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
|
|
/// including handling of its default argument expressions.
|
|
///
|
|
/// \param ConstructKind - a CXXConstructExpr::ConstructionKind
|
|
ExprResult
|
|
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor, MultiExprArg Exprs,
|
|
bool HadMultipleCandidates, bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
bool RequiresZeroInit, unsigned ConstructKind,
|
|
SourceRange ParenRange);
|
|
|
|
/// Build a CXXConstructExpr whose constructor has already been resolved if
|
|
/// it denotes an inherited constructor.
|
|
ExprResult
|
|
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
CXXConstructorDecl *Constructor, bool Elidable,
|
|
MultiExprArg Exprs,
|
|
bool HadMultipleCandidates, bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
bool RequiresZeroInit, unsigned ConstructKind,
|
|
SourceRange ParenRange);
|
|
|
|
// FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
|
|
// the constructor can be elidable?
|
|
ExprResult
|
|
BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
|
NamedDecl *FoundDecl,
|
|
CXXConstructorDecl *Constructor, bool Elidable,
|
|
MultiExprArg Exprs, bool HadMultipleCandidates,
|
|
bool IsListInitialization,
|
|
bool IsStdInitListInitialization, bool RequiresZeroInit,
|
|
unsigned ConstructKind, SourceRange ParenRange);
|
|
|
|
ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
|
|
|
|
|
|
/// Instantiate or parse a C++ default argument expression as necessary.
|
|
/// Return true on error.
|
|
bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param);
|
|
|
|
/// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
|
|
/// the default expr if needed.
|
|
ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
|
|
FunctionDecl *FD,
|
|
ParmVarDecl *Param);
|
|
|
|
/// FinalizeVarWithDestructor - Prepare for calling destructor on the
|
|
/// constructed variable.
|
|
void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
|
|
|
|
/// Helper class that collects exception specifications for
|
|
/// implicitly-declared special member functions.
|
|
class ImplicitExceptionSpecification {
|
|
// Pointer to allow copying
|
|
Sema *Self;
|
|
// We order exception specifications thus:
|
|
// noexcept is the most restrictive, but is only used in C++11.
|
|
// throw() comes next.
|
|
// Then a throw(collected exceptions)
|
|
// Finally no specification, which is expressed as noexcept(false).
|
|
// throw(...) is used instead if any called function uses it.
|
|
ExceptionSpecificationType ComputedEST;
|
|
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
|
|
SmallVector<QualType, 4> Exceptions;
|
|
|
|
void ClearExceptions() {
|
|
ExceptionsSeen.clear();
|
|
Exceptions.clear();
|
|
}
|
|
|
|
public:
|
|
explicit ImplicitExceptionSpecification(Sema &Self)
|
|
: Self(&Self), ComputedEST(EST_BasicNoexcept) {
|
|
if (!Self.getLangOpts().CPlusPlus11)
|
|
ComputedEST = EST_DynamicNone;
|
|
}
|
|
|
|
/// Get the computed exception specification type.
|
|
ExceptionSpecificationType getExceptionSpecType() const {
|
|
assert(!isComputedNoexcept(ComputedEST) &&
|
|
"noexcept(expr) should not be a possible result");
|
|
return ComputedEST;
|
|
}
|
|
|
|
/// The number of exceptions in the exception specification.
|
|
unsigned size() const { return Exceptions.size(); }
|
|
|
|
/// The set of exceptions in the exception specification.
|
|
const QualType *data() const { return Exceptions.data(); }
|
|
|
|
/// Integrate another called method into the collected data.
|
|
void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
|
|
|
|
/// Integrate an invoked expression into the collected data.
|
|
void CalledExpr(Expr *E) { CalledStmt(E); }
|
|
|
|
/// Integrate an invoked statement into the collected data.
|
|
void CalledStmt(Stmt *S);
|
|
|
|
/// Overwrite an EPI's exception specification with this
|
|
/// computed exception specification.
|
|
FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
|
|
FunctionProtoType::ExceptionSpecInfo ESI;
|
|
ESI.Type = getExceptionSpecType();
|
|
if (ESI.Type == EST_Dynamic) {
|
|
ESI.Exceptions = Exceptions;
|
|
} else if (ESI.Type == EST_None) {
|
|
/// C++11 [except.spec]p14:
|
|
/// The exception-specification is noexcept(false) if the set of
|
|
/// potential exceptions of the special member function contains "any"
|
|
ESI.Type = EST_NoexceptFalse;
|
|
ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
|
|
tok::kw_false).get();
|
|
}
|
|
return ESI;
|
|
}
|
|
};
|
|
|
|
/// Determine what sort of exception specification a defaulted
|
|
/// copy constructor of a class will have.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
|
|
CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification a defaulted
|
|
/// default constructor of a class will have, and whether the parameter
|
|
/// will be const.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification a defaulted
|
|
/// copy assignment operator of a class will have, and whether the
|
|
/// parameter will be const.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification a defaulted move
|
|
/// constructor of a class will have.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification a defaulted move
|
|
/// assignment operator of a class will have.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification a defaulted
|
|
/// destructor of a class will have.
|
|
ImplicitExceptionSpecification
|
|
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD);
|
|
|
|
/// Determine what sort of exception specification an inheriting
|
|
/// constructor of a class will have.
|
|
ImplicitExceptionSpecification
|
|
ComputeInheritingCtorExceptionSpec(SourceLocation Loc,
|
|
CXXConstructorDecl *CD);
|
|
|
|
/// Evaluate the implicit exception specification for a defaulted
|
|
/// special member function.
|
|
void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
|
|
|
|
/// Check the given noexcept-specifier, convert its expression, and compute
|
|
/// the appropriate ExceptionSpecificationType.
|
|
ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr,
|
|
ExceptionSpecificationType &EST);
|
|
|
|
/// Check the given exception-specification and update the
|
|
/// exception specification information with the results.
|
|
void checkExceptionSpecification(bool IsTopLevel,
|
|
ExceptionSpecificationType EST,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges,
|
|
Expr *NoexceptExpr,
|
|
SmallVectorImpl<QualType> &Exceptions,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI);
|
|
|
|
/// Determine if we're in a case where we need to (incorrectly) eagerly
|
|
/// parse an exception specification to work around a libstdc++ bug.
|
|
bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
|
|
|
|
/// Add an exception-specification to the given member function
|
|
/// (or member function template). The exception-specification was parsed
|
|
/// after the method itself was declared.
|
|
void actOnDelayedExceptionSpecification(Decl *Method,
|
|
ExceptionSpecificationType EST,
|
|
SourceRange SpecificationRange,
|
|
ArrayRef<ParsedType> DynamicExceptions,
|
|
ArrayRef<SourceRange> DynamicExceptionRanges,
|
|
Expr *NoexceptExpr);
|
|
|
|
class InheritedConstructorInfo;
|
|
|
|
/// Determine if a special member function should have a deleted
|
|
/// definition when it is defaulted.
|
|
bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
|
|
InheritedConstructorInfo *ICI = nullptr,
|
|
bool Diagnose = false);
|
|
|
|
/// Produce notes explaining why a defaulted function was defined as deleted.
|
|
void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
|
|
|
|
/// Declare the implicit default constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// default constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared default constructor.
|
|
CXXConstructorDecl *DeclareImplicitDefaultConstructor(
|
|
CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitDefaultConstructor - Checks for feasibility of
|
|
/// defining this constructor as the default constructor.
|
|
void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit destructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// destructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared destructor.
|
|
CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitDestructor - Checks for feasibility of
|
|
/// defining this destructor as the default destructor.
|
|
void DefineImplicitDestructor(SourceLocation CurrentLocation,
|
|
CXXDestructorDecl *Destructor);
|
|
|
|
/// Build an exception spec for destructors that don't have one.
|
|
///
|
|
/// C++11 says that user-defined destructors with no exception spec get one
|
|
/// that looks as if the destructor was implicitly declared.
|
|
void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
|
|
|
|
/// Define the specified inheriting constructor.
|
|
void DefineInheritingConstructor(SourceLocation UseLoc,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit copy constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// copy constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared copy constructor.
|
|
CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitCopyConstructor - Checks for feasibility of
|
|
/// defining this constructor as the copy constructor.
|
|
void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit move constructor for the given class.
|
|
///
|
|
/// \param ClassDecl The Class declaration into which the implicit
|
|
/// move constructor will be added.
|
|
///
|
|
/// \returns The implicitly-declared move constructor, or NULL if it wasn't
|
|
/// declared.
|
|
CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
|
|
|
|
/// DefineImplicitMoveConstructor - Checks for feasibility of
|
|
/// defining this constructor as the move constructor.
|
|
void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
|
|
CXXConstructorDecl *Constructor);
|
|
|
|
/// Declare the implicit copy assignment operator for the given class.
|
|
///
|
|
/// \param ClassDecl The class declaration into which the implicit
|
|
/// copy assignment operator will be added.
|
|
///
|
|
/// \returns The implicitly-declared copy assignment operator.
|
|
CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
|
|
|
|
/// Defines an implicitly-declared copy assignment operator.
|
|
void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *MethodDecl);
|
|
|
|
/// Declare the implicit move assignment operator for the given class.
|
|
///
|
|
/// \param ClassDecl The Class declaration into which the implicit
|
|
/// move assignment operator will be added.
|
|
///
|
|
/// \returns The implicitly-declared move assignment operator, or NULL if it
|
|
/// wasn't declared.
|
|
CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
|
|
|
|
/// Defines an implicitly-declared move assignment operator.
|
|
void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
|
|
CXXMethodDecl *MethodDecl);
|
|
|
|
/// Force the declaration of any implicitly-declared members of this
|
|
/// class.
|
|
void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
|
|
|
|
/// Check a completed declaration of an implicit special member.
|
|
void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
|
|
|
|
/// Determine whether the given function is an implicitly-deleted
|
|
/// special member function.
|
|
bool isImplicitlyDeleted(FunctionDecl *FD);
|
|
|
|
/// Check whether 'this' shows up in the type of a static member
|
|
/// function after the (naturally empty) cv-qualifier-seq would be.
|
|
///
|
|
/// \returns true if an error occurred.
|
|
bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
|
|
|
|
/// Whether this' shows up in the exception specification of a static
|
|
/// member function.
|
|
bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
|
|
|
|
/// Check whether 'this' shows up in the attributes of the given
|
|
/// static member function.
|
|
///
|
|
/// \returns true if an error occurred.
|
|
bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
|
|
|
|
/// MaybeBindToTemporary - If the passed in expression has a record type with
|
|
/// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
|
|
/// it simply returns the passed in expression.
|
|
ExprResult MaybeBindToTemporary(Expr *E);
|
|
|
|
bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
|
|
MultiExprArg ArgsPtr,
|
|
SourceLocation Loc,
|
|
SmallVectorImpl<Expr*> &ConvertedArgs,
|
|
bool AllowExplicit = false,
|
|
bool IsListInitialization = false);
|
|
|
|
ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
|
|
SourceLocation NameLoc,
|
|
IdentifierInfo &Name);
|
|
|
|
ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
bool EnteringContext);
|
|
ParsedType getDestructorName(SourceLocation TildeLoc,
|
|
IdentifierInfo &II, SourceLocation NameLoc,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext);
|
|
|
|
ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
|
|
ParsedType ObjectType);
|
|
|
|
// Checks that reinterpret casts don't have undefined behavior.
|
|
void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
|
|
bool IsDereference, SourceRange Range);
|
|
|
|
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
|
|
ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
|
|
tok::TokenKind Kind,
|
|
SourceLocation LAngleBracketLoc,
|
|
Declarator &D,
|
|
SourceLocation RAngleBracketLoc,
|
|
SourceLocation LParenLoc,
|
|
Expr *E,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
|
|
tok::TokenKind Kind,
|
|
TypeSourceInfo *Ty,
|
|
Expr *E,
|
|
SourceRange AngleBrackets,
|
|
SourceRange Parens);
|
|
|
|
ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
|
|
ExprResult Operand,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
|
|
Expr *Operand, SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildCXXTypeId(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildCXXTypeId(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *Operand,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// ActOnCXXTypeid - Parse typeid( something ).
|
|
ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
|
|
SourceLocation LParenLoc, bool isType,
|
|
void *TyOrExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
ExprResult BuildCXXUuidof(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
TypeSourceInfo *Operand,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildCXXUuidof(QualType TypeInfoType,
|
|
SourceLocation TypeidLoc,
|
|
Expr *Operand,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// ActOnCXXUuidof - Parse __uuidof( something ).
|
|
ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
|
|
SourceLocation LParenLoc, bool isType,
|
|
void *TyOrExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// Handle a C++1z fold-expression: ( expr op ... op expr ).
|
|
ExprResult ActOnCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
|
|
tok::TokenKind Operator,
|
|
SourceLocation EllipsisLoc, Expr *RHS,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildCXXFoldExpr(SourceLocation LParenLoc, Expr *LHS,
|
|
BinaryOperatorKind Operator,
|
|
SourceLocation EllipsisLoc, Expr *RHS,
|
|
SourceLocation RParenLoc,
|
|
Optional<unsigned> NumExpansions);
|
|
ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
|
|
BinaryOperatorKind Operator);
|
|
|
|
//// ActOnCXXThis - Parse 'this' pointer.
|
|
ExprResult ActOnCXXThis(SourceLocation loc);
|
|
|
|
/// Build a CXXThisExpr and mark it referenced in the current context.
|
|
Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
|
|
void MarkThisReferenced(CXXThisExpr *This);
|
|
|
|
/// Try to retrieve the type of the 'this' pointer.
|
|
///
|
|
/// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
|
|
QualType getCurrentThisType();
|
|
|
|
/// When non-NULL, the C++ 'this' expression is allowed despite the
|
|
/// current context not being a non-static member function. In such cases,
|
|
/// this provides the type used for 'this'.
|
|
QualType CXXThisTypeOverride;
|
|
|
|
/// RAII object used to temporarily allow the C++ 'this' expression
|
|
/// to be used, with the given qualifiers on the current class type.
|
|
class CXXThisScopeRAII {
|
|
Sema &S;
|
|
QualType OldCXXThisTypeOverride;
|
|
bool Enabled;
|
|
|
|
public:
|
|
/// Introduce a new scope where 'this' may be allowed (when enabled),
|
|
/// using the given declaration (which is either a class template or a
|
|
/// class) along with the given qualifiers.
|
|
/// along with the qualifiers placed on '*this'.
|
|
CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
|
|
bool Enabled = true);
|
|
|
|
~CXXThisScopeRAII();
|
|
};
|
|
|
|
/// Make sure the value of 'this' is actually available in the current
|
|
/// context, if it is a potentially evaluated context.
|
|
///
|
|
/// \param Loc The location at which the capture of 'this' occurs.
|
|
///
|
|
/// \param Explicit Whether 'this' is explicitly captured in a lambda
|
|
/// capture list.
|
|
///
|
|
/// \param FunctionScopeIndexToStopAt If non-null, it points to the index
|
|
/// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
|
|
/// This is useful when enclosing lambdas must speculatively capture
|
|
/// 'this' that may or may not be used in certain specializations of
|
|
/// a nested generic lambda (depending on whether the name resolves to
|
|
/// a non-static member function or a static function).
|
|
/// \return returns 'true' if failed, 'false' if success.
|
|
bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
|
|
bool BuildAndDiagnose = true,
|
|
const unsigned *const FunctionScopeIndexToStopAt = nullptr,
|
|
bool ByCopy = false);
|
|
|
|
/// Determine whether the given type is the type of *this that is used
|
|
/// outside of the body of a member function for a type that is currently
|
|
/// being defined.
|
|
bool isThisOutsideMemberFunctionBody(QualType BaseType);
|
|
|
|
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
|
|
ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
|
|
|
|
|
|
/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
|
|
ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
|
|
|
|
ExprResult
|
|
ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
|
|
SourceLocation AtLoc, SourceLocation RParen);
|
|
|
|
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
|
|
ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
|
|
|
|
//// ActOnCXXThrow - Parse throw expressions.
|
|
ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
|
|
ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
|
|
bool IsThrownVarInScope);
|
|
bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
|
|
|
|
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
|
|
/// Can be interpreted either as function-style casting ("int(x)")
|
|
/// or class type construction ("ClassType(x,y,z)")
|
|
/// or creation of a value-initialized type ("int()").
|
|
ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
|
|
SourceLocation LParenOrBraceLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenOrBraceLoc,
|
|
bool ListInitialization);
|
|
|
|
ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
|
|
SourceLocation LParenLoc,
|
|
MultiExprArg Exprs,
|
|
SourceLocation RParenLoc,
|
|
bool ListInitialization);
|
|
|
|
/// ActOnCXXNew - Parsed a C++ 'new' expression.
|
|
ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens, Declarator &D,
|
|
Expr *Initializer);
|
|
ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
|
|
SourceLocation PlacementLParen,
|
|
MultiExprArg PlacementArgs,
|
|
SourceLocation PlacementRParen,
|
|
SourceRange TypeIdParens,
|
|
QualType AllocType,
|
|
TypeSourceInfo *AllocTypeInfo,
|
|
Optional<Expr *> ArraySize,
|
|
SourceRange DirectInitRange,
|
|
Expr *Initializer);
|
|
|
|
/// Determine whether \p FD is an aligned allocation or deallocation
|
|
/// function that is unavailable.
|
|
bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
|
|
|
|
/// Produce diagnostics if \p FD is an aligned allocation or deallocation
|
|
/// function that is unavailable.
|
|
void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
|
|
SourceLocation Loc);
|
|
|
|
bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
|
|
SourceRange R);
|
|
|
|
/// The scope in which to find allocation functions.
|
|
enum AllocationFunctionScope {
|
|
/// Only look for allocation functions in the global scope.
|
|
AFS_Global,
|
|
/// Only look for allocation functions in the scope of the
|
|
/// allocated class.
|
|
AFS_Class,
|
|
/// Look for allocation functions in both the global scope
|
|
/// and in the scope of the allocated class.
|
|
AFS_Both
|
|
};
|
|
|
|
/// Finds the overloads of operator new and delete that are appropriate
|
|
/// for the allocation.
|
|
bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
|
|
AllocationFunctionScope NewScope,
|
|
AllocationFunctionScope DeleteScope,
|
|
QualType AllocType, bool IsArray,
|
|
bool &PassAlignment, MultiExprArg PlaceArgs,
|
|
FunctionDecl *&OperatorNew,
|
|
FunctionDecl *&OperatorDelete,
|
|
bool Diagnose = true);
|
|
void DeclareGlobalNewDelete();
|
|
void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
|
|
ArrayRef<QualType> Params);
|
|
|
|
bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
|
|
DeclarationName Name, FunctionDecl* &Operator,
|
|
bool Diagnose = true);
|
|
FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
|
|
bool CanProvideSize,
|
|
bool Overaligned,
|
|
DeclarationName Name);
|
|
FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
|
|
CXXRecordDecl *RD);
|
|
|
|
/// ActOnCXXDelete - Parsed a C++ 'delete' expression
|
|
ExprResult ActOnCXXDelete(SourceLocation StartLoc,
|
|
bool UseGlobal, bool ArrayForm,
|
|
Expr *Operand);
|
|
void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
|
|
bool IsDelete, bool CallCanBeVirtual,
|
|
bool WarnOnNonAbstractTypes,
|
|
SourceLocation DtorLoc);
|
|
|
|
ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
|
|
Expr *Operand, SourceLocation RParen);
|
|
ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
|
|
SourceLocation RParen);
|
|
|
|
/// Parsed one of the type trait support pseudo-functions.
|
|
ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<ParsedType> Args,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
|
|
ArrayRef<TypeSourceInfo *> Args,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// ActOnArrayTypeTrait - Parsed one of the binary type trait support
|
|
/// pseudo-functions.
|
|
ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
|
|
SourceLocation KWLoc,
|
|
ParsedType LhsTy,
|
|
Expr *DimExpr,
|
|
SourceLocation RParen);
|
|
|
|
ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
|
|
SourceLocation KWLoc,
|
|
TypeSourceInfo *TSInfo,
|
|
Expr *DimExpr,
|
|
SourceLocation RParen);
|
|
|
|
/// ActOnExpressionTrait - Parsed one of the unary type trait support
|
|
/// pseudo-functions.
|
|
ExprResult ActOnExpressionTrait(ExpressionTrait OET,
|
|
SourceLocation KWLoc,
|
|
Expr *Queried,
|
|
SourceLocation RParen);
|
|
|
|
ExprResult BuildExpressionTrait(ExpressionTrait OET,
|
|
SourceLocation KWLoc,
|
|
Expr *Queried,
|
|
SourceLocation RParen);
|
|
|
|
ExprResult ActOnStartCXXMemberReference(Scope *S,
|
|
Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
ParsedType &ObjectType,
|
|
bool &MayBePseudoDestructor);
|
|
|
|
ExprResult BuildPseudoDestructorExpr(Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
const CXXScopeSpec &SS,
|
|
TypeSourceInfo *ScopeType,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
PseudoDestructorTypeStorage DestroyedType);
|
|
|
|
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
CXXScopeSpec &SS,
|
|
UnqualifiedId &FirstTypeName,
|
|
SourceLocation CCLoc,
|
|
SourceLocation TildeLoc,
|
|
UnqualifiedId &SecondTypeName);
|
|
|
|
ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
|
|
SourceLocation OpLoc,
|
|
tok::TokenKind OpKind,
|
|
SourceLocation TildeLoc,
|
|
const DeclSpec& DS);
|
|
|
|
/// MaybeCreateExprWithCleanups - If the current full-expression
|
|
/// requires any cleanups, surround it with a ExprWithCleanups node.
|
|
/// Otherwise, just returns the passed-in expression.
|
|
Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
|
|
Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
|
|
ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
|
|
|
|
MaterializeTemporaryExpr *
|
|
CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
|
|
bool BoundToLvalueReference);
|
|
|
|
ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
|
|
return ActOnFinishFullExpr(
|
|
Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
|
|
}
|
|
ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
|
|
bool DiscardedValue, bool IsConstexpr = false);
|
|
StmtResult ActOnFinishFullStmt(Stmt *Stmt);
|
|
|
|
// Marks SS invalid if it represents an incomplete type.
|
|
bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
|
|
|
|
DeclContext *computeDeclContext(QualType T);
|
|
DeclContext *computeDeclContext(const CXXScopeSpec &SS,
|
|
bool EnteringContext = false);
|
|
bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
|
|
CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
|
|
|
|
/// The parser has parsed a global nested-name-specifier '::'.
|
|
///
|
|
/// \param CCLoc The location of the '::'.
|
|
///
|
|
/// \param SS The nested-name-specifier, which will be updated in-place
|
|
/// to reflect the parsed nested-name-specifier.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
|
|
|
|
/// The parser has parsed a '__super' nested-name-specifier.
|
|
///
|
|
/// \param SuperLoc The location of the '__super' keyword.
|
|
///
|
|
/// \param ColonColonLoc The location of the '::'.
|
|
///
|
|
/// \param SS The nested-name-specifier, which will be updated in-place
|
|
/// to reflect the parsed nested-name-specifier.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
|
|
SourceLocation ColonColonLoc, CXXScopeSpec &SS);
|
|
|
|
bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
|
|
bool *CanCorrect = nullptr);
|
|
NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
|
|
|
|
/// Keeps information about an identifier in a nested-name-spec.
|
|
///
|
|
struct NestedNameSpecInfo {
|
|
/// The type of the object, if we're parsing nested-name-specifier in
|
|
/// a member access expression.
|
|
ParsedType ObjectType;
|
|
|
|
/// The identifier preceding the '::'.
|
|
IdentifierInfo *Identifier;
|
|
|
|
/// The location of the identifier.
|
|
SourceLocation IdentifierLoc;
|
|
|
|
/// The location of the '::'.
|
|
SourceLocation CCLoc;
|
|
|
|
/// Creates info object for the most typical case.
|
|
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
|
|
SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
|
|
: ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
|
|
CCLoc(ColonColonLoc) {
|
|
}
|
|
|
|
NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
|
|
SourceLocation ColonColonLoc, QualType ObjectType)
|
|
: ObjectType(ParsedType::make(ObjectType)), Identifier(II),
|
|
IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
|
|
}
|
|
};
|
|
|
|
bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
|
|
NestedNameSpecInfo &IdInfo);
|
|
|
|
bool BuildCXXNestedNameSpecifier(Scope *S,
|
|
NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext,
|
|
CXXScopeSpec &SS,
|
|
NamedDecl *ScopeLookupResult,
|
|
bool ErrorRecoveryLookup,
|
|
bool *IsCorrectedToColon = nullptr,
|
|
bool OnlyNamespace = false);
|
|
|
|
/// The parser has parsed a nested-name-specifier 'identifier::'.
|
|
///
|
|
/// \param S The scope in which this nested-name-specifier occurs.
|
|
///
|
|
/// \param IdInfo Parser information about an identifier in the
|
|
/// nested-name-spec.
|
|
///
|
|
/// \param EnteringContext Whether we're entering the context nominated by
|
|
/// this nested-name-specifier.
|
|
///
|
|
/// \param SS The nested-name-specifier, which is both an input
|
|
/// parameter (the nested-name-specifier before this type) and an
|
|
/// output parameter (containing the full nested-name-specifier,
|
|
/// including this new type).
|
|
///
|
|
/// \param ErrorRecoveryLookup If true, then this method is called to improve
|
|
/// error recovery. In this case do not emit error message.
|
|
///
|
|
/// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
|
|
/// are allowed. The bool value pointed by this parameter is set to 'true'
|
|
/// if the identifier is treated as if it was followed by ':', not '::'.
|
|
///
|
|
/// \param OnlyNamespace If true, only considers namespaces in lookup.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXNestedNameSpecifier(Scope *S,
|
|
NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext,
|
|
CXXScopeSpec &SS,
|
|
bool ErrorRecoveryLookup = false,
|
|
bool *IsCorrectedToColon = nullptr,
|
|
bool OnlyNamespace = false);
|
|
|
|
ExprResult ActOnDecltypeExpression(Expr *E);
|
|
|
|
bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
|
|
const DeclSpec &DS,
|
|
SourceLocation ColonColonLoc);
|
|
|
|
bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
|
|
NestedNameSpecInfo &IdInfo,
|
|
bool EnteringContext);
|
|
|
|
/// The parser has parsed a nested-name-specifier
|
|
/// 'template[opt] template-name < template-args >::'.
|
|
///
|
|
/// \param S The scope in which this nested-name-specifier occurs.
|
|
///
|
|
/// \param SS The nested-name-specifier, which is both an input
|
|
/// parameter (the nested-name-specifier before this type) and an
|
|
/// output parameter (containing the full nested-name-specifier,
|
|
/// including this new type).
|
|
///
|
|
/// \param TemplateKWLoc the location of the 'template' keyword, if any.
|
|
/// \param TemplateName the template name.
|
|
/// \param TemplateNameLoc The location of the template name.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<').
|
|
/// \param TemplateArgs The template arguments.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>').
|
|
/// \param CCLoc The location of the '::'.
|
|
///
|
|
/// \param EnteringContext Whether we're entering the context of the
|
|
/// nested-name-specifier.
|
|
///
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool ActOnCXXNestedNameSpecifier(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateName,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgs,
|
|
SourceLocation RAngleLoc,
|
|
SourceLocation CCLoc,
|
|
bool EnteringContext);
|
|
|
|
/// Given a C++ nested-name-specifier, produce an annotation value
|
|
/// that the parser can use later to reconstruct the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param SS A nested-name-specifier.
|
|
///
|
|
/// \returns A pointer containing all of the information in the
|
|
/// nested-name-specifier \p SS.
|
|
void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
|
|
|
|
/// Given an annotation pointer for a nested-name-specifier, restore
|
|
/// the nested-name-specifier structure.
|
|
///
|
|
/// \param Annotation The annotation pointer, produced by
|
|
/// \c SaveNestedNameSpecifierAnnotation().
|
|
///
|
|
/// \param AnnotationRange The source range corresponding to the annotation.
|
|
///
|
|
/// \param SS The nested-name-specifier that will be updated with the contents
|
|
/// of the annotation pointer.
|
|
void RestoreNestedNameSpecifierAnnotation(void *Annotation,
|
|
SourceRange AnnotationRange,
|
|
CXXScopeSpec &SS);
|
|
|
|
bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
|
|
|
|
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
|
|
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
|
|
/// After this method is called, according to [C++ 3.4.3p3], names should be
|
|
/// looked up in the declarator-id's scope, until the declarator is parsed and
|
|
/// ActOnCXXExitDeclaratorScope is called.
|
|
/// The 'SS' should be a non-empty valid CXXScopeSpec.
|
|
bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
|
|
|
|
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
|
|
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
|
|
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
|
|
/// Used to indicate that names should revert to being looked up in the
|
|
/// defining scope.
|
|
void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
|
|
|
|
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
|
|
/// initializer for the declaration 'Dcl'.
|
|
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
|
|
/// static data member of class X, names should be looked up in the scope of
|
|
/// class X.
|
|
void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
|
|
|
|
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
|
|
/// initializer for the declaration 'Dcl'.
|
|
void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
|
|
|
|
/// Create a new lambda closure type.
|
|
CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
|
|
TypeSourceInfo *Info,
|
|
bool KnownDependent,
|
|
LambdaCaptureDefault CaptureDefault);
|
|
|
|
/// Start the definition of a lambda expression.
|
|
CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
|
|
SourceRange IntroducerRange,
|
|
TypeSourceInfo *MethodType,
|
|
SourceLocation EndLoc,
|
|
ArrayRef<ParmVarDecl *> Params,
|
|
ConstexprSpecKind ConstexprKind,
|
|
Expr *TrailingRequiresClause);
|
|
|
|
/// Number lambda for linkage purposes if necessary.
|
|
void handleLambdaNumbering(
|
|
CXXRecordDecl *Class, CXXMethodDecl *Method,
|
|
Optional<std::tuple<unsigned, bool, Decl *>> Mangling = None);
|
|
|
|
/// Endow the lambda scope info with the relevant properties.
|
|
void buildLambdaScope(sema::LambdaScopeInfo *LSI,
|
|
CXXMethodDecl *CallOperator,
|
|
SourceRange IntroducerRange,
|
|
LambdaCaptureDefault CaptureDefault,
|
|
SourceLocation CaptureDefaultLoc,
|
|
bool ExplicitParams,
|
|
bool ExplicitResultType,
|
|
bool Mutable);
|
|
|
|
/// Perform initialization analysis of the init-capture and perform
|
|
/// any implicit conversions such as an lvalue-to-rvalue conversion if
|
|
/// not being used to initialize a reference.
|
|
ParsedType actOnLambdaInitCaptureInitialization(
|
|
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
|
|
IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
|
|
return ParsedType::make(buildLambdaInitCaptureInitialization(
|
|
Loc, ByRef, EllipsisLoc, None, Id,
|
|
InitKind != LambdaCaptureInitKind::CopyInit, Init));
|
|
}
|
|
QualType buildLambdaInitCaptureInitialization(
|
|
SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
|
|
Expr *&Init);
|
|
|
|
/// Create a dummy variable within the declcontext of the lambda's
|
|
/// call operator, for name lookup purposes for a lambda init capture.
|
|
///
|
|
/// CodeGen handles emission of lambda captures, ignoring these dummy
|
|
/// variables appropriately.
|
|
VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
|
|
QualType InitCaptureType,
|
|
SourceLocation EllipsisLoc,
|
|
IdentifierInfo *Id,
|
|
unsigned InitStyle, Expr *Init);
|
|
|
|
/// Add an init-capture to a lambda scope.
|
|
void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
|
|
|
|
/// Note that we have finished the explicit captures for the
|
|
/// given lambda.
|
|
void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
|
|
|
|
/// \brief This is called after parsing the explicit template parameter list
|
|
/// on a lambda (if it exists) in C++2a.
|
|
void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
|
|
ArrayRef<NamedDecl *> TParams,
|
|
SourceLocation RAngleLoc);
|
|
|
|
/// Introduce the lambda parameters into scope.
|
|
void addLambdaParameters(
|
|
ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
|
|
CXXMethodDecl *CallOperator, Scope *CurScope);
|
|
|
|
/// Deduce a block or lambda's return type based on the return
|
|
/// statements present in the body.
|
|
void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
|
|
|
|
/// ActOnStartOfLambdaDefinition - This is called just before we start
|
|
/// parsing the body of a lambda; it analyzes the explicit captures and
|
|
/// arguments, and sets up various data-structures for the body of the
|
|
/// lambda.
|
|
void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
|
|
Declarator &ParamInfo, Scope *CurScope);
|
|
|
|
/// ActOnLambdaError - If there is an error parsing a lambda, this callback
|
|
/// is invoked to pop the information about the lambda.
|
|
void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
|
|
bool IsInstantiation = false);
|
|
|
|
/// ActOnLambdaExpr - This is called when the body of a lambda expression
|
|
/// was successfully completed.
|
|
ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
|
|
Scope *CurScope);
|
|
|
|
/// Does copying/destroying the captured variable have side effects?
|
|
bool CaptureHasSideEffects(const sema::Capture &From);
|
|
|
|
/// Diagnose if an explicit lambda capture is unused. Returns true if a
|
|
/// diagnostic is emitted.
|
|
bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
|
|
const sema::Capture &From);
|
|
|
|
/// Build a FieldDecl suitable to hold the given capture.
|
|
FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
|
|
|
|
/// Initialize the given capture with a suitable expression.
|
|
ExprResult BuildCaptureInit(const sema::Capture &Capture,
|
|
SourceLocation ImplicitCaptureLoc,
|
|
bool IsOpenMPMapping = false);
|
|
|
|
/// Complete a lambda-expression having processed and attached the
|
|
/// lambda body.
|
|
ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
sema::LambdaScopeInfo *LSI);
|
|
|
|
/// Get the return type to use for a lambda's conversion function(s) to
|
|
/// function pointer type, given the type of the call operator.
|
|
QualType
|
|
getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType);
|
|
|
|
/// Define the "body" of the conversion from a lambda object to a
|
|
/// function pointer.
|
|
///
|
|
/// This routine doesn't actually define a sensible body; rather, it fills
|
|
/// in the initialization expression needed to copy the lambda object into
|
|
/// the block, and IR generation actually generates the real body of the
|
|
/// block pointer conversion.
|
|
void DefineImplicitLambdaToFunctionPointerConversion(
|
|
SourceLocation CurrentLoc, CXXConversionDecl *Conv);
|
|
|
|
/// Define the "body" of the conversion from a lambda object to a
|
|
/// block pointer.
|
|
///
|
|
/// This routine doesn't actually define a sensible body; rather, it fills
|
|
/// in the initialization expression needed to copy the lambda object into
|
|
/// the block, and IR generation actually generates the real body of the
|
|
/// block pointer conversion.
|
|
void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
|
|
CXXConversionDecl *Conv);
|
|
|
|
ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
|
|
SourceLocation ConvLocation,
|
|
CXXConversionDecl *Conv,
|
|
Expr *Src);
|
|
|
|
/// Check whether the given expression is a valid constraint expression.
|
|
/// A diagnostic is emitted if it is not, false is returned, and
|
|
/// PossibleNonPrimary will be set to true if the failure might be due to a
|
|
/// non-primary expression being used as an atomic constraint.
|
|
bool CheckConstraintExpression(Expr *CE, Token NextToken = Token(),
|
|
bool *PossibleNonPrimary = nullptr,
|
|
bool IsTrailingRequiresClause = false);
|
|
|
|
/// Check whether the given type-dependent expression will be the name of a
|
|
/// function or another callable function-like entity (e.g. a function
|
|
// template or overload set) for any substitution.
|
|
bool IsDependentFunctionNameExpr(Expr *E);
|
|
|
|
private:
|
|
/// Caches pairs of template-like decls whose associated constraints were
|
|
/// checked for subsumption and whether or not the first's constraints did in
|
|
/// fact subsume the second's.
|
|
llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
|
|
/// Caches the normalized associated constraints of declarations (concepts or
|
|
/// constrained declarations). If an error occurred while normalizing the
|
|
/// associated constraints of the template or concept, nullptr will be cached
|
|
/// here.
|
|
llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
|
|
NormalizationCache;
|
|
|
|
public:
|
|
const NormalizedConstraint *
|
|
getNormalizedAssociatedConstraints(
|
|
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
|
|
|
|
/// \brief Check whether the given declaration's associated constraints are
|
|
/// at least as constrained than another declaration's according to the
|
|
/// partial ordering of constraints.
|
|
///
|
|
/// \param Result If no error occurred, receives the result of true if D1 is
|
|
/// at least constrained than D2, and false otherwise.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
|
|
NamedDecl *D2, ArrayRef<const Expr *> AC2,
|
|
bool &Result);
|
|
|
|
/// If D1 was not at least as constrained as D2, but would've been if a pair
|
|
/// of atomic constraints involved had been declared in a concept and not
|
|
/// repeated in two separate places in code.
|
|
/// \returns true if such a diagnostic was emitted, false otherwise.
|
|
bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
|
|
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
|
|
|
|
/// \brief Check whether the given list of constraint expressions are
|
|
/// satisfied (as if in a 'conjunction') given template arguments.
|
|
/// \param ConstraintExprs a list of constraint expressions, treated as if
|
|
/// they were 'AND'ed together.
|
|
/// \param TemplateArgs the list of template arguments to substitute into the
|
|
/// constraint expression.
|
|
/// \param TemplateIDRange The source range of the template id that
|
|
/// caused the constraints check.
|
|
/// \param Satisfaction if true is returned, will contain details of the
|
|
/// satisfaction, with enough information to diagnose an unsatisfied
|
|
/// expression.
|
|
/// \returns true if an error occurred and satisfaction could not be checked,
|
|
/// false otherwise.
|
|
bool CheckConstraintSatisfaction(TemplateDecl *Template,
|
|
ArrayRef<const Expr *> ConstraintExprs,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange TemplateIDRange,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
bool CheckConstraintSatisfaction(ClassTemplatePartialSpecializationDecl *TD,
|
|
ArrayRef<const Expr *> ConstraintExprs,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange TemplateIDRange,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
bool CheckConstraintSatisfaction(VarTemplatePartialSpecializationDecl *TD,
|
|
ArrayRef<const Expr *> ConstraintExprs,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange TemplateIDRange,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
/// \brief Check whether the given non-dependent constraint expression is
|
|
/// satisfied. Returns false and updates Satisfaction with the satisfaction
|
|
/// verdict if successful, emits a diagnostic and returns true if an error
|
|
/// occured and satisfaction could not be determined.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
|
|
/// Check that the associated constraints of a template declaration match the
|
|
/// associated constraints of an older declaration of which it is a
|
|
/// redeclaration.
|
|
bool CheckRedeclarationConstraintMatch(TemplateParameterList *Old,
|
|
TemplateParameterList *New);
|
|
|
|
/// \brief Ensure that the given template arguments satisfy the constraints
|
|
/// associated with the given template, emitting a diagnostic if they do not.
|
|
///
|
|
/// \param Template The template to which the template arguments are being
|
|
/// provided.
|
|
///
|
|
/// \param TemplateArgs The converted, canonicalized template arguments.
|
|
///
|
|
/// \param TemplateIDRange The source range of the template id that
|
|
/// caused the constraints check.
|
|
///
|
|
/// \returns true if the constrains are not satisfied or could not be checked
|
|
/// for satisfaction, false if the constraints are satisfied.
|
|
bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange TemplateIDRange);
|
|
|
|
/// \brief Emit diagnostics explaining why a constraint expression was deemed
|
|
/// unsatisfied.
|
|
void
|
|
DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction);
|
|
|
|
/// \brief Emit diagnostics explaining why a constraint expression was deemed
|
|
/// unsatisfied.
|
|
void
|
|
DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction& Satisfaction);
|
|
|
|
/// \brief Emit diagnostics explaining why a constraint expression was deemed
|
|
/// unsatisfied because it was ill-formed.
|
|
void DiagnoseUnsatisfiedIllFormedConstraint(SourceLocation DiagnosticLocation,
|
|
StringRef Diagnostic);
|
|
|
|
void
|
|
DiagnoseRedeclarationConstraintMismatch(const TemplateParameterList *Old,
|
|
const TemplateParameterList *New);
|
|
|
|
// ParseObjCStringLiteral - Parse Objective-C string literals.
|
|
ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
|
|
ArrayRef<Expr *> Strings);
|
|
|
|
ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
|
|
|
|
/// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
|
|
/// numeric literal expression. Type of the expression will be "NSNumber *"
|
|
/// or "id" if NSNumber is unavailable.
|
|
ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
|
|
ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
|
|
bool Value);
|
|
ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
|
|
|
|
/// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
|
|
/// '@' prefixed parenthesized expression. The type of the expression will
|
|
/// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
|
|
/// of ValueType, which is allowed to be a built-in numeric type, "char *",
|
|
/// "const char *" or C structure with attribute 'objc_boxable'.
|
|
ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
|
|
|
|
ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
|
|
Expr *IndexExpr,
|
|
ObjCMethodDecl *getterMethod,
|
|
ObjCMethodDecl *setterMethod);
|
|
|
|
ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
|
|
MutableArrayRef<ObjCDictionaryElement> Elements);
|
|
|
|
ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
|
|
TypeSourceInfo *EncodedTypeInfo,
|
|
SourceLocation RParenLoc);
|
|
ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
|
|
CXXConversionDecl *Method,
|
|
bool HadMultipleCandidates);
|
|
|
|
ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
|
|
SourceLocation EncodeLoc,
|
|
SourceLocation LParenLoc,
|
|
ParsedType Ty,
|
|
SourceLocation RParenLoc);
|
|
|
|
/// ParseObjCSelectorExpression - Build selector expression for \@selector
|
|
ExprResult ParseObjCSelectorExpression(Selector Sel,
|
|
SourceLocation AtLoc,
|
|
SourceLocation SelLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation RParenLoc,
|
|
bool WarnMultipleSelectors);
|
|
|
|
/// ParseObjCProtocolExpression - Build protocol expression for \@protocol
|
|
ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
|
|
SourceLocation AtLoc,
|
|
SourceLocation ProtoLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation ProtoIdLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Declarations
|
|
//
|
|
Decl *ActOnStartLinkageSpecification(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
Expr *LangStr,
|
|
SourceLocation LBraceLoc);
|
|
Decl *ActOnFinishLinkageSpecification(Scope *S,
|
|
Decl *LinkageSpec,
|
|
SourceLocation RBraceLoc);
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Classes
|
|
//
|
|
CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
|
|
bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
|
|
const CXXScopeSpec *SS = nullptr);
|
|
bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
|
|
|
|
bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
|
|
SourceLocation ColonLoc,
|
|
const ParsedAttributesView &Attrs);
|
|
|
|
NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
|
|
Declarator &D,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Expr *BitfieldWidth, const VirtSpecifiers &VS,
|
|
InClassInitStyle InitStyle);
|
|
|
|
void ActOnStartCXXInClassMemberInitializer();
|
|
void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
|
|
SourceLocation EqualLoc,
|
|
Expr *Init);
|
|
|
|
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
SourceLocation LParenLoc,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation RParenLoc,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult ActOnMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
Expr *InitList,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult BuildMemInitializer(Decl *ConstructorD,
|
|
Scope *S,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *MemberOrBase,
|
|
ParsedType TemplateTypeTy,
|
|
const DeclSpec &DS,
|
|
SourceLocation IdLoc,
|
|
Expr *Init,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult BuildMemberInitializer(ValueDecl *Member,
|
|
Expr *Init,
|
|
SourceLocation IdLoc);
|
|
|
|
MemInitResult BuildBaseInitializer(QualType BaseType,
|
|
TypeSourceInfo *BaseTInfo,
|
|
Expr *Init,
|
|
CXXRecordDecl *ClassDecl,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
|
|
Expr *Init,
|
|
CXXRecordDecl *ClassDecl);
|
|
|
|
bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
|
|
CXXCtorInitializer *Initializer);
|
|
|
|
bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
|
|
ArrayRef<CXXCtorInitializer *> Initializers = None);
|
|
|
|
void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
|
|
|
|
|
|
/// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
|
|
/// mark all the non-trivial destructors of its members and bases as
|
|
/// referenced.
|
|
void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
|
|
CXXRecordDecl *Record);
|
|
|
|
/// The list of classes whose vtables have been used within
|
|
/// this translation unit, and the source locations at which the
|
|
/// first use occurred.
|
|
typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
|
|
|
|
/// The list of vtables that are required but have not yet been
|
|
/// materialized.
|
|
SmallVector<VTableUse, 16> VTableUses;
|
|
|
|
/// The set of classes whose vtables have been used within
|
|
/// this translation unit, and a bit that will be true if the vtable is
|
|
/// required to be emitted (otherwise, it should be emitted only if needed
|
|
/// by code generation).
|
|
llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
|
|
|
|
/// Load any externally-stored vtable uses.
|
|
void LoadExternalVTableUses();
|
|
|
|
/// Note that the vtable for the given class was used at the
|
|
/// given location.
|
|
void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
|
|
bool DefinitionRequired = false);
|
|
|
|
/// Mark the exception specifications of all virtual member functions
|
|
/// in the given class as needed.
|
|
void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
|
|
const CXXRecordDecl *RD);
|
|
|
|
/// MarkVirtualMembersReferenced - Will mark all members of the given
|
|
/// CXXRecordDecl referenced.
|
|
void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
|
|
bool ConstexprOnly = false);
|
|
|
|
/// Define all of the vtables that have been used in this
|
|
/// translation unit and reference any virtual members used by those
|
|
/// vtables.
|
|
///
|
|
/// \returns true if any work was done, false otherwise.
|
|
bool DefineUsedVTables();
|
|
|
|
void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
|
|
|
|
void ActOnMemInitializers(Decl *ConstructorDecl,
|
|
SourceLocation ColonLoc,
|
|
ArrayRef<CXXCtorInitializer*> MemInits,
|
|
bool AnyErrors);
|
|
|
|
/// Check class-level dllimport/dllexport attribute. The caller must
|
|
/// ensure that referenceDLLExportedClassMethods is called some point later
|
|
/// when all outer classes of Class are complete.
|
|
void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
|
|
void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
|
|
|
|
void referenceDLLExportedClassMethods();
|
|
|
|
void propagateDLLAttrToBaseClassTemplate(
|
|
CXXRecordDecl *Class, Attr *ClassAttr,
|
|
ClassTemplateSpecializationDecl *BaseTemplateSpec,
|
|
SourceLocation BaseLoc);
|
|
|
|
/// Add gsl::Pointer attribute to std::container::iterator
|
|
/// \param ND The declaration that introduces the name
|
|
/// std::container::iterator. \param UnderlyingRecord The record named by ND.
|
|
void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
|
|
|
|
/// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
|
|
void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
|
|
|
|
/// Add [[gsl::Pointer]] attributes for std:: types.
|
|
void inferGslPointerAttribute(TypedefNameDecl *TD);
|
|
|
|
void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
|
|
|
|
/// Check that the C++ class annoated with "trivial_abi" satisfies all the
|
|
/// conditions that are needed for the attribute to have an effect.
|
|
void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
|
|
|
|
void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
|
|
Decl *TagDecl, SourceLocation LBrac,
|
|
SourceLocation RBrac,
|
|
const ParsedAttributesView &AttrList);
|
|
void ActOnFinishCXXMemberDecls();
|
|
void ActOnFinishCXXNonNestedClass();
|
|
|
|
void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
|
|
unsigned ActOnReenterTemplateScope(Scope *S, Decl *Template);
|
|
void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
|
|
void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
|
|
void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
|
|
void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
|
|
void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
|
|
void ActOnFinishDelayedMemberInitializers(Decl *Record);
|
|
void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
|
|
CachedTokens &Toks);
|
|
void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
|
|
bool IsInsideALocalClassWithinATemplateFunction();
|
|
|
|
Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr,
|
|
Expr *AssertMessageExpr,
|
|
SourceLocation RParenLoc);
|
|
Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
|
|
Expr *AssertExpr,
|
|
StringLiteral *AssertMessageExpr,
|
|
SourceLocation RParenLoc,
|
|
bool Failed);
|
|
|
|
FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
|
|
SourceLocation FriendLoc,
|
|
TypeSourceInfo *TSInfo);
|
|
Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
|
|
MultiTemplateParamsArg TemplateParams);
|
|
NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
|
|
MultiTemplateParamsArg TemplateParams);
|
|
|
|
QualType CheckConstructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass& SC);
|
|
void CheckConstructor(CXXConstructorDecl *Constructor);
|
|
QualType CheckDestructorDeclarator(Declarator &D, QualType R,
|
|
StorageClass& SC);
|
|
bool CheckDestructor(CXXDestructorDecl *Destructor);
|
|
void CheckConversionDeclarator(Declarator &D, QualType &R,
|
|
StorageClass& SC);
|
|
Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
|
|
void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
|
|
StorageClass &SC);
|
|
void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
|
|
|
|
void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
|
|
|
|
bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
|
|
CXXSpecialMember CSM);
|
|
void CheckDelayedMemberExceptionSpecs();
|
|
|
|
bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
|
|
DefaultedComparisonKind DCK);
|
|
void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
|
|
FunctionDecl *Spaceship);
|
|
void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
|
|
DefaultedComparisonKind DCK);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Derived Classes
|
|
//
|
|
|
|
/// ActOnBaseSpecifier - Parsed a base specifier
|
|
CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
|
|
SourceRange SpecifierRange,
|
|
bool Virtual, AccessSpecifier Access,
|
|
TypeSourceInfo *TInfo,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
BaseResult ActOnBaseSpecifier(Decl *classdecl,
|
|
SourceRange SpecifierRange,
|
|
ParsedAttributes &Attrs,
|
|
bool Virtual, AccessSpecifier Access,
|
|
ParsedType basetype,
|
|
SourceLocation BaseLoc,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
bool AttachBaseSpecifiers(CXXRecordDecl *Class,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases);
|
|
void ActOnBaseSpecifiers(Decl *ClassDecl,
|
|
MutableArrayRef<CXXBaseSpecifier *> Bases);
|
|
|
|
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
|
|
bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
|
|
CXXBasePaths &Paths);
|
|
|
|
// FIXME: I don't like this name.
|
|
void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
|
|
|
|
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
SourceLocation Loc, SourceRange Range,
|
|
CXXCastPath *BasePath = nullptr,
|
|
bool IgnoreAccess = false);
|
|
bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
|
unsigned InaccessibleBaseID,
|
|
unsigned AmbigiousBaseConvID,
|
|
SourceLocation Loc, SourceRange Range,
|
|
DeclarationName Name,
|
|
CXXCastPath *BasePath,
|
|
bool IgnoreAccess = false);
|
|
|
|
std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
|
|
|
|
bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
/// CheckOverridingFunctionReturnType - Checks whether the return types are
|
|
/// covariant, according to C++ [class.virtual]p5.
|
|
bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
/// CheckOverridingFunctionExceptionSpec - Checks whether the exception
|
|
/// spec is a subset of base spec.
|
|
bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
|
|
|
|
/// CheckOverrideControl - Check C++11 override control semantics.
|
|
void CheckOverrideControl(NamedDecl *D);
|
|
|
|
/// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
|
|
/// not used in the declaration of an overriding method.
|
|
void DiagnoseAbsenceOfOverrideControl(NamedDecl *D);
|
|
|
|
/// CheckForFunctionMarkedFinal - Checks whether a virtual member function
|
|
/// overrides a virtual member function marked 'final', according to
|
|
/// C++11 [class.virtual]p4.
|
|
bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
|
|
const CXXMethodDecl *Old);
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Access Control
|
|
//
|
|
|
|
enum AccessResult {
|
|
AR_accessible,
|
|
AR_inaccessible,
|
|
AR_dependent,
|
|
AR_delayed
|
|
};
|
|
|
|
bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
|
|
NamedDecl *PrevMemberDecl,
|
|
AccessSpecifier LexicalAS);
|
|
|
|
AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
|
|
SourceRange PlacementRange,
|
|
CXXRecordDecl *NamingClass,
|
|
DeclAccessPair FoundDecl,
|
|
bool Diagnose = true);
|
|
AccessResult CheckConstructorAccess(SourceLocation Loc,
|
|
CXXConstructorDecl *D,
|
|
DeclAccessPair FoundDecl,
|
|
const InitializedEntity &Entity,
|
|
bool IsCopyBindingRefToTemp = false);
|
|
AccessResult CheckConstructorAccess(SourceLocation Loc,
|
|
CXXConstructorDecl *D,
|
|
DeclAccessPair FoundDecl,
|
|
const InitializedEntity &Entity,
|
|
const PartialDiagnostic &PDiag);
|
|
AccessResult CheckDestructorAccess(SourceLocation Loc,
|
|
CXXDestructorDecl *Dtor,
|
|
const PartialDiagnostic &PDiag,
|
|
QualType objectType = QualType());
|
|
AccessResult CheckFriendAccess(NamedDecl *D);
|
|
AccessResult CheckMemberAccess(SourceLocation UseLoc,
|
|
CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found);
|
|
AccessResult
|
|
CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
|
|
CXXRecordDecl *DecomposedClass,
|
|
DeclAccessPair Field);
|
|
AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
|
|
Expr *ObjectExpr,
|
|
Expr *ArgExpr,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
|
|
DeclAccessPair FoundDecl);
|
|
AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
|
|
QualType Base, QualType Derived,
|
|
const CXXBasePath &Path,
|
|
unsigned DiagID,
|
|
bool ForceCheck = false,
|
|
bool ForceUnprivileged = false);
|
|
void CheckLookupAccess(const LookupResult &R);
|
|
bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
|
|
QualType BaseType);
|
|
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found, QualType ObjectType,
|
|
SourceLocation Loc,
|
|
const PartialDiagnostic &Diag);
|
|
bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
|
|
DeclAccessPair Found,
|
|
QualType ObjectType) {
|
|
return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
|
|
SourceLocation(), PDiag());
|
|
}
|
|
|
|
void HandleDependentAccessCheck(const DependentDiagnostic &DD,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
void PerformDependentDiagnostics(const DeclContext *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
|
|
|
|
/// When true, access checking violations are treated as SFINAE
|
|
/// failures rather than hard errors.
|
|
bool AccessCheckingSFINAE;
|
|
|
|
enum AbstractDiagSelID {
|
|
AbstractNone = -1,
|
|
AbstractReturnType,
|
|
AbstractParamType,
|
|
AbstractVariableType,
|
|
AbstractFieldType,
|
|
AbstractIvarType,
|
|
AbstractSynthesizedIvarType,
|
|
AbstractArrayType
|
|
};
|
|
|
|
bool isAbstractType(SourceLocation Loc, QualType T);
|
|
bool RequireNonAbstractType(SourceLocation Loc, QualType T,
|
|
TypeDiagnoser &Diagnoser);
|
|
template <typename... Ts>
|
|
bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
|
|
const Ts &...Args) {
|
|
BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
|
|
return RequireNonAbstractType(Loc, T, Diagnoser);
|
|
}
|
|
|
|
void DiagnoseAbstractType(const CXXRecordDecl *RD);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Overloaded Operators [C++ 13.5]
|
|
//
|
|
|
|
bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
|
|
|
|
bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Templates [C++ 14]
|
|
//
|
|
void FilterAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true);
|
|
bool hasAnyAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true,
|
|
bool AllowNonTemplateFunctions = false);
|
|
/// Try to interpret the lookup result D as a template-name.
|
|
///
|
|
/// \param D A declaration found by name lookup.
|
|
/// \param AllowFunctionTemplates Whether function templates should be
|
|
/// considered valid results.
|
|
/// \param AllowDependent Whether unresolved using declarations (that might
|
|
/// name templates) should be considered valid results.
|
|
NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
|
|
bool AllowFunctionTemplates = true,
|
|
bool AllowDependent = true);
|
|
|
|
enum class AssumedTemplateKind {
|
|
/// This is not assumed to be a template name.
|
|
None,
|
|
/// This is assumed to be a template name because lookup found nothing.
|
|
FoundNothing,
|
|
/// This is assumed to be a template name because lookup found one or more
|
|
/// functions (but no function templates).
|
|
FoundFunctions,
|
|
};
|
|
bool LookupTemplateName(LookupResult &R, Scope *S, CXXScopeSpec &SS,
|
|
QualType ObjectType, bool EnteringContext,
|
|
bool &MemberOfUnknownSpecialization,
|
|
SourceLocation TemplateKWLoc = SourceLocation(),
|
|
AssumedTemplateKind *ATK = nullptr);
|
|
|
|
TemplateNameKind isTemplateName(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
bool hasTemplateKeyword,
|
|
const UnqualifiedId &Name,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
TemplateTy &Template,
|
|
bool &MemberOfUnknownSpecialization);
|
|
|
|
/// Try to resolve an undeclared template name as a type template.
|
|
///
|
|
/// Sets II to the identifier corresponding to the template name, and updates
|
|
/// Name to a corresponding (typo-corrected) type template name and TNK to
|
|
/// the corresponding kind, if possible.
|
|
void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
|
|
TemplateNameKind &TNK,
|
|
SourceLocation NameLoc,
|
|
IdentifierInfo *&II);
|
|
|
|
bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
|
|
SourceLocation NameLoc,
|
|
bool Diagnose = true);
|
|
|
|
/// Determine whether a particular identifier might be the name in a C++1z
|
|
/// deduction-guide declaration.
|
|
bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
|
|
SourceLocation NameLoc,
|
|
ParsedTemplateTy *Template = nullptr);
|
|
|
|
bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
|
|
SourceLocation IILoc,
|
|
Scope *S,
|
|
const CXXScopeSpec *SS,
|
|
TemplateTy &SuggestedTemplate,
|
|
TemplateNameKind &SuggestedKind);
|
|
|
|
bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
|
|
NamedDecl *Instantiation,
|
|
bool InstantiatedFromMember,
|
|
const NamedDecl *Pattern,
|
|
const NamedDecl *PatternDef,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain = true);
|
|
|
|
void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
|
|
TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
|
|
|
|
NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation KeyLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc,
|
|
unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
ParsedType DefaultArg);
|
|
|
|
QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
|
|
SourceLocation Loc);
|
|
QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
|
|
|
|
NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
|
|
unsigned Depth,
|
|
unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
Expr *DefaultArg);
|
|
NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
|
|
SourceLocation TmpLoc,
|
|
TemplateParameterList *Params,
|
|
SourceLocation EllipsisLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc,
|
|
unsigned Depth,
|
|
unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
ParsedTemplateArgument DefaultArg);
|
|
|
|
TemplateParameterList *
|
|
ActOnTemplateParameterList(unsigned Depth,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ArrayRef<NamedDecl *> Params,
|
|
SourceLocation RAngleLoc,
|
|
Expr *RequiresClause);
|
|
|
|
/// The context in which we are checking a template parameter list.
|
|
enum TemplateParamListContext {
|
|
TPC_ClassTemplate,
|
|
TPC_VarTemplate,
|
|
TPC_FunctionTemplate,
|
|
TPC_ClassTemplateMember,
|
|
TPC_FriendClassTemplate,
|
|
TPC_FriendFunctionTemplate,
|
|
TPC_FriendFunctionTemplateDefinition,
|
|
TPC_TypeAliasTemplate
|
|
};
|
|
|
|
bool CheckTemplateParameterList(TemplateParameterList *NewParams,
|
|
TemplateParameterList *OldParams,
|
|
TemplateParamListContext TPC,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
|
|
SourceLocation DeclStartLoc, SourceLocation DeclLoc,
|
|
const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
|
|
ArrayRef<TemplateParameterList *> ParamLists,
|
|
bool IsFriend, bool &IsMemberSpecialization, bool &Invalid);
|
|
|
|
DeclResult CheckClassTemplate(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
|
|
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
|
|
SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
|
|
TemplateParameterList **OuterTemplateParamLists,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
|
|
QualType NTTPType,
|
|
SourceLocation Loc);
|
|
|
|
/// Get a template argument mapping the given template parameter to itself,
|
|
/// e.g. for X in \c template<int X>, this would return an expression template
|
|
/// argument referencing X.
|
|
TemplateArgumentLoc getIdentityTemplateArgumentLoc(Decl *Param,
|
|
SourceLocation Location);
|
|
|
|
void translateTemplateArguments(const ASTTemplateArgsPtr &In,
|
|
TemplateArgumentListInfo &Out);
|
|
|
|
ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
|
|
|
|
void NoteAllFoundTemplates(TemplateName Name);
|
|
|
|
QualType CheckTemplateIdType(TemplateName Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs);
|
|
|
|
TypeResult
|
|
ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy Template, IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
|
|
bool IsCtorOrDtorName = false, bool IsClassName = false);
|
|
|
|
/// Parsed an elaborated-type-specifier that refers to a template-id,
|
|
/// such as \c class T::template apply<U>.
|
|
TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
|
|
TypeSpecifierType TagSpec,
|
|
SourceLocation TagLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc);
|
|
|
|
DeclResult ActOnVarTemplateSpecialization(
|
|
Scope *S, Declarator &D, TypeSourceInfo *DI,
|
|
SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
|
|
StorageClass SC, bool IsPartialSpecialization);
|
|
|
|
DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation TemplateNameLoc,
|
|
const TemplateArgumentListInfo &TemplateArgs);
|
|
|
|
ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
VarTemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult
|
|
CheckConceptTemplateId(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
SourceLocation ConceptNameLoc, NamedDecl *FoundDecl,
|
|
ConceptDecl *NamedConcept,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
|
|
|
|
ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs);
|
|
|
|
TemplateNameKind ActOnDependentTemplateName(
|
|
Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
|
|
TemplateTy &Template, bool AllowInjectedClassName = false);
|
|
|
|
DeclResult ActOnClassTemplateSpecialization(
|
|
Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
|
|
SourceLocation ModulePrivateLoc, TemplateIdAnnotation &TemplateId,
|
|
const ParsedAttributesView &Attr,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
SkipBodyInfo *SkipBody = nullptr);
|
|
|
|
bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
|
|
TemplateDecl *PrimaryTemplate,
|
|
unsigned NumExplicitArgs,
|
|
ArrayRef<TemplateArgument> Args);
|
|
void CheckTemplatePartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *Partial);
|
|
void CheckTemplatePartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *Partial);
|
|
|
|
Decl *ActOnTemplateDeclarator(Scope *S,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Declarator &D);
|
|
|
|
bool
|
|
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
|
|
TemplateSpecializationKind NewTSK,
|
|
NamedDecl *PrevDecl,
|
|
TemplateSpecializationKind PrevTSK,
|
|
SourceLocation PrevPtOfInstantiation,
|
|
bool &SuppressNew);
|
|
|
|
bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
|
|
const TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
LookupResult &Previous);
|
|
|
|
bool CheckFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous, bool QualifiedFriend = false);
|
|
bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
|
|
void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
|
|
|
|
DeclResult ActOnExplicitInstantiation(
|
|
Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
|
|
unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
|
|
TemplateTy Template, SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
|
|
SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
|
|
|
|
DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
unsigned TagSpec, SourceLocation KWLoc,
|
|
CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
const ParsedAttributesView &Attr);
|
|
|
|
DeclResult ActOnExplicitInstantiation(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
Declarator &D);
|
|
|
|
TemplateArgumentLoc
|
|
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
Decl *Param,
|
|
SmallVectorImpl<TemplateArgument>
|
|
&Converted,
|
|
bool &HasDefaultArg);
|
|
|
|
/// Specifies the context in which a particular template
|
|
/// argument is being checked.
|
|
enum CheckTemplateArgumentKind {
|
|
/// The template argument was specified in the code or was
|
|
/// instantiated with some deduced template arguments.
|
|
CTAK_Specified,
|
|
|
|
/// The template argument was deduced via template argument
|
|
/// deduction.
|
|
CTAK_Deduced,
|
|
|
|
/// The template argument was deduced from an array bound
|
|
/// via template argument deduction.
|
|
CTAK_DeducedFromArrayBound
|
|
};
|
|
|
|
bool CheckTemplateArgument(NamedDecl *Param,
|
|
TemplateArgumentLoc &Arg,
|
|
NamedDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
unsigned ArgumentPackIndex,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
CheckTemplateArgumentKind CTAK = CTAK_Specified);
|
|
|
|
/// Check that the given template arguments can be be provided to
|
|
/// the given template, converting the arguments along the way.
|
|
///
|
|
/// \param Template The template to which the template arguments are being
|
|
/// provided.
|
|
///
|
|
/// \param TemplateLoc The location of the template name in the source.
|
|
///
|
|
/// \param TemplateArgs The list of template arguments. If the template is
|
|
/// a template template parameter, this function may extend the set of
|
|
/// template arguments to also include substituted, defaulted template
|
|
/// arguments.
|
|
///
|
|
/// \param PartialTemplateArgs True if the list of template arguments is
|
|
/// intentionally partial, e.g., because we're checking just the initial
|
|
/// set of template arguments.
|
|
///
|
|
/// \param Converted Will receive the converted, canonicalized template
|
|
/// arguments.
|
|
///
|
|
/// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
|
|
/// contain the converted forms of the template arguments as written.
|
|
/// Otherwise, \p TemplateArgs will not be modified.
|
|
///
|
|
/// \param ConstraintsNotSatisfied If provided, and an error occured, will
|
|
/// receive true if the cause for the error is the associated constraints of
|
|
/// the template not being satisfied by the template arguments.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool CheckTemplateArgumentList(TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs,
|
|
bool PartialTemplateArgs,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
bool UpdateArgsWithConversions = true,
|
|
bool *ConstraintsNotSatisfied = nullptr);
|
|
|
|
bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
|
|
TemplateArgumentLoc &Arg,
|
|
SmallVectorImpl<TemplateArgument> &Converted);
|
|
|
|
bool CheckTemplateArgument(TemplateTypeParmDecl *Param,
|
|
TypeSourceInfo *Arg);
|
|
ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
|
|
QualType InstantiatedParamType, Expr *Arg,
|
|
TemplateArgument &Converted,
|
|
CheckTemplateArgumentKind CTAK = CTAK_Specified);
|
|
bool CheckTemplateTemplateArgument(TemplateParameterList *Params,
|
|
TemplateArgumentLoc &Arg);
|
|
|
|
ExprResult
|
|
BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
|
|
QualType ParamType,
|
|
SourceLocation Loc);
|
|
ExprResult
|
|
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
|
|
SourceLocation Loc);
|
|
|
|
/// Enumeration describing how template parameter lists are compared
|
|
/// for equality.
|
|
enum TemplateParameterListEqualKind {
|
|
/// We are matching the template parameter lists of two templates
|
|
/// that might be redeclarations.
|
|
///
|
|
/// \code
|
|
/// template<typename T> struct X;
|
|
/// template<typename T> struct X;
|
|
/// \endcode
|
|
TPL_TemplateMatch,
|
|
|
|
/// We are matching the template parameter lists of two template
|
|
/// template parameters as part of matching the template parameter lists
|
|
/// of two templates that might be redeclarations.
|
|
///
|
|
/// \code
|
|
/// template<template<int I> class TT> struct X;
|
|
/// template<template<int Value> class Other> struct X;
|
|
/// \endcode
|
|
TPL_TemplateTemplateParmMatch,
|
|
|
|
/// We are matching the template parameter lists of a template
|
|
/// template argument against the template parameter lists of a template
|
|
/// template parameter.
|
|
///
|
|
/// \code
|
|
/// template<template<int Value> class Metafun> struct X;
|
|
/// template<int Value> struct integer_c;
|
|
/// X<integer_c> xic;
|
|
/// \endcode
|
|
TPL_TemplateTemplateArgumentMatch
|
|
};
|
|
|
|
bool TemplateParameterListsAreEqual(TemplateParameterList *New,
|
|
TemplateParameterList *Old,
|
|
bool Complain,
|
|
TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc
|
|
= SourceLocation());
|
|
|
|
bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
|
|
|
|
/// Called when the parser has parsed a C++ typename
|
|
/// specifier, e.g., "typename T::type".
|
|
///
|
|
/// \param S The scope in which this typename type occurs.
|
|
/// \param TypenameLoc the location of the 'typename' keyword
|
|
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
|
|
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
|
|
/// \param IdLoc the location of the identifier.
|
|
TypeResult
|
|
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS, const IdentifierInfo &II,
|
|
SourceLocation IdLoc);
|
|
|
|
/// Called when the parser has parsed a C++ typename
|
|
/// specifier that ends in a template-id, e.g.,
|
|
/// "typename MetaFun::template apply<T1, T2>".
|
|
///
|
|
/// \param S The scope in which this typename type occurs.
|
|
/// \param TypenameLoc the location of the 'typename' keyword
|
|
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
|
|
/// \param TemplateLoc the location of the 'template' keyword, if any.
|
|
/// \param TemplateName The template name.
|
|
/// \param TemplateII The identifier used to name the template.
|
|
/// \param TemplateIILoc The location of the template name.
|
|
/// \param LAngleLoc The location of the opening angle bracket ('<').
|
|
/// \param TemplateArgs The template arguments.
|
|
/// \param RAngleLoc The location of the closing angle bracket ('>').
|
|
TypeResult
|
|
ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateLoc,
|
|
TemplateTy TemplateName,
|
|
IdentifierInfo *TemplateII,
|
|
SourceLocation TemplateIILoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgs,
|
|
SourceLocation RAngleLoc);
|
|
|
|
QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II,
|
|
SourceLocation IILoc);
|
|
|
|
TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
|
|
SourceLocation Loc,
|
|
DeclarationName Name);
|
|
bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
|
|
|
|
ExprResult RebuildExprInCurrentInstantiation(Expr *E);
|
|
bool RebuildTemplateParamsInCurrentInstantiation(
|
|
TemplateParameterList *Params);
|
|
|
|
std::string
|
|
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgumentList &Args);
|
|
|
|
std::string
|
|
getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs);
|
|
|
|
// Concepts
|
|
Decl *ActOnConceptDefinition(
|
|
Scope *S, MultiTemplateParamsArg TemplateParameterLists,
|
|
IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Variadic Templates (C++0x [temp.variadic])
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Determine whether an unexpanded parameter pack might be permitted in this
|
|
/// location. Useful for error recovery.
|
|
bool isUnexpandedParameterPackPermitted();
|
|
|
|
/// The context in which an unexpanded parameter pack is
|
|
/// being diagnosed.
|
|
///
|
|
/// Note that the values of this enumeration line up with the first
|
|
/// argument to the \c err_unexpanded_parameter_pack diagnostic.
|
|
enum UnexpandedParameterPackContext {
|
|
/// An arbitrary expression.
|
|
UPPC_Expression = 0,
|
|
|
|
/// The base type of a class type.
|
|
UPPC_BaseType,
|
|
|
|
/// The type of an arbitrary declaration.
|
|
UPPC_DeclarationType,
|
|
|
|
/// The type of a data member.
|
|
UPPC_DataMemberType,
|
|
|
|
/// The size of a bit-field.
|
|
UPPC_BitFieldWidth,
|
|
|
|
/// The expression in a static assertion.
|
|
UPPC_StaticAssertExpression,
|
|
|
|
/// The fixed underlying type of an enumeration.
|
|
UPPC_FixedUnderlyingType,
|
|
|
|
/// The enumerator value.
|
|
UPPC_EnumeratorValue,
|
|
|
|
/// A using declaration.
|
|
UPPC_UsingDeclaration,
|
|
|
|
/// A friend declaration.
|
|
UPPC_FriendDeclaration,
|
|
|
|
/// A declaration qualifier.
|
|
UPPC_DeclarationQualifier,
|
|
|
|
/// An initializer.
|
|
UPPC_Initializer,
|
|
|
|
/// A default argument.
|
|
UPPC_DefaultArgument,
|
|
|
|
/// The type of a non-type template parameter.
|
|
UPPC_NonTypeTemplateParameterType,
|
|
|
|
/// The type of an exception.
|
|
UPPC_ExceptionType,
|
|
|
|
/// Partial specialization.
|
|
UPPC_PartialSpecialization,
|
|
|
|
/// Microsoft __if_exists.
|
|
UPPC_IfExists,
|
|
|
|
/// Microsoft __if_not_exists.
|
|
UPPC_IfNotExists,
|
|
|
|
/// Lambda expression.
|
|
UPPC_Lambda,
|
|
|
|
/// Block expression,
|
|
UPPC_Block
|
|
};
|
|
|
|
/// Diagnose unexpanded parameter packs.
|
|
///
|
|
/// \param Loc The location at which we should emit the diagnostic.
|
|
///
|
|
/// \param UPPC The context in which we are diagnosing unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \param Unexpanded the set of unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
|
|
UnexpandedParameterPackContext UPPC,
|
|
ArrayRef<UnexpandedParameterPack> Unexpanded);
|
|
|
|
/// If the given type contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param Loc The source location where a diagnostc should be emitted.
|
|
///
|
|
/// \param T The type that is being checked for unexpanded parameter
|
|
/// packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given expression contains an unexpanded parameter
|
|
/// pack, diagnose the error.
|
|
///
|
|
/// \param E The expression that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(Expr *E,
|
|
UnexpandedParameterPackContext UPPC = UPPC_Expression);
|
|
|
|
/// If the given nested-name-specifier contains an unexpanded
|
|
/// parameter pack, diagnose the error.
|
|
///
|
|
/// \param SS The nested-name-specifier that is being checked for
|
|
/// unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given name contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param NameInfo The name (with source location information) that
|
|
/// is being checked for unexpanded parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given template name contains an unexpanded parameter pack,
|
|
/// diagnose the error.
|
|
///
|
|
/// \param Loc The location of the template name.
|
|
///
|
|
/// \param Template The template name that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
|
|
TemplateName Template,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// If the given template argument contains an unexpanded parameter
|
|
/// pack, diagnose the error.
|
|
///
|
|
/// \param Arg The template argument that is being checked for unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
|
|
UnexpandedParameterPackContext UPPC);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// template argument.
|
|
///
|
|
/// \param Arg The template argument that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(TemplateArgument Arg,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// template argument.
|
|
///
|
|
/// \param Arg The template argument that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// type.
|
|
///
|
|
/// \param T The type that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(QualType T,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// type.
|
|
///
|
|
/// \param TL The type that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(TypeLoc TL,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// nested-name-specifier.
|
|
///
|
|
/// \param NNS The nested-name-specifier that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Collect the set of unexpanded parameter packs within the given
|
|
/// name.
|
|
///
|
|
/// \param NameInfo The name that will be traversed to find
|
|
/// unexpanded parameter packs.
|
|
void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
|
|
|
|
/// Invoked when parsing a template argument followed by an
|
|
/// ellipsis, which creates a pack expansion.
|
|
///
|
|
/// \param Arg The template argument preceding the ellipsis, which
|
|
/// may already be invalid.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
|
|
SourceLocation EllipsisLoc);
|
|
|
|
/// Invoked when parsing a type followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Type The type preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
|
|
|
|
/// Construct a pack expansion type from the pattern of the pack
|
|
/// expansion.
|
|
TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
|
|
SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions);
|
|
|
|
/// Construct a pack expansion type from the pattern of the pack
|
|
/// expansion.
|
|
QualType CheckPackExpansion(QualType Pattern,
|
|
SourceRange PatternRange,
|
|
SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions);
|
|
|
|
/// Invoked when parsing an expression followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Pattern The expression preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
|
|
|
|
/// Invoked when parsing an expression followed by an ellipsis, which
|
|
/// creates a pack expansion.
|
|
///
|
|
/// \param Pattern The expression preceding the ellipsis, which will become
|
|
/// the pattern of the pack expansion.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis.
|
|
ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
|
|
Optional<unsigned> NumExpansions);
|
|
|
|
/// Determine whether we could expand a pack expansion with the
|
|
/// given set of parameter packs into separate arguments by repeatedly
|
|
/// transforming the pattern.
|
|
///
|
|
/// \param EllipsisLoc The location of the ellipsis that identifies the
|
|
/// pack expansion.
|
|
///
|
|
/// \param PatternRange The source range that covers the entire pattern of
|
|
/// the pack expansion.
|
|
///
|
|
/// \param Unexpanded The set of unexpanded parameter packs within the
|
|
/// pattern.
|
|
///
|
|
/// \param ShouldExpand Will be set to \c true if the transformer should
|
|
/// expand the corresponding pack expansions into separate arguments. When
|
|
/// set, \c NumExpansions must also be set.
|
|
///
|
|
/// \param RetainExpansion Whether the caller should add an unexpanded
|
|
/// pack expansion after all of the expanded arguments. This is used
|
|
/// when extending explicitly-specified template argument packs per
|
|
/// C++0x [temp.arg.explicit]p9.
|
|
///
|
|
/// \param NumExpansions The number of separate arguments that will be in
|
|
/// the expanded form of the corresponding pack expansion. This is both an
|
|
/// input and an output parameter, which can be set by the caller if the
|
|
/// number of expansions is known a priori (e.g., due to a prior substitution)
|
|
/// and will be set by the callee when the number of expansions is known.
|
|
/// The callee must set this value when \c ShouldExpand is \c true; it may
|
|
/// set this value in other cases.
|
|
///
|
|
/// \returns true if an error occurred (e.g., because the parameter packs
|
|
/// are to be instantiated with arguments of different lengths), false
|
|
/// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
|
|
/// must be set.
|
|
bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
|
|
SourceRange PatternRange,
|
|
ArrayRef<UnexpandedParameterPack> Unexpanded,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool &ShouldExpand,
|
|
bool &RetainExpansion,
|
|
Optional<unsigned> &NumExpansions);
|
|
|
|
/// Determine the number of arguments in the given pack expansion
|
|
/// type.
|
|
///
|
|
/// This routine assumes that the number of arguments in the expansion is
|
|
/// consistent across all of the unexpanded parameter packs in its pattern.
|
|
///
|
|
/// Returns an empty Optional if the type can't be expanded.
|
|
Optional<unsigned> getNumArgumentsInExpansion(QualType T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Determine whether the given declarator contains any unexpanded
|
|
/// parameter packs.
|
|
///
|
|
/// This routine is used by the parser to disambiguate function declarators
|
|
/// with an ellipsis prior to the ')', e.g.,
|
|
///
|
|
/// \code
|
|
/// void f(T...);
|
|
/// \endcode
|
|
///
|
|
/// To determine whether we have an (unnamed) function parameter pack or
|
|
/// a variadic function.
|
|
///
|
|
/// \returns true if the declarator contains any unexpanded parameter packs,
|
|
/// false otherwise.
|
|
bool containsUnexpandedParameterPacks(Declarator &D);
|
|
|
|
/// Returns the pattern of the pack expansion for a template argument.
|
|
///
|
|
/// \param OrigLoc The template argument to expand.
|
|
///
|
|
/// \param Ellipsis Will be set to the location of the ellipsis.
|
|
///
|
|
/// \param NumExpansions Will be set to the number of expansions that will
|
|
/// be generated from this pack expansion, if known a priori.
|
|
TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
|
|
TemplateArgumentLoc OrigLoc,
|
|
SourceLocation &Ellipsis,
|
|
Optional<unsigned> &NumExpansions) const;
|
|
|
|
/// Given a template argument that contains an unexpanded parameter pack, but
|
|
/// which has already been substituted, attempt to determine the number of
|
|
/// elements that will be produced once this argument is fully-expanded.
|
|
///
|
|
/// This is intended for use when transforming 'sizeof...(Arg)' in order to
|
|
/// avoid actually expanding the pack where possible.
|
|
Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Template Argument Deduction (C++ [temp.deduct])
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
/// Adjust the type \p ArgFunctionType to match the calling convention,
|
|
/// noreturn, and optionally the exception specification of \p FunctionType.
|
|
/// Deduction often wants to ignore these properties when matching function
|
|
/// types.
|
|
QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
|
|
bool AdjustExceptionSpec = false);
|
|
|
|
/// Describes the result of template argument deduction.
|
|
///
|
|
/// The TemplateDeductionResult enumeration describes the result of
|
|
/// template argument deduction, as returned from
|
|
/// DeduceTemplateArguments(). The separate TemplateDeductionInfo
|
|
/// structure provides additional information about the results of
|
|
/// template argument deduction, e.g., the deduced template argument
|
|
/// list (if successful) or the specific template parameters or
|
|
/// deduced arguments that were involved in the failure.
|
|
enum TemplateDeductionResult {
|
|
/// Template argument deduction was successful.
|
|
TDK_Success = 0,
|
|
/// The declaration was invalid; do nothing.
|
|
TDK_Invalid,
|
|
/// Template argument deduction exceeded the maximum template
|
|
/// instantiation depth (which has already been diagnosed).
|
|
TDK_InstantiationDepth,
|
|
/// Template argument deduction did not deduce a value
|
|
/// for every template parameter.
|
|
TDK_Incomplete,
|
|
/// Template argument deduction did not deduce a value for every
|
|
/// expansion of an expanded template parameter pack.
|
|
TDK_IncompletePack,
|
|
/// Template argument deduction produced inconsistent
|
|
/// deduced values for the given template parameter.
|
|
TDK_Inconsistent,
|
|
/// Template argument deduction failed due to inconsistent
|
|
/// cv-qualifiers on a template parameter type that would
|
|
/// otherwise be deduced, e.g., we tried to deduce T in "const T"
|
|
/// but were given a non-const "X".
|
|
TDK_Underqualified,
|
|
/// Substitution of the deduced template argument values
|
|
/// resulted in an error.
|
|
TDK_SubstitutionFailure,
|
|
/// After substituting deduced template arguments, a dependent
|
|
/// parameter type did not match the corresponding argument.
|
|
TDK_DeducedMismatch,
|
|
/// After substituting deduced template arguments, an element of
|
|
/// a dependent parameter type did not match the corresponding element
|
|
/// of the corresponding argument (when deducing from an initializer list).
|
|
TDK_DeducedMismatchNested,
|
|
/// A non-depnedent component of the parameter did not match the
|
|
/// corresponding component of the argument.
|
|
TDK_NonDeducedMismatch,
|
|
/// When performing template argument deduction for a function
|
|
/// template, there were too many call arguments.
|
|
TDK_TooManyArguments,
|
|
/// When performing template argument deduction for a function
|
|
/// template, there were too few call arguments.
|
|
TDK_TooFewArguments,
|
|
/// The explicitly-specified template arguments were not valid
|
|
/// template arguments for the given template.
|
|
TDK_InvalidExplicitArguments,
|
|
/// Checking non-dependent argument conversions failed.
|
|
TDK_NonDependentConversionFailure,
|
|
/// The deduced arguments did not satisfy the constraints associated
|
|
/// with the template.
|
|
TDK_ConstraintsNotSatisfied,
|
|
/// Deduction failed; that's all we know.
|
|
TDK_MiscellaneousDeductionFailure,
|
|
/// CUDA Target attributes do not match.
|
|
TDK_CUDATargetMismatch
|
|
};
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
|
|
const TemplateArgumentList &TemplateArgs,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
TemplateDeductionResult SubstituteExplicitTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
/// brief A function argument from which we performed template argument
|
|
// deduction for a call.
|
|
struct OriginalCallArg {
|
|
OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
|
|
unsigned ArgIdx, QualType OriginalArgType)
|
|
: OriginalParamType(OriginalParamType),
|
|
DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
|
|
OriginalArgType(OriginalArgType) {}
|
|
|
|
QualType OriginalParamType;
|
|
bool DecomposedParam;
|
|
unsigned ArgIdx;
|
|
QualType OriginalArgType;
|
|
};
|
|
|
|
TemplateDeductionResult FinishTemplateArgumentDeduction(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
SmallVectorImpl<DeducedTemplateArgument> &Deduced,
|
|
unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info,
|
|
SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
|
|
bool PartialOverloading = false,
|
|
llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
|
|
|
|
TemplateDeductionResult DeduceTemplateArguments(
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
|
|
FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
|
|
bool PartialOverloading,
|
|
llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
QualType ArgFunctionType,
|
|
FunctionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction = false);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
QualType ToType,
|
|
CXXConversionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
TemplateDeductionResult
|
|
DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
|
|
TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
FunctionDecl *&Specialization,
|
|
sema::TemplateDeductionInfo &Info,
|
|
bool IsAddressOfFunction = false);
|
|
|
|
/// Substitute Replacement for \p auto in \p TypeWithAuto
|
|
QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
|
|
/// Substitute Replacement for auto in TypeWithAuto
|
|
TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
|
|
QualType Replacement);
|
|
/// Completely replace the \c auto in \p TypeWithAuto by
|
|
/// \p Replacement. This does not retain any \c auto type sugar.
|
|
QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
|
|
|
|
/// Result type of DeduceAutoType.
|
|
enum DeduceAutoResult {
|
|
DAR_Succeeded,
|
|
DAR_Failed,
|
|
DAR_FailedAlreadyDiagnosed
|
|
};
|
|
|
|
DeduceAutoResult
|
|
DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
|
|
Optional<unsigned> DependentDeductionDepth = None);
|
|
DeduceAutoResult
|
|
DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
|
|
Optional<unsigned> DependentDeductionDepth = None);
|
|
void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
|
|
bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
|
|
bool Diagnose = true);
|
|
|
|
/// Declare implicit deduction guides for a class template if we've
|
|
/// not already done so.
|
|
void DeclareImplicitDeductionGuides(TemplateDecl *Template,
|
|
SourceLocation Loc);
|
|
|
|
QualType DeduceTemplateSpecializationFromInitializer(
|
|
TypeSourceInfo *TInfo, const InitializedEntity &Entity,
|
|
const InitializationKind &Kind, MultiExprArg Init);
|
|
|
|
QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
|
|
QualType Type, TypeSourceInfo *TSI,
|
|
SourceRange Range, bool DirectInit,
|
|
Expr *Init);
|
|
|
|
TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
|
|
|
|
bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
|
|
SourceLocation ReturnLoc,
|
|
Expr *&RetExpr, AutoType *AT);
|
|
|
|
FunctionTemplateDecl *getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
|
|
FunctionTemplateDecl *FT2,
|
|
SourceLocation Loc,
|
|
TemplatePartialOrderingContext TPOC,
|
|
unsigned NumCallArguments1,
|
|
unsigned NumCallArguments2);
|
|
UnresolvedSetIterator
|
|
getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
|
|
TemplateSpecCandidateSet &FailedCandidates,
|
|
SourceLocation Loc,
|
|
const PartialDiagnostic &NoneDiag,
|
|
const PartialDiagnostic &AmbigDiag,
|
|
const PartialDiagnostic &CandidateDiag,
|
|
bool Complain = true, QualType TargetType = QualType());
|
|
|
|
ClassTemplatePartialSpecializationDecl *
|
|
getMoreSpecializedPartialSpecialization(
|
|
ClassTemplatePartialSpecializationDecl *PS1,
|
|
ClassTemplatePartialSpecializationDecl *PS2,
|
|
SourceLocation Loc);
|
|
|
|
bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
|
|
VarTemplatePartialSpecializationDecl *PS1,
|
|
VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
|
|
|
|
bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
|
|
TemplateParameterList *P, TemplateDecl *AArg, SourceLocation Loc);
|
|
|
|
void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
|
|
unsigned Depth, llvm::SmallBitVector &Used);
|
|
|
|
void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
|
|
bool OnlyDeduced,
|
|
unsigned Depth,
|
|
llvm::SmallBitVector &Used);
|
|
void MarkDeducedTemplateParameters(
|
|
const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced) {
|
|
return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
|
|
}
|
|
static void MarkDeducedTemplateParameters(ASTContext &Ctx,
|
|
const FunctionTemplateDecl *FunctionTemplate,
|
|
llvm::SmallBitVector &Deduced);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Template Instantiation
|
|
//
|
|
|
|
MultiLevelTemplateArgumentList
|
|
getTemplateInstantiationArgs(NamedDecl *D,
|
|
const TemplateArgumentList *Innermost = nullptr,
|
|
bool RelativeToPrimary = false,
|
|
const FunctionDecl *Pattern = nullptr);
|
|
|
|
/// A context in which code is being synthesized (where a source location
|
|
/// alone is not sufficient to identify the context). This covers template
|
|
/// instantiation and various forms of implicitly-generated functions.
|
|
struct CodeSynthesisContext {
|
|
/// The kind of template instantiation we are performing
|
|
enum SynthesisKind {
|
|
/// We are instantiating a template declaration. The entity is
|
|
/// the declaration we're instantiating (e.g., a CXXRecordDecl).
|
|
TemplateInstantiation,
|
|
|
|
/// We are instantiating a default argument for a template
|
|
/// parameter. The Entity is the template parameter whose argument is
|
|
/// being instantiated, the Template is the template, and the
|
|
/// TemplateArgs/NumTemplateArguments provide the template arguments as
|
|
/// specified.
|
|
DefaultTemplateArgumentInstantiation,
|
|
|
|
/// We are instantiating a default argument for a function.
|
|
/// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
|
|
/// provides the template arguments as specified.
|
|
DefaultFunctionArgumentInstantiation,
|
|
|
|
/// We are substituting explicit template arguments provided for
|
|
/// a function template. The entity is a FunctionTemplateDecl.
|
|
ExplicitTemplateArgumentSubstitution,
|
|
|
|
/// We are substituting template argument determined as part of
|
|
/// template argument deduction for either a class template
|
|
/// partial specialization or a function template. The
|
|
/// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
|
|
/// a TemplateDecl.
|
|
DeducedTemplateArgumentSubstitution,
|
|
|
|
/// We are substituting prior template arguments into a new
|
|
/// template parameter. The template parameter itself is either a
|
|
/// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
|
|
PriorTemplateArgumentSubstitution,
|
|
|
|
/// We are checking the validity of a default template argument that
|
|
/// has been used when naming a template-id.
|
|
DefaultTemplateArgumentChecking,
|
|
|
|
/// We are computing the exception specification for a defaulted special
|
|
/// member function.
|
|
ExceptionSpecEvaluation,
|
|
|
|
/// We are instantiating the exception specification for a function
|
|
/// template which was deferred until it was needed.
|
|
ExceptionSpecInstantiation,
|
|
|
|
/// We are declaring an implicit special member function.
|
|
DeclaringSpecialMember,
|
|
|
|
/// We are declaring an implicit 'operator==' for a defaulted
|
|
/// 'operator<=>'.
|
|
DeclaringImplicitEqualityComparison,
|
|
|
|
/// We are defining a synthesized function (such as a defaulted special
|
|
/// member).
|
|
DefiningSynthesizedFunction,
|
|
|
|
// We are checking the constraints associated with a constrained entity or
|
|
// the constraint expression of a concept. This includes the checks that
|
|
// atomic constraints have the type 'bool' and that they can be constant
|
|
// evaluated.
|
|
ConstraintsCheck,
|
|
|
|
// We are substituting template arguments into a constraint expression.
|
|
ConstraintSubstitution,
|
|
|
|
// We are normalizing a constraint expression.
|
|
ConstraintNormalization,
|
|
|
|
// We are substituting into the parameter mapping of an atomic constraint
|
|
// during normalization.
|
|
ParameterMappingSubstitution,
|
|
|
|
/// We are rewriting a comparison operator in terms of an operator<=>.
|
|
RewritingOperatorAsSpaceship,
|
|
|
|
/// Added for Template instantiation observation.
|
|
/// Memoization means we are _not_ instantiating a template because
|
|
/// it is already instantiated (but we entered a context where we
|
|
/// would have had to if it was not already instantiated).
|
|
Memoization
|
|
} Kind;
|
|
|
|
/// Was the enclosing context a non-instantiation SFINAE context?
|
|
bool SavedInNonInstantiationSFINAEContext;
|
|
|
|
/// The point of instantiation or synthesis within the source code.
|
|
SourceLocation PointOfInstantiation;
|
|
|
|
/// The entity that is being synthesized.
|
|
Decl *Entity;
|
|
|
|
/// The template (or partial specialization) in which we are
|
|
/// performing the instantiation, for substitutions of prior template
|
|
/// arguments.
|
|
NamedDecl *Template;
|
|
|
|
/// The list of template arguments we are substituting, if they
|
|
/// are not part of the entity.
|
|
const TemplateArgument *TemplateArgs;
|
|
|
|
// FIXME: Wrap this union around more members, or perhaps store the
|
|
// kind-specific members in the RAII object owning the context.
|
|
union {
|
|
/// The number of template arguments in TemplateArgs.
|
|
unsigned NumTemplateArgs;
|
|
|
|
/// The special member being declared or defined.
|
|
CXXSpecialMember SpecialMember;
|
|
};
|
|
|
|
ArrayRef<TemplateArgument> template_arguments() const {
|
|
assert(Kind != DeclaringSpecialMember);
|
|
return {TemplateArgs, NumTemplateArgs};
|
|
}
|
|
|
|
/// The template deduction info object associated with the
|
|
/// substitution or checking of explicit or deduced template arguments.
|
|
sema::TemplateDeductionInfo *DeductionInfo;
|
|
|
|
/// The source range that covers the construct that cause
|
|
/// the instantiation, e.g., the template-id that causes a class
|
|
/// template instantiation.
|
|
SourceRange InstantiationRange;
|
|
|
|
CodeSynthesisContext()
|
|
: Kind(TemplateInstantiation),
|
|
SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
|
|
Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
|
|
DeductionInfo(nullptr) {}
|
|
|
|
/// Determines whether this template is an actual instantiation
|
|
/// that should be counted toward the maximum instantiation depth.
|
|
bool isInstantiationRecord() const;
|
|
};
|
|
|
|
/// List of active code synthesis contexts.
|
|
///
|
|
/// This vector is treated as a stack. As synthesis of one entity requires
|
|
/// synthesis of another, additional contexts are pushed onto the stack.
|
|
SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
|
|
|
|
/// Specializations whose definitions are currently being instantiated.
|
|
llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
|
|
|
|
/// Non-dependent types used in templates that have already been instantiated
|
|
/// by some template instantiation.
|
|
llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
|
|
|
|
/// Extra modules inspected when performing a lookup during a template
|
|
/// instantiation. Computed lazily.
|
|
SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
|
|
|
|
/// Cache of additional modules that should be used for name lookup
|
|
/// within the current template instantiation. Computed lazily; use
|
|
/// getLookupModules() to get a complete set.
|
|
llvm::DenseSet<Module*> LookupModulesCache;
|
|
|
|
/// Get the set of additional modules that should be checked during
|
|
/// name lookup. A module and its imports become visible when instanting a
|
|
/// template defined within it.
|
|
llvm::DenseSet<Module*> &getLookupModules();
|
|
|
|
/// Map from the most recent declaration of a namespace to the most
|
|
/// recent visible declaration of that namespace.
|
|
llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
|
|
|
|
/// Whether we are in a SFINAE context that is not associated with
|
|
/// template instantiation.
|
|
///
|
|
/// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
|
|
/// of a template instantiation or template argument deduction.
|
|
bool InNonInstantiationSFINAEContext;
|
|
|
|
/// The number of \p CodeSynthesisContexts that are not template
|
|
/// instantiations and, therefore, should not be counted as part of the
|
|
/// instantiation depth.
|
|
///
|
|
/// When the instantiation depth reaches the user-configurable limit
|
|
/// \p LangOptions::InstantiationDepth we will abort instantiation.
|
|
// FIXME: Should we have a similar limit for other forms of synthesis?
|
|
unsigned NonInstantiationEntries;
|
|
|
|
/// The depth of the context stack at the point when the most recent
|
|
/// error or warning was produced.
|
|
///
|
|
/// This value is used to suppress printing of redundant context stacks
|
|
/// when there are multiple errors or warnings in the same instantiation.
|
|
// FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
|
|
unsigned LastEmittedCodeSynthesisContextDepth = 0;
|
|
|
|
/// The template instantiation callbacks to trace or track
|
|
/// instantiations (objects can be chained).
|
|
///
|
|
/// This callbacks is used to print, trace or track template
|
|
/// instantiations as they are being constructed.
|
|
std::vector<std::unique_ptr<TemplateInstantiationCallback>>
|
|
TemplateInstCallbacks;
|
|
|
|
/// The current index into pack expansion arguments that will be
|
|
/// used for substitution of parameter packs.
|
|
///
|
|
/// The pack expansion index will be -1 to indicate that parameter packs
|
|
/// should be instantiated as themselves. Otherwise, the index specifies
|
|
/// which argument within the parameter pack will be used for substitution.
|
|
int ArgumentPackSubstitutionIndex;
|
|
|
|
/// RAII object used to change the argument pack substitution index
|
|
/// within a \c Sema object.
|
|
///
|
|
/// See \c ArgumentPackSubstitutionIndex for more information.
|
|
class ArgumentPackSubstitutionIndexRAII {
|
|
Sema &Self;
|
|
int OldSubstitutionIndex;
|
|
|
|
public:
|
|
ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
|
|
: Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
|
|
Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
|
|
}
|
|
|
|
~ArgumentPackSubstitutionIndexRAII() {
|
|
Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
|
|
}
|
|
};
|
|
|
|
friend class ArgumentPackSubstitutionRAII;
|
|
|
|
/// For each declaration that involved template argument deduction, the
|
|
/// set of diagnostics that were suppressed during that template argument
|
|
/// deduction.
|
|
///
|
|
/// FIXME: Serialize this structure to the AST file.
|
|
typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
|
|
SuppressedDiagnosticsMap;
|
|
SuppressedDiagnosticsMap SuppressedDiagnostics;
|
|
|
|
/// A stack object to be created when performing template
|
|
/// instantiation.
|
|
///
|
|
/// Construction of an object of type \c InstantiatingTemplate
|
|
/// pushes the current instantiation onto the stack of active
|
|
/// instantiations. If the size of this stack exceeds the maximum
|
|
/// number of recursive template instantiations, construction
|
|
/// produces an error and evaluates true.
|
|
///
|
|
/// Destruction of this object will pop the named instantiation off
|
|
/// the stack.
|
|
struct InstantiatingTemplate {
|
|
/// Note that we are instantiating a class template,
|
|
/// function template, variable template, alias template,
|
|
/// or a member thereof.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
Decl *Entity,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
struct ExceptionSpecification {};
|
|
/// Note that we are instantiating an exception specification
|
|
/// of a function template.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Entity, ExceptionSpecification,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating a default argument in a
|
|
/// template-id.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateParameter Param, TemplateDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are substituting either explicitly-specified or
|
|
/// deduced template arguments during function template argument deduction.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
FunctionTemplateDecl *FunctionTemplate,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
CodeSynthesisContext::SynthesisKind Kind,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a class template declaration.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a class template partial
|
|
/// specialization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ClassTemplatePartialSpecializationDecl *PartialSpec,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating as part of template
|
|
/// argument deduction for a variable template partial
|
|
/// specialization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
VarTemplatePartialSpecializationDecl *PartialSpec,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are instantiating a default argument for a function
|
|
/// parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ParmVarDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange = SourceRange());
|
|
|
|
/// Note that we are substituting prior template arguments into a
|
|
/// non-type parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
NamedDecl *Template,
|
|
NonTypeTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// Note that we are substituting prior template arguments into a
|
|
/// template template parameter.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
NamedDecl *Template,
|
|
TemplateTemplateParmDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// Note that we are checking the default template argument
|
|
/// against the template parameter for a given template-id.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
TemplateDecl *Template,
|
|
NamedDecl *Param,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintsCheck {};
|
|
/// \brief Note that we are checking the constraints associated with some
|
|
/// constrained entity (a concept declaration or a template with associated
|
|
/// constraints).
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintsCheck, NamedDecl *Template,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintSubstitution {};
|
|
/// \brief Note that we are checking a constraint expression associated
|
|
/// with a template declaration or as part of the satisfaction check of a
|
|
/// concept.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintSubstitution, NamedDecl *Template,
|
|
sema::TemplateDeductionInfo &DeductionInfo,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ConstraintNormalization {};
|
|
/// \brief Note that we are normalizing a constraint expression.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ConstraintNormalization, NamedDecl *Template,
|
|
SourceRange InstantiationRange);
|
|
|
|
struct ParameterMappingSubstitution {};
|
|
/// \brief Note that we are subtituting into the parameter mapping of an
|
|
/// atomic constraint during constraint normalization.
|
|
InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
|
|
ParameterMappingSubstitution, NamedDecl *Template,
|
|
SourceRange InstantiationRange);
|
|
|
|
/// Note that we have finished instantiating this template.
|
|
void Clear();
|
|
|
|
~InstantiatingTemplate() { Clear(); }
|
|
|
|
/// Determines whether we have exceeded the maximum
|
|
/// recursive template instantiations.
|
|
bool isInvalid() const { return Invalid; }
|
|
|
|
/// Determine whether we are already instantiating this
|
|
/// specialization in some surrounding active instantiation.
|
|
bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
|
|
|
|
private:
|
|
Sema &SemaRef;
|
|
bool Invalid;
|
|
bool AlreadyInstantiating;
|
|
bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
|
|
SourceRange InstantiationRange);
|
|
|
|
InstantiatingTemplate(
|
|
Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
|
|
SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
|
|
Decl *Entity, NamedDecl *Template = nullptr,
|
|
ArrayRef<TemplateArgument> TemplateArgs = None,
|
|
sema::TemplateDeductionInfo *DeductionInfo = nullptr);
|
|
|
|
InstantiatingTemplate(const InstantiatingTemplate&) = delete;
|
|
|
|
InstantiatingTemplate&
|
|
operator=(const InstantiatingTemplate&) = delete;
|
|
};
|
|
|
|
void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
|
|
void popCodeSynthesisContext();
|
|
|
|
/// Determine whether we are currently performing template instantiation.
|
|
bool inTemplateInstantiation() const {
|
|
return CodeSynthesisContexts.size() > NonInstantiationEntries;
|
|
}
|
|
|
|
void PrintContextStack() {
|
|
if (!CodeSynthesisContexts.empty() &&
|
|
CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
|
|
PrintInstantiationStack();
|
|
LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
|
|
}
|
|
if (PragmaAttributeCurrentTargetDecl)
|
|
PrintPragmaAttributeInstantiationPoint();
|
|
}
|
|
void PrintInstantiationStack();
|
|
|
|
void PrintPragmaAttributeInstantiationPoint();
|
|
|
|
/// Determines whether we are currently in a context where
|
|
/// template argument substitution failures are not considered
|
|
/// errors.
|
|
///
|
|
/// \returns An empty \c Optional if we're not in a SFINAE context.
|
|
/// Otherwise, contains a pointer that, if non-NULL, contains the nearest
|
|
/// template-deduction context object, which can be used to capture
|
|
/// diagnostics that will be suppressed.
|
|
Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
|
|
|
|
/// Determines whether we are currently in a context that
|
|
/// is not evaluated as per C++ [expr] p5.
|
|
bool isUnevaluatedContext() const {
|
|
assert(!ExprEvalContexts.empty() &&
|
|
"Must be in an expression evaluation context");
|
|
return ExprEvalContexts.back().isUnevaluated();
|
|
}
|
|
|
|
/// RAII class used to determine whether SFINAE has
|
|
/// trapped any errors that occur during template argument
|
|
/// deduction.
|
|
class SFINAETrap {
|
|
Sema &SemaRef;
|
|
unsigned PrevSFINAEErrors;
|
|
bool PrevInNonInstantiationSFINAEContext;
|
|
bool PrevAccessCheckingSFINAE;
|
|
bool PrevLastDiagnosticIgnored;
|
|
|
|
public:
|
|
explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
|
|
: SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
|
|
PrevInNonInstantiationSFINAEContext(
|
|
SemaRef.InNonInstantiationSFINAEContext),
|
|
PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
|
|
PrevLastDiagnosticIgnored(
|
|
SemaRef.getDiagnostics().isLastDiagnosticIgnored())
|
|
{
|
|
if (!SemaRef.isSFINAEContext())
|
|
SemaRef.InNonInstantiationSFINAEContext = true;
|
|
SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
|
|
}
|
|
|
|
~SFINAETrap() {
|
|
SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
|
|
SemaRef.InNonInstantiationSFINAEContext
|
|
= PrevInNonInstantiationSFINAEContext;
|
|
SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
|
|
SemaRef.getDiagnostics().setLastDiagnosticIgnored(
|
|
PrevLastDiagnosticIgnored);
|
|
}
|
|
|
|
/// Determine whether any SFINAE errors have been trapped.
|
|
bool hasErrorOccurred() const {
|
|
return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
|
|
}
|
|
};
|
|
|
|
/// RAII class used to indicate that we are performing provisional
|
|
/// semantic analysis to determine the validity of a construct, so
|
|
/// typo-correction and diagnostics in the immediate context (not within
|
|
/// implicitly-instantiated templates) should be suppressed.
|
|
class TentativeAnalysisScope {
|
|
Sema &SemaRef;
|
|
// FIXME: Using a SFINAETrap for this is a hack.
|
|
SFINAETrap Trap;
|
|
bool PrevDisableTypoCorrection;
|
|
public:
|
|
explicit TentativeAnalysisScope(Sema &SemaRef)
|
|
: SemaRef(SemaRef), Trap(SemaRef, true),
|
|
PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
|
|
SemaRef.DisableTypoCorrection = true;
|
|
}
|
|
~TentativeAnalysisScope() {
|
|
SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
|
|
}
|
|
};
|
|
|
|
/// The current instantiation scope used to store local
|
|
/// variables.
|
|
LocalInstantiationScope *CurrentInstantiationScope;
|
|
|
|
/// Tracks whether we are in a context where typo correction is
|
|
/// disabled.
|
|
bool DisableTypoCorrection;
|
|
|
|
/// The number of typos corrected by CorrectTypo.
|
|
unsigned TyposCorrected;
|
|
|
|
typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
|
|
typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
|
|
|
|
/// A cache containing identifiers for which typo correction failed and
|
|
/// their locations, so that repeated attempts to correct an identifier in a
|
|
/// given location are ignored if typo correction already failed for it.
|
|
IdentifierSourceLocations TypoCorrectionFailures;
|
|
|
|
/// Worker object for performing CFG-based warnings.
|
|
sema::AnalysisBasedWarnings AnalysisWarnings;
|
|
threadSafety::BeforeSet *ThreadSafetyDeclCache;
|
|
|
|
/// An entity for which implicit template instantiation is required.
|
|
///
|
|
/// The source location associated with the declaration is the first place in
|
|
/// the source code where the declaration was "used". It is not necessarily
|
|
/// the point of instantiation (which will be either before or after the
|
|
/// namespace-scope declaration that triggered this implicit instantiation),
|
|
/// However, it is the location that diagnostics should generally refer to,
|
|
/// because users will need to know what code triggered the instantiation.
|
|
typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
|
|
|
|
/// The queue of implicit template instantiations that are required
|
|
/// but have not yet been performed.
|
|
std::deque<PendingImplicitInstantiation> PendingInstantiations;
|
|
|
|
/// Queue of implicit template instantiations that cannot be performed
|
|
/// eagerly.
|
|
SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
|
|
|
|
class GlobalEagerInstantiationScope {
|
|
public:
|
|
GlobalEagerInstantiationScope(Sema &S, bool Enabled)
|
|
: S(S), Enabled(Enabled) {
|
|
if (!Enabled) return;
|
|
|
|
SavedPendingInstantiations.swap(S.PendingInstantiations);
|
|
SavedVTableUses.swap(S.VTableUses);
|
|
}
|
|
|
|
void perform() {
|
|
if (Enabled) {
|
|
S.DefineUsedVTables();
|
|
S.PerformPendingInstantiations();
|
|
}
|
|
}
|
|
|
|
~GlobalEagerInstantiationScope() {
|
|
if (!Enabled) return;
|
|
|
|
// Restore the set of pending vtables.
|
|
assert(S.VTableUses.empty() &&
|
|
"VTableUses should be empty before it is discarded.");
|
|
S.VTableUses.swap(SavedVTableUses);
|
|
|
|
// Restore the set of pending implicit instantiations.
|
|
assert(S.PendingInstantiations.empty() &&
|
|
"PendingInstantiations should be empty before it is discarded.");
|
|
S.PendingInstantiations.swap(SavedPendingInstantiations);
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
SmallVector<VTableUse, 16> SavedVTableUses;
|
|
std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
|
|
bool Enabled;
|
|
};
|
|
|
|
/// The queue of implicit template instantiations that are required
|
|
/// and must be performed within the current local scope.
|
|
///
|
|
/// This queue is only used for member functions of local classes in
|
|
/// templates, which must be instantiated in the same scope as their
|
|
/// enclosing function, so that they can reference function-local
|
|
/// types, static variables, enumerators, etc.
|
|
std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
|
|
|
|
class LocalEagerInstantiationScope {
|
|
public:
|
|
LocalEagerInstantiationScope(Sema &S) : S(S) {
|
|
SavedPendingLocalImplicitInstantiations.swap(
|
|
S.PendingLocalImplicitInstantiations);
|
|
}
|
|
|
|
void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
|
|
|
|
~LocalEagerInstantiationScope() {
|
|
assert(S.PendingLocalImplicitInstantiations.empty() &&
|
|
"there shouldn't be any pending local implicit instantiations");
|
|
SavedPendingLocalImplicitInstantiations.swap(
|
|
S.PendingLocalImplicitInstantiations);
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
std::deque<PendingImplicitInstantiation>
|
|
SavedPendingLocalImplicitInstantiations;
|
|
};
|
|
|
|
/// A helper class for building up ExtParameterInfos.
|
|
class ExtParameterInfoBuilder {
|
|
SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
|
|
bool HasInteresting = false;
|
|
|
|
public:
|
|
/// Set the ExtParameterInfo for the parameter at the given index,
|
|
///
|
|
void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
|
|
assert(Infos.size() <= index);
|
|
Infos.resize(index);
|
|
Infos.push_back(info);
|
|
|
|
if (!HasInteresting)
|
|
HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
|
|
}
|
|
|
|
/// Return a pointer (suitable for setting in an ExtProtoInfo) to the
|
|
/// ExtParameterInfo array we've built up.
|
|
const FunctionProtoType::ExtParameterInfo *
|
|
getPointerOrNull(unsigned numParams) {
|
|
if (!HasInteresting) return nullptr;
|
|
Infos.resize(numParams);
|
|
return Infos.data();
|
|
}
|
|
};
|
|
|
|
void PerformPendingInstantiations(bool LocalOnly = false);
|
|
|
|
TypeSourceInfo *SubstType(TypeSourceInfo *T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity,
|
|
bool AllowDeducedTST = false);
|
|
|
|
QualType SubstType(QualType T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
|
|
TypeSourceInfo *SubstType(TypeLoc TL,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc, DeclarationName Entity);
|
|
|
|
TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity,
|
|
CXXRecordDecl *ThisContext,
|
|
Qualifiers ThisTypeQuals);
|
|
void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
|
|
const MultiLevelTemplateArgumentList &Args);
|
|
bool SubstExceptionSpec(SourceLocation Loc,
|
|
FunctionProtoType::ExceptionSpecInfo &ESI,
|
|
SmallVectorImpl<QualType> &ExceptionStorage,
|
|
const MultiLevelTemplateArgumentList &Args);
|
|
ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
int indexAdjustment,
|
|
Optional<unsigned> NumExpansions,
|
|
bool ExpectParameterPack);
|
|
bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
|
|
const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<QualType> &ParamTypes,
|
|
SmallVectorImpl<ParmVarDecl *> *OutParams,
|
|
ExtParameterInfoBuilder &ParamInfos);
|
|
ExprResult SubstExpr(Expr *E,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Substitute the given template arguments into a list of
|
|
/// expressions, expanding pack expansions if required.
|
|
///
|
|
/// \param Exprs The list of expressions to substitute into.
|
|
///
|
|
/// \param IsCall Whether this is some form of call, in which case
|
|
/// default arguments will be dropped.
|
|
///
|
|
/// \param TemplateArgs The set of template arguments to substitute.
|
|
///
|
|
/// \param Outputs Will receive all of the substituted arguments.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
SmallVectorImpl<Expr *> &Outputs);
|
|
|
|
StmtResult SubstStmt(Stmt *S,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
TemplateParameterList *
|
|
SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
bool
|
|
SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateArgumentListInfo &Outputs);
|
|
|
|
|
|
Decl *SubstDecl(Decl *D, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
/// Substitute the name and return type of a defaulted 'operator<=>' to form
|
|
/// an implicit 'operator=='.
|
|
FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
|
|
FunctionDecl *Spaceship);
|
|
|
|
ExprResult SubstInitializer(Expr *E,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool CXXDirectInit);
|
|
|
|
bool
|
|
SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
|
|
CXXRecordDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
bool
|
|
InstantiateClass(SourceLocation PointOfInstantiation,
|
|
CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain = true);
|
|
|
|
bool InstantiateEnum(SourceLocation PointOfInstantiation,
|
|
EnumDecl *Instantiation, EnumDecl *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
bool InstantiateInClassInitializer(
|
|
SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
|
|
FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
struct LateInstantiatedAttribute {
|
|
const Attr *TmplAttr;
|
|
LocalInstantiationScope *Scope;
|
|
Decl *NewDecl;
|
|
|
|
LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
|
|
Decl *D)
|
|
: TmplAttr(A), Scope(S), NewDecl(D)
|
|
{ }
|
|
};
|
|
typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
|
|
|
|
void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Decl *Pattern, Decl *Inst,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *OuterMostScope = nullptr);
|
|
|
|
void
|
|
InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Decl *Pattern, Decl *Inst,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *OuterMostScope = nullptr);
|
|
|
|
bool usesPartialOrExplicitSpecialization(
|
|
SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
|
|
|
|
bool
|
|
InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
|
|
ClassTemplateSpecializationDecl *ClassTemplateSpec,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain = true);
|
|
|
|
void InstantiateClassMembers(SourceLocation PointOfInstantiation,
|
|
CXXRecordDecl *Instantiation,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
void InstantiateClassTemplateSpecializationMembers(
|
|
SourceLocation PointOfInstantiation,
|
|
ClassTemplateSpecializationDecl *ClassTemplateSpec,
|
|
TemplateSpecializationKind TSK);
|
|
|
|
NestedNameSpecifierLoc
|
|
SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
DeclarationNameInfo
|
|
SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
TemplateName
|
|
SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
|
|
SourceLocation Loc,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
|
|
TemplateArgumentListInfo &Result,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Function);
|
|
bool CheckInstantiatedFunctionTemplateConstraints(
|
|
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
ConstraintSatisfaction &Satisfaction);
|
|
FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
|
|
const TemplateArgumentList *Args,
|
|
SourceLocation Loc);
|
|
void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Function,
|
|
bool Recursive = false,
|
|
bool DefinitionRequired = false,
|
|
bool AtEndOfTU = false);
|
|
VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
|
|
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
|
|
const TemplateArgumentList &TemplateArgList,
|
|
const TemplateArgumentListInfo &TemplateArgsInfo,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
SourceLocation PointOfInstantiation, void *InsertPos,
|
|
LateInstantiatedAttrVec *LateAttrs = nullptr,
|
|
LocalInstantiationScope *StartingScope = nullptr);
|
|
VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
|
|
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
void
|
|
BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
LateInstantiatedAttrVec *LateAttrs,
|
|
DeclContext *Owner,
|
|
LocalInstantiationScope *StartingScope,
|
|
bool InstantiatingVarTemplate = false,
|
|
VarTemplateSpecializationDecl *PrevVTSD = nullptr);
|
|
|
|
VarDecl *getVarTemplateSpecialization(
|
|
VarTemplateDecl *VarTempl, const TemplateArgumentListInfo *TemplateArgs,
|
|
const DeclarationNameInfo &MemberNameInfo, SourceLocation TemplateKWLoc);
|
|
|
|
void InstantiateVariableInitializer(
|
|
VarDecl *Var, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
|
|
VarDecl *Var, bool Recursive = false,
|
|
bool DefinitionRequired = false,
|
|
bool AtEndOfTU = false);
|
|
|
|
void InstantiateMemInitializers(CXXConstructorDecl *New,
|
|
const CXXConstructorDecl *Tmpl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool FindingInstantiatedContext = false);
|
|
DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs);
|
|
|
|
// Objective-C declarations.
|
|
enum ObjCContainerKind {
|
|
OCK_None = -1,
|
|
OCK_Interface = 0,
|
|
OCK_Protocol,
|
|
OCK_Category,
|
|
OCK_ClassExtension,
|
|
OCK_Implementation,
|
|
OCK_CategoryImplementation
|
|
};
|
|
ObjCContainerKind getObjCContainerKind() const;
|
|
|
|
DeclResult actOnObjCTypeParam(Scope *S,
|
|
ObjCTypeParamVariance variance,
|
|
SourceLocation varianceLoc,
|
|
unsigned index,
|
|
IdentifierInfo *paramName,
|
|
SourceLocation paramLoc,
|
|
SourceLocation colonLoc,
|
|
ParsedType typeBound);
|
|
|
|
ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
|
|
ArrayRef<Decl *> typeParams,
|
|
SourceLocation rAngleLoc);
|
|
void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
|
|
|
|
Decl *ActOnStartClassInterface(
|
|
Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
|
|
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
|
|
IdentifierInfo *SuperName, SourceLocation SuperLoc,
|
|
ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
|
|
Decl *const *ProtoRefs, unsigned NumProtoRefs,
|
|
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
void ActOnSuperClassOfClassInterface(Scope *S,
|
|
SourceLocation AtInterfaceLoc,
|
|
ObjCInterfaceDecl *IDecl,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassLoc,
|
|
IdentifierInfo *SuperName,
|
|
SourceLocation SuperLoc,
|
|
ArrayRef<ParsedType> SuperTypeArgs,
|
|
SourceRange SuperTypeArgsRange);
|
|
|
|
void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
|
|
SmallVectorImpl<SourceLocation> &ProtocolLocs,
|
|
IdentifierInfo *SuperName,
|
|
SourceLocation SuperLoc);
|
|
|
|
Decl *ActOnCompatibilityAlias(
|
|
SourceLocation AtCompatibilityAliasLoc,
|
|
IdentifierInfo *AliasName, SourceLocation AliasLocation,
|
|
IdentifierInfo *ClassName, SourceLocation ClassLocation);
|
|
|
|
bool CheckForwardProtocolDeclarationForCircularDependency(
|
|
IdentifierInfo *PName,
|
|
SourceLocation &PLoc, SourceLocation PrevLoc,
|
|
const ObjCList<ObjCProtocolDecl> &PList);
|
|
|
|
Decl *ActOnStartProtocolInterface(
|
|
SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
|
|
SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
|
|
unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
|
|
SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
|
|
|
|
Decl *ActOnStartCategoryInterface(
|
|
SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
|
|
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
|
|
IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
|
|
Decl *const *ProtoRefs, unsigned NumProtoRefs,
|
|
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassLoc,
|
|
IdentifierInfo *SuperClassname,
|
|
SourceLocation SuperClassLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassLoc,
|
|
IdentifierInfo *CatName,
|
|
SourceLocation CatLoc,
|
|
const ParsedAttributesView &AttrList);
|
|
|
|
DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
|
|
ArrayRef<Decl *> Decls);
|
|
|
|
DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
|
|
IdentifierInfo **IdentList,
|
|
SourceLocation *IdentLocs,
|
|
ArrayRef<ObjCTypeParamList *> TypeParamLists,
|
|
unsigned NumElts);
|
|
|
|
DeclGroupPtrTy
|
|
ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
|
|
ArrayRef<IdentifierLocPair> IdentList,
|
|
const ParsedAttributesView &attrList);
|
|
|
|
void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
|
|
ArrayRef<IdentifierLocPair> ProtocolId,
|
|
SmallVectorImpl<Decl *> &Protocols);
|
|
|
|
void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
|
|
SourceLocation ProtocolLoc,
|
|
IdentifierInfo *TypeArgId,
|
|
SourceLocation TypeArgLoc,
|
|
bool SelectProtocolFirst = false);
|
|
|
|
/// Given a list of identifiers (and their locations), resolve the
|
|
/// names to either Objective-C protocol qualifiers or type
|
|
/// arguments, as appropriate.
|
|
void actOnObjCTypeArgsOrProtocolQualifiers(
|
|
Scope *S,
|
|
ParsedType baseType,
|
|
SourceLocation lAngleLoc,
|
|
ArrayRef<IdentifierInfo *> identifiers,
|
|
ArrayRef<SourceLocation> identifierLocs,
|
|
SourceLocation rAngleLoc,
|
|
SourceLocation &typeArgsLAngleLoc,
|
|
SmallVectorImpl<ParsedType> &typeArgs,
|
|
SourceLocation &typeArgsRAngleLoc,
|
|
SourceLocation &protocolLAngleLoc,
|
|
SmallVectorImpl<Decl *> &protocols,
|
|
SourceLocation &protocolRAngleLoc,
|
|
bool warnOnIncompleteProtocols);
|
|
|
|
/// Build a an Objective-C protocol-qualified 'id' type where no
|
|
/// base type was specified.
|
|
TypeResult actOnObjCProtocolQualifierType(
|
|
SourceLocation lAngleLoc,
|
|
ArrayRef<Decl *> protocols,
|
|
ArrayRef<SourceLocation> protocolLocs,
|
|
SourceLocation rAngleLoc);
|
|
|
|
/// Build a specialized and/or protocol-qualified Objective-C type.
|
|
TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
|
|
Scope *S,
|
|
SourceLocation Loc,
|
|
ParsedType BaseType,
|
|
SourceLocation TypeArgsLAngleLoc,
|
|
ArrayRef<ParsedType> TypeArgs,
|
|
SourceLocation TypeArgsRAngleLoc,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<Decl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc);
|
|
|
|
/// Build an Objective-C type parameter type.
|
|
QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<ObjCProtocolDecl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc,
|
|
bool FailOnError = false);
|
|
|
|
/// Build an Objective-C object pointer type.
|
|
QualType BuildObjCObjectType(QualType BaseType,
|
|
SourceLocation Loc,
|
|
SourceLocation TypeArgsLAngleLoc,
|
|
ArrayRef<TypeSourceInfo *> TypeArgs,
|
|
SourceLocation TypeArgsRAngleLoc,
|
|
SourceLocation ProtocolLAngleLoc,
|
|
ArrayRef<ObjCProtocolDecl *> Protocols,
|
|
ArrayRef<SourceLocation> ProtocolLocs,
|
|
SourceLocation ProtocolRAngleLoc,
|
|
bool FailOnError = false);
|
|
|
|
/// Ensure attributes are consistent with type.
|
|
/// \param [in, out] Attributes The attributes to check; they will
|
|
/// be modified to be consistent with \p PropertyTy.
|
|
void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
|
|
SourceLocation Loc,
|
|
unsigned &Attributes,
|
|
bool propertyInPrimaryClass);
|
|
|
|
/// Process the specified property declaration and create decls for the
|
|
/// setters and getters as needed.
|
|
/// \param property The property declaration being processed
|
|
void ProcessPropertyDecl(ObjCPropertyDecl *property);
|
|
|
|
|
|
void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
|
|
ObjCPropertyDecl *SuperProperty,
|
|
const IdentifierInfo *Name,
|
|
bool OverridingProtocolProperty);
|
|
|
|
void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
|
|
ObjCInterfaceDecl *ID);
|
|
|
|
Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
|
|
ArrayRef<Decl *> allMethods = None,
|
|
ArrayRef<DeclGroupPtrTy> allTUVars = None);
|
|
|
|
Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
|
|
SourceLocation LParenLoc,
|
|
FieldDeclarator &FD, ObjCDeclSpec &ODS,
|
|
Selector GetterSel, Selector SetterSel,
|
|
tok::ObjCKeywordKind MethodImplKind,
|
|
DeclContext *lexicalDC = nullptr);
|
|
|
|
Decl *ActOnPropertyImplDecl(Scope *S,
|
|
SourceLocation AtLoc,
|
|
SourceLocation PropertyLoc,
|
|
bool ImplKind,
|
|
IdentifierInfo *PropertyId,
|
|
IdentifierInfo *PropertyIvar,
|
|
SourceLocation PropertyIvarLoc,
|
|
ObjCPropertyQueryKind QueryKind);
|
|
|
|
enum ObjCSpecialMethodKind {
|
|
OSMK_None,
|
|
OSMK_Alloc,
|
|
OSMK_New,
|
|
OSMK_Copy,
|
|
OSMK_RetainingInit,
|
|
OSMK_NonRetainingInit
|
|
};
|
|
|
|
struct ObjCArgInfo {
|
|
IdentifierInfo *Name;
|
|
SourceLocation NameLoc;
|
|
// The Type is null if no type was specified, and the DeclSpec is invalid
|
|
// in this case.
|
|
ParsedType Type;
|
|
ObjCDeclSpec DeclSpec;
|
|
|
|
/// ArgAttrs - Attribute list for this argument.
|
|
ParsedAttributesView ArgAttrs;
|
|
};
|
|
|
|
Decl *ActOnMethodDeclaration(
|
|
Scope *S,
|
|
SourceLocation BeginLoc, // location of the + or -.
|
|
SourceLocation EndLoc, // location of the ; or {.
|
|
tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
|
|
ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
|
|
// optional arguments. The number of types/arguments is obtained
|
|
// from the Sel.getNumArgs().
|
|
ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
|
|
unsigned CNumArgs, // c-style args
|
|
const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
|
|
bool isVariadic, bool MethodDefinition);
|
|
|
|
ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
|
|
const ObjCObjectPointerType *OPT,
|
|
bool IsInstance);
|
|
ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
|
|
bool IsInstance);
|
|
|
|
bool CheckARCMethodDecl(ObjCMethodDecl *method);
|
|
bool inferObjCARCLifetime(ValueDecl *decl);
|
|
|
|
void deduceOpenCLAddressSpace(ValueDecl *decl);
|
|
|
|
ExprResult
|
|
HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
|
|
Expr *BaseExpr,
|
|
SourceLocation OpLoc,
|
|
DeclarationName MemberName,
|
|
SourceLocation MemberLoc,
|
|
SourceLocation SuperLoc, QualType SuperType,
|
|
bool Super);
|
|
|
|
ExprResult
|
|
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
|
|
IdentifierInfo &propertyName,
|
|
SourceLocation receiverNameLoc,
|
|
SourceLocation propertyNameLoc);
|
|
|
|
ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
|
|
|
|
/// Describes the kind of message expression indicated by a message
|
|
/// send that starts with an identifier.
|
|
enum ObjCMessageKind {
|
|
/// The message is sent to 'super'.
|
|
ObjCSuperMessage,
|
|
/// The message is an instance message.
|
|
ObjCInstanceMessage,
|
|
/// The message is a class message, and the identifier is a type
|
|
/// name.
|
|
ObjCClassMessage
|
|
};
|
|
|
|
ObjCMessageKind getObjCMessageKind(Scope *S,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
bool IsSuper,
|
|
bool HasTrailingDot,
|
|
ParsedType &ReceiverType);
|
|
|
|
ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
|
|
Selector Sel,
|
|
SourceLocation LBracLoc,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
SourceLocation RBracLoc,
|
|
MultiExprArg Args);
|
|
|
|
ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
|
|
QualType ReceiverType,
|
|
SourceLocation SuperLoc,
|
|
Selector Sel,
|
|
ObjCMethodDecl *Method,
|
|
SourceLocation LBracLoc,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
SourceLocation RBracLoc,
|
|
MultiExprArg Args,
|
|
bool isImplicit = false);
|
|
|
|
ExprResult BuildClassMessageImplicit(QualType ReceiverType,
|
|
bool isSuperReceiver,
|
|
SourceLocation Loc,
|
|
Selector Sel,
|
|
ObjCMethodDecl *Method,
|
|
MultiExprArg Args);
|
|
|
|
ExprResult ActOnClassMessage(Scope *S,
|
|
ParsedType Receiver,
|
|
Selector Sel,
|
|
SourceLocation LBracLoc,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
SourceLocation RBracLoc,
|
|
MultiExprArg Args);
|
|
|
|
ExprResult BuildInstanceMessage(Expr *Receiver,
|
|
QualType ReceiverType,
|
|
SourceLocation SuperLoc,
|
|
Selector Sel,
|
|
ObjCMethodDecl *Method,
|
|
SourceLocation LBracLoc,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
SourceLocation RBracLoc,
|
|
MultiExprArg Args,
|
|
bool isImplicit = false);
|
|
|
|
ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
|
|
QualType ReceiverType,
|
|
SourceLocation Loc,
|
|
Selector Sel,
|
|
ObjCMethodDecl *Method,
|
|
MultiExprArg Args);
|
|
|
|
ExprResult ActOnInstanceMessage(Scope *S,
|
|
Expr *Receiver,
|
|
Selector Sel,
|
|
SourceLocation LBracLoc,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
SourceLocation RBracLoc,
|
|
MultiExprArg Args);
|
|
|
|
ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
|
|
ObjCBridgeCastKind Kind,
|
|
SourceLocation BridgeKeywordLoc,
|
|
TypeSourceInfo *TSInfo,
|
|
Expr *SubExpr);
|
|
|
|
ExprResult ActOnObjCBridgedCast(Scope *S,
|
|
SourceLocation LParenLoc,
|
|
ObjCBridgeCastKind Kind,
|
|
SourceLocation BridgeKeywordLoc,
|
|
ParsedType Type,
|
|
SourceLocation RParenLoc,
|
|
Expr *SubExpr);
|
|
|
|
void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
|
|
|
|
void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
|
|
|
|
bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
|
|
CastKind &Kind);
|
|
|
|
bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
|
|
QualType DestType, QualType SrcType,
|
|
ObjCInterfaceDecl *&RelatedClass,
|
|
ObjCMethodDecl *&ClassMethod,
|
|
ObjCMethodDecl *&InstanceMethod,
|
|
TypedefNameDecl *&TDNDecl,
|
|
bool CfToNs, bool Diagnose = true);
|
|
|
|
bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
|
|
QualType DestType, QualType SrcType,
|
|
Expr *&SrcExpr, bool Diagnose = true);
|
|
|
|
bool ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&SrcExpr,
|
|
bool Diagnose = true);
|
|
|
|
bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
|
|
|
|
/// Check whether the given new method is a valid override of the
|
|
/// given overridden method, and set any properties that should be inherited.
|
|
void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
|
|
const ObjCMethodDecl *Overridden);
|
|
|
|
/// Describes the compatibility of a result type with its method.
|
|
enum ResultTypeCompatibilityKind {
|
|
RTC_Compatible,
|
|
RTC_Incompatible,
|
|
RTC_Unknown
|
|
};
|
|
|
|
void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
|
|
ObjCMethodDecl *overridden);
|
|
|
|
void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
|
|
ObjCInterfaceDecl *CurrentClass,
|
|
ResultTypeCompatibilityKind RTC);
|
|
|
|
enum PragmaOptionsAlignKind {
|
|
POAK_Native, // #pragma options align=native
|
|
POAK_Natural, // #pragma options align=natural
|
|
POAK_Packed, // #pragma options align=packed
|
|
POAK_Power, // #pragma options align=power
|
|
POAK_Mac68k, // #pragma options align=mac68k
|
|
POAK_Reset // #pragma options align=reset
|
|
};
|
|
|
|
/// ActOnPragmaClangSection - Called on well formed \#pragma clang section
|
|
void ActOnPragmaClangSection(SourceLocation PragmaLoc,
|
|
PragmaClangSectionAction Action,
|
|
PragmaClangSectionKind SecKind, StringRef SecName);
|
|
|
|
/// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
|
|
void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// ActOnPragmaPack - Called on well formed \#pragma pack(...).
|
|
void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
|
|
StringRef SlotLabel, Expr *Alignment);
|
|
|
|
enum class PragmaPackDiagnoseKind {
|
|
NonDefaultStateAtInclude,
|
|
ChangedStateAtExit
|
|
};
|
|
|
|
void DiagnoseNonDefaultPragmaPack(PragmaPackDiagnoseKind Kind,
|
|
SourceLocation IncludeLoc);
|
|
void DiagnoseUnterminatedPragmaPack();
|
|
|
|
/// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
|
|
void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
|
|
|
|
/// ActOnPragmaMSComment - Called on well formed
|
|
/// \#pragma comment(kind, "arg").
|
|
void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
|
|
StringRef Arg);
|
|
|
|
/// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
|
|
/// pointers_to_members(representation method[, general purpose
|
|
/// representation]).
|
|
void ActOnPragmaMSPointersToMembers(
|
|
LangOptions::PragmaMSPointersToMembersKind Kind,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// Called on well formed \#pragma vtordisp().
|
|
void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
|
|
SourceLocation PragmaLoc,
|
|
MSVtorDispMode Value);
|
|
|
|
enum PragmaSectionKind {
|
|
PSK_DataSeg,
|
|
PSK_BSSSeg,
|
|
PSK_ConstSeg,
|
|
PSK_CodeSeg,
|
|
};
|
|
|
|
bool UnifySection(StringRef SectionName,
|
|
int SectionFlags,
|
|
DeclaratorDecl *TheDecl);
|
|
bool UnifySection(StringRef SectionName,
|
|
int SectionFlags,
|
|
SourceLocation PragmaSectionLocation);
|
|
|
|
/// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
|
|
void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
|
|
PragmaMsStackAction Action,
|
|
llvm::StringRef StackSlotLabel,
|
|
StringLiteral *SegmentName,
|
|
llvm::StringRef PragmaName);
|
|
|
|
/// Called on well formed \#pragma section().
|
|
void ActOnPragmaMSSection(SourceLocation PragmaLocation,
|
|
int SectionFlags, StringLiteral *SegmentName);
|
|
|
|
/// Called on well-formed \#pragma init_seg().
|
|
void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
|
|
StringLiteral *SegmentName);
|
|
|
|
/// Called on #pragma clang __debug dump II
|
|
void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
|
|
|
|
/// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
|
|
void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
|
|
StringRef Value);
|
|
|
|
/// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
|
|
void ActOnPragmaUnused(const Token &Identifier,
|
|
Scope *curScope,
|
|
SourceLocation PragmaLoc);
|
|
|
|
/// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
|
|
void ActOnPragmaVisibility(const IdentifierInfo* VisType,
|
|
SourceLocation PragmaLoc);
|
|
|
|
NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
|
|
SourceLocation Loc);
|
|
void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
|
|
|
|
/// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
|
|
void ActOnPragmaWeakID(IdentifierInfo* WeakName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc);
|
|
|
|
/// ActOnPragmaRedefineExtname - Called on well formed
|
|
/// \#pragma redefine_extname oldname newname.
|
|
void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
|
|
IdentifierInfo* AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc,
|
|
SourceLocation AliasNameLoc);
|
|
|
|
/// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
|
|
void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
|
|
IdentifierInfo* AliasName,
|
|
SourceLocation PragmaLoc,
|
|
SourceLocation WeakNameLoc,
|
|
SourceLocation AliasNameLoc);
|
|
|
|
/// ActOnPragmaFPContract - Called on well formed
|
|
/// \#pragma {STDC,OPENCL} FP_CONTRACT and
|
|
/// \#pragma clang fp contract
|
|
void ActOnPragmaFPContract(LangOptions::FPContractModeKind FPC);
|
|
|
|
/// ActOnPragmaFenvAccess - Called on well formed
|
|
/// \#pragma STDC FENV_ACCESS
|
|
void ActOnPragmaFEnvAccess(LangOptions::FEnvAccessModeKind FPC);
|
|
|
|
/// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
|
|
/// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
|
|
void AddAlignmentAttributesForRecord(RecordDecl *RD);
|
|
|
|
/// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
|
|
void AddMsStructLayoutForRecord(RecordDecl *RD);
|
|
|
|
/// FreePackedContext - Deallocate and null out PackContext.
|
|
void FreePackedContext();
|
|
|
|
/// PushNamespaceVisibilityAttr - Note that we've entered a
|
|
/// namespace with a visibility attribute.
|
|
void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
|
|
SourceLocation Loc);
|
|
|
|
/// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
|
|
/// add an appropriate visibility attribute.
|
|
void AddPushedVisibilityAttribute(Decl *RD);
|
|
|
|
/// PopPragmaVisibility - Pop the top element of the visibility stack; used
|
|
/// for '\#pragma GCC visibility' and visibility attributes on namespaces.
|
|
void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
|
|
|
|
/// FreeVisContext - Deallocate and null out VisContext.
|
|
void FreeVisContext();
|
|
|
|
/// AddCFAuditedAttribute - Check whether we're currently within
|
|
/// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
|
|
/// the appropriate attribute.
|
|
void AddCFAuditedAttribute(Decl *D);
|
|
|
|
void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
|
|
SourceLocation PragmaLoc,
|
|
attr::ParsedSubjectMatchRuleSet Rules);
|
|
void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
|
|
const IdentifierInfo *Namespace);
|
|
|
|
/// Called on well-formed '\#pragma clang attribute pop'.
|
|
void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
|
|
const IdentifierInfo *Namespace);
|
|
|
|
/// Adds the attributes that have been specified using the
|
|
/// '\#pragma clang attribute push' directives to the given declaration.
|
|
void AddPragmaAttributes(Scope *S, Decl *D);
|
|
|
|
void DiagnoseUnterminatedPragmaAttribute();
|
|
|
|
/// Called on well formed \#pragma clang optimize.
|
|
void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
|
|
|
|
/// Get the location for the currently active "\#pragma clang optimize
|
|
/// off". If this location is invalid, then the state of the pragma is "on".
|
|
SourceLocation getOptimizeOffPragmaLocation() const {
|
|
return OptimizeOffPragmaLocation;
|
|
}
|
|
|
|
/// Only called on function definitions; if there is a pragma in scope
|
|
/// with the effect of a range-based optnone, consider marking the function
|
|
/// with attribute optnone.
|
|
void AddRangeBasedOptnone(FunctionDecl *FD);
|
|
|
|
/// Adds the 'optnone' attribute to the function declaration if there
|
|
/// are no conflicts; Loc represents the location causing the 'optnone'
|
|
/// attribute to be added (usually because of a pragma).
|
|
void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
|
|
|
|
/// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
|
|
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
|
|
bool IsPackExpansion);
|
|
void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
|
|
bool IsPackExpansion);
|
|
|
|
/// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
|
|
/// declaration.
|
|
void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
|
|
Expr *OE);
|
|
|
|
/// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
|
|
/// declaration.
|
|
void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *ParamExpr);
|
|
|
|
/// AddAlignValueAttr - Adds an align_value attribute to a particular
|
|
/// declaration.
|
|
void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
|
|
|
|
/// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
|
|
/// declaration.
|
|
void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *MaxThreads, Expr *MinBlocks);
|
|
|
|
/// AddModeAttr - Adds a mode attribute to a particular declaration.
|
|
void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
|
|
bool InInstantiation = false);
|
|
|
|
void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
ParameterABI ABI);
|
|
|
|
enum class RetainOwnershipKind {NS, CF, OS};
|
|
void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
RetainOwnershipKind K, bool IsTemplateInstantiation);
|
|
|
|
/// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
|
|
/// attribute to a particular declaration.
|
|
void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *Min, Expr *Max);
|
|
|
|
/// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
|
|
/// particular declaration.
|
|
void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
|
|
Expr *Min, Expr *Max);
|
|
|
|
bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// C++ Coroutines TS
|
|
//
|
|
bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
|
|
StringRef Keyword);
|
|
ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
|
|
|
|
ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
|
|
bool IsImplicit = false);
|
|
ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
|
|
UnresolvedLookupExpr* Lookup);
|
|
ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
|
|
StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
|
|
bool IsImplicit = false);
|
|
StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
|
|
bool buildCoroutineParameterMoves(SourceLocation Loc);
|
|
VarDecl *buildCoroutinePromise(SourceLocation Loc);
|
|
void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
|
|
ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
|
|
SourceLocation FuncLoc);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// OpenCL extensions.
|
|
//
|
|
private:
|
|
std::string CurrOpenCLExtension;
|
|
/// Extensions required by an OpenCL type.
|
|
llvm::DenseMap<const Type*, std::set<std::string>> OpenCLTypeExtMap;
|
|
/// Extensions required by an OpenCL declaration.
|
|
llvm::DenseMap<const Decl*, std::set<std::string>> OpenCLDeclExtMap;
|
|
public:
|
|
llvm::StringRef getCurrentOpenCLExtension() const {
|
|
return CurrOpenCLExtension;
|
|
}
|
|
|
|
/// Check if a function declaration \p FD associates with any
|
|
/// extensions present in OpenCLDeclExtMap and if so return the
|
|
/// extension(s) name(s).
|
|
std::string getOpenCLExtensionsFromDeclExtMap(FunctionDecl *FD);
|
|
|
|
/// Check if a function type \p FT associates with any
|
|
/// extensions present in OpenCLTypeExtMap and if so return the
|
|
/// extension(s) name(s).
|
|
std::string getOpenCLExtensionsFromTypeExtMap(FunctionType *FT);
|
|
|
|
/// Find an extension in an appropriate extension map and return its name
|
|
template<typename T, typename MapT>
|
|
std::string getOpenCLExtensionsFromExtMap(T* FT, MapT &Map);
|
|
|
|
void setCurrentOpenCLExtension(llvm::StringRef Ext) {
|
|
CurrOpenCLExtension = Ext;
|
|
}
|
|
|
|
/// Set OpenCL extensions for a type which can only be used when these
|
|
/// OpenCL extensions are enabled. If \p Exts is empty, do nothing.
|
|
/// \param Exts A space separated list of OpenCL extensions.
|
|
void setOpenCLExtensionForType(QualType T, llvm::StringRef Exts);
|
|
|
|
/// Set OpenCL extensions for a declaration which can only be
|
|
/// used when these OpenCL extensions are enabled. If \p Exts is empty, do
|
|
/// nothing.
|
|
/// \param Exts A space separated list of OpenCL extensions.
|
|
void setOpenCLExtensionForDecl(Decl *FD, llvm::StringRef Exts);
|
|
|
|
/// Set current OpenCL extensions for a type which can only be used
|
|
/// when these OpenCL extensions are enabled. If current OpenCL extension is
|
|
/// empty, do nothing.
|
|
void setCurrentOpenCLExtensionForType(QualType T);
|
|
|
|
/// Set current OpenCL extensions for a declaration which
|
|
/// can only be used when these OpenCL extensions are enabled. If current
|
|
/// OpenCL extension is empty, do nothing.
|
|
void setCurrentOpenCLExtensionForDecl(Decl *FD);
|
|
|
|
bool isOpenCLDisabledDecl(Decl *FD);
|
|
|
|
/// Check if type \p T corresponding to declaration specifier \p DS
|
|
/// is disabled due to required OpenCL extensions being disabled. If so,
|
|
/// emit diagnostics.
|
|
/// \return true if type is disabled.
|
|
bool checkOpenCLDisabledTypeDeclSpec(const DeclSpec &DS, QualType T);
|
|
|
|
/// Check if declaration \p D used by expression \p E
|
|
/// is disabled due to required OpenCL extensions being disabled. If so,
|
|
/// emit diagnostics.
|
|
/// \return true if type is disabled.
|
|
bool checkOpenCLDisabledDecl(const NamedDecl &D, const Expr &E);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// OpenMP directives and clauses.
|
|
//
|
|
private:
|
|
void *VarDataSharingAttributesStack;
|
|
/// Number of nested '#pragma omp declare target' directives.
|
|
unsigned DeclareTargetNestingLevel = 0;
|
|
/// Initialization of data-sharing attributes stack.
|
|
void InitDataSharingAttributesStack();
|
|
void DestroyDataSharingAttributesStack();
|
|
ExprResult
|
|
VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
|
|
bool StrictlyPositive = true);
|
|
/// Returns OpenMP nesting level for current directive.
|
|
unsigned getOpenMPNestingLevel() const;
|
|
|
|
/// Adjusts the function scopes index for the target-based regions.
|
|
void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
|
|
unsigned Level) const;
|
|
|
|
/// Returns the number of scopes associated with the construct on the given
|
|
/// OpenMP level.
|
|
int getNumberOfConstructScopes(unsigned Level) const;
|
|
|
|
/// Push new OpenMP function region for non-capturing function.
|
|
void pushOpenMPFunctionRegion();
|
|
|
|
/// Pop OpenMP function region for non-capturing function.
|
|
void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
|
|
|
|
/// Check whether we're allowed to call Callee from the current function.
|
|
void checkOpenMPDeviceFunction(SourceLocation Loc, FunctionDecl *Callee,
|
|
bool CheckForDelayedContext = true);
|
|
|
|
/// Check whether we're allowed to call Callee from the current function.
|
|
void checkOpenMPHostFunction(SourceLocation Loc, FunctionDecl *Callee,
|
|
bool CheckCaller = true);
|
|
|
|
/// Check if the expression is allowed to be used in expressions for the
|
|
/// OpenMP devices.
|
|
void checkOpenMPDeviceExpr(const Expr *E);
|
|
|
|
/// Finishes analysis of the deferred functions calls that may be declared as
|
|
/// host/nohost during device/host compilation.
|
|
void finalizeOpenMPDelayedAnalysis();
|
|
|
|
/// Checks if a type or a declaration is disabled due to the owning extension
|
|
/// being disabled, and emits diagnostic messages if it is disabled.
|
|
/// \param D type or declaration to be checked.
|
|
/// \param DiagLoc source location for the diagnostic message.
|
|
/// \param DiagInfo information to be emitted for the diagnostic message.
|
|
/// \param SrcRange source range of the declaration.
|
|
/// \param Map maps type or declaration to the extensions.
|
|
/// \param Selector selects diagnostic message: 0 for type and 1 for
|
|
/// declaration.
|
|
/// \return true if the type or declaration is disabled.
|
|
template <typename T, typename DiagLocT, typename DiagInfoT, typename MapT>
|
|
bool checkOpenCLDisabledTypeOrDecl(T D, DiagLocT DiagLoc, DiagInfoT DiagInfo,
|
|
MapT &Map, unsigned Selector = 0,
|
|
SourceRange SrcRange = SourceRange());
|
|
|
|
/// Marks all the functions that might be required for the currently active
|
|
/// OpenMP context.
|
|
void markOpenMPDeclareVariantFuncsReferenced(SourceLocation Loc,
|
|
FunctionDecl *Func,
|
|
bool MightBeOdrUse);
|
|
|
|
public:
|
|
/// Struct to store the context selectors info for declare variant directive.
|
|
using OMPCtxStringType = SmallString<8>;
|
|
using OMPCtxSelectorData =
|
|
OpenMPCtxSelectorData<SmallVector<OMPCtxStringType, 4>, ExprResult>;
|
|
|
|
/// Checks if the variant/multiversion functions are compatible.
|
|
bool areMultiversionVariantFunctionsCompatible(
|
|
const FunctionDecl *OldFD, const FunctionDecl *NewFD,
|
|
const PartialDiagnostic &NoProtoDiagID,
|
|
const PartialDiagnosticAt &NoteCausedDiagIDAt,
|
|
const PartialDiagnosticAt &NoSupportDiagIDAt,
|
|
const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
|
|
bool ConstexprSupported, bool CLinkageMayDiffer);
|
|
|
|
/// Function tries to capture lambda's captured variables in the OpenMP region
|
|
/// before the original lambda is captured.
|
|
void tryCaptureOpenMPLambdas(ValueDecl *V);
|
|
|
|
/// Return true if the provided declaration \a VD should be captured by
|
|
/// reference.
|
|
/// \param Level Relative level of nested OpenMP construct for that the check
|
|
/// is performed.
|
|
/// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
|
|
bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
|
|
unsigned OpenMPCaptureLevel) const;
|
|
|
|
/// Check if the specified variable is used in one of the private
|
|
/// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
|
|
/// constructs.
|
|
VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
|
|
unsigned StopAt = 0);
|
|
ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
|
|
ExprObjectKind OK, SourceLocation Loc);
|
|
|
|
/// If the current region is a loop-based region, mark the start of the loop
|
|
/// construct.
|
|
void startOpenMPLoop();
|
|
|
|
/// If the current region is a range loop-based region, mark the start of the
|
|
/// loop construct.
|
|
void startOpenMPCXXRangeFor();
|
|
|
|
/// Check if the specified variable is used in 'private' clause.
|
|
/// \param Level Relative level of nested OpenMP construct for that the check
|
|
/// is performed.
|
|
bool isOpenMPPrivateDecl(const ValueDecl *D, unsigned Level) const;
|
|
|
|
/// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
|
|
/// for \p FD based on DSA for the provided corresponding captured declaration
|
|
/// \p D.
|
|
void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
|
|
|
|
/// Check if the specified variable is captured by 'target' directive.
|
|
/// \param Level Relative level of nested OpenMP construct for that the check
|
|
/// is performed.
|
|
bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level) const;
|
|
|
|
ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
|
|
Expr *Op);
|
|
/// Called on start of new data sharing attribute block.
|
|
void StartOpenMPDSABlock(OpenMPDirectiveKind K,
|
|
const DeclarationNameInfo &DirName, Scope *CurScope,
|
|
SourceLocation Loc);
|
|
/// Start analysis of clauses.
|
|
void StartOpenMPClause(OpenMPClauseKind K);
|
|
/// End analysis of clauses.
|
|
void EndOpenMPClause();
|
|
/// Called on end of data sharing attribute block.
|
|
void EndOpenMPDSABlock(Stmt *CurDirective);
|
|
|
|
/// Check if the current region is an OpenMP loop region and if it is,
|
|
/// mark loop control variable, used in \p Init for loop initialization, as
|
|
/// private by default.
|
|
/// \param Init First part of the for loop.
|
|
void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
|
|
|
|
// OpenMP directives and clauses.
|
|
/// Called on correct id-expression from the '#pragma omp
|
|
/// threadprivate'.
|
|
ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
|
|
const DeclarationNameInfo &Id,
|
|
OpenMPDirectiveKind Kind);
|
|
/// Called on well-formed '#pragma omp threadprivate'.
|
|
DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
|
|
SourceLocation Loc,
|
|
ArrayRef<Expr *> VarList);
|
|
/// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
|
|
OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
|
|
ArrayRef<Expr *> VarList);
|
|
/// Called on well-formed '#pragma omp allocate'.
|
|
DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
|
|
ArrayRef<Expr *> VarList,
|
|
ArrayRef<OMPClause *> Clauses,
|
|
DeclContext *Owner = nullptr);
|
|
/// Called on well-formed '#pragma omp requires'.
|
|
DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
|
|
ArrayRef<OMPClause *> ClauseList);
|
|
/// Check restrictions on Requires directive
|
|
OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
|
|
ArrayRef<OMPClause *> Clauses);
|
|
/// Check if the specified type is allowed to be used in 'omp declare
|
|
/// reduction' construct.
|
|
QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
|
|
TypeResult ParsedType);
|
|
/// Called on start of '#pragma omp declare reduction'.
|
|
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
|
|
Scope *S, DeclContext *DC, DeclarationName Name,
|
|
ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
|
|
AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
|
|
/// Initialize declare reduction construct initializer.
|
|
void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
|
|
/// Finish current declare reduction construct initializer.
|
|
void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
|
|
/// Initialize declare reduction construct initializer.
|
|
/// \return omp_priv variable.
|
|
VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
|
|
/// Finish current declare reduction construct initializer.
|
|
void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
|
|
VarDecl *OmpPrivParm);
|
|
/// Called at the end of '#pragma omp declare reduction'.
|
|
DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
|
|
Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
|
|
|
|
/// Check variable declaration in 'omp declare mapper' construct.
|
|
TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
|
|
/// Check if the specified type is allowed to be used in 'omp declare
|
|
/// mapper' construct.
|
|
QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
|
|
TypeResult ParsedType);
|
|
/// Called on start of '#pragma omp declare mapper'.
|
|
OMPDeclareMapperDecl *ActOnOpenMPDeclareMapperDirectiveStart(
|
|
Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
|
|
SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
|
|
Decl *PrevDeclInScope = nullptr);
|
|
/// Build the mapper variable of '#pragma omp declare mapper'.
|
|
void ActOnOpenMPDeclareMapperDirectiveVarDecl(OMPDeclareMapperDecl *DMD,
|
|
Scope *S, QualType MapperType,
|
|
SourceLocation StartLoc,
|
|
DeclarationName VN);
|
|
/// Called at the end of '#pragma omp declare mapper'.
|
|
DeclGroupPtrTy
|
|
ActOnOpenMPDeclareMapperDirectiveEnd(OMPDeclareMapperDecl *D, Scope *S,
|
|
ArrayRef<OMPClause *> ClauseList);
|
|
|
|
/// Called on the start of target region i.e. '#pragma omp declare target'.
|
|
bool ActOnStartOpenMPDeclareTargetDirective(SourceLocation Loc);
|
|
/// Called at the end of target region i.e. '#pragme omp end declare target'.
|
|
void ActOnFinishOpenMPDeclareTargetDirective();
|
|
/// Searches for the provided declaration name for OpenMP declare target
|
|
/// directive.
|
|
NamedDecl *
|
|
lookupOpenMPDeclareTargetName(Scope *CurScope, CXXScopeSpec &ScopeSpec,
|
|
const DeclarationNameInfo &Id,
|
|
NamedDeclSetType &SameDirectiveDecls);
|
|
/// Called on correct id-expression from the '#pragma omp declare target'.
|
|
void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
|
|
OMPDeclareTargetDeclAttr::MapTypeTy MT,
|
|
OMPDeclareTargetDeclAttr::DevTypeTy DT);
|
|
/// Check declaration inside target region.
|
|
void
|
|
checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
|
|
SourceLocation IdLoc = SourceLocation());
|
|
/// Return true inside OpenMP declare target region.
|
|
bool isInOpenMPDeclareTargetContext() const {
|
|
return DeclareTargetNestingLevel > 0;
|
|
}
|
|
/// Return true inside OpenMP target region.
|
|
bool isInOpenMPTargetExecutionDirective() const;
|
|
|
|
/// Return the number of captured regions created for an OpenMP directive.
|
|
static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
|
|
|
|
/// Initialization of captured region for OpenMP region.
|
|
void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
|
|
/// End of OpenMP region.
|
|
///
|
|
/// \param S Statement associated with the current OpenMP region.
|
|
/// \param Clauses List of clauses for the current OpenMP region.
|
|
///
|
|
/// \returns Statement for finished OpenMP region.
|
|
StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
|
|
StmtResult ActOnOpenMPExecutableDirective(
|
|
OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
|
|
OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp parallel' after parsing
|
|
/// of the associated statement.
|
|
StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
using VarsWithInheritedDSAType =
|
|
llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
|
|
/// Called on well-formed '\#pragma omp simd' after parsing
|
|
/// of the associated statement.
|
|
StmtResult
|
|
ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp for' after parsing
|
|
/// of the associated statement.
|
|
StmtResult
|
|
ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp for simd' after parsing
|
|
/// of the associated statement.
|
|
StmtResult
|
|
ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp sections' after parsing
|
|
/// of the associated statement.
|
|
StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp section' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp single' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp master' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp critical' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
|
|
ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp parallel for' after parsing
|
|
/// of the associated statement.
|
|
StmtResult ActOnOpenMPParallelForDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp parallel for simd' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPParallelForSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp parallel master' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp parallel sections' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp task' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp taskyield'.
|
|
StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp barrier'.
|
|
StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp taskwait'.
|
|
StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp taskgroup'.
|
|
StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp flush'.
|
|
StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp ordered' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp atomic' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp target' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp target data' after parsing of
|
|
/// the associated statement.
|
|
StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp target enter data' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc,
|
|
Stmt *AStmt);
|
|
/// Called on well-formed '\#pragma omp target exit data' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc,
|
|
Stmt *AStmt);
|
|
/// Called on well-formed '\#pragma omp target parallel' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp target parallel for' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetParallelForDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp teams' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp cancellation point'.
|
|
StmtResult
|
|
ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
|
|
SourceLocation EndLoc,
|
|
OpenMPDirectiveKind CancelRegion);
|
|
/// Called on well-formed '\#pragma omp cancel'.
|
|
StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc,
|
|
OpenMPDirectiveKind CancelRegion);
|
|
/// Called on well-formed '\#pragma omp taskloop' after parsing of the
|
|
/// associated statement.
|
|
StmtResult
|
|
ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp taskloop simd' after parsing of
|
|
/// the associated statement.
|
|
StmtResult ActOnOpenMPTaskLoopSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp master taskloop' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPMasterTaskLoopDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
|
|
/// the associated statement.
|
|
StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp parallel master taskloop' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp parallel master taskloop simd' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp distribute' after parsing
|
|
/// of the associated statement.
|
|
StmtResult
|
|
ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target update'.
|
|
StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc,
|
|
Stmt *AStmt);
|
|
/// Called on well-formed '\#pragma omp distribute parallel for' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPDistributeParallelForDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp distribute parallel for simd'
|
|
/// after parsing of the associated statement.
|
|
StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp distribute simd' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPDistributeSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target parallel for simd' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetParallelForSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target simd' after parsing of
|
|
/// the associated statement.
|
|
StmtResult
|
|
ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
|
|
SourceLocation StartLoc, SourceLocation EndLoc,
|
|
VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp teams distribute' after parsing of
|
|
/// the associated statement.
|
|
StmtResult ActOnOpenMPTeamsDistributeDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp teams distribute simd' after parsing
|
|
/// of the associated statement.
|
|
StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp teams distribute parallel for simd'
|
|
/// after parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp teams distribute parallel for'
|
|
/// after parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target teams' after parsing of the
|
|
/// associated statement.
|
|
StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
|
|
Stmt *AStmt,
|
|
SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed '\#pragma omp target teams distribute' after parsing
|
|
/// of the associated statement.
|
|
StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target teams distribute parallel for'
|
|
/// after parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target teams distribute parallel for
|
|
/// simd' after parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
/// Called on well-formed '\#pragma omp target teams distribute simd' after
|
|
/// parsing of the associated statement.
|
|
StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
|
|
ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
|
|
SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
|
|
|
|
/// Checks correctness of linear modifiers.
|
|
bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
|
|
SourceLocation LinLoc);
|
|
/// Checks that the specified declaration matches requirements for the linear
|
|
/// decls.
|
|
bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
|
|
OpenMPLinearClauseKind LinKind, QualType Type);
|
|
|
|
/// Called on well-formed '\#pragma omp declare simd' after parsing of
|
|
/// the associated method/function.
|
|
DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
|
|
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
|
|
Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
|
|
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
|
|
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
|
|
|
|
/// Checks '\#pragma omp declare variant' variant function and original
|
|
/// functions after parsing of the associated method/function.
|
|
/// \param DG Function declaration to which declare variant directive is
|
|
/// applied to.
|
|
/// \param VariantRef Expression that references the variant function, which
|
|
/// must be used instead of the original one, specified in \p DG.
|
|
/// \returns None, if the function/variant function are not compatible with
|
|
/// the pragma, pair of original function/variant ref expression otherwise.
|
|
Optional<std::pair<FunctionDecl *, Expr *>> checkOpenMPDeclareVariantFunction(
|
|
DeclGroupPtrTy DG, Expr *VariantRef, SourceRange SR);
|
|
|
|
/// Called on well-formed '\#pragma omp declare variant' after parsing of
|
|
/// the associated method/function.
|
|
/// \param FD Function declaration to which declare variant directive is
|
|
/// applied to.
|
|
/// \param VariantRef Expression that references the variant function, which
|
|
/// must be used instead of the original one, specified in \p DG.
|
|
/// \param Data Set of context-specific data for the specified context
|
|
/// selector.
|
|
void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
|
|
SourceRange SR,
|
|
ArrayRef<OMPCtxSelectorData> Data);
|
|
|
|
OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
|
|
Expr *Expr,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'allocator' clause.
|
|
OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'if' clause.
|
|
OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
|
|
Expr *Condition, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation NameModifierLoc,
|
|
SourceLocation ColonLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'final' clause.
|
|
OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'num_threads' clause.
|
|
OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'safelen' clause.
|
|
OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'simdlen' clause.
|
|
OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'collapse' clause.
|
|
OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'ordered' clause.
|
|
OMPClause *
|
|
ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
SourceLocation LParenLoc = SourceLocation(),
|
|
Expr *NumForLoops = nullptr);
|
|
/// Called on well-formed 'grainsize' clause.
|
|
OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'num_tasks' clause.
|
|
OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'hint' clause.
|
|
OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
|
|
unsigned Argument,
|
|
SourceLocation ArgumentLoc,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'default' clause.
|
|
OMPClause *ActOnOpenMPDefaultClause(OpenMPDefaultClauseKind Kind,
|
|
SourceLocation KindLoc,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'proc_bind' clause.
|
|
OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
|
|
SourceLocation KindLoc,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
OMPClause *ActOnOpenMPSingleExprWithArgClause(
|
|
OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc,
|
|
ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'schedule' clause.
|
|
OMPClause *ActOnOpenMPScheduleClause(
|
|
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
|
|
OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
|
|
SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
|
|
|
|
OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'nowait' clause.
|
|
OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'untied' clause.
|
|
OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'mergeable' clause.
|
|
OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'read' clause.
|
|
OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'write' clause.
|
|
OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'update' clause.
|
|
OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'capture' clause.
|
|
OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'seq_cst' clause.
|
|
OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'threads' clause.
|
|
OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'simd' clause.
|
|
OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'nogroup' clause.
|
|
OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'unified_address' clause.
|
|
OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// Called on well-formed 'unified_address' clause.
|
|
OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// Called on well-formed 'reverse_offload' clause.
|
|
OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// Called on well-formed 'dynamic_allocators' clause.
|
|
OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// Called on well-formed 'atomic_default_mem_order' clause.
|
|
OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
|
|
OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
|
|
|
|
OMPClause *ActOnOpenMPVarListClause(
|
|
OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *TailExpr,
|
|
const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
|
|
CXXScopeSpec &ReductionOrMapperIdScopeSpec,
|
|
DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
|
|
ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
|
|
ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
|
|
SourceLocation DepLinMapLastLoc);
|
|
/// Called on well-formed 'allocate' clause.
|
|
OMPClause *
|
|
ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc, SourceLocation ColonLoc,
|
|
SourceLocation LParenLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed 'private' clause.
|
|
OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'firstprivate' clause.
|
|
OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'lastprivate' clause.
|
|
OMPClause *ActOnOpenMPLastprivateClause(
|
|
ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
|
|
SourceLocation LPKindLoc, SourceLocation ColonLoc,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed 'shared' clause.
|
|
OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'reduction' clause.
|
|
OMPClause *ActOnOpenMPReductionClause(
|
|
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
|
|
CXXScopeSpec &ReductionIdScopeSpec,
|
|
const DeclarationNameInfo &ReductionId,
|
|
ArrayRef<Expr *> UnresolvedReductions = llvm::None);
|
|
/// Called on well-formed 'task_reduction' clause.
|
|
OMPClause *ActOnOpenMPTaskReductionClause(
|
|
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
|
|
CXXScopeSpec &ReductionIdScopeSpec,
|
|
const DeclarationNameInfo &ReductionId,
|
|
ArrayRef<Expr *> UnresolvedReductions = llvm::None);
|
|
/// Called on well-formed 'in_reduction' clause.
|
|
OMPClause *ActOnOpenMPInReductionClause(
|
|
ArrayRef<Expr *> VarList, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
|
|
CXXScopeSpec &ReductionIdScopeSpec,
|
|
const DeclarationNameInfo &ReductionId,
|
|
ArrayRef<Expr *> UnresolvedReductions = llvm::None);
|
|
/// Called on well-formed 'linear' clause.
|
|
OMPClause *
|
|
ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc,
|
|
OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
|
|
SourceLocation ColonLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed 'aligned' clause.
|
|
OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
|
|
Expr *Alignment,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation ColonLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'copyin' clause.
|
|
OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'copyprivate' clause.
|
|
OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'flush' pseudo clause.
|
|
OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'depend' clause.
|
|
OMPClause *
|
|
ActOnOpenMPDependClause(OpenMPDependClauseKind DepKind, SourceLocation DepLoc,
|
|
SourceLocation ColonLoc, ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'device' clause.
|
|
OMPClause *ActOnOpenMPDeviceClause(Expr *Device, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'map' clause.
|
|
OMPClause *
|
|
ActOnOpenMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
|
|
ArrayRef<SourceLocation> MapTypeModifiersLoc,
|
|
CXXScopeSpec &MapperIdScopeSpec,
|
|
DeclarationNameInfo &MapperId,
|
|
OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
|
|
SourceLocation MapLoc, SourceLocation ColonLoc,
|
|
ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
|
|
ArrayRef<Expr *> UnresolvedMappers = llvm::None);
|
|
/// Called on well-formed 'num_teams' clause.
|
|
OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'thread_limit' clause.
|
|
OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'priority' clause.
|
|
OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
/// Called on well-formed 'dist_schedule' clause.
|
|
OMPClause *ActOnOpenMPDistScheduleClause(
|
|
OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
|
|
SourceLocation CommaLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed 'defaultmap' clause.
|
|
OMPClause *ActOnOpenMPDefaultmapClause(
|
|
OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
|
|
SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
|
|
SourceLocation KindLoc, SourceLocation EndLoc);
|
|
/// Called on well-formed 'to' clause.
|
|
OMPClause *
|
|
ActOnOpenMPToClause(ArrayRef<Expr *> VarList, CXXScopeSpec &MapperIdScopeSpec,
|
|
DeclarationNameInfo &MapperId,
|
|
const OMPVarListLocTy &Locs,
|
|
ArrayRef<Expr *> UnresolvedMappers = llvm::None);
|
|
/// Called on well-formed 'from' clause.
|
|
OMPClause *ActOnOpenMPFromClause(
|
|
ArrayRef<Expr *> VarList, CXXScopeSpec &MapperIdScopeSpec,
|
|
DeclarationNameInfo &MapperId, const OMPVarListLocTy &Locs,
|
|
ArrayRef<Expr *> UnresolvedMappers = llvm::None);
|
|
/// Called on well-formed 'use_device_ptr' clause.
|
|
OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
|
|
const OMPVarListLocTy &Locs);
|
|
/// Called on well-formed 'is_device_ptr' clause.
|
|
OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
|
|
const OMPVarListLocTy &Locs);
|
|
/// Called on well-formed 'nontemporal' clause.
|
|
OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
|
|
SourceLocation StartLoc,
|
|
SourceLocation LParenLoc,
|
|
SourceLocation EndLoc);
|
|
|
|
/// The kind of conversion being performed.
|
|
enum CheckedConversionKind {
|
|
/// An implicit conversion.
|
|
CCK_ImplicitConversion,
|
|
/// A C-style cast.
|
|
CCK_CStyleCast,
|
|
/// A functional-style cast.
|
|
CCK_FunctionalCast,
|
|
/// A cast other than a C-style cast.
|
|
CCK_OtherCast,
|
|
/// A conversion for an operand of a builtin overloaded operator.
|
|
CCK_ForBuiltinOverloadedOp
|
|
};
|
|
|
|
static bool isCast(CheckedConversionKind CCK) {
|
|
return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
|
|
CCK == CCK_OtherCast;
|
|
}
|
|
|
|
/// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
|
|
/// cast. If there is already an implicit cast, merge into the existing one.
|
|
/// If isLvalue, the result of the cast is an lvalue.
|
|
ExprResult ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
|
|
ExprValueKind VK = VK_RValue,
|
|
const CXXCastPath *BasePath = nullptr,
|
|
CheckedConversionKind CCK
|
|
= CCK_ImplicitConversion);
|
|
|
|
/// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
|
|
/// to the conversion from scalar type ScalarTy to the Boolean type.
|
|
static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
|
|
|
|
/// IgnoredValueConversions - Given that an expression's result is
|
|
/// syntactically ignored, perform any conversions that are
|
|
/// required.
|
|
ExprResult IgnoredValueConversions(Expr *E);
|
|
|
|
// UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
|
|
// functions and arrays to their respective pointers (C99 6.3.2.1).
|
|
ExprResult UsualUnaryConversions(Expr *E);
|
|
|
|
/// CallExprUnaryConversions - a special case of an unary conversion
|
|
/// performed on a function designator of a call expression.
|
|
ExprResult CallExprUnaryConversions(Expr *E);
|
|
|
|
// DefaultFunctionArrayConversion - converts functions and arrays
|
|
// to their respective pointers (C99 6.3.2.1).
|
|
ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
|
|
|
|
// DefaultFunctionArrayLvalueConversion - converts functions and
|
|
// arrays to their respective pointers and performs the
|
|
// lvalue-to-rvalue conversion.
|
|
ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
|
|
bool Diagnose = true);
|
|
|
|
// DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
|
|
// the operand. This is DefaultFunctionArrayLvalueConversion,
|
|
// except that it assumes the operand isn't of function or array
|
|
// type.
|
|
ExprResult DefaultLvalueConversion(Expr *E);
|
|
|
|
// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
// do not have a prototype. Integer promotions are performed on each
|
|
// argument, and arguments that have type float are promoted to double.
|
|
ExprResult DefaultArgumentPromotion(Expr *E);
|
|
|
|
/// If \p E is a prvalue denoting an unmaterialized temporary, materialize
|
|
/// it as an xvalue. In C++98, the result will still be a prvalue, because
|
|
/// we don't have xvalues there.
|
|
ExprResult TemporaryMaterializationConversion(Expr *E);
|
|
|
|
// Used for emitting the right warning by DefaultVariadicArgumentPromotion
|
|
enum VariadicCallType {
|
|
VariadicFunction,
|
|
VariadicBlock,
|
|
VariadicMethod,
|
|
VariadicConstructor,
|
|
VariadicDoesNotApply
|
|
};
|
|
|
|
VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
Expr *Fn);
|
|
|
|
// Used for determining in which context a type is allowed to be passed to a
|
|
// vararg function.
|
|
enum VarArgKind {
|
|
VAK_Valid,
|
|
VAK_ValidInCXX11,
|
|
VAK_Undefined,
|
|
VAK_MSVCUndefined,
|
|
VAK_Invalid
|
|
};
|
|
|
|
// Determines which VarArgKind fits an expression.
|
|
VarArgKind isValidVarArgType(const QualType &Ty);
|
|
|
|
/// Check to see if the given expression is a valid argument to a variadic
|
|
/// function, issuing a diagnostic if not.
|
|
void checkVariadicArgument(const Expr *E, VariadicCallType CT);
|
|
|
|
/// Check to see if a given expression could have '.c_str()' called on it.
|
|
bool hasCStrMethod(const Expr *E);
|
|
|
|
/// GatherArgumentsForCall - Collector argument expressions for various
|
|
/// form of call prototypes.
|
|
bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
unsigned FirstParam, ArrayRef<Expr *> Args,
|
|
SmallVectorImpl<Expr *> &AllArgs,
|
|
VariadicCallType CallType = VariadicDoesNotApply,
|
|
bool AllowExplicit = false,
|
|
bool IsListInitialization = false);
|
|
|
|
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
|
|
// will create a runtime trap if the resulting type is not a POD type.
|
|
ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
|
|
FunctionDecl *FDecl);
|
|
|
|
/// Context in which we're performing a usual arithmetic conversion.
|
|
enum ArithConvKind {
|
|
/// An arithmetic operation.
|
|
ACK_Arithmetic,
|
|
/// A bitwise operation.
|
|
ACK_BitwiseOp,
|
|
/// A comparison.
|
|
ACK_Comparison,
|
|
/// A conditional (?:) operator.
|
|
ACK_Conditional,
|
|
/// A compound assignment expression.
|
|
ACK_CompAssign,
|
|
};
|
|
|
|
// UsualArithmeticConversions - performs the UsualUnaryConversions on it's
|
|
// operands and then handles various conversions that are common to binary
|
|
// operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
// routine returns the first non-arithmetic type found. The client is
|
|
// responsible for emitting appropriate error diagnostics.
|
|
QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, ArithConvKind ACK);
|
|
|
|
/// AssignConvertType - All of the 'assignment' semantic checks return this
|
|
/// enum to indicate whether the assignment was allowed. These checks are
|
|
/// done for simple assignments, as well as initialization, return from
|
|
/// function, argument passing, etc. The query is phrased in terms of a
|
|
/// source and destination type.
|
|
enum AssignConvertType {
|
|
/// Compatible - the types are compatible according to the standard.
|
|
Compatible,
|
|
|
|
/// PointerToInt - The assignment converts a pointer to an int, which we
|
|
/// accept as an extension.
|
|
PointerToInt,
|
|
|
|
/// IntToPointer - The assignment converts an int to a pointer, which we
|
|
/// accept as an extension.
|
|
IntToPointer,
|
|
|
|
/// FunctionVoidPointer - The assignment is between a function pointer and
|
|
/// void*, which the standard doesn't allow, but we accept as an extension.
|
|
FunctionVoidPointer,
|
|
|
|
/// IncompatiblePointer - The assignment is between two pointers types that
|
|
/// are not compatible, but we accept them as an extension.
|
|
IncompatiblePointer,
|
|
|
|
/// IncompatiblePointerSign - The assignment is between two pointers types
|
|
/// which point to integers which have a different sign, but are otherwise
|
|
/// identical. This is a subset of the above, but broken out because it's by
|
|
/// far the most common case of incompatible pointers.
|
|
IncompatiblePointerSign,
|
|
|
|
/// CompatiblePointerDiscardsQualifiers - The assignment discards
|
|
/// c/v/r qualifiers, which we accept as an extension.
|
|
CompatiblePointerDiscardsQualifiers,
|
|
|
|
/// IncompatiblePointerDiscardsQualifiers - The assignment
|
|
/// discards qualifiers that we don't permit to be discarded,
|
|
/// like address spaces.
|
|
IncompatiblePointerDiscardsQualifiers,
|
|
|
|
/// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
|
|
/// changes address spaces in nested pointer types which is not allowed.
|
|
/// For instance, converting __private int ** to __generic int ** is
|
|
/// illegal even though __private could be converted to __generic.
|
|
IncompatibleNestedPointerAddressSpaceMismatch,
|
|
|
|
/// IncompatibleNestedPointerQualifiers - The assignment is between two
|
|
/// nested pointer types, and the qualifiers other than the first two
|
|
/// levels differ e.g. char ** -> const char **, but we accept them as an
|
|
/// extension.
|
|
IncompatibleNestedPointerQualifiers,
|
|
|
|
/// IncompatibleVectors - The assignment is between two vector types that
|
|
/// have the same size, which we accept as an extension.
|
|
IncompatibleVectors,
|
|
|
|
/// IntToBlockPointer - The assignment converts an int to a block
|
|
/// pointer. We disallow this.
|
|
IntToBlockPointer,
|
|
|
|
/// IncompatibleBlockPointer - The assignment is between two block
|
|
/// pointers types that are not compatible.
|
|
IncompatibleBlockPointer,
|
|
|
|
/// IncompatibleObjCQualifiedId - The assignment is between a qualified
|
|
/// id type and something else (that is incompatible with it). For example,
|
|
/// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
|
|
IncompatibleObjCQualifiedId,
|
|
|
|
/// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
|
|
/// object with __weak qualifier.
|
|
IncompatibleObjCWeakRef,
|
|
|
|
/// Incompatible - We reject this conversion outright, it is invalid to
|
|
/// represent it in the AST.
|
|
Incompatible
|
|
};
|
|
|
|
/// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
|
|
/// assignment conversion type specified by ConvTy. This returns true if the
|
|
/// conversion was invalid or false if the conversion was accepted.
|
|
bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, AssignmentAction Action,
|
|
bool *Complained = nullptr);
|
|
|
|
/// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
|
|
/// enum. If AllowMask is true, then we also allow the complement of a valid
|
|
/// value, to be used as a mask.
|
|
bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
|
|
bool AllowMask) const;
|
|
|
|
/// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
|
|
/// integer not in the range of enum values.
|
|
void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr);
|
|
|
|
/// CheckAssignmentConstraints - Perform type checking for assignment,
|
|
/// argument passing, variable initialization, and function return values.
|
|
/// C99 6.5.16.
|
|
AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
|
|
QualType LHSType,
|
|
QualType RHSType);
|
|
|
|
/// Check assignment constraints and optionally prepare for a conversion of
|
|
/// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
|
|
/// is true.
|
|
AssignConvertType CheckAssignmentConstraints(QualType LHSType,
|
|
ExprResult &RHS,
|
|
CastKind &Kind,
|
|
bool ConvertRHS = true);
|
|
|
|
/// Check assignment constraints for an assignment of RHS to LHSType.
|
|
///
|
|
/// \param LHSType The destination type for the assignment.
|
|
/// \param RHS The source expression for the assignment.
|
|
/// \param Diagnose If \c true, diagnostics may be produced when checking
|
|
/// for assignability. If a diagnostic is produced, \p RHS will be
|
|
/// set to ExprError(). Note that this function may still return
|
|
/// without producing a diagnostic, even for an invalid assignment.
|
|
/// \param DiagnoseCFAudited If \c true, the target is a function parameter
|
|
/// in an audited Core Foundation API and does not need to be checked
|
|
/// for ARC retain issues.
|
|
/// \param ConvertRHS If \c true, \p RHS will be updated to model the
|
|
/// conversions necessary to perform the assignment. If \c false,
|
|
/// \p Diagnose must also be \c false.
|
|
AssignConvertType CheckSingleAssignmentConstraints(
|
|
QualType LHSType, ExprResult &RHS, bool Diagnose = true,
|
|
bool DiagnoseCFAudited = false, bool ConvertRHS = true);
|
|
|
|
// If the lhs type is a transparent union, check whether we
|
|
// can initialize the transparent union with the given expression.
|
|
AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
|
|
ExprResult &RHS);
|
|
|
|
bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
|
|
|
|
bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
|
|
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action,
|
|
bool AllowExplicit = false);
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
AssignmentAction Action,
|
|
bool AllowExplicit,
|
|
ImplicitConversionSequence& ICS);
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
const ImplicitConversionSequence& ICS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK
|
|
= CCK_ImplicitConversion);
|
|
ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
|
|
const StandardConversionSequence& SCS,
|
|
AssignmentAction Action,
|
|
CheckedConversionKind CCK);
|
|
|
|
ExprResult PerformQualificationConversion(
|
|
Expr *E, QualType Ty, ExprValueKind VK = VK_RValue,
|
|
CheckedConversionKind CCK = CCK_ImplicitConversion);
|
|
|
|
/// the following "Check" methods will return a valid/converted QualType
|
|
/// or a null QualType (indicating an error diagnostic was issued).
|
|
|
|
/// type checking binary operators (subroutines of CreateBuiltinBinOp).
|
|
QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS);
|
|
QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
|
|
ExprResult &RHS);
|
|
QualType CheckPointerToMemberOperands( // C++ 5.5
|
|
ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
|
|
SourceLocation OpLoc, bool isIndirect);
|
|
QualType CheckMultiplyDivideOperands( // C99 6.5.5
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
|
|
bool IsDivide);
|
|
QualType CheckRemainderOperands( // C99 6.5.5
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
bool IsCompAssign = false);
|
|
QualType CheckAdditionOperands( // C99 6.5.6
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
|
|
QualType CheckSubtractionOperands( // C99 6.5.6
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
QualType* CompLHSTy = nullptr);
|
|
QualType CheckShiftOperands( // C99 6.5.7
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc, bool IsCompAssign = false);
|
|
void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
|
|
QualType CheckCompareOperands( // C99 6.5.8/9
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckBitwiseOperands( // C99 6.5.[10...12]
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckLogicalOperands( // C99 6.5.[13,14]
|
|
ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
// CheckAssignmentOperands is used for both simple and compound assignment.
|
|
// For simple assignment, pass both expressions and a null converted type.
|
|
// For compound assignment, pass both expressions and the converted type.
|
|
QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
|
|
Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
|
|
|
|
ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
|
|
UnaryOperatorKind Opcode, Expr *Op);
|
|
ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
|
|
BinaryOperatorKind Opcode,
|
|
Expr *LHS, Expr *RHS);
|
|
ExprResult checkPseudoObjectRValue(Expr *E);
|
|
Expr *recreateSyntacticForm(PseudoObjectExpr *E);
|
|
|
|
QualType CheckConditionalOperands( // C99 6.5.15
|
|
ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
|
|
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
|
|
QualType CXXCheckConditionalOperands( // C++ 5.16
|
|
ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
|
|
ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
|
|
QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
|
|
bool ConvertArgs = true);
|
|
QualType FindCompositePointerType(SourceLocation Loc,
|
|
ExprResult &E1, ExprResult &E2,
|
|
bool ConvertArgs = true) {
|
|
Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
|
|
QualType Composite =
|
|
FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
|
|
E1 = E1Tmp;
|
|
E2 = E2Tmp;
|
|
return Composite;
|
|
}
|
|
|
|
QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation QuestionLoc);
|
|
|
|
bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
|
|
SourceLocation QuestionLoc);
|
|
|
|
void DiagnoseAlwaysNonNullPointer(Expr *E,
|
|
Expr::NullPointerConstantKind NullType,
|
|
bool IsEqual, SourceRange Range);
|
|
|
|
/// type checking for vector binary operators.
|
|
QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc, bool IsCompAssign,
|
|
bool AllowBothBool, bool AllowBoolConversion);
|
|
QualType GetSignedVectorType(QualType V);
|
|
QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc,
|
|
BinaryOperatorKind Opc);
|
|
QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
|
|
SourceLocation Loc);
|
|
|
|
bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
|
|
bool isLaxVectorConversion(QualType srcType, QualType destType);
|
|
|
|
/// type checking declaration initializers (C99 6.7.8)
|
|
bool CheckForConstantInitializer(Expr *e, QualType t);
|
|
|
|
// type checking C++ declaration initializers (C++ [dcl.init]).
|
|
|
|
/// ReferenceCompareResult - Expresses the result of comparing two
|
|
/// types (cv1 T1 and cv2 T2) to determine their compatibility for the
|
|
/// purposes of initialization by reference (C++ [dcl.init.ref]p4).
|
|
enum ReferenceCompareResult {
|
|
/// Ref_Incompatible - The two types are incompatible, so direct
|
|
/// reference binding is not possible.
|
|
Ref_Incompatible = 0,
|
|
/// Ref_Related - The two types are reference-related, which means
|
|
/// that their unqualified forms (T1 and T2) are either the same
|
|
/// or T1 is a base class of T2.
|
|
Ref_Related,
|
|
/// Ref_Compatible - The two types are reference-compatible.
|
|
Ref_Compatible
|
|
};
|
|
|
|
// Fake up a scoped enumeration that still contextually converts to bool.
|
|
struct ReferenceConversionsScope {
|
|
/// The conversions that would be performed on an lvalue of type T2 when
|
|
/// binding a reference of type T1 to it, as determined when evaluating
|
|
/// whether T1 is reference-compatible with T2.
|
|
enum ReferenceConversions {
|
|
Qualification = 0x1,
|
|
NestedQualification = 0x2,
|
|
Function = 0x4,
|
|
DerivedToBase = 0x8,
|
|
ObjC = 0x10,
|
|
ObjCLifetime = 0x20,
|
|
|
|
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)
|
|
};
|
|
};
|
|
using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
|
|
|
|
ReferenceCompareResult
|
|
CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
|
|
ReferenceConversions *Conv = nullptr);
|
|
|
|
ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
|
|
Expr *CastExpr, CastKind &CastKind,
|
|
ExprValueKind &VK, CXXCastPath &Path);
|
|
|
|
/// Force an expression with unknown-type to an expression of the
|
|
/// given type.
|
|
ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
|
|
|
|
/// Type-check an expression that's being passed to an
|
|
/// __unknown_anytype parameter.
|
|
ExprResult checkUnknownAnyArg(SourceLocation callLoc,
|
|
Expr *result, QualType ¶mType);
|
|
|
|
// CheckVectorCast - check type constraints for vectors.
|
|
// Since vectors are an extension, there are no C standard reference for this.
|
|
// We allow casting between vectors and integer datatypes of the same size.
|
|
// returns true if the cast is invalid
|
|
bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
|
|
CastKind &Kind);
|
|
|
|
/// Prepare `SplattedExpr` for a vector splat operation, adding
|
|
/// implicit casts if necessary.
|
|
ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
|
|
|
|
// CheckExtVectorCast - check type constraints for extended vectors.
|
|
// Since vectors are an extension, there are no C standard reference for this.
|
|
// We allow casting between vectors and integer datatypes of the same size,
|
|
// or vectors and the element type of that vector.
|
|
// returns the cast expr
|
|
ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
|
|
CastKind &Kind);
|
|
|
|
ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
|
|
SourceLocation LParenLoc,
|
|
Expr *CastExpr,
|
|
SourceLocation RParenLoc);
|
|
|
|
enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
|
|
|
|
/// Checks for invalid conversions and casts between
|
|
/// retainable pointers and other pointer kinds for ARC and Weak.
|
|
ARCConversionResult CheckObjCConversion(SourceRange castRange,
|
|
QualType castType, Expr *&op,
|
|
CheckedConversionKind CCK,
|
|
bool Diagnose = true,
|
|
bool DiagnoseCFAudited = false,
|
|
BinaryOperatorKind Opc = BO_PtrMemD
|
|
);
|
|
|
|
Expr *stripARCUnbridgedCast(Expr *e);
|
|
void diagnoseARCUnbridgedCast(Expr *e);
|
|
|
|
bool CheckObjCARCUnavailableWeakConversion(QualType castType,
|
|
QualType ExprType);
|
|
|
|
/// checkRetainCycles - Check whether an Objective-C message send
|
|
/// might create an obvious retain cycle.
|
|
void checkRetainCycles(ObjCMessageExpr *msg);
|
|
void checkRetainCycles(Expr *receiver, Expr *argument);
|
|
void checkRetainCycles(VarDecl *Var, Expr *Init);
|
|
|
|
/// checkUnsafeAssigns - Check whether +1 expr is being assigned
|
|
/// to weak/__unsafe_unretained type.
|
|
bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
|
|
|
|
/// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
|
|
/// to weak/__unsafe_unretained expression.
|
|
void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
|
|
|
|
/// CheckMessageArgumentTypes - Check types in an Obj-C message send.
|
|
/// \param Method - May be null.
|
|
/// \param [out] ReturnType - The return type of the send.
|
|
/// \return true iff there were any incompatible types.
|
|
bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
|
|
MultiExprArg Args, Selector Sel,
|
|
ArrayRef<SourceLocation> SelectorLocs,
|
|
ObjCMethodDecl *Method, bool isClassMessage,
|
|
bool isSuperMessage, SourceLocation lbrac,
|
|
SourceLocation rbrac, SourceRange RecRange,
|
|
QualType &ReturnType, ExprValueKind &VK);
|
|
|
|
/// Determine the result of a message send expression based on
|
|
/// the type of the receiver, the method expected to receive the message,
|
|
/// and the form of the message send.
|
|
QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
|
|
ObjCMethodDecl *Method, bool isClassMessage,
|
|
bool isSuperMessage);
|
|
|
|
/// If the given expression involves a message send to a method
|
|
/// with a related result type, emit a note describing what happened.
|
|
void EmitRelatedResultTypeNote(const Expr *E);
|
|
|
|
/// Given that we had incompatible pointer types in a return
|
|
/// statement, check whether we're in a method with a related result
|
|
/// type, and if so, emit a note describing what happened.
|
|
void EmitRelatedResultTypeNoteForReturn(QualType destType);
|
|
|
|
class ConditionResult {
|
|
Decl *ConditionVar;
|
|
FullExprArg Condition;
|
|
bool Invalid;
|
|
bool HasKnownValue;
|
|
bool KnownValue;
|
|
|
|
friend class Sema;
|
|
ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
|
|
bool IsConstexpr)
|
|
: ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
|
|
HasKnownValue(IsConstexpr && Condition.get() &&
|
|
!Condition.get()->isValueDependent()),
|
|
KnownValue(HasKnownValue &&
|
|
!!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
|
|
explicit ConditionResult(bool Invalid)
|
|
: ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
|
|
HasKnownValue(false), KnownValue(false) {}
|
|
|
|
public:
|
|
ConditionResult() : ConditionResult(false) {}
|
|
bool isInvalid() const { return Invalid; }
|
|
std::pair<VarDecl *, Expr *> get() const {
|
|
return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
|
|
Condition.get());
|
|
}
|
|
llvm::Optional<bool> getKnownValue() const {
|
|
if (!HasKnownValue)
|
|
return None;
|
|
return KnownValue;
|
|
}
|
|
};
|
|
static ConditionResult ConditionError() { return ConditionResult(true); }
|
|
|
|
enum class ConditionKind {
|
|
Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
|
|
ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
|
|
Switch ///< An integral condition for a 'switch' statement.
|
|
};
|
|
|
|
ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
|
|
Expr *SubExpr, ConditionKind CK);
|
|
|
|
ConditionResult ActOnConditionVariable(Decl *ConditionVar,
|
|
SourceLocation StmtLoc,
|
|
ConditionKind CK);
|
|
|
|
DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
|
|
|
|
ExprResult CheckConditionVariable(VarDecl *ConditionVar,
|
|
SourceLocation StmtLoc,
|
|
ConditionKind CK);
|
|
ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
|
|
|
|
/// CheckBooleanCondition - Diagnose problems involving the use of
|
|
/// the given expression as a boolean condition (e.g. in an if
|
|
/// statement). Also performs the standard function and array
|
|
/// decays, possibly changing the input variable.
|
|
///
|
|
/// \param Loc - A location associated with the condition, e.g. the
|
|
/// 'if' keyword.
|
|
/// \return true iff there were any errors
|
|
ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
|
|
bool IsConstexpr = false);
|
|
|
|
/// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
|
|
/// found in an explicit(bool) specifier.
|
|
ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
|
|
|
|
/// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
|
|
/// Returns true if the explicit specifier is now resolved.
|
|
bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
|
|
|
|
/// DiagnoseAssignmentAsCondition - Given that an expression is
|
|
/// being used as a boolean condition, warn if it's an assignment.
|
|
void DiagnoseAssignmentAsCondition(Expr *E);
|
|
|
|
/// Redundant parentheses over an equality comparison can indicate
|
|
/// that the user intended an assignment used as condition.
|
|
void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
|
|
|
|
/// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
|
|
ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
|
|
|
|
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
|
|
/// the specified width and sign. If an overflow occurs, detect it and emit
|
|
/// the specified diagnostic.
|
|
void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
|
|
unsigned NewWidth, bool NewSign,
|
|
SourceLocation Loc, unsigned DiagID);
|
|
|
|
/// Checks that the Objective-C declaration is declared in the global scope.
|
|
/// Emits an error and marks the declaration as invalid if it's not declared
|
|
/// in the global scope.
|
|
bool CheckObjCDeclScope(Decl *D);
|
|
|
|
/// Abstract base class used for diagnosing integer constant
|
|
/// expression violations.
|
|
class VerifyICEDiagnoser {
|
|
public:
|
|
bool Suppress;
|
|
|
|
VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
|
|
|
|
virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) =0;
|
|
virtual void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR);
|
|
virtual ~VerifyICEDiagnoser() { }
|
|
};
|
|
|
|
/// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
|
|
/// and reports the appropriate diagnostics. Returns false on success.
|
|
/// Can optionally return the value of the expression.
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
|
VerifyICEDiagnoser &Diagnoser,
|
|
bool AllowFold = true);
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
|
|
unsigned DiagID,
|
|
bool AllowFold = true);
|
|
ExprResult VerifyIntegerConstantExpression(Expr *E,
|
|
llvm::APSInt *Result = nullptr);
|
|
|
|
/// VerifyBitField - verifies that a bit field expression is an ICE and has
|
|
/// the correct width, and that the field type is valid.
|
|
/// Returns false on success.
|
|
/// Can optionally return whether the bit-field is of width 0
|
|
ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
|
|
QualType FieldTy, bool IsMsStruct,
|
|
Expr *BitWidth, bool *ZeroWidth = nullptr);
|
|
|
|
private:
|
|
unsigned ForceCUDAHostDeviceDepth = 0;
|
|
|
|
public:
|
|
/// Increments our count of the number of times we've seen a pragma forcing
|
|
/// functions to be __host__ __device__. So long as this count is greater
|
|
/// than zero, all functions encountered will be __host__ __device__.
|
|
void PushForceCUDAHostDevice();
|
|
|
|
/// Decrements our count of the number of times we've seen a pragma forcing
|
|
/// functions to be __host__ __device__. Returns false if the count is 0
|
|
/// before incrementing, so you can emit an error.
|
|
bool PopForceCUDAHostDevice();
|
|
|
|
/// Diagnostics that are emitted only if we discover that the given function
|
|
/// must be codegen'ed. Because handling these correctly adds overhead to
|
|
/// compilation, this is currently only enabled for CUDA compilations.
|
|
llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
|
|
std::vector<PartialDiagnosticAt>>
|
|
DeviceDeferredDiags;
|
|
|
|
/// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
|
|
/// key in a hashtable, both the FD and location are hashed.
|
|
struct FunctionDeclAndLoc {
|
|
CanonicalDeclPtr<FunctionDecl> FD;
|
|
SourceLocation Loc;
|
|
};
|
|
|
|
/// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
|
|
/// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
|
|
/// same deferred diag twice.
|
|
llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
|
|
|
|
/// An inverse call graph, mapping known-emitted functions to one of their
|
|
/// known-emitted callers (plus the location of the call).
|
|
///
|
|
/// Functions that we can tell a priori must be emitted aren't added to this
|
|
/// map.
|
|
llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
|
|
/* Caller = */ FunctionDeclAndLoc>
|
|
DeviceKnownEmittedFns;
|
|
|
|
/// A partial call graph maintained during CUDA/OpenMP device code compilation
|
|
/// to support deferred diagnostics.
|
|
///
|
|
/// Functions are only added here if, at the time they're considered, they are
|
|
/// not known-emitted. As soon as we discover that a function is
|
|
/// known-emitted, we remove it and everything it transitively calls from this
|
|
/// set and add those functions to DeviceKnownEmittedFns.
|
|
llvm::DenseMap</* Caller = */ CanonicalDeclPtr<FunctionDecl>,
|
|
/* Callees = */ llvm::MapVector<CanonicalDeclPtr<FunctionDecl>,
|
|
SourceLocation>>
|
|
DeviceCallGraph;
|
|
|
|
/// Diagnostic builder for CUDA/OpenMP devices errors which may or may not be
|
|
/// deferred.
|
|
///
|
|
/// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
|
|
/// which are not allowed to appear inside __device__ functions and are
|
|
/// allowed to appear in __host__ __device__ functions only if the host+device
|
|
/// function is never codegen'ed.
|
|
///
|
|
/// To handle this, we use the notion of "deferred diagnostics", where we
|
|
/// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
|
|
///
|
|
/// This class lets you emit either a regular diagnostic, a deferred
|
|
/// diagnostic, or no diagnostic at all, according to an argument you pass to
|
|
/// its constructor, thus simplifying the process of creating these "maybe
|
|
/// deferred" diagnostics.
|
|
class DeviceDiagBuilder {
|
|
public:
|
|
enum Kind {
|
|
/// Emit no diagnostics.
|
|
K_Nop,
|
|
/// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
|
|
K_Immediate,
|
|
/// Emit the diagnostic immediately, and, if it's a warning or error, also
|
|
/// emit a call stack showing how this function can be reached by an a
|
|
/// priori known-emitted function.
|
|
K_ImmediateWithCallStack,
|
|
/// Create a deferred diagnostic, which is emitted only if the function
|
|
/// it's attached to is codegen'ed. Also emit a call stack as with
|
|
/// K_ImmediateWithCallStack.
|
|
K_Deferred
|
|
};
|
|
|
|
DeviceDiagBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
|
|
FunctionDecl *Fn, Sema &S);
|
|
DeviceDiagBuilder(DeviceDiagBuilder &&D);
|
|
DeviceDiagBuilder(const DeviceDiagBuilder &) = default;
|
|
~DeviceDiagBuilder();
|
|
|
|
/// Convertible to bool: True if we immediately emitted an error, false if
|
|
/// we didn't emit an error or we created a deferred error.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// if (DeviceDiagBuilder(...) << foo << bar)
|
|
/// return ExprError();
|
|
///
|
|
/// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
|
|
/// want to use these instead of creating a DeviceDiagBuilder yourself.
|
|
operator bool() const { return ImmediateDiag.hasValue(); }
|
|
|
|
template <typename T>
|
|
friend const DeviceDiagBuilder &operator<<(const DeviceDiagBuilder &Diag,
|
|
const T &Value) {
|
|
if (Diag.ImmediateDiag.hasValue())
|
|
*Diag.ImmediateDiag << Value;
|
|
else if (Diag.PartialDiagId.hasValue())
|
|
Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
|
|
<< Value;
|
|
return Diag;
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
unsigned DiagID;
|
|
FunctionDecl *Fn;
|
|
bool ShowCallStack;
|
|
|
|
// Invariant: At most one of these Optionals has a value.
|
|
// FIXME: Switch these to a Variant once that exists.
|
|
llvm::Optional<SemaDiagnosticBuilder> ImmediateDiag;
|
|
llvm::Optional<unsigned> PartialDiagId;
|
|
};
|
|
|
|
/// Indicate that this function (and thus everything it transtively calls)
|
|
/// will be codegen'ed, and emit any deferred diagnostics on this function and
|
|
/// its (transitive) callees.
|
|
void markKnownEmitted(
|
|
Sema &S, FunctionDecl *OrigCaller, FunctionDecl *OrigCallee,
|
|
SourceLocation OrigLoc,
|
|
const llvm::function_ref<bool(Sema &, FunctionDecl *)> IsKnownEmitted);
|
|
|
|
/// Creates a DeviceDiagBuilder that emits the diagnostic if the current context
|
|
/// is "used as device code".
|
|
///
|
|
/// - If CurContext is a __host__ function, does not emit any diagnostics.
|
|
/// - If CurContext is a __device__ or __global__ function, emits the
|
|
/// diagnostics immediately.
|
|
/// - If CurContext is a __host__ __device__ function and we are compiling for
|
|
/// the device, creates a diagnostic which is emitted if and when we realize
|
|
/// that the function will be codegen'ed.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// // Variable-length arrays are not allowed in CUDA device code.
|
|
/// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
|
|
/// return ExprError();
|
|
/// // Otherwise, continue parsing as normal.
|
|
DeviceDiagBuilder CUDADiagIfDeviceCode(SourceLocation Loc, unsigned DiagID);
|
|
|
|
/// Creates a DeviceDiagBuilder that emits the diagnostic if the current context
|
|
/// is "used as host code".
|
|
///
|
|
/// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
|
|
DeviceDiagBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
|
|
|
|
/// Creates a DeviceDiagBuilder that emits the diagnostic if the current
|
|
/// context is "used as device code".
|
|
///
|
|
/// - If CurContext is a `declare target` function or it is known that the
|
|
/// function is emitted for the device, emits the diagnostics immediately.
|
|
/// - If CurContext is a non-`declare target` function and we are compiling
|
|
/// for the device, creates a diagnostic which is emitted if and when we
|
|
/// realize that the function will be codegen'ed.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// // Variable-length arrays are not allowed in NVPTX device code.
|
|
/// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
|
|
/// return ExprError();
|
|
/// // Otherwise, continue parsing as normal.
|
|
DeviceDiagBuilder diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID);
|
|
|
|
/// Creates a DeviceDiagBuilder that emits the diagnostic if the current
|
|
/// context is "used as host code".
|
|
///
|
|
/// - If CurContext is a `declare target` function or it is known that the
|
|
/// function is emitted for the host, emits the diagnostics immediately.
|
|
/// - If CurContext is a non-host function, just ignore it.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// // Variable-length arrays are not allowed in NVPTX device code.
|
|
/// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
|
|
/// return ExprError();
|
|
/// // Otherwise, continue parsing as normal.
|
|
DeviceDiagBuilder diagIfOpenMPHostCode(SourceLocation Loc, unsigned DiagID);
|
|
|
|
DeviceDiagBuilder targetDiag(SourceLocation Loc, unsigned DiagID);
|
|
|
|
enum CUDAFunctionTarget {
|
|
CFT_Device,
|
|
CFT_Global,
|
|
CFT_Host,
|
|
CFT_HostDevice,
|
|
CFT_InvalidTarget
|
|
};
|
|
|
|
/// Determines whether the given function is a CUDA device/host/kernel/etc.
|
|
/// function.
|
|
///
|
|
/// Use this rather than examining the function's attributes yourself -- you
|
|
/// will get it wrong. Returns CFT_Host if D is null.
|
|
CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
|
|
bool IgnoreImplicitHDAttr = false);
|
|
CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
|
|
|
|
/// Gets the CUDA target for the current context.
|
|
CUDAFunctionTarget CurrentCUDATarget() {
|
|
return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
|
|
}
|
|
|
|
// CUDA function call preference. Must be ordered numerically from
|
|
// worst to best.
|
|
enum CUDAFunctionPreference {
|
|
CFP_Never, // Invalid caller/callee combination.
|
|
CFP_WrongSide, // Calls from host-device to host or device
|
|
// function that do not match current compilation
|
|
// mode.
|
|
CFP_HostDevice, // Any calls to host/device functions.
|
|
CFP_SameSide, // Calls from host-device to host or device
|
|
// function matching current compilation mode.
|
|
CFP_Native, // host-to-host or device-to-device calls.
|
|
};
|
|
|
|
/// Identifies relative preference of a given Caller/Callee
|
|
/// combination, based on their host/device attributes.
|
|
/// \param Caller function which needs address of \p Callee.
|
|
/// nullptr in case of global context.
|
|
/// \param Callee target function
|
|
///
|
|
/// \returns preference value for particular Caller/Callee combination.
|
|
CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee);
|
|
|
|
/// Determines whether Caller may invoke Callee, based on their CUDA
|
|
/// host/device attributes. Returns false if the call is not allowed.
|
|
///
|
|
/// Note: Will return true for CFP_WrongSide calls. These may appear in
|
|
/// semantically correct CUDA programs, but only if they're never codegen'ed.
|
|
bool IsAllowedCUDACall(const FunctionDecl *Caller,
|
|
const FunctionDecl *Callee) {
|
|
return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
|
|
}
|
|
|
|
/// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
|
|
/// depending on FD and the current compilation settings.
|
|
void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
|
|
const LookupResult &Previous);
|
|
|
|
public:
|
|
/// Check whether we're allowed to call Callee from the current context.
|
|
///
|
|
/// - If the call is never allowed in a semantically-correct program
|
|
/// (CFP_Never), emits an error and returns false.
|
|
///
|
|
/// - If the call is allowed in semantically-correct programs, but only if
|
|
/// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
|
|
/// be emitted if and when the caller is codegen'ed, and returns true.
|
|
///
|
|
/// Will only create deferred diagnostics for a given SourceLocation once,
|
|
/// so you can safely call this multiple times without generating duplicate
|
|
/// deferred errors.
|
|
///
|
|
/// - Otherwise, returns true without emitting any diagnostics.
|
|
bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
|
|
|
|
/// Set __device__ or __host__ __device__ attributes on the given lambda
|
|
/// operator() method.
|
|
///
|
|
/// CUDA lambdas declared inside __device__ or __global__ functions inherit
|
|
/// the __device__ attribute. Similarly, lambdas inside __host__ __device__
|
|
/// functions become __host__ __device__ themselves.
|
|
void CUDASetLambdaAttrs(CXXMethodDecl *Method);
|
|
|
|
/// Finds a function in \p Matches with highest calling priority
|
|
/// from \p Caller context and erases all functions with lower
|
|
/// calling priority.
|
|
void EraseUnwantedCUDAMatches(
|
|
const FunctionDecl *Caller,
|
|
SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
|
|
|
|
/// Given a implicit special member, infer its CUDA target from the
|
|
/// calls it needs to make to underlying base/field special members.
|
|
/// \param ClassDecl the class for which the member is being created.
|
|
/// \param CSM the kind of special member.
|
|
/// \param MemberDecl the special member itself.
|
|
/// \param ConstRHS true if this is a copy operation with a const object on
|
|
/// its RHS.
|
|
/// \param Diagnose true if this call should emit diagnostics.
|
|
/// \return true if there was an error inferring.
|
|
/// The result of this call is implicit CUDA target attribute(s) attached to
|
|
/// the member declaration.
|
|
bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
|
|
CXXSpecialMember CSM,
|
|
CXXMethodDecl *MemberDecl,
|
|
bool ConstRHS,
|
|
bool Diagnose);
|
|
|
|
/// \return true if \p CD can be considered empty according to CUDA
|
|
/// (E.2.3.1 in CUDA 7.5 Programming guide).
|
|
bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
|
|
bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
|
|
|
|
// \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
|
|
// case of error emits appropriate diagnostic and invalidates \p Var.
|
|
//
|
|
// \details CUDA allows only empty constructors as initializers for global
|
|
// variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
|
|
// __shared__ variables whether they are local or not (they all are implicitly
|
|
// static in CUDA). One exception is that CUDA allows constant initializers
|
|
// for __constant__ and __device__ variables.
|
|
void checkAllowedCUDAInitializer(VarDecl *VD);
|
|
|
|
/// Check whether NewFD is a valid overload for CUDA. Emits
|
|
/// diagnostics and invalidates NewFD if not.
|
|
void checkCUDATargetOverload(FunctionDecl *NewFD,
|
|
const LookupResult &Previous);
|
|
/// Copies target attributes from the template TD to the function FD.
|
|
void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
|
|
|
|
/// Returns the name of the launch configuration function. This is the name
|
|
/// of the function that will be called to configure kernel call, with the
|
|
/// parameters specified via <<<>>>.
|
|
std::string getCudaConfigureFuncName() const;
|
|
|
|
/// \name Code completion
|
|
//@{
|
|
/// Describes the context in which code completion occurs.
|
|
enum ParserCompletionContext {
|
|
/// Code completion occurs at top-level or namespace context.
|
|
PCC_Namespace,
|
|
/// Code completion occurs within a class, struct, or union.
|
|
PCC_Class,
|
|
/// Code completion occurs within an Objective-C interface, protocol,
|
|
/// or category.
|
|
PCC_ObjCInterface,
|
|
/// Code completion occurs within an Objective-C implementation or
|
|
/// category implementation
|
|
PCC_ObjCImplementation,
|
|
/// Code completion occurs within the list of instance variables
|
|
/// in an Objective-C interface, protocol, category, or implementation.
|
|
PCC_ObjCInstanceVariableList,
|
|
/// Code completion occurs following one or more template
|
|
/// headers.
|
|
PCC_Template,
|
|
/// Code completion occurs following one or more template
|
|
/// headers within a class.
|
|
PCC_MemberTemplate,
|
|
/// Code completion occurs within an expression.
|
|
PCC_Expression,
|
|
/// Code completion occurs within a statement, which may
|
|
/// also be an expression or a declaration.
|
|
PCC_Statement,
|
|
/// Code completion occurs at the beginning of the
|
|
/// initialization statement (or expression) in a for loop.
|
|
PCC_ForInit,
|
|
/// Code completion occurs within the condition of an if,
|
|
/// while, switch, or for statement.
|
|
PCC_Condition,
|
|
/// Code completion occurs within the body of a function on a
|
|
/// recovery path, where we do not have a specific handle on our position
|
|
/// in the grammar.
|
|
PCC_RecoveryInFunction,
|
|
/// Code completion occurs where only a type is permitted.
|
|
PCC_Type,
|
|
/// Code completion occurs in a parenthesized expression, which
|
|
/// might also be a type cast.
|
|
PCC_ParenthesizedExpression,
|
|
/// Code completion occurs within a sequence of declaration
|
|
/// specifiers within a function, method, or block.
|
|
PCC_LocalDeclarationSpecifiers
|
|
};
|
|
|
|
void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
|
|
void CodeCompleteOrdinaryName(Scope *S,
|
|
ParserCompletionContext CompletionContext);
|
|
void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
|
|
bool AllowNonIdentifiers,
|
|
bool AllowNestedNameSpecifiers);
|
|
|
|
struct CodeCompleteExpressionData;
|
|
void CodeCompleteExpression(Scope *S,
|
|
const CodeCompleteExpressionData &Data);
|
|
void CodeCompleteExpression(Scope *S, QualType PreferredType,
|
|
bool IsParenthesized = false);
|
|
void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
|
|
SourceLocation OpLoc, bool IsArrow,
|
|
bool IsBaseExprStatement,
|
|
QualType PreferredType);
|
|
void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
|
|
QualType PreferredType);
|
|
void CodeCompleteTag(Scope *S, unsigned TagSpec);
|
|
void CodeCompleteTypeQualifiers(DeclSpec &DS);
|
|
void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
|
|
const VirtSpecifiers *VS = nullptr);
|
|
void CodeCompleteBracketDeclarator(Scope *S);
|
|
void CodeCompleteCase(Scope *S);
|
|
/// Reports signatures for a call to CodeCompleteConsumer and returns the
|
|
/// preferred type for the current argument. Returned type can be null.
|
|
QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
|
|
SourceLocation OpenParLoc);
|
|
QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
|
|
SourceLocation Loc,
|
|
ArrayRef<Expr *> Args,
|
|
SourceLocation OpenParLoc);
|
|
QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
|
|
CXXScopeSpec SS,
|
|
ParsedType TemplateTypeTy,
|
|
ArrayRef<Expr *> ArgExprs,
|
|
IdentifierInfo *II,
|
|
SourceLocation OpenParLoc);
|
|
void CodeCompleteInitializer(Scope *S, Decl *D);
|
|
void CodeCompleteAfterIf(Scope *S);
|
|
|
|
void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
|
|
bool IsUsingDeclaration, QualType BaseType,
|
|
QualType PreferredType);
|
|
void CodeCompleteUsing(Scope *S);
|
|
void CodeCompleteUsingDirective(Scope *S);
|
|
void CodeCompleteNamespaceDecl(Scope *S);
|
|
void CodeCompleteNamespaceAliasDecl(Scope *S);
|
|
void CodeCompleteOperatorName(Scope *S);
|
|
void CodeCompleteConstructorInitializer(
|
|
Decl *Constructor,
|
|
ArrayRef<CXXCtorInitializer *> Initializers);
|
|
|
|
void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
|
|
bool AfterAmpersand);
|
|
|
|
void CodeCompleteObjCAtDirective(Scope *S);
|
|
void CodeCompleteObjCAtVisibility(Scope *S);
|
|
void CodeCompleteObjCAtStatement(Scope *S);
|
|
void CodeCompleteObjCAtExpression(Scope *S);
|
|
void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
|
|
void CodeCompleteObjCPropertyGetter(Scope *S);
|
|
void CodeCompleteObjCPropertySetter(Scope *S);
|
|
void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
|
|
bool IsParameter);
|
|
void CodeCompleteObjCMessageReceiver(Scope *S);
|
|
void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
|
|
ArrayRef<IdentifierInfo *> SelIdents,
|
|
bool AtArgumentExpression);
|
|
void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
|
|
ArrayRef<IdentifierInfo *> SelIdents,
|
|
bool AtArgumentExpression,
|
|
bool IsSuper = false);
|
|
void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
|
|
ArrayRef<IdentifierInfo *> SelIdents,
|
|
bool AtArgumentExpression,
|
|
ObjCInterfaceDecl *Super = nullptr);
|
|
void CodeCompleteObjCForCollection(Scope *S,
|
|
DeclGroupPtrTy IterationVar);
|
|
void CodeCompleteObjCSelector(Scope *S,
|
|
ArrayRef<IdentifierInfo *> SelIdents);
|
|
void CodeCompleteObjCProtocolReferences(
|
|
ArrayRef<IdentifierLocPair> Protocols);
|
|
void CodeCompleteObjCProtocolDecl(Scope *S);
|
|
void CodeCompleteObjCInterfaceDecl(Scope *S);
|
|
void CodeCompleteObjCSuperclass(Scope *S,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassNameLoc);
|
|
void CodeCompleteObjCImplementationDecl(Scope *S);
|
|
void CodeCompleteObjCInterfaceCategory(Scope *S,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassNameLoc);
|
|
void CodeCompleteObjCImplementationCategory(Scope *S,
|
|
IdentifierInfo *ClassName,
|
|
SourceLocation ClassNameLoc);
|
|
void CodeCompleteObjCPropertyDefinition(Scope *S);
|
|
void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
|
|
IdentifierInfo *PropertyName);
|
|
void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
|
|
ParsedType ReturnType);
|
|
void CodeCompleteObjCMethodDeclSelector(Scope *S,
|
|
bool IsInstanceMethod,
|
|
bool AtParameterName,
|
|
ParsedType ReturnType,
|
|
ArrayRef<IdentifierInfo *> SelIdents);
|
|
void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
|
|
SourceLocation ClassNameLoc,
|
|
bool IsBaseExprStatement);
|
|
void CodeCompletePreprocessorDirective(bool InConditional);
|
|
void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
|
|
void CodeCompletePreprocessorMacroName(bool IsDefinition);
|
|
void CodeCompletePreprocessorExpression();
|
|
void CodeCompletePreprocessorMacroArgument(Scope *S,
|
|
IdentifierInfo *Macro,
|
|
MacroInfo *MacroInfo,
|
|
unsigned Argument);
|
|
void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
|
|
void CodeCompleteNaturalLanguage();
|
|
void CodeCompleteAvailabilityPlatformName();
|
|
void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
|
|
CodeCompletionTUInfo &CCTUInfo,
|
|
SmallVectorImpl<CodeCompletionResult> &Results);
|
|
//@}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Extra semantic analysis beyond the C type system
|
|
|
|
public:
|
|
SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
|
|
unsigned ByteNo) const;
|
|
|
|
private:
|
|
void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
|
|
const ArraySubscriptExpr *ASE=nullptr,
|
|
bool AllowOnePastEnd=true, bool IndexNegated=false);
|
|
void CheckArrayAccess(const Expr *E);
|
|
// Used to grab the relevant information from a FormatAttr and a
|
|
// FunctionDeclaration.
|
|
struct FormatStringInfo {
|
|
unsigned FormatIdx;
|
|
unsigned FirstDataArg;
|
|
bool HasVAListArg;
|
|
};
|
|
|
|
static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
|
|
FormatStringInfo *FSI);
|
|
bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto);
|
|
bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
|
|
ArrayRef<const Expr *> Args);
|
|
bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto);
|
|
bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
|
|
void CheckConstructorCall(FunctionDecl *FDecl,
|
|
ArrayRef<const Expr *> Args,
|
|
const FunctionProtoType *Proto,
|
|
SourceLocation Loc);
|
|
|
|
void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
|
|
const Expr *ThisArg, ArrayRef<const Expr *> Args,
|
|
bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
|
|
VariadicCallType CallType);
|
|
|
|
bool CheckObjCString(Expr *Arg);
|
|
ExprResult CheckOSLogFormatStringArg(Expr *Arg);
|
|
|
|
ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
|
|
unsigned BuiltinID, CallExpr *TheCall);
|
|
void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
|
|
|
|
bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
|
|
unsigned MaxWidth);
|
|
bool CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
|
|
bool CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckMipsBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
|
|
bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
|
|
bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
|
|
bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
|
|
bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
|
|
bool SemaBuiltinVSX(CallExpr *TheCall);
|
|
bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
|
|
|
|
public:
|
|
// Used by C++ template instantiation.
|
|
ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
|
|
ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc);
|
|
|
|
private:
|
|
bool SemaBuiltinPrefetch(CallExpr *TheCall);
|
|
bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
|
|
bool SemaBuiltinAssume(CallExpr *TheCall);
|
|
bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
|
|
bool SemaBuiltinLongjmp(CallExpr *TheCall);
|
|
bool SemaBuiltinSetjmp(CallExpr *TheCall);
|
|
ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
|
|
ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
|
|
ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
|
|
AtomicExpr::AtomicOp Op);
|
|
ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
|
|
bool IsDelete);
|
|
bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
|
|
llvm::APSInt &Result);
|
|
bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
|
|
int High, bool RangeIsError = true);
|
|
bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
|
|
unsigned Multiple);
|
|
bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
|
|
bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum);
|
|
bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum);
|
|
bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
|
|
int ArgNum, unsigned ExpectedFieldNum,
|
|
bool AllowName);
|
|
bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
|
|
public:
|
|
enum FormatStringType {
|
|
FST_Scanf,
|
|
FST_Printf,
|
|
FST_NSString,
|
|
FST_Strftime,
|
|
FST_Strfmon,
|
|
FST_Kprintf,
|
|
FST_FreeBSDKPrintf,
|
|
FST_OSTrace,
|
|
FST_OSLog,
|
|
FST_Unknown
|
|
};
|
|
static FormatStringType GetFormatStringType(const FormatAttr *Format);
|
|
|
|
bool FormatStringHasSArg(const StringLiteral *FExpr);
|
|
|
|
static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
|
|
|
|
private:
|
|
bool CheckFormatArguments(const FormatAttr *Format,
|
|
ArrayRef<const Expr *> Args,
|
|
bool IsCXXMember,
|
|
VariadicCallType CallType,
|
|
SourceLocation Loc, SourceRange Range,
|
|
llvm::SmallBitVector &CheckedVarArgs);
|
|
bool CheckFormatArguments(ArrayRef<const Expr *> Args,
|
|
bool HasVAListArg, unsigned format_idx,
|
|
unsigned firstDataArg, FormatStringType Type,
|
|
VariadicCallType CallType,
|
|
SourceLocation Loc, SourceRange range,
|
|
llvm::SmallBitVector &CheckedVarArgs);
|
|
|
|
void CheckAbsoluteValueFunction(const CallExpr *Call,
|
|
const FunctionDecl *FDecl);
|
|
|
|
void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
|
|
|
|
void CheckMemaccessArguments(const CallExpr *Call,
|
|
unsigned BId,
|
|
IdentifierInfo *FnName);
|
|
|
|
void CheckStrlcpycatArguments(const CallExpr *Call,
|
|
IdentifierInfo *FnName);
|
|
|
|
void CheckStrncatArguments(const CallExpr *Call,
|
|
IdentifierInfo *FnName);
|
|
|
|
void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc,
|
|
bool isObjCMethod = false,
|
|
const AttrVec *Attrs = nullptr,
|
|
const FunctionDecl *FD = nullptr);
|
|
|
|
public:
|
|
void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
|
|
|
|
private:
|
|
void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
|
|
void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
|
|
void CheckForIntOverflow(Expr *E);
|
|
void CheckUnsequencedOperations(const Expr *E);
|
|
|
|
/// Perform semantic checks on a completed expression. This will either
|
|
/// be a full-expression or a default argument expression.
|
|
void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
|
|
bool IsConstexpr = false);
|
|
|
|
void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
|
|
Expr *Init);
|
|
|
|
/// Check if there is a field shadowing.
|
|
void CheckShadowInheritedFields(const SourceLocation &Loc,
|
|
DeclarationName FieldName,
|
|
const CXXRecordDecl *RD,
|
|
bool DeclIsField = true);
|
|
|
|
/// Check if the given expression contains 'break' or 'continue'
|
|
/// statement that produces control flow different from GCC.
|
|
void CheckBreakContinueBinding(Expr *E);
|
|
|
|
/// Check whether receiver is mutable ObjC container which
|
|
/// attempts to add itself into the container
|
|
void CheckObjCCircularContainer(ObjCMessageExpr *Message);
|
|
|
|
void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
|
|
void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
|
|
bool DeleteWasArrayForm);
|
|
public:
|
|
/// Register a magic integral constant to be used as a type tag.
|
|
void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
|
|
uint64_t MagicValue, QualType Type,
|
|
bool LayoutCompatible, bool MustBeNull);
|
|
|
|
struct TypeTagData {
|
|
TypeTagData() {}
|
|
|
|
TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
|
|
Type(Type), LayoutCompatible(LayoutCompatible),
|
|
MustBeNull(MustBeNull)
|
|
{}
|
|
|
|
QualType Type;
|
|
|
|
/// If true, \c Type should be compared with other expression's types for
|
|
/// layout-compatibility.
|
|
unsigned LayoutCompatible : 1;
|
|
unsigned MustBeNull : 1;
|
|
};
|
|
|
|
/// A pair of ArgumentKind identifier and magic value. This uniquely
|
|
/// identifies the magic value.
|
|
typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
|
|
|
|
private:
|
|
/// A map from magic value to type information.
|
|
std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
|
|
TypeTagForDatatypeMagicValues;
|
|
|
|
/// Peform checks on a call of a function with argument_with_type_tag
|
|
/// or pointer_with_type_tag attributes.
|
|
void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
|
|
const ArrayRef<const Expr *> ExprArgs,
|
|
SourceLocation CallSiteLoc);
|
|
|
|
/// Check if we are taking the address of a packed field
|
|
/// as this may be a problem if the pointer value is dereferenced.
|
|
void CheckAddressOfPackedMember(Expr *rhs);
|
|
|
|
/// The parser's current scope.
|
|
///
|
|
/// The parser maintains this state here.
|
|
Scope *CurScope;
|
|
|
|
mutable IdentifierInfo *Ident_super;
|
|
mutable IdentifierInfo *Ident___float128;
|
|
|
|
/// Nullability type specifiers.
|
|
IdentifierInfo *Ident__Nonnull = nullptr;
|
|
IdentifierInfo *Ident__Nullable = nullptr;
|
|
IdentifierInfo *Ident__Null_unspecified = nullptr;
|
|
|
|
IdentifierInfo *Ident_NSError = nullptr;
|
|
|
|
/// The handler for the FileChanged preprocessor events.
|
|
///
|
|
/// Used for diagnostics that implement custom semantic analysis for #include
|
|
/// directives, like -Wpragma-pack.
|
|
sema::SemaPPCallbacks *SemaPPCallbackHandler;
|
|
|
|
protected:
|
|
friend class Parser;
|
|
friend class InitializationSequence;
|
|
friend class ASTReader;
|
|
friend class ASTDeclReader;
|
|
friend class ASTWriter;
|
|
|
|
public:
|
|
/// Retrieve the keyword associated
|
|
IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
|
|
|
|
/// The struct behind the CFErrorRef pointer.
|
|
RecordDecl *CFError = nullptr;
|
|
|
|
/// Retrieve the identifier "NSError".
|
|
IdentifierInfo *getNSErrorIdent();
|
|
|
|
/// Retrieve the parser's current scope.
|
|
///
|
|
/// This routine must only be used when it is certain that semantic analysis
|
|
/// and the parser are in precisely the same context, which is not the case
|
|
/// when, e.g., we are performing any kind of template instantiation.
|
|
/// Therefore, the only safe places to use this scope are in the parser
|
|
/// itself and in routines directly invoked from the parser and *never* from
|
|
/// template substitution or instantiation.
|
|
Scope *getCurScope() const { return CurScope; }
|
|
|
|
void incrementMSManglingNumber() const {
|
|
return CurScope->incrementMSManglingNumber();
|
|
}
|
|
|
|
IdentifierInfo *getSuperIdentifier() const;
|
|
IdentifierInfo *getFloat128Identifier() const;
|
|
|
|
Decl *getObjCDeclContext() const;
|
|
|
|
DeclContext *getCurLexicalContext() const {
|
|
return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
|
|
}
|
|
|
|
const DeclContext *getCurObjCLexicalContext() const {
|
|
const DeclContext *DC = getCurLexicalContext();
|
|
// A category implicitly has the attribute of the interface.
|
|
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
|
|
DC = CatD->getClassInterface();
|
|
return DC;
|
|
}
|
|
|
|
/// To be used for checking whether the arguments being passed to
|
|
/// function exceeds the number of parameters expected for it.
|
|
static bool TooManyArguments(size_t NumParams, size_t NumArgs,
|
|
bool PartialOverloading = false) {
|
|
// We check whether we're just after a comma in code-completion.
|
|
if (NumArgs > 0 && PartialOverloading)
|
|
return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
|
|
return NumArgs > NumParams;
|
|
}
|
|
|
|
// Emitting members of dllexported classes is delayed until the class
|
|
// (including field initializers) is fully parsed.
|
|
SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
|
|
SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
|
|
|
|
private:
|
|
int ParsingClassDepth = 0;
|
|
|
|
class SavePendingParsedClassStateRAII {
|
|
public:
|
|
SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
|
|
|
|
~SavePendingParsedClassStateRAII() {
|
|
assert(S.DelayedOverridingExceptionSpecChecks.empty() &&
|
|
"there shouldn't be any pending delayed exception spec checks");
|
|
assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&
|
|
"there shouldn't be any pending delayed exception spec checks");
|
|
swapSavedState();
|
|
}
|
|
|
|
private:
|
|
Sema &S;
|
|
decltype(DelayedOverridingExceptionSpecChecks)
|
|
SavedOverridingExceptionSpecChecks;
|
|
decltype(DelayedEquivalentExceptionSpecChecks)
|
|
SavedEquivalentExceptionSpecChecks;
|
|
|
|
void swapSavedState() {
|
|
SavedOverridingExceptionSpecChecks.swap(
|
|
S.DelayedOverridingExceptionSpecChecks);
|
|
SavedEquivalentExceptionSpecChecks.swap(
|
|
S.DelayedEquivalentExceptionSpecChecks);
|
|
}
|
|
};
|
|
|
|
/// Helper class that collects misaligned member designations and
|
|
/// their location info for delayed diagnostics.
|
|
struct MisalignedMember {
|
|
Expr *E;
|
|
RecordDecl *RD;
|
|
ValueDecl *MD;
|
|
CharUnits Alignment;
|
|
|
|
MisalignedMember() : E(), RD(), MD(), Alignment() {}
|
|
MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
|
|
CharUnits Alignment)
|
|
: E(E), RD(RD), MD(MD), Alignment(Alignment) {}
|
|
explicit MisalignedMember(Expr *E)
|
|
: MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
|
|
|
|
bool operator==(const MisalignedMember &m) { return this->E == m.E; }
|
|
};
|
|
/// Small set of gathered accesses to potentially misaligned members
|
|
/// due to the packed attribute.
|
|
SmallVector<MisalignedMember, 4> MisalignedMembers;
|
|
|
|
/// Adds an expression to the set of gathered misaligned members.
|
|
void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
|
|
CharUnits Alignment);
|
|
|
|
public:
|
|
/// Diagnoses the current set of gathered accesses. This typically
|
|
/// happens at full expression level. The set is cleared after emitting the
|
|
/// diagnostics.
|
|
void DiagnoseMisalignedMembers();
|
|
|
|
/// This function checks if the expression is in the sef of potentially
|
|
/// misaligned members and it is converted to some pointer type T with lower
|
|
/// or equal alignment requirements. If so it removes it. This is used when
|
|
/// we do not want to diagnose such misaligned access (e.g. in conversions to
|
|
/// void*).
|
|
void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
|
|
|
|
/// This function calls Action when it determines that E designates a
|
|
/// misaligned member due to the packed attribute. This is used to emit
|
|
/// local diagnostics like in reference binding.
|
|
void RefersToMemberWithReducedAlignment(
|
|
Expr *E,
|
|
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
|
|
Action);
|
|
|
|
/// Describes the reason a calling convention specification was ignored, used
|
|
/// for diagnostics.
|
|
enum class CallingConventionIgnoredReason {
|
|
ForThisTarget = 0,
|
|
VariadicFunction,
|
|
ConstructorDestructor,
|
|
BuiltinFunction
|
|
};
|
|
};
|
|
|
|
/// RAII object that enters a new expression evaluation context.
|
|
class EnterExpressionEvaluationContext {
|
|
Sema &Actions;
|
|
bool Entered = true;
|
|
|
|
public:
|
|
EnterExpressionEvaluationContext(
|
|
Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
|
|
Decl *LambdaContextDecl = nullptr,
|
|
Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
|
|
Sema::ExpressionEvaluationContextRecord::EK_Other,
|
|
bool ShouldEnter = true)
|
|
: Actions(Actions), Entered(ShouldEnter) {
|
|
if (Entered)
|
|
Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
|
|
ExprContext);
|
|
}
|
|
EnterExpressionEvaluationContext(
|
|
Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
|
|
Sema::ReuseLambdaContextDecl_t,
|
|
Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
|
|
Sema::ExpressionEvaluationContextRecord::EK_Other)
|
|
: Actions(Actions) {
|
|
Actions.PushExpressionEvaluationContext(
|
|
NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
|
|
}
|
|
|
|
enum InitListTag { InitList };
|
|
EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
|
|
bool ShouldEnter = true)
|
|
: Actions(Actions), Entered(false) {
|
|
// In C++11 onwards, narrowing checks are performed on the contents of
|
|
// braced-init-lists, even when they occur within unevaluated operands.
|
|
// Therefore we still need to instantiate constexpr functions used in such
|
|
// a context.
|
|
if (ShouldEnter && Actions.isUnevaluatedContext() &&
|
|
Actions.getLangOpts().CPlusPlus11) {
|
|
Actions.PushExpressionEvaluationContext(
|
|
Sema::ExpressionEvaluationContext::UnevaluatedList);
|
|
Entered = true;
|
|
}
|
|
}
|
|
|
|
~EnterExpressionEvaluationContext() {
|
|
if (Entered)
|
|
Actions.PopExpressionEvaluationContext();
|
|
}
|
|
};
|
|
|
|
DeductionFailureInfo
|
|
MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
|
|
sema::TemplateDeductionInfo &Info);
|
|
|
|
/// Contains a late templated function.
|
|
/// Will be parsed at the end of the translation unit, used by Sema & Parser.
|
|
struct LateParsedTemplate {
|
|
CachedTokens Toks;
|
|
/// The template function declaration to be late parsed.
|
|
Decl *D;
|
|
};
|
|
} // end namespace clang
|
|
|
|
namespace llvm {
|
|
// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
|
|
// SourceLocation.
|
|
template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
|
|
using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
|
|
using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
|
|
|
|
static FunctionDeclAndLoc getEmptyKey() {
|
|
return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
|
|
}
|
|
|
|
static FunctionDeclAndLoc getTombstoneKey() {
|
|
return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
|
|
}
|
|
|
|
static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
|
|
return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
|
|
FDL.Loc.getRawEncoding());
|
|
}
|
|
|
|
static bool isEqual(const FunctionDeclAndLoc &LHS,
|
|
const FunctionDeclAndLoc &RHS) {
|
|
return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
#endif
|