forked from OSchip/llvm-project
624 lines
19 KiB
C++
624 lines
19 KiB
C++
//= GRState*cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines SymbolID, ExprBindKey, and GRState*
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/PathSensitive/GRStateTrait.h"
|
|
#include "clang/Analysis/PathSensitive/GRState.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "clang/Analysis/PathSensitive/GRTransferFuncs.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
|
|
GRStateManager::~GRStateManager() {
|
|
for (std::vector<GRState::Printer*>::iterator I=Printers.begin(),
|
|
E=Printers.end(); I!=E; ++I)
|
|
delete *I;
|
|
|
|
for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
|
|
I!=E; ++I)
|
|
I->second.second(I->second.first);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Basic symbolic analysis. This will eventually be refactored into a
|
|
// separate component.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef llvm::ImmutableMap<SymbolID,GRState::IntSetTy> ConstNotEqTy;
|
|
typedef llvm::ImmutableMap<SymbolID,const llvm::APSInt*> ConstEqTy;
|
|
|
|
static int ConstEqTyIndex = 0;
|
|
static int ConstNotEqTyIndex = 0;
|
|
|
|
namespace clang {
|
|
template<>
|
|
struct GRStateTrait<ConstNotEqTy> : public GRStatePartialTrait<ConstNotEqTy> {
|
|
static inline void* GDMIndex() { return &ConstNotEqTyIndex; }
|
|
};
|
|
|
|
template<>
|
|
struct GRStateTrait<ConstEqTy> : public GRStatePartialTrait<ConstEqTy> {
|
|
static inline void* GDMIndex() { return &ConstEqTyIndex; }
|
|
};
|
|
}
|
|
|
|
bool GRState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const {
|
|
|
|
// Retrieve the NE-set associated with the given symbol.
|
|
const ConstNotEqTy::data_type* T = get<ConstNotEqTy>(sym);
|
|
|
|
// See if V is present in the NE-set.
|
|
return T ? T->contains(&V) : false;
|
|
}
|
|
|
|
bool GRState::isEqual(SymbolID sym, const llvm::APSInt& V) const {
|
|
// Retrieve the EQ-set associated with the given symbol.
|
|
const ConstEqTy::data_type* T = get<ConstEqTy>(sym);
|
|
// See if V is present in the EQ-set.
|
|
return T ? **T == V : false;
|
|
}
|
|
|
|
const llvm::APSInt* GRState::getSymVal(SymbolID sym) const {
|
|
const ConstEqTy::data_type* T = get<ConstEqTy>(sym);
|
|
return T ? *T : NULL;
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::RemoveDeadBindings(const GRState* St, Stmt* Loc,
|
|
const LiveVariables& Liveness,
|
|
DeadSymbolsTy& DSymbols) {
|
|
|
|
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
|
|
// The roots are any Block-level exprs and Decls that our liveness algorithm
|
|
// tells us are live. We then see what Decls they may reference, and keep
|
|
// those around. This code more than likely can be made faster, and the
|
|
// frequency of which this method is called should be experimented with
|
|
// for optimum performance.
|
|
DRoots.clear();
|
|
StoreManager::LiveSymbolsTy LSymbols;
|
|
|
|
GRState NewSt = *St;
|
|
|
|
NewSt.Env = EnvMgr.RemoveDeadBindings(NewSt.Env, Loc, Liveness,
|
|
DRoots, LSymbols);
|
|
|
|
// Clean up the store.
|
|
DSymbols.clear();
|
|
NewSt.St = StMgr->RemoveDeadBindings(St->getStore(), Loc, Liveness, DRoots,
|
|
LSymbols, DSymbols);
|
|
|
|
|
|
GRStateRef state(getPersistentState(NewSt), *this);
|
|
|
|
// Remove the dead symbols from the symbol tracker.
|
|
// FIXME: Refactor into something else that manages symbol values.
|
|
|
|
ConstEqTy CE = state.get<ConstEqTy>();
|
|
ConstEqTy::Factory& CEFactory = state.get_context<ConstEqTy>();
|
|
|
|
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
|
|
SymbolID sym = I.getKey();
|
|
if (!LSymbols.count(sym)) {
|
|
DSymbols.insert(sym);
|
|
CE = CEFactory.Remove(CE, sym);
|
|
}
|
|
}
|
|
state = state.set<ConstEqTy>(CE);
|
|
|
|
ConstNotEqTy CNE = state.get<ConstNotEqTy>();
|
|
ConstNotEqTy::Factory& CNEFactory = state.get_context<ConstNotEqTy>();
|
|
|
|
for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
|
|
SymbolID sym = I.getKey();
|
|
if (!LSymbols.count(sym)) {
|
|
DSymbols.insert(sym);
|
|
CNE = CNEFactory.Remove(CNE, sym);
|
|
}
|
|
}
|
|
|
|
return state.set<ConstNotEqTy>(CNE);
|
|
}
|
|
|
|
const GRState* GRStateManager::SetRVal(const GRState* St, LVal LV,
|
|
RVal V) {
|
|
|
|
Store OldStore = St->getStore();
|
|
Store NewStore = StMgr->SetRVal(OldStore, LV, V);
|
|
|
|
if (NewStore == OldStore)
|
|
return St;
|
|
|
|
GRState NewSt = *St;
|
|
NewSt.St = NewStore;
|
|
return getPersistentState(NewSt);
|
|
}
|
|
|
|
const GRState* GRStateManager::AddDecl(const GRState* St, const VarDecl* VD,
|
|
Expr* Ex, unsigned Count) {
|
|
Store OldStore = St->getStore();
|
|
Store NewStore;
|
|
|
|
if (Ex)
|
|
NewStore = StMgr->AddDecl(OldStore, *this, VD, Ex,
|
|
GetRVal(St, Ex), Count);
|
|
else
|
|
NewStore = StMgr->AddDecl(OldStore, *this, VD, Ex);
|
|
|
|
if (NewStore == OldStore)
|
|
return St;
|
|
|
|
GRState NewSt = *St;
|
|
NewSt.St = NewStore;
|
|
return getPersistentState(NewSt);
|
|
}
|
|
|
|
const GRState* GRStateManager::Unbind(const GRState* St, LVal LV) {
|
|
Store OldStore = St->getStore();
|
|
Store NewStore = StMgr->Remove(OldStore, LV);
|
|
|
|
if (NewStore == OldStore)
|
|
return St;
|
|
|
|
GRState NewSt = *St;
|
|
NewSt.St = NewStore;
|
|
return getPersistentState(NewSt);
|
|
}
|
|
|
|
|
|
const GRState* GRStateManager::AddNE(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V) {
|
|
|
|
GRStateRef state(St, *this);
|
|
|
|
// First, retrieve the NE-set associated with the given symbol.
|
|
ConstNotEqTy::data_type* T = state.get<ConstNotEqTy>(sym);
|
|
GRState::IntSetTy S = T ? *T : ISetFactory.GetEmptySet();
|
|
|
|
// Now add V to the NE set.
|
|
S = ISetFactory.Add(S, &V);
|
|
|
|
// Create a new state with the old binding replaced.
|
|
return state.set<ConstNotEqTy>(sym, S);
|
|
}
|
|
|
|
const GRState* GRStateManager::AddEQ(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V) {
|
|
// Create a new state with the old binding replaced.
|
|
GRStateRef state(St, *this);
|
|
return state.set<ConstEqTy>(sym, &V);
|
|
}
|
|
|
|
const GRState* GRStateManager::getInitialState() {
|
|
|
|
GRState StateImpl(EnvMgr.getInitialEnvironment(),
|
|
StMgr->getInitialStore(*this),
|
|
GDMFactory.GetEmptyMap());
|
|
|
|
return getPersistentState(StateImpl);
|
|
}
|
|
|
|
const GRState* GRStateManager::getPersistentState(GRState& State) {
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
State.Profile(ID);
|
|
void* InsertPos;
|
|
|
|
if (GRState* I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
|
|
return I;
|
|
|
|
GRState* I = (GRState*) Alloc.Allocate<GRState>();
|
|
new (I) GRState(State);
|
|
StateSet.InsertNode(I, InsertPos);
|
|
return I;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// State pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void GRState::print(std::ostream& Out, StoreManager& StoreMgr,
|
|
Printer** Beg, Printer** End,
|
|
const char* nl, const char* sep) const {
|
|
|
|
// Print the store.
|
|
StoreMgr.print(getStore(), Out, nl, sep);
|
|
|
|
// Print Subexpression bindings.
|
|
bool isFirst = true;
|
|
|
|
for (seb_iterator I = seb_begin(), E = seb_end(); I != E; ++I) {
|
|
|
|
if (isFirst) {
|
|
Out << nl << nl << "Sub-Expressions:" << nl;
|
|
isFirst = false;
|
|
}
|
|
else { Out << nl; }
|
|
|
|
Out << " (" << (void*) I.getKey() << ") ";
|
|
I.getKey()->printPretty(Out);
|
|
Out << " : ";
|
|
I.getData().print(Out);
|
|
}
|
|
|
|
// Print block-expression bindings.
|
|
isFirst = true;
|
|
|
|
for (beb_iterator I = beb_begin(), E = beb_end(); I != E; ++I) {
|
|
|
|
if (isFirst) {
|
|
Out << nl << nl << "Block-level Expressions:" << nl;
|
|
isFirst = false;
|
|
}
|
|
else { Out << nl; }
|
|
|
|
Out << " (" << (void*) I.getKey() << ") ";
|
|
I.getKey()->printPretty(Out);
|
|
Out << " : ";
|
|
I.getData().print(Out);
|
|
}
|
|
|
|
// Print equality constraints.
|
|
// FIXME: Make just another printer do this.
|
|
ConstEqTy CE = get<ConstEqTy>();
|
|
|
|
if (!CE.isEmpty()) {
|
|
Out << nl << sep << "'==' constraints:";
|
|
|
|
for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
|
|
Out << nl << " $" << I.getKey();
|
|
llvm::raw_os_ostream OS(Out);
|
|
OS << " : " << *I.getData();
|
|
}
|
|
}
|
|
|
|
// Print != constraints.
|
|
// FIXME: Make just another printer do this.
|
|
|
|
ConstNotEqTy CNE = get<ConstNotEqTy>();
|
|
|
|
if (!CNE.isEmpty()) {
|
|
Out << nl << sep << "'!=' constraints:";
|
|
|
|
for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
|
|
Out << nl << " $" << I.getKey() << " : ";
|
|
isFirst = true;
|
|
|
|
IntSetTy::iterator J = I.getData().begin(), EJ = I.getData().end();
|
|
|
|
for ( ; J != EJ; ++J) {
|
|
if (isFirst) isFirst = false;
|
|
else Out << ", ";
|
|
|
|
Out << *J;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Print checker-specific data.
|
|
for ( ; Beg != End ; ++Beg) (*Beg)->Print(Out, this, nl, sep);
|
|
}
|
|
|
|
void GRStateRef::printDOT(std::ostream& Out) const {
|
|
print(Out, "\\l", "\\|");
|
|
}
|
|
|
|
void GRStateRef::printStdErr() const {
|
|
print(*llvm::cerr);
|
|
}
|
|
|
|
void GRStateRef::print(std::ostream& Out, const char* nl, const char* sep)const{
|
|
GRState::Printer **beg = Mgr->Printers.empty() ? 0 : &Mgr->Printers[0];
|
|
GRState::Printer **end = !beg ? 0 : beg + Mgr->Printers.size();
|
|
St->print(Out, *Mgr->StMgr, beg, end, nl, sep);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Generic Data Map.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void* const* GRState::FindGDM(void* K) const {
|
|
return GDM.lookup(K);
|
|
}
|
|
|
|
void*
|
|
GRStateManager::FindGDMContext(void* K,
|
|
void* (*CreateContext)(llvm::BumpPtrAllocator&),
|
|
void (*DeleteContext)(void*)) {
|
|
|
|
std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
|
|
if (!p.first) {
|
|
p.first = CreateContext(Alloc);
|
|
p.second = DeleteContext;
|
|
}
|
|
|
|
return p.first;
|
|
}
|
|
|
|
const GRState* GRStateManager::addGDM(const GRState* St, void* Key, void* Data){
|
|
GRState::GenericDataMap M1 = St->getGDM();
|
|
GRState::GenericDataMap M2 = GDMFactory.Add(M1, Key, Data);
|
|
|
|
if (M1 == M2)
|
|
return St;
|
|
|
|
GRState NewSt = *St;
|
|
NewSt.GDM = M2;
|
|
return getPersistentState(NewSt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Queries.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool GRStateManager::isEqual(const GRState* state, Expr* Ex,
|
|
const llvm::APSInt& Y) {
|
|
|
|
RVal V = GetRVal(state, Ex);
|
|
|
|
if (lval::ConcreteInt* X = dyn_cast<lval::ConcreteInt>(&V))
|
|
return X->getValue() == Y;
|
|
|
|
if (nonlval::ConcreteInt* X = dyn_cast<nonlval::ConcreteInt>(&V))
|
|
return X->getValue() == Y;
|
|
|
|
if (nonlval::SymbolVal* X = dyn_cast<nonlval::SymbolVal>(&V))
|
|
return state->isEqual(X->getSymbol(), Y);
|
|
|
|
if (lval::SymbolVal* X = dyn_cast<lval::SymbolVal>(&V))
|
|
return state->isEqual(X->getSymbol(), Y);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool GRStateManager::isEqual(const GRState* state, Expr* Ex, uint64_t x) {
|
|
return isEqual(state, Ex, BasicVals.getValue(x, Ex->getType()));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Assume" logic.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const GRState* GRStateManager::Assume(const GRState* St, LVal Cond,
|
|
bool Assumption, bool& isFeasible) {
|
|
|
|
St = AssumeAux(St, Cond, Assumption, isFeasible);
|
|
|
|
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
|
|
: St;
|
|
}
|
|
|
|
const GRState* GRStateManager::AssumeAux(const GRState* St, LVal Cond,
|
|
bool Assumption, bool& isFeasible) {
|
|
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert (false && "'Assume' not implemented for this LVal.");
|
|
return St;
|
|
|
|
case lval::SymbolValKind:
|
|
if (Assumption)
|
|
return AssumeSymNE(St, cast<lval::SymbolVal>(Cond).getSymbol(),
|
|
BasicVals.getZeroWithPtrWidth(), isFeasible);
|
|
else
|
|
return AssumeSymEQ(St, cast<lval::SymbolVal>(Cond).getSymbol(),
|
|
BasicVals.getZeroWithPtrWidth(), isFeasible);
|
|
|
|
case lval::DeclValKind:
|
|
case lval::FuncValKind:
|
|
case lval::GotoLabelKind:
|
|
case lval::StringLiteralValKind:
|
|
isFeasible = Assumption;
|
|
return St;
|
|
|
|
case lval::FieldOffsetKind:
|
|
return AssumeAux(St, cast<lval::FieldOffset>(Cond).getBase(),
|
|
Assumption, isFeasible);
|
|
|
|
case lval::ArrayOffsetKind:
|
|
return AssumeAux(St, cast<lval::ArrayOffset>(Cond).getBase(),
|
|
Assumption, isFeasible);
|
|
|
|
case lval::ConcreteIntKind: {
|
|
bool b = cast<lval::ConcreteInt>(Cond).getValue() != 0;
|
|
isFeasible = b ? Assumption : !Assumption;
|
|
return St;
|
|
}
|
|
}
|
|
}
|
|
|
|
const GRState* GRStateManager::Assume(const GRState* St, NonLVal Cond,
|
|
bool Assumption, bool& isFeasible) {
|
|
|
|
St = AssumeAux(St, Cond, Assumption, isFeasible);
|
|
|
|
return isFeasible ? TF->EvalAssume(*this, St, Cond, Assumption, isFeasible)
|
|
: St;
|
|
}
|
|
|
|
const GRState* GRStateManager::AssumeAux(const GRState* St, NonLVal Cond,
|
|
bool Assumption, bool& isFeasible) {
|
|
switch (Cond.getSubKind()) {
|
|
default:
|
|
assert (false && "'Assume' not implemented for this NonLVal.");
|
|
return St;
|
|
|
|
|
|
case nonlval::SymbolValKind: {
|
|
nonlval::SymbolVal& SV = cast<nonlval::SymbolVal>(Cond);
|
|
SymbolID sym = SV.getSymbol();
|
|
|
|
if (Assumption)
|
|
return AssumeSymNE(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
|
|
isFeasible);
|
|
else
|
|
return AssumeSymEQ(St, sym, BasicVals.getValue(0, SymMgr.getType(sym)),
|
|
isFeasible);
|
|
}
|
|
|
|
case nonlval::SymIntConstraintValKind:
|
|
return
|
|
AssumeSymInt(St, Assumption,
|
|
cast<nonlval::SymIntConstraintVal>(Cond).getConstraint(),
|
|
isFeasible);
|
|
|
|
case nonlval::ConcreteIntKind: {
|
|
bool b = cast<nonlval::ConcreteInt>(Cond).getValue() != 0;
|
|
isFeasible = b ? Assumption : !Assumption;
|
|
return St;
|
|
}
|
|
|
|
case nonlval::LValAsIntegerKind: {
|
|
return AssumeAux(St, cast<nonlval::LValAsInteger>(Cond).getLVal(),
|
|
Assumption, isFeasible);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
const GRState* GRStateManager::AssumeSymInt(const GRState* St,
|
|
bool Assumption,
|
|
const SymIntConstraint& C,
|
|
bool& isFeasible) {
|
|
|
|
switch (C.getOpcode()) {
|
|
default:
|
|
// No logic yet for other operators.
|
|
isFeasible = true;
|
|
return St;
|
|
|
|
case BinaryOperator::EQ:
|
|
if (Assumption)
|
|
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
else
|
|
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
|
|
case BinaryOperator::NE:
|
|
if (Assumption)
|
|
return AssumeSymNE(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
else
|
|
return AssumeSymEQ(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
|
|
case BinaryOperator::GE:
|
|
if (Assumption)
|
|
return AssumeSymGE(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
else
|
|
return AssumeSymLT(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
|
|
case BinaryOperator::LE:
|
|
if (Assumption)
|
|
return AssumeSymLE(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
else
|
|
return AssumeSymGT(St, C.getSymbol(), C.getInt(), isFeasible);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FIXME: This should go into a plug-in constraint engine.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymNE(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// First, determine if sym == X, where X != V.
|
|
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
|
isFeasible = *X != V;
|
|
return St;
|
|
}
|
|
|
|
// Second, determine if sym != V.
|
|
if (St->isNotEqual(sym, V)) {
|
|
isFeasible = true;
|
|
return St;
|
|
}
|
|
|
|
// If we reach here, sym is not a constant and we don't know if it is != V.
|
|
// Make that assumption.
|
|
|
|
isFeasible = true;
|
|
return AddNE(St, sym, V);
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymEQ(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// First, determine if sym == X, where X != V.
|
|
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
|
isFeasible = *X == V;
|
|
return St;
|
|
}
|
|
|
|
// Second, determine if sym != V.
|
|
if (St->isNotEqual(sym, V)) {
|
|
isFeasible = false;
|
|
return St;
|
|
}
|
|
|
|
// If we reach here, sym is not a constant and we don't know if it is == V.
|
|
// Make that assumption.
|
|
|
|
isFeasible = true;
|
|
return AddEQ(St, sym, V);
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymLT(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// FIXME: For now have assuming x < y be the same as assuming sym != V;
|
|
return AssumeSymNE(St, sym, V, isFeasible);
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymGT(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// FIXME: For now have assuming x > y be the same as assuming sym != V;
|
|
return AssumeSymNE(St, sym, V, isFeasible);
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymGE(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// FIXME: Primitive logic for now. Only reject a path if the value of
|
|
// sym is a constant X and !(X >= V).
|
|
|
|
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
|
isFeasible = *X >= V;
|
|
return St;
|
|
}
|
|
|
|
isFeasible = true;
|
|
return St;
|
|
}
|
|
|
|
const GRState*
|
|
GRStateManager::AssumeSymLE(const GRState* St, SymbolID sym,
|
|
const llvm::APSInt& V, bool& isFeasible) {
|
|
|
|
// FIXME: Primitive logic for now. Only reject a path if the value of
|
|
// sym is a constant X and !(X <= V).
|
|
|
|
if (const llvm::APSInt* X = St->getSymVal(sym)) {
|
|
isFeasible = *X <= V;
|
|
return St;
|
|
}
|
|
|
|
isFeasible = true;
|
|
return St;
|
|
}
|
|
|