forked from OSchip/llvm-project
a6399a519d
The issue arises when coercing to/from types of different sizes. We need to be certain that the allocation on either end has sufficient room for the coerced type. When it doesn't, we need to make room, copy across, and then proceed. PR11905 handled the case of storing function arguments back into allocas in the function prolog, this patch handles the case of setting up the function arguments in a call expression. This is actually significantly simpler than the fix for PR11905. It ends up being a trivial change to create a temporary alloca when the source is too small and memcpy across. This should preserve the compile-time fast-isel benefits of doing gep+load sequences and avoiding FCAs. Reviewed by Benjamin and Evgeniy (who fixed PR11905). llvm-svn: 165615 |
||
---|---|---|
.. | ||
ABIInfo.h | ||
BackendUtil.cpp | ||
CGBlocks.cpp | ||
CGBlocks.h | ||
CGBuilder.h | ||
CGBuiltin.cpp | ||
CGCUDANV.cpp | ||
CGCUDARuntime.cpp | ||
CGCUDARuntime.h | ||
CGCXX.cpp | ||
CGCXXABI.cpp | ||
CGCXXABI.h | ||
CGCall.cpp | ||
CGCall.h | ||
CGClass.cpp | ||
CGCleanup.cpp | ||
CGCleanup.h | ||
CGDebugInfo.cpp | ||
CGDebugInfo.h | ||
CGDecl.cpp | ||
CGDeclCXX.cpp | ||
CGException.cpp | ||
CGExpr.cpp | ||
CGExprAgg.cpp | ||
CGExprCXX.cpp | ||
CGExprComplex.cpp | ||
CGExprConstant.cpp | ||
CGExprScalar.cpp | ||
CGObjC.cpp | ||
CGObjCGNU.cpp | ||
CGObjCMac.cpp | ||
CGObjCRuntime.cpp | ||
CGObjCRuntime.h | ||
CGOpenCLRuntime.cpp | ||
CGOpenCLRuntime.h | ||
CGRTTI.cpp | ||
CGRecordLayout.h | ||
CGRecordLayoutBuilder.cpp | ||
CGStmt.cpp | ||
CGVTT.cpp | ||
CGVTables.cpp | ||
CGVTables.h | ||
CGValue.h | ||
CMakeLists.txt | ||
CodeGenAction.cpp | ||
CodeGenFunction.cpp | ||
CodeGenFunction.h | ||
CodeGenModule.cpp | ||
CodeGenModule.h | ||
CodeGenTBAA.cpp | ||
CodeGenTBAA.h | ||
CodeGenTypes.cpp | ||
CodeGenTypes.h | ||
ItaniumCXXABI.cpp | ||
Makefile | ||
MicrosoftCXXABI.cpp | ||
ModuleBuilder.cpp | ||
README.txt | ||
TargetInfo.cpp | ||
TargetInfo.h |
README.txt
IRgen optimization opportunities. //===---------------------------------------------------------------------===// The common pattern of -- short x; // or char, etc (x == 10) -- generates an zext/sext of x which can easily be avoided. //===---------------------------------------------------------------------===// Bitfields accesses can be shifted to simplify masking and sign extension. For example, if the bitfield width is 8 and it is appropriately aligned then is is a lot shorter to just load the char directly. //===---------------------------------------------------------------------===// It may be worth avoiding creation of alloca's for formal arguments for the common situation where the argument is never written to or has its address taken. The idea would be to begin generating code by using the argument directly and if its address is taken or it is stored to then generate the alloca and patch up the existing code. In theory, the same optimization could be a win for block local variables as long as the declaration dominates all statements in the block. NOTE: The main case we care about this for is for -O0 -g compile time performance, and in that scenario we will need to emit the alloca anyway currently to emit proper debug info. So this is blocked by being able to emit debug information which refers to an LLVM temporary, not an alloca. //===---------------------------------------------------------------------===// We should try and avoid generating basic blocks which only contain jumps. At -O0, this penalizes us all the way from IRgen (malloc & instruction overhead), all the way down through code generation and assembly time. On 176.gcc:expr.ll, it looks like over 12% of basic blocks are just direct branches! //===---------------------------------------------------------------------===//