llvm-project/lldb/source/Core/ValueObject.cpp

3383 lines
131 KiB
C++

//===-- ValueObject.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObject.h"
// C Includes
#include <stdlib.h>
// C++ Includes
// Other libraries and framework includes
#include "llvm/Support/raw_ostream.h"
#include "clang/AST/Type.h"
// Project includes
#include "lldb/Core/DataBufferHeap.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/ValueObjectChild.h"
#include "lldb/Core/ValueObjectConstResult.h"
#include "lldb/Core/ValueObjectDynamicValue.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Core/ValueObjectMemory.h"
#include "lldb/Core/ValueObjectSyntheticFilter.h"
#include "lldb/Host/Endian.h"
#include "lldb/Interpreter/ScriptInterpreterPython.h"
#include "lldb/Symbol/ClangASTType.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/LanguageRuntime.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Utility/RefCounter.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_utility;
static lldb::user_id_t g_value_obj_uid = 0;
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject (ValueObject &parent) :
UserID (++g_value_obj_uid), // Unique identifier for every value object
m_parent (&parent),
m_update_point (parent.GetUpdatePoint ()),
m_name (),
m_data (),
m_value (),
m_error (),
m_value_str (),
m_old_value_str (),
m_location_str (),
m_summary_str (),
m_object_desc_str (),
m_manager(parent.GetManager()),
m_children (),
m_synthetic_children (),
m_dynamic_value (NULL),
m_synthetic_value(NULL),
m_deref_valobj(NULL),
m_format (eFormatDefault),
m_last_format_mgr_revision(0),
m_last_format_mgr_dynamic(parent.m_last_format_mgr_dynamic),
m_last_summary_format(),
m_forced_summary_format(),
m_last_value_format(),
m_last_synthetic_filter(),
m_user_id_of_forced_summary(),
m_value_is_valid (false),
m_value_did_change (false),
m_children_count_valid (false),
m_old_value_valid (false),
m_pointers_point_to_load_addrs (false),
m_is_deref_of_parent (false),
m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false),
m_is_expression_path_child(false),
m_is_child_at_offset(false),
m_is_expression_result(parent.m_is_expression_result),
m_dump_printable_counter(0)
{
m_manager->ManageObject(this);
}
//----------------------------------------------------------------------
// ValueObject constructor
//----------------------------------------------------------------------
ValueObject::ValueObject (ExecutionContextScope *exe_scope) :
UserID (++g_value_obj_uid), // Unique identifier for every value object
m_parent (NULL),
m_update_point (exe_scope),
m_name (),
m_data (),
m_value (),
m_error (),
m_value_str (),
m_old_value_str (),
m_location_str (),
m_summary_str (),
m_object_desc_str (),
m_manager(),
m_children (),
m_synthetic_children (),
m_dynamic_value (NULL),
m_synthetic_value(NULL),
m_deref_valobj(NULL),
m_format (eFormatDefault),
m_last_format_mgr_revision(0),
m_last_format_mgr_dynamic(lldb::eNoDynamicValues),
m_last_summary_format(),
m_forced_summary_format(),
m_last_value_format(),
m_last_synthetic_filter(),
m_user_id_of_forced_summary(),
m_value_is_valid (false),
m_value_did_change (false),
m_children_count_valid (false),
m_old_value_valid (false),
m_pointers_point_to_load_addrs (false),
m_is_deref_of_parent (false),
m_is_array_item_for_pointer(false),
m_is_bitfield_for_scalar(false),
m_is_expression_path_child(false),
m_is_child_at_offset(false),
m_is_expression_result(false),
m_dump_printable_counter(0)
{
m_manager = new ValueObjectManager();
m_manager->ManageObject (this);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ValueObject::~ValueObject ()
{
}
bool
ValueObject::UpdateValueIfNeeded (bool update_format)
{
return UpdateValueIfNeeded(m_last_format_mgr_dynamic, update_format);
}
bool
ValueObject::UpdateValueIfNeeded (lldb::DynamicValueType use_dynamic, bool update_format)
{
if (update_format)
UpdateFormatsIfNeeded(use_dynamic);
// If this is a constant value, then our success is predicated on whether
// we have an error or not
if (GetIsConstant())
return m_error.Success();
bool first_update = m_update_point.IsFirstEvaluation();
if (m_update_point.NeedsUpdating())
{
m_update_point.SetUpdated();
// Save the old value using swap to avoid a string copy which
// also will clear our m_value_str
if (m_value_str.empty())
{
m_old_value_valid = false;
}
else
{
m_old_value_valid = true;
m_old_value_str.swap (m_value_str);
m_value_str.clear();
}
ClearUserVisibleData();
const bool value_was_valid = GetValueIsValid();
SetValueDidChange (false);
m_error.Clear();
// Call the pure virtual function to update the value
bool success = UpdateValue ();
SetValueIsValid (success);
if (first_update)
SetValueDidChange (false);
else if (!m_value_did_change && success == false)
{
// The value wasn't gotten successfully, so we mark this
// as changed if the value used to be valid and now isn't
SetValueDidChange (value_was_valid);
}
}
return m_error.Success();
}
void
ValueObject::UpdateFormatsIfNeeded(lldb::DynamicValueType use_dynamic)
{
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_TYPES));
if (log)
log->Printf("checking for FormatManager revisions. VO named %s is at revision %d, while the format manager is at revision %d",
GetName().GetCString(),
m_last_format_mgr_revision,
Debugger::Formatting::ValueFormats::GetCurrentRevision());
if (HasCustomSummaryFormat() && m_update_point.GetModID() != m_user_id_of_forced_summary)
{
ClearCustomSummaryFormat();
m_summary_str.clear();
}
if ( (m_last_format_mgr_revision != Debugger::Formatting::ValueFormats::GetCurrentRevision()) ||
m_last_format_mgr_dynamic != use_dynamic)
{
if (m_last_summary_format.get())
m_last_summary_format.reset((StringSummaryFormat*)NULL);
if (m_last_value_format.get())
m_last_value_format.reset(/*(ValueFormat*)NULL*/);
if (m_last_synthetic_filter.get())
m_last_synthetic_filter.reset(/*(SyntheticFilter*)NULL*/);
m_synthetic_value = NULL;
Debugger::Formatting::ValueFormats::Get(*this, lldb::eNoDynamicValues, m_last_value_format);
Debugger::Formatting::GetSummaryFormat(*this, use_dynamic, m_last_summary_format);
Debugger::Formatting::GetSyntheticFilter(*this, use_dynamic, m_last_synthetic_filter);
m_last_format_mgr_revision = Debugger::Formatting::ValueFormats::GetCurrentRevision();
m_last_format_mgr_dynamic = use_dynamic;
ClearUserVisibleData();
}
}
DataExtractor &
ValueObject::GetDataExtractor ()
{
UpdateValueIfNeeded(false);
return m_data;
}
const Error &
ValueObject::GetError()
{
UpdateValueIfNeeded(false);
return m_error;
}
const ConstString &
ValueObject::GetName() const
{
return m_name;
}
const char *
ValueObject::GetLocationAsCString ()
{
if (UpdateValueIfNeeded(false))
{
if (m_location_str.empty())
{
StreamString sstr;
switch (m_value.GetValueType())
{
default:
break;
case Value::eValueTypeScalar:
if (m_value.GetContextType() == Value::eContextTypeRegisterInfo)
{
RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
{
if (reg_info->name)
m_location_str = reg_info->name;
else if (reg_info->alt_name)
m_location_str = reg_info->alt_name;
break;
}
}
m_location_str = "scalar";
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
uint32_t addr_nibble_size = m_data.GetAddressByteSize() * 2;
sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
m_location_str.swap(sstr.GetString());
}
break;
}
}
}
return m_location_str.c_str();
}
Value &
ValueObject::GetValue()
{
return m_value;
}
const Value &
ValueObject::GetValue() const
{
return m_value;
}
bool
ValueObject::ResolveValue (Scalar &scalar)
{
if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything
{
ExecutionContext exe_ctx;
ExecutionContextScope *exe_scope = GetExecutionContextScope();
if (exe_scope)
exe_scope->CalculateExecutionContext(exe_ctx);
scalar = m_value.ResolveValue(&exe_ctx, GetClangAST ());
return scalar.IsValid();
}
else
return false;
}
bool
ValueObject::GetValueIsValid () const
{
return m_value_is_valid;
}
void
ValueObject::SetValueIsValid (bool b)
{
m_value_is_valid = b;
}
bool
ValueObject::GetValueDidChange ()
{
GetValueAsCString ();
return m_value_did_change;
}
void
ValueObject::SetValueDidChange (bool value_changed)
{
m_value_did_change = value_changed;
}
ValueObjectSP
ValueObject::GetChildAtIndex (uint32_t idx, bool can_create)
{
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType ())
UpdateValueIfNeeded(false);
if (idx < GetNumChildren())
{
// Check if we have already made the child value object?
if (can_create && m_children[idx] == NULL)
{
// No we haven't created the child at this index, so lets have our
// subclass do it and cache the result for quick future access.
m_children[idx] = CreateChildAtIndex (idx, false, 0);
}
if (m_children[idx] != NULL)
return m_children[idx]->GetSP();
}
return child_sp;
}
uint32_t
ValueObject::GetIndexOfChildWithName (const ConstString &name)
{
bool omit_empty_base_classes = true;
return ClangASTContext::GetIndexOfChildWithName (GetClangAST(),
GetClangType(),
name.GetCString(),
omit_empty_base_classes);
}
ValueObjectSP
ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create)
{
// when getting a child by name, it could be buried inside some base
// classes (which really aren't part of the expression path), so we
// need a vector of indexes that can get us down to the correct child
ValueObjectSP child_sp;
// We may need to update our value if we are dynamic
if (IsPossibleDynamicType ())
UpdateValueIfNeeded(false);
std::vector<uint32_t> child_indexes;
clang::ASTContext *clang_ast = GetClangAST();
void *clang_type = GetClangType();
bool omit_empty_base_classes = true;
const size_t num_child_indexes = ClangASTContext::GetIndexOfChildMemberWithName (clang_ast,
clang_type,
name.GetCString(),
omit_empty_base_classes,
child_indexes);
if (num_child_indexes > 0)
{
std::vector<uint32_t>::const_iterator pos = child_indexes.begin ();
std::vector<uint32_t>::const_iterator end = child_indexes.end ();
child_sp = GetChildAtIndex(*pos, can_create);
for (++pos; pos != end; ++pos)
{
if (child_sp)
{
ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create));
child_sp = new_child_sp;
}
else
{
child_sp.reset();
}
}
}
return child_sp;
}
uint32_t
ValueObject::GetNumChildren ()
{
if (!m_children_count_valid)
{
SetNumChildren (CalculateNumChildren());
}
return m_children.size();
}
void
ValueObject::SetNumChildren (uint32_t num_children)
{
m_children_count_valid = true;
m_children.resize(num_children);
}
void
ValueObject::SetName (const ConstString &name)
{
m_name = name;
}
ValueObject *
ValueObject::CreateChildAtIndex (uint32_t idx, bool synthetic_array_member, int32_t synthetic_index)
{
ValueObject *valobj = NULL;
bool omit_empty_base_classes = true;
bool ignore_array_bounds = synthetic_array_member;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
const bool transparent_pointers = synthetic_array_member == false;
clang::ASTContext *clang_ast = GetClangAST();
clang_type_t clang_type = GetClangType();
clang_type_t child_clang_type;
ExecutionContext exe_ctx;
GetExecutionContextScope()->CalculateExecutionContext (exe_ctx);
child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (&exe_ctx,
clang_ast,
GetName().GetCString(),
clang_type,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
if (child_clang_type && child_byte_size)
{
if (synthetic_index)
child_byte_offset += child_byte_size * synthetic_index;
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString (child_name_str.c_str());
valobj = new ValueObjectChild (*this,
clang_ast,
child_clang_type,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
if (m_pointers_point_to_load_addrs)
valobj->SetPointersPointToLoadAddrs (m_pointers_point_to_load_addrs);
}
return valobj;
}
const char *
ValueObject::GetSummaryAsCString ()
{
if (UpdateValueIfNeeded (true))
{
if (m_summary_str.empty())
{
SummaryFormat *summary_format = GetSummaryFormat().get();
if (summary_format)
{
m_summary_str = summary_format->FormatObject(GetSP());
}
else
{
clang_type_t clang_type = GetClangType();
// Do some default printout for function pointers
if (clang_type)
{
StreamString sstr;
clang_type_t elem_or_pointee_clang_type;
const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type,
GetClangAST(),
&elem_or_pointee_clang_type));
ExecutionContextScope *exe_scope = GetExecutionContextScope();
if (exe_scope)
{
if (ClangASTContext::IsFunctionPointerType (clang_type))
{
AddressType func_ptr_address_type = eAddressTypeInvalid;
lldb::addr_t func_ptr_address = GetPointerValue (func_ptr_address_type, true);
if (func_ptr_address != 0 && func_ptr_address != LLDB_INVALID_ADDRESS)
{
switch (func_ptr_address_type)
{
case eAddressTypeInvalid:
case eAddressTypeFile:
break;
case eAddressTypeLoad:
{
Address so_addr;
Target *target = exe_scope->CalculateTarget();
if (target && target->GetSectionLoadList().IsEmpty() == false)
{
if (target->GetSectionLoadList().ResolveLoadAddress(func_ptr_address, so_addr))
{
so_addr.Dump (&sstr,
exe_scope,
Address::DumpStyleResolvedDescription,
Address::DumpStyleSectionNameOffset);
}
}
}
break;
case eAddressTypeHost:
break;
}
}
if (sstr.GetSize() > 0)
{
m_summary_str.assign (1, '(');
m_summary_str.append (sstr.GetData(), sstr.GetSize());
m_summary_str.append (1, ')');
}
}
}
}
}
}
}
if (m_summary_str.empty())
return NULL;
return m_summary_str.c_str();
}
bool
ValueObject::IsCStringContainer(bool check_pointer)
{
clang_type_t elem_or_pointee_clang_type;
const Flags type_flags (ClangASTContext::GetTypeInfo (GetClangType(),
GetClangAST(),
&elem_or_pointee_clang_type));
bool is_char_arr_ptr (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) &&
ClangASTContext::IsCharType (elem_or_pointee_clang_type));
if (!is_char_arr_ptr)
return false;
if (!check_pointer)
return true;
if (type_flags.Test(ClangASTContext::eTypeIsArray))
return true;
lldb::addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
cstr_address = GetAddressOf (cstr_address_type, true);
return (cstr_address != LLDB_INVALID_ADDRESS);
}
void
ValueObject::ReadPointedString(Stream& s,
Error& error,
uint32_t max_length,
bool honor_array,
lldb::Format item_format)
{
if (max_length == 0)
max_length = 128; // FIXME this should be a setting, or a formatting parameter
clang_type_t clang_type = GetClangType();
clang_type_t elem_or_pointee_clang_type;
const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type,
GetClangAST(),
&elem_or_pointee_clang_type));
if (type_flags.AnySet (ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer) &&
ClangASTContext::IsCharType (elem_or_pointee_clang_type))
{
ExecutionContextScope *exe_scope = GetExecutionContextScope();
if (exe_scope)
{
Target *target = exe_scope->CalculateTarget();
if (target == NULL)
{
s << "<no target to read from>";
}
else
{
lldb::addr_t cstr_address = LLDB_INVALID_ADDRESS;
AddressType cstr_address_type = eAddressTypeInvalid;
size_t cstr_len = 0;
bool capped_data = false;
if (type_flags.Test (ClangASTContext::eTypeIsArray))
{
// We have an array
cstr_len = ClangASTContext::GetArraySize (clang_type);
if (cstr_len > max_length)
{
capped_data = true;
cstr_len = max_length;
}
cstr_address = GetAddressOf (cstr_address_type, true);
}
else
{
// We have a pointer
cstr_address = GetPointerValue (cstr_address_type, true);
}
if (cstr_address == LLDB_INVALID_ADDRESS)
{
s << "<invalid address for data>";
}
else
{
Address cstr_so_addr (NULL, cstr_address);
DataExtractor data;
size_t bytes_read = 0;
std::vector<char> data_buffer;
bool prefer_file_cache = false;
if (cstr_len > 0 && honor_array)
{
data_buffer.resize(cstr_len);
data.SetData (&data_buffer.front(), data_buffer.size(), lldb::endian::InlHostByteOrder());
bytes_read = target->ReadMemory (cstr_so_addr,
prefer_file_cache,
&data_buffer.front(),
cstr_len,
error);
if (bytes_read > 0)
{
s << '"';
data.Dump (&s,
0, // Start offset in "data"
item_format,
1, // Size of item (1 byte for a char!)
bytes_read, // How many bytes to print?
UINT32_MAX, // num per line
LLDB_INVALID_ADDRESS,// base address
0, // bitfield bit size
0); // bitfield bit offset
if (capped_data)
s << "...";
s << '"';
}
else
s << "\"<data not available>\"";
}
else
{
cstr_len = max_length;
const size_t k_max_buf_size = 64;
data_buffer.resize (k_max_buf_size + 1);
// NULL terminate in case we don't get the entire C string
data_buffer.back() = '\0';
s << '"';
bool any_data = false;
data.SetData (&data_buffer.front(), data_buffer.size(), endian::InlHostByteOrder());
while ((bytes_read = target->ReadMemory (cstr_so_addr,
prefer_file_cache,
&data_buffer.front(),
k_max_buf_size,
error)) > 0)
{
any_data = true;
size_t len = strlen(&data_buffer.front());
if (len == 0)
break;
if (len > bytes_read)
len = bytes_read;
if (len > cstr_len)
len = cstr_len;
data.Dump (&s,
0, // Start offset in "data"
item_format,
1, // Size of item (1 byte for a char!)
len, // How many bytes to print?
UINT32_MAX, // num per line
LLDB_INVALID_ADDRESS,// base address
0, // bitfield bit size
0); // bitfield bit offset
if (len < k_max_buf_size)
break;
if (len >= cstr_len)
{
s << "...";
break;
}
cstr_len -= len;
cstr_so_addr.Slide (k_max_buf_size);
}
if (any_data == false)
s << "<data not available>";
s << '"';
}
}
}
}
}
else
{
error.SetErrorString("impossible to read a string from this object");
s << "<not a string object>";
}
}
const char *
ValueObject::GetObjectDescription ()
{
if (!UpdateValueIfNeeded (true))
return NULL;
if (!m_object_desc_str.empty())
return m_object_desc_str.c_str();
ExecutionContextScope *exe_scope = GetExecutionContextScope();
if (exe_scope == NULL)
return NULL;
Process *process = exe_scope->CalculateProcess();
if (process == NULL)
return NULL;
StreamString s;
lldb::LanguageType language = GetObjectRuntimeLanguage();
LanguageRuntime *runtime = process->GetLanguageRuntime(language);
if (runtime == NULL)
{
// Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway...
clang_type_t opaque_qual_type = GetClangType();
if (opaque_qual_type != NULL)
{
bool is_signed;
if (ClangASTContext::IsIntegerType (opaque_qual_type, is_signed)
|| ClangASTContext::IsPointerType (opaque_qual_type))
{
runtime = process->GetLanguageRuntime(lldb::eLanguageTypeObjC);
}
}
}
if (runtime && runtime->GetObjectDescription(s, *this))
{
m_object_desc_str.append (s.GetData());
}
if (m_object_desc_str.empty())
return NULL;
else
return m_object_desc_str.c_str();
}
const char *
ValueObject::GetValueAsCString ()
{
// If our byte size is zero this is an aggregate type that has children
if (ClangASTContext::IsAggregateType (GetClangType()) == false)
{
if (UpdateValueIfNeeded(true))
{
if (m_value_str.empty())
{
const Value::ContextType context_type = m_value.GetContextType();
switch (context_type)
{
case Value::eContextTypeClangType:
case Value::eContextTypeLLDBType:
case Value::eContextTypeVariable:
{
clang_type_t clang_type = GetClangType ();
if (clang_type)
{
if (m_format == lldb::eFormatDefault && m_last_value_format)
{
m_value_str = m_last_value_format->FormatObject(GetSP());
}
else
{
StreamString sstr;
Format format = GetFormat();
if (format == eFormatDefault)
format = (m_is_bitfield_for_scalar ? eFormatUnsigned :
ClangASTType::GetFormat(clang_type));
if (ClangASTType::DumpTypeValue (GetClangAST(), // The clang AST
clang_type, // The clang type to display
&sstr,
format, // Format to display this type with
m_data, // Data to extract from
0, // Byte offset into "m_data"
GetByteSize(), // Byte size of item in "m_data"
GetBitfieldBitSize(), // Bitfield bit size
GetBitfieldBitOffset())) // Bitfield bit offset
m_value_str.swap(sstr.GetString());
else
{
m_error.SetErrorStringWithFormat ("unsufficient data for value (only %u of %u bytes available)",
m_data.GetByteSize(),
GetByteSize());
m_value_str.clear();
}
}
}
}
break;
case Value::eContextTypeRegisterInfo:
{
const RegisterInfo *reg_info = m_value.GetRegisterInfo();
if (reg_info)
{
StreamString reg_sstr;
m_data.Dump(&reg_sstr, 0, reg_info->format, reg_info->byte_size, 1, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
m_value_str.swap(reg_sstr.GetString());
}
}
break;
default:
break;
}
}
if (!m_value_did_change && m_old_value_valid)
{
// The value was gotten successfully, so we consider the
// value as changed if the value string differs
SetValueDidChange (m_old_value_str != m_value_str);
}
}
}
if (m_value_str.empty())
return NULL;
return m_value_str.c_str();
}
// if > 8bytes, 0 is returned. this method should mostly be used
// to read address values out of pointers
unsigned long long
ValueObject::GetValueAsUnsigned()
{
// If our byte size is zero this is an aggregate type that has children
if (ClangASTContext::IsAggregateType (GetClangType()) == false)
{
if (UpdateValueIfNeeded(true))
{
uint32_t offset = 0;
return m_data.GetMaxU64(&offset,
m_data.GetByteSize());
}
}
return 0;
}
bool
ValueObject::GetPrintableRepresentation(Stream& s,
ValueObjectRepresentationStyle val_obj_display,
lldb::Format custom_format)
{
RefCounter ref(&m_dump_printable_counter);
if (custom_format != lldb::eFormatInvalid)
SetFormat(custom_format);
const char * return_value;
std::string alloc_mem;
switch(val_obj_display)
{
case eDisplayValue:
return_value = GetValueAsCString();
break;
case eDisplaySummary:
return_value = GetSummaryAsCString();
break;
case eDisplayLanguageSpecific:
return_value = GetObjectDescription();
break;
case eDisplayLocation:
return_value = GetLocationAsCString();
break;
case eDisplayChildrenCount:
{
alloc_mem.resize(512);
return_value = &alloc_mem[0];
int count = GetNumChildren();
snprintf((char*)return_value, 512, "%d", count);
break;
}
default:
break;
}
// this code snippet might lead to endless recursion, thus we use a RefCounter here to
// check that we are not looping endlessly
if (!return_value && (m_dump_printable_counter < 3))
{
// try to pick the other choice
if (val_obj_display == eDisplayValue)
return_value = GetSummaryAsCString();
else if (val_obj_display == eDisplaySummary)
{
if (ClangASTContext::IsAggregateType (GetClangType()) == true)
{
// this thing has no value, and it seems to have no summary
// some combination of unitialized data and other factors can also
// raise this condition, so let's print a nice generic error message
return_value = "<no available summary>";
}
else
return_value = GetValueAsCString();
}
}
if (return_value)
s.PutCString(return_value);
else
s.PutCString("<no printable representation>");
// we should only return false here if we could not do *anything*
// even if we have an error message as output, that's a success
// from our callers' perspective, so return true
return true;
}
bool
ValueObject::DumpPrintableRepresentation(Stream& s,
ValueObjectRepresentationStyle val_obj_display,
lldb::Format custom_format)
{
clang_type_t elem_or_pointee_type;
Flags flags(ClangASTContext::GetTypeInfo(GetClangType(), GetClangAST(), &elem_or_pointee_type));
if (flags.AnySet(ClangASTContext::eTypeIsArray | ClangASTContext::eTypeIsPointer)
&& val_obj_display == ValueObject::eDisplayValue)
{
// when being asked to get a printable display an array or pointer type directly,
// try to "do the right thing"
if (IsCStringContainer(true) &&
(custom_format == lldb::eFormatCString ||
custom_format == lldb::eFormatCharArray ||
custom_format == lldb::eFormatChar ||
custom_format == lldb::eFormatVectorOfChar)) // print char[] & char* directly
{
Error error;
ReadPointedString(s,
error,
0,
(custom_format == lldb::eFormatVectorOfChar) ||
(custom_format == lldb::eFormatCharArray));
return !error.Fail();
}
if (custom_format == lldb::eFormatEnum)
return false;
// this only works for arrays, because I have no way to know when
// the pointed memory ends, and no special \0 end of data marker
if (flags.Test(ClangASTContext::eTypeIsArray))
{
if ((custom_format == lldb::eFormatBytes) ||
(custom_format == lldb::eFormatBytesWithASCII))
{
uint32_t count = GetNumChildren();
s << '[';
for (uint32_t low = 0; low < count; low++)
{
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low,true);
if (!child.get())
{
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(s, ValueObject::eDisplayValue, custom_format);
}
s << ']';
return true;
}
if ((custom_format == lldb::eFormatVectorOfChar) ||
(custom_format == lldb::eFormatVectorOfFloat32) ||
(custom_format == lldb::eFormatVectorOfFloat64) ||
(custom_format == lldb::eFormatVectorOfSInt16) ||
(custom_format == lldb::eFormatVectorOfSInt32) ||
(custom_format == lldb::eFormatVectorOfSInt64) ||
(custom_format == lldb::eFormatVectorOfSInt8) ||
(custom_format == lldb::eFormatVectorOfUInt128) ||
(custom_format == lldb::eFormatVectorOfUInt16) ||
(custom_format == lldb::eFormatVectorOfUInt32) ||
(custom_format == lldb::eFormatVectorOfUInt64) ||
(custom_format == lldb::eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly
{
uint32_t count = GetNumChildren();
lldb::Format format = FormatManager::GetSingleItemFormat(custom_format);
s << '[';
for (uint32_t low = 0; low < count; low++)
{
if (low)
s << ',';
ValueObjectSP child = GetChildAtIndex(low,true);
if (!child.get())
{
s << "<invalid child>";
continue;
}
child->DumpPrintableRepresentation(s, ValueObject::eDisplayValue, format);
}
s << ']';
return true;
}
}
if ((custom_format == lldb::eFormatBoolean) ||
(custom_format == lldb::eFormatBinary) ||
(custom_format == lldb::eFormatChar) ||
(custom_format == lldb::eFormatCharPrintable) ||
(custom_format == lldb::eFormatComplexFloat) ||
(custom_format == lldb::eFormatDecimal) ||
(custom_format == lldb::eFormatHex) ||
(custom_format == lldb::eFormatFloat) ||
(custom_format == lldb::eFormatOctal) ||
(custom_format == lldb::eFormatOSType) ||
(custom_format == lldb::eFormatUnicode16) ||
(custom_format == lldb::eFormatUnicode32) ||
(custom_format == lldb::eFormatUnsigned) ||
(custom_format == lldb::eFormatPointer) ||
(custom_format == lldb::eFormatComplexInteger) ||
(custom_format == lldb::eFormatComplex) ||
(custom_format == lldb::eFormatDefault)) // use the [] operator
return false;
}
bool var_success = GetPrintableRepresentation(s, val_obj_display, custom_format);
if (custom_format != eFormatInvalid)
SetFormat(eFormatDefault);
return var_success;
}
addr_t
ValueObject::GetAddressOf (AddressType &address_type, bool scalar_is_load_address)
{
if (!UpdateValueIfNeeded(false))
return LLDB_INVALID_ADDRESS;
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
if (scalar_is_load_address)
{
address_type = eAddressTypeLoad;
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
address_type = m_value.GetValueAddressType ();
return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
}
break;
}
address_type = eAddressTypeInvalid;
return LLDB_INVALID_ADDRESS;
}
addr_t
ValueObject::GetPointerValue (AddressType &address_type, bool scalar_is_load_address)
{
lldb::addr_t address = LLDB_INVALID_ADDRESS;
address_type = eAddressTypeInvalid;
if (!UpdateValueIfNeeded(false))
return address;
switch (m_value.GetValueType())
{
case Value::eValueTypeScalar:
if (scalar_is_load_address)
{
address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
address_type = eAddressTypeLoad;
}
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeFileAddress:
case Value::eValueTypeHostAddress:
{
uint32_t data_offset = 0;
address = m_data.GetPointer(&data_offset);
address_type = m_value.GetValueAddressType();
if (address_type == eAddressTypeInvalid)
address_type = eAddressTypeLoad;
}
break;
}
if (m_pointers_point_to_load_addrs)
address_type = eAddressTypeLoad;
return address;
}
bool
ValueObject::SetValueFromCString (const char *value_str)
{
// Make sure our value is up to date first so that our location and location
// type is valid.
if (!UpdateValueIfNeeded(false))
return false;
uint32_t count = 0;
lldb::Encoding encoding = ClangASTType::GetEncoding (GetClangType(), count);
char *end = NULL;
const size_t byte_size = GetByteSize();
switch (encoding)
{
case eEncodingInvalid:
return false;
case eEncodingUint:
if (byte_size > sizeof(unsigned long long))
{
return false;
}
else
{
unsigned long long ull_val = strtoull(value_str, &end, 0);
if (end && *end != '\0')
return false;
Value::ValueType value_type = m_value.GetValueType();
switch (value_type)
{
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
// The value in these cases lives in the data. So update the data:
break;
case Value::eValueTypeScalar:
m_value.GetScalar() = ull_val;
break;
case Value::eValueTypeFileAddress:
// Try to convert the file address to a load address and then write the new value there.
break;
}
// Limit the bytes in our m_data appropriately.
m_value.GetScalar().GetData (m_data, byte_size);
}
break;
case eEncodingSint:
if (byte_size > sizeof(long long))
{
return false;
}
else
{
long long sll_val = strtoll(value_str, &end, 0);
if (end && *end != '\0')
return false;
m_value.GetScalar() = sll_val;
// Limit the bytes in our m_data appropriately.
m_value.GetScalar().GetData (m_data, byte_size);
}
break;
case eEncodingIEEE754:
{
const off_t byte_offset = GetByteOffset();
uint8_t *dst = const_cast<uint8_t *>(m_data.PeekData(byte_offset, byte_size));
if (dst != NULL)
{
// We are decoding a float into host byte order below, so make
// sure m_data knows what it contains.
m_data.SetByteOrder(lldb::endian::InlHostByteOrder());
const size_t converted_byte_size = ClangASTContext::ConvertStringToFloatValue (
GetClangAST(),
GetClangType(),
value_str,
dst,
byte_size);
if (converted_byte_size == byte_size)
{
}
}
}
break;
case eEncodingVector:
return false;
default:
return false;
}
// If we have made it here the value is in m_data and we should write it
// out to the target
return Write ();
}
bool
ValueObject::Write ()
{
// Clear the update ID so the next time we try and read the value
// we try and read it again.
m_update_point.SetNeedsUpdate();
// TODO: when Value has a method to write a value back, call it from here.
return false;
}
lldb::LanguageType
ValueObject::GetObjectRuntimeLanguage ()
{
return ClangASTType::GetMinimumLanguage (GetClangAST(),
GetClangType());
}
void
ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj)
{
m_synthetic_children[key] = valobj;
}
ValueObjectSP
ValueObject::GetSyntheticChild (const ConstString &key) const
{
ValueObjectSP synthetic_child_sp;
std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key);
if (pos != m_synthetic_children.end())
synthetic_child_sp = pos->second->GetSP();
return synthetic_child_sp;
}
bool
ValueObject::IsPointerType ()
{
return ClangASTContext::IsPointerType (GetClangType());
}
bool
ValueObject::IsArrayType ()
{
return ClangASTContext::IsArrayType (GetClangType());
}
bool
ValueObject::IsScalarType ()
{
return ClangASTContext::IsScalarType (GetClangType());
}
bool
ValueObject::IsIntegerType (bool &is_signed)
{
return ClangASTContext::IsIntegerType (GetClangType(), is_signed);
}
bool
ValueObject::IsPointerOrReferenceType ()
{
return ClangASTContext::IsPointerOrReferenceType (GetClangType());
}
bool
ValueObject::IsPossibleCPlusPlusDynamicType ()
{
return ClangASTContext::IsPossibleCPlusPlusDynamicType (GetClangAST (), GetClangType());
}
bool
ValueObject::IsPossibleDynamicType ()
{
return ClangASTContext::IsPossibleDynamicType (GetClangAST (), GetClangType());
}
ValueObjectSP
ValueObject::GetSyntheticArrayMemberFromPointer (int32_t index, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsPointerType ())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i]", index);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
ValueObject *synthetic_child;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = CreateChildAtIndex(0, true, index);
// Cache the value if we got one back...
if (synthetic_child)
{
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_array_item_for_pointer = true;
}
}
}
return synthetic_child_sp;
}
// This allows you to create an array member using and index
// that doesn't not fall in the normal bounds of the array.
// Many times structure can be defined as:
// struct Collection
// {
// uint32_t item_count;
// Item item_array[0];
// };
// The size of the "item_array" is 1, but many times in practice
// there are more items in "item_array".
ValueObjectSP
ValueObject::GetSyntheticArrayMemberFromArray (int32_t index, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsArrayType ())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i]", index);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
ValueObject *synthetic_child;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = CreateChildAtIndex(0, true, index);
// Cache the value if we got one back...
if (synthetic_child)
{
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_array_item_for_pointer = true;
}
}
}
return synthetic_child_sp;
}
ValueObjectSP
ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create)
{
ValueObjectSP synthetic_child_sp;
if (IsScalarType ())
{
char index_str[64];
snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to);
ConstString index_const_str(index_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (index_const_str);
if (!synthetic_child_sp)
{
ValueObjectChild *synthetic_child;
// We haven't made a synthetic array member for INDEX yet, so
// lets make one and cache it for any future reference.
synthetic_child = new ValueObjectChild(*this,
GetClangAST(),
GetClangType(),
index_const_str,
GetByteSize(),
0,
to-from+1,
from,
false,
false);
// Cache the value if we got one back...
if (synthetic_child)
{
AddSyntheticChild(index_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(ConstString(index_str));
synthetic_child_sp->m_is_bitfield_for_scalar = true;
}
}
}
return synthetic_child_sp;
}
lldb::ValueObjectSP
ValueObject::GetSyntheticChildAtOffset(uint32_t offset, const ClangASTType& type, bool can_create)
{
ValueObjectSP synthetic_child_sp;
char name_str[64];
snprintf(name_str, sizeof(name_str), "@%i", offset);
ConstString name_const_str(name_str);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (name_const_str);
if (synthetic_child_sp.get())
return synthetic_child_sp;
if (!can_create)
return lldb::ValueObjectSP();
ValueObjectChild *synthetic_child = new ValueObjectChild(*this,
type.GetASTContext(),
type.GetOpaqueQualType(),
name_const_str,
type.GetTypeByteSize(),
offset,
0,
0,
false,
false);
if (synthetic_child)
{
AddSyntheticChild(name_const_str, synthetic_child);
synthetic_child_sp = synthetic_child->GetSP();
synthetic_child_sp->SetName(name_const_str);
synthetic_child_sp->m_is_child_at_offset = true;
}
return synthetic_child_sp;
}
// your expression path needs to have a leading . or ->
// (unless it somehow "looks like" an array, in which case it has
// a leading [ symbol). while the [ is meaningful and should be shown
// to the user, . and -> are just parser design, but by no means
// added information for the user.. strip them off
static const char*
SkipLeadingExpressionPathSeparators(const char* expression)
{
if (!expression || !expression[0])
return expression;
if (expression[0] == '.')
return expression+1;
if (expression[0] == '-' && expression[1] == '>')
return expression+2;
return expression;
}
lldb::ValueObjectSP
ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create)
{
ValueObjectSP synthetic_child_sp;
ConstString name_const_string(expression);
// Check if we have already created a synthetic array member in this
// valid object. If we have we will re-use it.
synthetic_child_sp = GetSyntheticChild (name_const_string);
if (!synthetic_child_sp)
{
// We haven't made a synthetic array member for expression yet, so
// lets make one and cache it for any future reference.
synthetic_child_sp = GetValueForExpressionPath(expression);
// Cache the value if we got one back...
if (synthetic_child_sp.get())
{
AddSyntheticChild(name_const_string, synthetic_child_sp.get());
synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression)));
synthetic_child_sp->m_is_expression_path_child = true;
}
}
return synthetic_child_sp;
}
void
ValueObject::CalculateSyntheticValue (lldb::SyntheticValueType use_synthetic)
{
if (use_synthetic == lldb::eNoSyntheticFilter)
return;
UpdateFormatsIfNeeded(m_last_format_mgr_dynamic);
if (m_last_synthetic_filter.get() == NULL)
return;
if (m_synthetic_value == NULL)
m_synthetic_value = new ValueObjectSynthetic(*this, m_last_synthetic_filter);
}
void
ValueObject::CalculateDynamicValue (lldb::DynamicValueType use_dynamic)
{
if (use_dynamic == lldb::eNoDynamicValues)
return;
if (!m_dynamic_value && !IsDynamic())
{
Process *process = m_update_point.GetProcessSP().get();
bool worth_having_dynamic_value = false;
// FIXME: Process should have some kind of "map over Runtimes" so we don't have to
// hard code this everywhere.
lldb::LanguageType known_type = GetObjectRuntimeLanguage();
if (known_type != lldb::eLanguageTypeUnknown && known_type != lldb::eLanguageTypeC)
{
LanguageRuntime *runtime = process->GetLanguageRuntime (known_type);
if (runtime)
worth_having_dynamic_value = runtime->CouldHaveDynamicValue(*this);
}
else
{
LanguageRuntime *cpp_runtime = process->GetLanguageRuntime (lldb::eLanguageTypeC_plus_plus);
if (cpp_runtime)
worth_having_dynamic_value = cpp_runtime->CouldHaveDynamicValue(*this);
if (!worth_having_dynamic_value)
{
LanguageRuntime *objc_runtime = process->GetLanguageRuntime (lldb::eLanguageTypeObjC);
if (objc_runtime)
worth_having_dynamic_value = objc_runtime->CouldHaveDynamicValue(*this);
}
}
if (worth_having_dynamic_value)
m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic);
// if (worth_having_dynamic_value)
// printf ("Adding dynamic value %s (%p) to (%p) - manager %p.\n", m_name.GetCString(), m_dynamic_value, this, m_manager);
}
}
ValueObjectSP
ValueObject::GetDynamicValue (DynamicValueType use_dynamic)
{
if (use_dynamic == lldb::eNoDynamicValues)
return ValueObjectSP();
if (!IsDynamic() && m_dynamic_value == NULL)
{
CalculateDynamicValue(use_dynamic);
}
if (m_dynamic_value)
return m_dynamic_value->GetSP();
else
return ValueObjectSP();
}
// GetDynamicValue() returns a NULL SharedPointer if the object is not dynamic
// or we do not really want a dynamic VO. this method instead returns this object
// itself when making it synthetic has no meaning. this makes it much simpler
// to replace the SyntheticValue for the ValueObject
ValueObjectSP
ValueObject::GetSyntheticValue (SyntheticValueType use_synthetic)
{
if (use_synthetic == lldb::eNoSyntheticFilter)
return GetSP();
UpdateFormatsIfNeeded(m_last_format_mgr_dynamic);
if (m_last_synthetic_filter.get() == NULL)
return GetSP();
CalculateSyntheticValue(use_synthetic);
if (m_synthetic_value)
return m_synthetic_value->GetSP();
else
return GetSP();
}
bool
ValueObject::HasSyntheticValue()
{
UpdateFormatsIfNeeded(m_last_format_mgr_dynamic);
if (m_last_synthetic_filter.get() == NULL)
return false;
CalculateSyntheticValue(lldb::eUseSyntheticFilter);
if (m_synthetic_value)
return true;
else
return false;
}
bool
ValueObject::GetBaseClassPath (Stream &s)
{
if (IsBaseClass())
{
bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s);
clang_type_t clang_type = GetClangType();
std::string cxx_class_name;
bool this_had_base_class = ClangASTContext::GetCXXClassName (clang_type, cxx_class_name);
if (this_had_base_class)
{
if (parent_had_base_class)
s.PutCString("::");
s.PutCString(cxx_class_name.c_str());
}
return parent_had_base_class || this_had_base_class;
}
return false;
}
ValueObject *
ValueObject::GetNonBaseClassParent()
{
if (GetParent())
{
if (GetParent()->IsBaseClass())
return GetParent()->GetNonBaseClassParent();
else
return GetParent();
}
return NULL;
}
void
ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat)
{
const bool is_deref_of_parent = IsDereferenceOfParent ();
if (is_deref_of_parent && epformat == eDereferencePointers) {
// this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely
// fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName.
// the eHonorPointers mode is meant to produce strings in this latter format
s.PutCString("*(");
}
ValueObject* parent = GetParent();
if (parent)
parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat);
// if we are a deref_of_parent just because we are synthetic array
// members made up to allow ptr[%d] syntax to work in variable
// printing, then add our name ([%d]) to the expression path
if (m_is_array_item_for_pointer && epformat == eHonorPointers)
s.PutCString(m_name.AsCString());
if (!IsBaseClass())
{
if (!is_deref_of_parent)
{
ValueObject *non_base_class_parent = GetNonBaseClassParent();
if (non_base_class_parent)
{
clang_type_t non_base_class_parent_clang_type = non_base_class_parent->GetClangType();
if (non_base_class_parent_clang_type)
{
const uint32_t non_base_class_parent_type_info = ClangASTContext::GetTypeInfo (non_base_class_parent_clang_type, NULL, NULL);
if (parent && parent->IsDereferenceOfParent() && epformat == eHonorPointers)
{
s.PutCString("->");
}
else
{
if (non_base_class_parent_type_info & ClangASTContext::eTypeIsPointer)
{
s.PutCString("->");
}
else if ((non_base_class_parent_type_info & ClangASTContext::eTypeHasChildren) &&
!(non_base_class_parent_type_info & ClangASTContext::eTypeIsArray))
{
s.PutChar('.');
}
}
}
}
const char *name = GetName().GetCString();
if (name)
{
if (qualify_cxx_base_classes)
{
if (GetBaseClassPath (s))
s.PutCString("::");
}
s.PutCString(name);
}
}
}
if (is_deref_of_parent && epformat == eDereferencePointers) {
s.PutChar(')');
}
}
lldb::ValueObjectSP
ValueObject::GetValueForExpressionPath(const char* expression,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_value_type,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* final_task_on_target)
{
const char* dummy_first_unparsed;
ExpressionPathScanEndReason dummy_reason_to_stop;
ExpressionPathEndResultType dummy_final_value_type;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eNothing;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
if (!final_task_on_target || *final_task_on_target == ValueObject::eNothing)
{
return ret_val;
}
if (ret_val.get() && *final_value_type == ePlain) // I can only deref and takeaddress of plain objects
{
if (*final_task_on_target == ValueObject::eDereference)
{
Error error;
ValueObjectSP final_value = ret_val->Dereference(error);
if (error.Fail() || !final_value.get())
{
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_value_type = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*final_task_on_target = ValueObject::eNothing;
return final_value;
}
}
if (*final_task_on_target == ValueObject::eTakeAddress)
{
Error error;
ValueObjectSP final_value = ret_val->AddressOf(error);
if (error.Fail() || !final_value.get())
{
*reason_to_stop = ValueObject::eTakingAddressFailed;
*final_value_type = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*final_task_on_target = ValueObject::eNothing;
return final_value;
}
}
}
return ret_val; // final_task_on_target will still have its original value, so you know I did not do it
}
int
ValueObject::GetValuesForExpressionPath(const char* expression,
lldb::ValueObjectListSP& list,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_value_type,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* final_task_on_target)
{
const char* dummy_first_unparsed;
ExpressionPathScanEndReason dummy_reason_to_stop;
ExpressionPathEndResultType dummy_final_value_type;
ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eNothing;
ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
if (!ret_val.get()) // if there are errors, I add nothing to the list
return 0;
if (*reason_to_stop != eArrayRangeOperatorMet)
{
// I need not expand a range, just post-process the final value and return
if (!final_task_on_target || *final_task_on_target == ValueObject::eNothing)
{
list->Append(ret_val);
return 1;
}
if (ret_val.get() && *final_value_type == ePlain) // I can only deref and takeaddress of plain objects
{
if (*final_task_on_target == ValueObject::eDereference)
{
Error error;
ValueObjectSP final_value = ret_val->Dereference(error);
if (error.Fail() || !final_value.get())
{
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_value_type = ValueObject::eInvalid;
return 0;
}
else
{
*final_task_on_target = ValueObject::eNothing;
list->Append(final_value);
return 1;
}
}
if (*final_task_on_target == ValueObject::eTakeAddress)
{
Error error;
ValueObjectSP final_value = ret_val->AddressOf(error);
if (error.Fail() || !final_value.get())
{
*reason_to_stop = ValueObject::eTakingAddressFailed;
*final_value_type = ValueObject::eInvalid;
return 0;
}
else
{
*final_task_on_target = ValueObject::eNothing;
list->Append(final_value);
return 1;
}
}
}
}
else
{
return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed,
first_unparsed ? first_unparsed : &dummy_first_unparsed,
ret_val,
list,
reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
final_value_type ? final_value_type : &dummy_final_value_type,
options,
final_task_on_target ? final_task_on_target : &dummy_final_task_on_target);
}
// in any non-covered case, just do the obviously right thing
list->Append(ret_val);
return 1;
}
lldb::ValueObjectSP
ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr,
const char** first_unparsed,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_result,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* what_next)
{
ValueObjectSP root = GetSP();
if (!root.get())
return ValueObjectSP();
*first_unparsed = expression_cstr;
while (true)
{
const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
lldb::clang_type_t root_clang_type = root->GetClangType();
lldb::clang_type_t pointee_clang_type;
Flags root_clang_type_info,pointee_clang_type_info;
root_clang_type_info = Flags(ClangASTContext::GetTypeInfo(root_clang_type, GetClangAST(), &pointee_clang_type));
if (pointee_clang_type)
pointee_clang_type_info = Flags(ClangASTContext::GetTypeInfo(pointee_clang_type, GetClangAST(), NULL));
if (!expression_cstr || *expression_cstr == '\0')
{
*reason_to_stop = ValueObject::eEndOfString;
return root;
}
switch (*expression_cstr)
{
case '-':
{
if (options.m_check_dot_vs_arrow_syntax &&
root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eArrowInsteadOfDot;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
if (root_clang_type_info.Test(ClangASTContext::eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden
root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) &&
options.m_no_fragile_ivar)
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eFragileIVarNotAllowed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
if (expression_cstr[1] != '>')
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
expression_cstr++; // skip the -
}
case '.': // or fallthrough from ->
{
if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' &&
root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eDotInsteadOfArrow;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
expression_cstr++; // skip .
const char *next_separator = strpbrk(expression_cstr+1,"-.[");
ConstString child_name;
if (!next_separator) // if no other separator just expand this last layer
{
child_name.SetCString (expression_cstr);
root = root->GetChildMemberWithName(child_name, true);
if (root.get()) // we know we are done, so just return
{
*first_unparsed = '\0';
*reason_to_stop = ValueObject::eEndOfString;
*final_result = ValueObject::ePlain;
return root;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
else // other layers do expand
{
child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr);
root = root->GetChildMemberWithName(child_name, true);
if (root.get()) // store the new root and move on
{
*first_unparsed = next_separator;
*final_result = ValueObject::ePlain;
continue;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
break;
}
case '[':
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray) && !root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if this is not a T[] nor a T*
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // if this is not even a scalar...
{
if (options.m_no_synthetic_children) // ...only chance left is synthetic
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eRangeOperatorInvalid;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eRangeOperatorNotAllowed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eEmptyRangeNotAllowed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else // even if something follows, we cannot expand unbounded ranges, just let the caller do it
{
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eArrayRangeOperatorMet;
*final_result = ValueObject::eUnboundedRange;
return root;
}
}
const char *separator_position = ::strchr(expression_cstr+1,'-');
const char *close_bracket_position = ::strchr(expression_cstr+1,']');
if (!close_bracket_position) // if there is no ], this is a syntax error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
{
char *end = NULL;
unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
{
if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eArrayRangeOperatorMet;
*final_result = ValueObject::eUnboundedRange;
return root;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eEmptyRangeNotAllowed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
// from here on we do have a valid index
if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true);
if (!child_valobj_sp)
child_valobj_sp = root->GetSyntheticArrayMemberFromArray(index, true);
if (!child_valobj_sp)
if (root->HasSyntheticValue() && root->GetSyntheticValue(lldb::eUseSyntheticFilter)->GetNumChildren() > index)
child_valobj_sp = root->GetSyntheticValue(lldb::eUseSyntheticFilter)->GetChildAtIndex(index, true);
if (child_valobj_sp)
{
root = child_valobj_sp;
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::ePlain;
continue;
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer))
{
if (*what_next == ValueObject::eDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*what_next = eNothing;
continue;
}
}
else
{
if (ClangASTType::GetMinimumLanguage(root->GetClangAST(),
root->GetClangType()) == lldb::eLanguageTypeObjC
&&
ClangASTContext::IsPointerType(ClangASTType::GetPointeeType(root->GetClangType())) == false
&&
root->HasSyntheticValue()
&&
options.m_no_synthetic_children == false)
{
root = root->GetSyntheticValue(lldb::eUseSyntheticFilter)->GetChildAtIndex(index, true);
}
else
root = root->GetSyntheticArrayMemberFromPointer(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*final_result = ValueObject::ePlain;
continue;
}
}
}
else if (ClangASTContext::IsScalarType(root_clang_type))
{
root = root->GetSyntheticBitFieldChild(index, index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eBitfieldRangeOperatorMet;
*final_result = ValueObject::eBitfield;
return root;
}
}
else if (root->HasSyntheticValue() && options.m_no_synthetic_children)
{
root = root->GetSyntheticValue(lldb::eUseSyntheticFilter)->GetChildAtIndex(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
}
else // we have a low and a high index
{
char *end = NULL;
unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != separator_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
if (index_lower > index_higher) // swap indices if required
{
unsigned long temp = index_lower;
index_lower = index_higher;
index_higher = temp;
}
if (root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // expansion only works for scalars
{
root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eBitfieldRangeOperatorMet;
*final_result = ValueObject::eBitfield;
return root;
}
}
else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
*what_next == ValueObject::eDereference &&
pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
}
else
{
*what_next = ValueObject::eNothing;
continue;
}
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eArrayRangeOperatorMet;
*final_result = ValueObject::eBoundedRange;
return root;
}
}
break;
}
default: // some non-separator is in the way
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return ValueObjectSP();
break;
}
}
}
}
int
ValueObject::ExpandArraySliceExpression(const char* expression_cstr,
const char** first_unparsed,
lldb::ValueObjectSP root,
lldb::ValueObjectListSP& list,
ExpressionPathScanEndReason* reason_to_stop,
ExpressionPathEndResultType* final_result,
const GetValueForExpressionPathOptions& options,
ExpressionPathAftermath* what_next)
{
if (!root.get())
return 0;
*first_unparsed = expression_cstr;
while (true)
{
const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr
lldb::clang_type_t root_clang_type = root->GetClangType();
lldb::clang_type_t pointee_clang_type;
Flags root_clang_type_info,pointee_clang_type_info;
root_clang_type_info = Flags(ClangASTContext::GetTypeInfo(root_clang_type, GetClangAST(), &pointee_clang_type));
if (pointee_clang_type)
pointee_clang_type_info = Flags(ClangASTContext::GetTypeInfo(pointee_clang_type, GetClangAST(), NULL));
if (!expression_cstr || *expression_cstr == '\0')
{
*reason_to_stop = ValueObject::eEndOfString;
list->Append(root);
return 1;
}
switch (*expression_cstr)
{
case '[':
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray) && !root_clang_type_info.Test(ClangASTContext::eTypeIsPointer)) // if this is not a T[] nor a T*
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong!
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eRangeOperatorInvalid;
*final_result = ValueObject::eInvalid;
return 0;
}
else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eRangeOperatorNotAllowed;
*final_result = ValueObject::eInvalid;
return 0;
}
}
if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays
{
if (!root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eEmptyRangeNotAllowed;
*final_result = ValueObject::eInvalid;
return 0;
}
else // expand this into list
{
int max_index = root->GetNumChildren() - 1;
for (int index = 0; index < max_index; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return max_index; // tell me number of items I added to the VOList
}
}
const char *separator_position = ::strchr(expression_cstr+1,'-');
const char *close_bracket_position = ::strchr(expression_cstr+1,']');
if (!close_bracket_position) // if there is no ], this is a syntax error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return 0;
}
if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N]
{
char *end = NULL;
unsigned long index = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return 0;
}
if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays
{
if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
int max_index = root->GetNumChildren() - 1;
for (int index = 0; index < max_index; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = expression_cstr+2;
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return max_index; // tell me number of items I added to the VOList
}
else
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eEmptyRangeNotAllowed;
*final_result = ValueObject::eInvalid;
return 0;
}
}
// from here on we do have a valid index
if (root_clang_type_info.Test(ClangASTContext::eTypeIsArray))
{
root = root->GetChildAtIndex(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return 1;
}
}
else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer))
{
if (*what_next == ValueObject::eDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_result = ValueObject::eInvalid;
return 0;
}
else
{
*what_next = eNothing;
continue;
}
}
else
{
root = root->GetSyntheticArrayMemberFromPointer(index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return 1;
}
}
}
else /*if (ClangASTContext::IsScalarType(root_clang_type))*/
{
root = root->GetSyntheticBitFieldChild(index, index, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return 0;
}
else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return 1;
}
}
}
else // we have a low and a high index
{
char *end = NULL;
unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0);
if (!end || end != separator_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return 0;
}
unsigned long index_higher = ::strtoul (separator_position+1, &end, 0);
if (!end || end != close_bracket_position) // if something weird is in our way return an error
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return 0;
}
if (index_lower > index_higher) // swap indices if required
{
unsigned long temp = index_lower;
index_lower = index_higher;
index_higher = temp;
}
if (root_clang_type_info.Test(ClangASTContext::eTypeIsScalar)) // expansion only works for scalars
{
root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true);
if (!root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eNoSuchChild;
*final_result = ValueObject::eInvalid;
return 0;
}
else
{
list->Append(root);
*first_unparsed = end+1; // skip ]
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return 1;
}
}
else if (root_clang_type_info.Test(ClangASTContext::eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield
*what_next == ValueObject::eDereference &&
pointee_clang_type_info.Test(ClangASTContext::eTypeIsScalar))
{
Error error;
root = root->Dereference(error);
if (error.Fail() || !root.get())
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eDereferencingFailed;
*final_result = ValueObject::eInvalid;
return 0;
}
else
{
*what_next = ValueObject::eNothing;
continue;
}
}
else
{
for (unsigned long index = index_lower;
index <= index_higher; index++)
{
ValueObjectSP child =
root->GetChildAtIndex(index, true);
list->Append(child);
}
*first_unparsed = end+1;
*reason_to_stop = ValueObject::eRangeOperatorExpanded;
*final_result = ValueObject::eValueObjectList;
return index_higher-index_lower+1; // tell me number of items I added to the VOList
}
}
break;
}
default: // some non-[ separator, or something entirely wrong, is in the way
{
*first_unparsed = expression_cstr;
*reason_to_stop = ValueObject::eUnexpectedSymbol;
*final_result = ValueObject::eInvalid;
return 0;
break;
}
}
}
}
void
ValueObject::DumpValueObject
(
Stream &s,
ValueObject *valobj,
const char *root_valobj_name,
uint32_t ptr_depth,
uint32_t curr_depth,
uint32_t max_depth,
bool show_types,
bool show_location,
bool use_objc,
lldb::DynamicValueType use_dynamic,
bool use_synth,
bool scope_already_checked,
bool flat_output,
uint32_t omit_summary_depth
)
{
if (valobj)
{
bool update_success = valobj->UpdateValueIfNeeded (use_dynamic, true);
if (update_success && use_dynamic != lldb::eNoDynamicValues)
{
ValueObject *dynamic_value = valobj->GetDynamicValue(use_dynamic).get();
if (dynamic_value)
valobj = dynamic_value;
}
clang_type_t clang_type = valobj->GetClangType();
const Flags type_flags (ClangASTContext::GetTypeInfo (clang_type, NULL, NULL));
const char *err_cstr = NULL;
const bool has_children = type_flags.Test (ClangASTContext::eTypeHasChildren);
const bool has_value = type_flags.Test (ClangASTContext::eTypeHasValue);
const bool print_valobj = flat_output == false || has_value;
if (print_valobj)
{
if (show_location)
{
s.Printf("%s: ", valobj->GetLocationAsCString());
}
s.Indent();
// Always show the type for the top level items.
if (show_types || (curr_depth == 0 && !flat_output))
{
const char* typeName = valobj->GetTypeName().AsCString("<invalid type>");
s.Printf("(%s", typeName);
// only show dynamic types if the user really wants to see types
if (show_types && use_dynamic != lldb::eNoDynamicValues &&
(/*strstr(typeName, "id") == typeName ||*/
ClangASTType::GetMinimumLanguage(valobj->GetClangAST(), valobj->GetClangType()) == lldb::eLanguageTypeObjC))
{
Process* process = valobj->GetUpdatePoint().GetProcessSP().get();
if (process == NULL)
s.Printf(", dynamic type: unknown) ");
else
{
ObjCLanguageRuntime *runtime = process->GetObjCLanguageRuntime();
if (runtime == NULL)
s.Printf(", dynamic type: unknown) ");
else
{
ObjCLanguageRuntime::ObjCISA isa = runtime->GetISA(*valobj);
if (!runtime->IsValidISA(isa))
s.Printf(", dynamic type: unknown) ");
else
s.Printf(", dynamic type: %s) ",
runtime->GetActualTypeName(isa).GetCString());
}
}
}
else
s.Printf(") ");
}
if (flat_output)
{
// If we are showing types, also qualify the C++ base classes
const bool qualify_cxx_base_classes = show_types;
valobj->GetExpressionPath(s, qualify_cxx_base_classes);
s.PutCString(" =");
}
else
{
const char *name_cstr = root_valobj_name ? root_valobj_name : valobj->GetName().AsCString("");
s.Printf ("%s =", name_cstr);
}
if (!scope_already_checked && !valobj->IsInScope())
{
err_cstr = "out of scope";
}
}
const char *val_cstr = NULL;
const char *sum_cstr = NULL;
SummaryFormat* entry = valobj->GetSummaryFormat().get();
if (omit_summary_depth > 0)
entry = NULL;
if (err_cstr == NULL)
{
val_cstr = valobj->GetValueAsCString();
err_cstr = valobj->GetError().AsCString();
}
if (err_cstr)
{
s.Printf (" <%s>\n", err_cstr);
}
else
{
const bool is_ref = type_flags.Test (ClangASTContext::eTypeIsReference);
if (print_valobj)
{
sum_cstr = (omit_summary_depth == 0) ? valobj->GetSummaryAsCString() : NULL;
// We must calculate this value in realtime because entry might alter this variable's value
// (e.g. by saying ${var%fmt}) and render precached values useless
if (val_cstr && (!entry || entry->DoesPrintValue() || !sum_cstr))
s.Printf(" %s", valobj->GetValueAsCString());
if (sum_cstr)
{
// for some reason, using %@ (ObjC description) in a summary string, makes
// us believe we need to reset ourselves, thus invalidating the content of
// sum_cstr. Thus, IF we had a valid sum_cstr before, but it is now empty
// let us recalculate it!
if (sum_cstr[0] == '\0')
s.Printf(" %s", valobj->GetSummaryAsCString());
else
s.Printf(" %s", sum_cstr);
}
if (use_objc)
{
const char *object_desc = valobj->GetObjectDescription();
if (object_desc)
s.Printf(" %s\n", object_desc);
else
s.Printf (" [no Objective-C description available]\n");
return;
}
}
if (curr_depth < max_depth)
{
// We will show children for all concrete types. We won't show
// pointer contents unless a pointer depth has been specified.
// We won't reference contents unless the reference is the
// root object (depth of zero).
bool print_children = true;
// Use a new temporary pointer depth in case we override the
// current pointer depth below...
uint32_t curr_ptr_depth = ptr_depth;
const bool is_ptr = type_flags.Test (ClangASTContext::eTypeIsPointer);
if (is_ptr || is_ref)
{
// We have a pointer or reference whose value is an address.
// Make sure that address is not NULL
AddressType ptr_address_type;
if (valobj->GetPointerValue (ptr_address_type, true) == 0)
print_children = false;
else if (is_ref && curr_depth == 0)
{
// If this is the root object (depth is zero) that we are showing
// and it is a reference, and no pointer depth has been supplied
// print out what it references. Don't do this at deeper depths
// otherwise we can end up with infinite recursion...
curr_ptr_depth = 1;
}
if (curr_ptr_depth == 0)
print_children = false;
}
if (print_children && (!entry || entry->DoesPrintChildren() || !sum_cstr))
{
ValueObjectSP synth_vobj = valobj->GetSyntheticValue(use_synth ?
lldb::eUseSyntheticFilter :
lldb::eNoSyntheticFilter);
const uint32_t num_children = synth_vobj->GetNumChildren();
if (num_children)
{
if (flat_output)
{
if (print_valobj)
s.EOL();
}
else
{
if (print_valobj)
s.PutCString(is_ref ? ": {\n" : " {\n");
s.IndentMore();
}
for (uint32_t idx=0; idx<num_children; ++idx)
{
ValueObjectSP child_sp(synth_vobj->GetChildAtIndex(idx, true));
if (child_sp.get())
{
DumpValueObject (s,
child_sp.get(),
NULL,
(is_ptr || is_ref) ? curr_ptr_depth - 1 : curr_ptr_depth,
curr_depth + 1,
max_depth,
show_types,
show_location,
false,
use_dynamic,
use_synth,
true,
flat_output,
omit_summary_depth > 1 ? omit_summary_depth - 1 : 0);
}
}
if (!flat_output)
{
s.IndentLess();
s.Indent("}\n");
}
}
else if (has_children)
{
// Aggregate, no children...
if (print_valobj)
s.PutCString(" {}\n");
}
else
{
if (print_valobj)
s.EOL();
}
}
else
{
s.EOL();
}
}
else
{
if (has_children && print_valobj)
{
s.PutCString("{...}\n");
}
}
}
}
}
ValueObjectSP
ValueObject::CreateConstantValue (const ConstString &name)
{
ValueObjectSP valobj_sp;
if (UpdateValueIfNeeded(false) && m_error.Success())
{
ExecutionContextScope *exe_scope = GetExecutionContextScope();
if (exe_scope)
{
ExecutionContext exe_ctx;
exe_scope->CalculateExecutionContext(exe_ctx);
clang::ASTContext *ast = GetClangAST ();
DataExtractor data;
data.SetByteOrder (m_data.GetByteOrder());
data.SetAddressByteSize(m_data.GetAddressByteSize());
m_error = m_value.GetValueAsData (&exe_ctx, ast, data, 0, GetModule());
valobj_sp = ValueObjectConstResult::Create (exe_scope,
ast,
GetClangType(),
name,
data);
}
}
if (!valobj_sp)
{
valobj_sp = ValueObjectConstResult::Create (NULL, m_error);
}
return valobj_sp;
}
lldb::ValueObjectSP
ValueObject::Dereference (Error &error)
{
if (m_deref_valobj)
return m_deref_valobj->GetSP();
const bool is_pointer_type = IsPointerType();
if (is_pointer_type)
{
bool omit_empty_base_classes = true;
bool ignore_array_bounds = false;
std::string child_name_str;
uint32_t child_byte_size = 0;
int32_t child_byte_offset = 0;
uint32_t child_bitfield_bit_size = 0;
uint32_t child_bitfield_bit_offset = 0;
bool child_is_base_class = false;
bool child_is_deref_of_parent = false;
const bool transparent_pointers = false;
clang::ASTContext *clang_ast = GetClangAST();
clang_type_t clang_type = GetClangType();
clang_type_t child_clang_type;
ExecutionContext exe_ctx;
GetExecutionContextScope()->CalculateExecutionContext (exe_ctx);
child_clang_type = ClangASTContext::GetChildClangTypeAtIndex (&exe_ctx,
clang_ast,
GetName().GetCString(),
clang_type,
0,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name_str,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
if (child_clang_type && child_byte_size)
{
ConstString child_name;
if (!child_name_str.empty())
child_name.SetCString (child_name_str.c_str());
m_deref_valobj = new ValueObjectChild (*this,
clang_ast,
child_clang_type,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent);
}
}
if (m_deref_valobj)
{
error.Clear();
return m_deref_valobj->GetSP();
}
else
{
StreamString strm;
GetExpressionPath(strm, true);
if (is_pointer_type)
error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
else
error.SetErrorStringWithFormat("not a pointer type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str());
return ValueObjectSP();
}
}
lldb::ValueObjectSP
ValueObject::AddressOf (Error &error)
{
if (m_addr_of_valobj_sp)
return m_addr_of_valobj_sp;
AddressType address_type = eAddressTypeInvalid;
const bool scalar_is_load_address = false;
lldb::addr_t addr = GetAddressOf (address_type, scalar_is_load_address);
error.Clear();
if (addr != LLDB_INVALID_ADDRESS)
{
switch (address_type)
{
default:
case eAddressTypeInvalid:
{
StreamString expr_path_strm;
GetExpressionPath(expr_path_strm, true);
error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str());
}
break;
case eAddressTypeFile:
case eAddressTypeLoad:
case eAddressTypeHost:
{
clang::ASTContext *ast = GetClangAST();
clang_type_t clang_type = GetClangType();
if (ast && clang_type)
{
std::string name (1, '&');
name.append (m_name.AsCString(""));
m_addr_of_valobj_sp = ValueObjectConstResult::Create (GetExecutionContextScope(),
ast,
ClangASTContext::CreatePointerType (ast, clang_type),
ConstString (name.c_str()),
addr,
eAddressTypeInvalid,
m_data.GetAddressByteSize());
}
}
break;
}
}
return m_addr_of_valobj_sp;
}
lldb::ValueObjectSP
ValueObject::CastPointerType (const char *name, ClangASTType &clang_ast_type)
{
lldb::ValueObjectSP valobj_sp;
AddressType address_type;
const bool scalar_is_load_address = true;
lldb::addr_t ptr_value = GetPointerValue (address_type, scalar_is_load_address);
if (ptr_value != LLDB_INVALID_ADDRESS)
{
Address ptr_addr (NULL, ptr_value);
valobj_sp = ValueObjectMemory::Create (GetExecutionContextScope(),
name,
ptr_addr,
clang_ast_type);
}
return valobj_sp;
}
lldb::ValueObjectSP
ValueObject::CastPointerType (const char *name, TypeSP &type_sp)
{
lldb::ValueObjectSP valobj_sp;
AddressType address_type;
const bool scalar_is_load_address = true;
lldb::addr_t ptr_value = GetPointerValue (address_type, scalar_is_load_address);
if (ptr_value != LLDB_INVALID_ADDRESS)
{
Address ptr_addr (NULL, ptr_value);
valobj_sp = ValueObjectMemory::Create (GetExecutionContextScope(),
name,
ptr_addr,
type_sp);
}
return valobj_sp;
}
ValueObject::EvaluationPoint::EvaluationPoint () :
m_thread_id (LLDB_INVALID_UID),
m_mod_id ()
{
}
ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected):
m_needs_update (true),
m_first_update (true),
m_thread_id (LLDB_INVALID_THREAD_ID),
m_mod_id ()
{
ExecutionContext exe_ctx;
ExecutionContextScope *computed_exe_scope = exe_scope; // If use_selected is true, we may find a better scope,
// and if so we want to cache that not the original.
if (exe_scope)
exe_scope->CalculateExecutionContext(exe_ctx);
if (exe_ctx.target != NULL)
{
m_target_sp = exe_ctx.target->GetSP();
if (exe_ctx.process == NULL)
m_process_sp = exe_ctx.target->GetProcessSP();
else
m_process_sp = exe_ctx.process->GetSP();
if (m_process_sp != NULL)
{
m_mod_id = m_process_sp->GetModID();
Thread *thread = NULL;
if (exe_ctx.thread == NULL)
{
if (use_selected)
{
thread = m_process_sp->GetThreadList().GetSelectedThread().get();
if (thread)
computed_exe_scope = thread;
}
}
else
thread = exe_ctx.thread;
if (thread != NULL)
{
m_thread_id = thread->GetIndexID();
if (exe_ctx.frame == NULL)
{
if (use_selected)
{
StackFrame *frame = exe_ctx.thread->GetSelectedFrame().get();
if (frame)
{
m_stack_id = frame->GetStackID();
computed_exe_scope = frame;
}
}
}
else
m_stack_id = exe_ctx.frame->GetStackID();
}
}
}
m_exe_scope = computed_exe_scope;
}
ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) :
m_exe_scope (rhs.m_exe_scope),
m_needs_update(true),
m_first_update(true),
m_target_sp (rhs.m_target_sp),
m_process_sp (rhs.m_process_sp),
m_thread_id (rhs.m_thread_id),
m_stack_id (rhs.m_stack_id),
m_mod_id ()
{
}
ValueObject::EvaluationPoint::~EvaluationPoint ()
{
}
ExecutionContextScope *
ValueObject::EvaluationPoint::GetExecutionContextScope ()
{
// We have to update before giving out the scope, or we could be handing out stale pointers.
SyncWithProcessState();
return m_exe_scope;
}
// This function checks the EvaluationPoint against the current process state. If the current
// state matches the evaluation point, or the evaluation point is already invalid, then we return
// false, meaning "no change". If the current state is different, we update our state, and return
// true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so
// future calls to NeedsUpdate will return true.
bool
ValueObject::EvaluationPoint::SyncWithProcessState()
{
// If we're already invalid, we don't need to do anything, and nothing has changed:
if (!m_mod_id.IsValid())
{
// Can't update with an invalid state.
m_needs_update = false;
return false;
}
// If we don't have a process nothing can change.
if (!m_process_sp)
return false;
// If our stop id is the current stop ID, nothing has changed:
ProcessModID current_mod_id = m_process_sp->GetModID();
if (m_mod_id == current_mod_id)
return false;
// If the current stop id is 0, either we haven't run yet, or the process state has been cleared.
// In either case, we aren't going to be able to sync with the process state.
if (current_mod_id.GetStopID() == 0)
return false;
m_mod_id = current_mod_id;
m_needs_update = true;
m_exe_scope = m_process_sp.get();
// Something has changed, so we will return true. Now make sure the thread & frame still exist, and if either
// doesn't, mark ourselves as invalid.
if (m_thread_id != LLDB_INVALID_THREAD_ID)
{
Thread *our_thread = m_process_sp->GetThreadList().FindThreadByIndexID (m_thread_id).get();
if (our_thread == NULL)
{
SetInvalid();
}
else
{
m_exe_scope = our_thread;
if (m_stack_id.IsValid())
{
StackFrame *our_frame = our_thread->GetFrameWithStackID (m_stack_id).get();
if (our_frame == NULL)
SetInvalid();
else
m_exe_scope = our_frame;
}
}
}
return true;
}
void
ValueObject::EvaluationPoint::SetUpdated ()
{
m_first_update = false;
m_needs_update = false;
if (m_process_sp)
{
m_mod_id = m_process_sp->GetModID();
}
}
bool
ValueObject::EvaluationPoint::SetContext (ExecutionContextScope *exe_scope)
{
if (!IsValid())
return false;
bool needs_update = false;
m_exe_scope = NULL;
// The target has to be non-null, and the
Target *target = exe_scope->CalculateTarget();
if (target != NULL)
{
Target *old_target = m_target_sp.get();
assert (target == old_target);
Process *process = exe_scope->CalculateProcess();
if (process != NULL)
{
// FOR NOW - assume you can't update variable objects across process boundaries.
Process *old_process = m_process_sp.get();
assert (process == old_process);
ProcessModID current_mod_id = process->GetModID();
if (m_mod_id != current_mod_id)
{
needs_update = true;
m_mod_id = current_mod_id;
}
// See if we're switching the thread or stack context. If no thread is given, this is
// being evaluated in a global context.
Thread *thread = exe_scope->CalculateThread();
if (thread != NULL)
{
lldb::user_id_t new_thread_index = thread->GetIndexID();
if (new_thread_index != m_thread_id)
{
needs_update = true;
m_thread_id = new_thread_index;
m_stack_id.Clear();
}
StackFrame *new_frame = exe_scope->CalculateStackFrame();
if (new_frame != NULL)
{
if (new_frame->GetStackID() != m_stack_id)
{
needs_update = true;
m_stack_id = new_frame->GetStackID();
}
}
else
{
m_stack_id.Clear();
needs_update = true;
}
}
else
{
// If this had been given a thread, and now there is none, we should update.
// Otherwise we don't have to do anything.
if (m_thread_id != LLDB_INVALID_UID)
{
m_thread_id = LLDB_INVALID_UID;
m_stack_id.Clear();
needs_update = true;
}
}
}
else
{
// If there is no process, then we don't need to update anything.
// But if we're switching from having a process to not, we should try to update.
if (m_process_sp.get() != NULL)
{
needs_update = true;
m_process_sp.reset();
m_thread_id = LLDB_INVALID_UID;
m_stack_id.Clear();
}
}
}
else
{
// If there's no target, nothing can change so we don't need to update anything.
// But if we're switching from having a target to not, we should try to update.
if (m_target_sp.get() != NULL)
{
needs_update = true;
m_target_sp.reset();
m_process_sp.reset();
m_thread_id = LLDB_INVALID_UID;
m_stack_id.Clear();
}
}
if (!m_needs_update)
m_needs_update = needs_update;
return needs_update;
}
void
ValueObject::ClearUserVisibleData()
{
m_location_str.clear();
m_value_str.clear();
m_summary_str.clear();
m_object_desc_str.clear();
}