llvm-project/clang/lib/Checker/CStringChecker.cpp

1059 lines
37 KiB
C++

//= CStringChecker.h - Checks calls to C string functions ----------*- C++ -*-//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines CStringChecker, which is an assortment of checks on calls
// to functions in <string.h>.
//
//===----------------------------------------------------------------------===//
#include "GRExprEngineExperimentalChecks.h"
#include "clang/Checker/BugReporter/BugType.h"
#include "clang/Checker/PathSensitive/CheckerVisitor.h"
#include "clang/Checker/PathSensitive/GRStateTrait.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
namespace {
class CStringChecker : public CheckerVisitor<CStringChecker> {
BugType *BT_Null, *BT_Bounds, *BT_BoundsWrite, *BT_Overlap, *BT_NotCString;
public:
CStringChecker()
: BT_Null(0), BT_Bounds(0), BT_BoundsWrite(0), BT_Overlap(0), BT_NotCString(0)
{}
static void *getTag() { static int tag; return &tag; }
bool EvalCallExpr(CheckerContext &C, const CallExpr *CE);
void PreVisitDeclStmt(CheckerContext &C, const DeclStmt *DS);
void MarkLiveSymbols(const GRState *state, SymbolReaper &SR);
void EvalDeadSymbols(CheckerContext &C, SymbolReaper &SR);
bool WantsRegionChangeUpdate(const GRState *state);
const GRState *EvalRegionChanges(const GRState *state,
const MemRegion * const *Begin,
const MemRegion * const *End,
bool*);
typedef void (CStringChecker::*FnCheck)(CheckerContext &, const CallExpr *);
void EvalMemcpy(CheckerContext &C, const CallExpr *CE);
void EvalMemmove(CheckerContext &C, const CallExpr *CE);
void EvalBcopy(CheckerContext &C, const CallExpr *CE);
void EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Source, const Expr *Dest,
bool Restricted = false);
void EvalMemcmp(CheckerContext &C, const CallExpr *CE);
void EvalStrlen(CheckerContext &C, const CallExpr *CE);
void EvalStrcpy(CheckerContext &C, const CallExpr *CE);
void EvalStpcpy(CheckerContext &C, const CallExpr *CE);
void EvalStrcpyCommon(CheckerContext &C, const CallExpr *CE, bool ReturnEnd);
// Utility methods
std::pair<const GRState*, const GRState*>
AssumeZero(CheckerContext &C, const GRState *state, SVal V, QualType Ty);
const GRState *SetCStringLength(const GRState *state, const MemRegion *MR,
SVal StrLen);
SVal GetCStringLengthForRegion(CheckerContext &C, const GRState *&state,
const Expr *Ex, const MemRegion *MR);
SVal GetCStringLength(CheckerContext &C, const GRState *&state,
const Expr *Ex, SVal Buf);
const GRState *InvalidateBuffer(CheckerContext &C, const GRState *state,
const Expr *Ex, SVal V);
bool SummarizeRegion(llvm::raw_ostream& os, ASTContext& Ctx,
const MemRegion *MR);
// Re-usable checks
const GRState *CheckNonNull(CheckerContext &C, const GRState *state,
const Expr *S, SVal l);
const GRState *CheckLocation(CheckerContext &C, const GRState *state,
const Expr *S, SVal l,
bool IsDestination = false);
const GRState *CheckBufferAccess(CheckerContext &C, const GRState *state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf = NULL,
bool FirstIsDestination = false);
const GRState *CheckOverlap(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *First,
const Expr *Second);
void EmitOverlapBug(CheckerContext &C, const GRState *state,
const Stmt *First, const Stmt *Second);
};
class CStringLength {
public:
typedef llvm::ImmutableMap<const MemRegion *, SVal> EntryMap;
};
} //end anonymous namespace
namespace clang {
template <>
struct GRStateTrait<CStringLength>
: public GRStatePartialTrait<CStringLength::EntryMap> {
static void *GDMIndex() { return CStringChecker::getTag(); }
};
}
void clang::RegisterCStringChecker(GRExprEngine &Eng) {
Eng.registerCheck(new CStringChecker());
}
//===----------------------------------------------------------------------===//
// Individual checks and utility methods.
//===----------------------------------------------------------------------===//
std::pair<const GRState*, const GRState*>
CStringChecker::AssumeZero(CheckerContext &C, const GRState *state, SVal V,
QualType Ty) {
DefinedSVal *Val = dyn_cast<DefinedSVal>(&V);
if (!Val)
return std::pair<const GRState*, const GRState *>(state, state);
ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator();
DefinedOrUnknownSVal Zero = ValMgr.makeZeroVal(Ty);
DefinedOrUnknownSVal ValIsZero = SV.EvalEQ(state, *Val, Zero);
return state->Assume(ValIsZero);
}
const GRState *CStringChecker::CheckNonNull(CheckerContext &C,
const GRState *state,
const Expr *S, SVal l) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
const GRState *stateNull, *stateNonNull;
llvm::tie(stateNull, stateNonNull) = AssumeZero(C, state, l, S->getType());
if (stateNull && !stateNonNull) {
ExplodedNode *N = C.GenerateSink(stateNull);
if (!N)
return NULL;
if (!BT_Null)
BT_Null = new BuiltinBug("API",
"Null pointer argument in call to byte string function");
// Generate a report for this bug.
BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null);
EnhancedBugReport *report = new EnhancedBugReport(*BT,
BT->getDescription(), N);
report->addRange(S->getSourceRange());
report->addVisitorCreator(bugreporter::registerTrackNullOrUndefValue, S);
C.EmitReport(report);
return NULL;
}
// From here on, assume that the value is non-null.
assert(stateNonNull);
return stateNonNull;
}
// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
const GRState *CStringChecker::CheckLocation(CheckerContext &C,
const GRState *state,
const Expr *S, SVal l,
bool IsDestination) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
// Check for out of bound array element access.
const MemRegion *R = l.getAsRegion();
if (!R)
return state;
const ElementRegion *ER = dyn_cast<ElementRegion>(R);
if (!ER)
return state;
assert(ER->getValueType() == C.getASTContext().CharTy &&
"CheckLocation should only be called with char* ElementRegions");
// Get the size of the array.
const SubRegion *Super = cast<SubRegion>(ER->getSuperRegion());
ValueManager &ValMgr = C.getValueManager();
SVal Extent = ValMgr.convertToArrayIndex(Super->getExtent(ValMgr));
DefinedOrUnknownSVal Size = cast<DefinedOrUnknownSVal>(Extent);
// Get the index of the accessed element.
DefinedOrUnknownSVal Idx = cast<DefinedOrUnknownSVal>(ER->getIndex());
const GRState *StInBound = state->AssumeInBound(Idx, Size, true);
const GRState *StOutBound = state->AssumeInBound(Idx, Size, false);
if (StOutBound && !StInBound) {
ExplodedNode *N = C.GenerateSink(StOutBound);
if (!N)
return NULL;
BuiltinBug *BT;
if (IsDestination) {
if (!BT_BoundsWrite) {
BT_BoundsWrite = new BuiltinBug("Out-of-bound array access",
"Byte string function overflows destination buffer");
}
BT = static_cast<BuiltinBug*>(BT_BoundsWrite);
} else {
if (!BT_Bounds) {
BT_Bounds = new BuiltinBug("Out-of-bound array access",
"Byte string function accesses out-of-bound array element");
}
BT = static_cast<BuiltinBug*>(BT_Bounds);
}
// FIXME: It would be nice to eventually make this diagnostic more clear,
// e.g., by referencing the original declaration or by saying *why* this
// reference is outside the range.
// Generate a report for this bug.
RangedBugReport *report = new RangedBugReport(*BT, BT->getDescription(), N);
report->addRange(S->getSourceRange());
C.EmitReport(report);
return NULL;
}
// Array bound check succeeded. From this point forward the array bound
// should always succeed.
return StInBound;
}
const GRState *CStringChecker::CheckBufferAccess(CheckerContext &C,
const GRState *state,
const Expr *Size,
const Expr *FirstBuf,
const Expr *SecondBuf,
bool FirstIsDestination) {
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = C.getValueManager();
SValuator &SV = VM.getSValuator();
ASTContext &Ctx = C.getASTContext();
QualType SizeTy = Size->getType();
QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
// Check that the first buffer is non-null.
SVal BufVal = state->getSVal(FirstBuf);
state = CheckNonNull(C, state, FirstBuf, BufVal);
if (!state)
return NULL;
// Get the access length and make sure it is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// Compute the offset of the last element to be accessed: size-1.
NonLoc One = cast<NonLoc>(VM.makeIntVal(1, SizeTy));
NonLoc LastOffset = cast<NonLoc>(SV.EvalBinOpNN(state, BO_Sub,
*Length, One, SizeTy));
// Check that the first buffer is sufficently long.
SVal BufStart = SV.EvalCast(BufVal, PtrTy, FirstBuf->getType());
if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
SVal BufEnd = SV.EvalBinOpLN(state, BO_Add, *BufLoc,
LastOffset, PtrTy);
state = CheckLocation(C, state, FirstBuf, BufEnd, FirstIsDestination);
// If the buffer isn't large enough, abort.
if (!state)
return NULL;
}
// If there's a second buffer, check it as well.
if (SecondBuf) {
BufVal = state->getSVal(SecondBuf);
state = CheckNonNull(C, state, SecondBuf, BufVal);
if (!state)
return NULL;
BufStart = SV.EvalCast(BufVal, PtrTy, SecondBuf->getType());
if (Loc *BufLoc = dyn_cast<Loc>(&BufStart)) {
SVal BufEnd = SV.EvalBinOpLN(state, BO_Add, *BufLoc,
LastOffset, PtrTy);
state = CheckLocation(C, state, SecondBuf, BufEnd);
}
}
// Large enough or not, return this state!
return state;
}
const GRState *CStringChecker::CheckOverlap(CheckerContext &C,
const GRState *state,
const Expr *Size,
const Expr *First,
const Expr *Second) {
// Do a simple check for overlap: if the two arguments are from the same
// buffer, see if the end of the first is greater than the start of the second
// or vice versa.
// If a previous check has failed, propagate the failure.
if (!state)
return NULL;
ValueManager &VM = state->getStateManager().getValueManager();
SValuator &SV = VM.getSValuator();
ASTContext &Ctx = VM.getContext();
const GRState *stateTrue, *stateFalse;
// Get the buffer values and make sure they're known locations.
SVal FirstVal = state->getSVal(First);
SVal SecondVal = state->getSVal(Second);
Loc *FirstLoc = dyn_cast<Loc>(&FirstVal);
if (!FirstLoc)
return state;
Loc *SecondLoc = dyn_cast<Loc>(&SecondVal);
if (!SecondLoc)
return state;
// Are the two values the same?
DefinedOrUnknownSVal EqualTest = SV.EvalEQ(state, *FirstLoc, *SecondLoc);
llvm::tie(stateTrue, stateFalse) = state->Assume(EqualTest);
if (stateTrue && !stateFalse) {
// If the values are known to be equal, that's automatically an overlap.
EmitOverlapBug(C, stateTrue, First, Second);
return NULL;
}
// Assume the two expressions are not equal.
assert(stateFalse);
state = stateFalse;
// Which value comes first?
QualType CmpTy = Ctx.IntTy;
SVal Reverse = SV.EvalBinOpLL(state, BO_GT,
*FirstLoc, *SecondLoc, CmpTy);
DefinedOrUnknownSVal *ReverseTest = dyn_cast<DefinedOrUnknownSVal>(&Reverse);
if (!ReverseTest)
return state;
llvm::tie(stateTrue, stateFalse) = state->Assume(*ReverseTest);
if (stateTrue) {
if (stateFalse) {
// If we don't know which one comes first, we can't perform this test.
return state;
} else {
// Switch the values so that FirstVal is before SecondVal.
Loc *tmpLoc = FirstLoc;
FirstLoc = SecondLoc;
SecondLoc = tmpLoc;
// Switch the Exprs as well, so that they still correspond.
const Expr *tmpExpr = First;
First = Second;
Second = tmpExpr;
}
}
// Get the length, and make sure it too is known.
SVal LengthVal = state->getSVal(Size);
NonLoc *Length = dyn_cast<NonLoc>(&LengthVal);
if (!Length)
return state;
// Convert the first buffer's start address to char*.
// Bail out if the cast fails.
QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
SVal FirstStart = SV.EvalCast(*FirstLoc, CharPtrTy, First->getType());
Loc *FirstStartLoc = dyn_cast<Loc>(&FirstStart);
if (!FirstStartLoc)
return state;
// Compute the end of the first buffer. Bail out if THAT fails.
SVal FirstEnd = SV.EvalBinOpLN(state, BO_Add,
*FirstStartLoc, *Length, CharPtrTy);
Loc *FirstEndLoc = dyn_cast<Loc>(&FirstEnd);
if (!FirstEndLoc)
return state;
// Is the end of the first buffer past the start of the second buffer?
SVal Overlap = SV.EvalBinOpLL(state, BO_GT,
*FirstEndLoc, *SecondLoc, CmpTy);
DefinedOrUnknownSVal *OverlapTest = dyn_cast<DefinedOrUnknownSVal>(&Overlap);
if (!OverlapTest)
return state;
llvm::tie(stateTrue, stateFalse) = state->Assume(*OverlapTest);
if (stateTrue && !stateFalse) {
// Overlap!
EmitOverlapBug(C, stateTrue, First, Second);
return NULL;
}
// Assume the two expressions don't overlap.
assert(stateFalse);
return stateFalse;
}
void CStringChecker::EmitOverlapBug(CheckerContext &C, const GRState *state,
const Stmt *First, const Stmt *Second) {
ExplodedNode *N = C.GenerateSink(state);
if (!N)
return;
if (!BT_Overlap)
BT_Overlap = new BugType("Unix API", "Improper arguments");
// Generate a report for this bug.
RangedBugReport *report =
new RangedBugReport(*BT_Overlap,
"Arguments must not be overlapping buffers", N);
report->addRange(First->getSourceRange());
report->addRange(Second->getSourceRange());
C.EmitReport(report);
}
const GRState *CStringChecker::SetCStringLength(const GRState *state,
const MemRegion *MR,
SVal StrLen) {
assert(!StrLen.isUndef() && "Attempt to set an undefined string length");
if (StrLen.isUnknown())
return state;
MR = MR->StripCasts();
switch (MR->getKind()) {
case MemRegion::StringRegionKind:
// FIXME: This can happen if we strcpy() into a string region. This is
// undefined [C99 6.4.5p6], but we should still warn about it.
return state;
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
return state->set<CStringLength>(MR, StrLen);
case MemRegion::ElementRegionKind:
// FIXME: Handle element regions by upper-bounding the parent region's
// string length.
return state;
default:
// Other regions (mostly non-data) can't have a reliable C string length.
// For now, just ignore the change.
// FIXME: These are rare but not impossible. We should output some kind of
// warning for things like strcpy((char[]){'a', 0}, "b");
return state;
}
}
SVal CStringChecker::GetCStringLengthForRegion(CheckerContext &C,
const GRState *&state,
const Expr *Ex,
const MemRegion *MR) {
// If there's a recorded length, go ahead and return it.
const SVal *Recorded = state->get<CStringLength>(MR);
if (Recorded)
return *Recorded;
// Otherwise, get a new symbol and update the state.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
ValueManager &ValMgr = C.getValueManager();
QualType SizeTy = ValMgr.getContext().getSizeType();
SVal Strlen = ValMgr.getMetadataSymbolVal(getTag(), MR, Ex, SizeTy, Count);
state = state->set<CStringLength>(MR, Strlen);
return Strlen;
}
SVal CStringChecker::GetCStringLength(CheckerContext &C, const GRState *&state,
const Expr *Ex, SVal Buf) {
const MemRegion *MR = Buf.getAsRegion();
if (!MR) {
// If we can't get a region, see if it's something we /know/ isn't a
// C string. In the context of locations, the only time we can issue such
// a warning is for labels.
if (loc::GotoLabel *Label = dyn_cast<loc::GotoLabel>(&Buf)) {
if (ExplodedNode *N = C.GenerateNode(state)) {
if (!BT_NotCString)
BT_NotCString = new BuiltinBug("API",
"Argument is not a null-terminated string.");
llvm::SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
os << "Argument to byte string function is the address of the label '"
<< Label->getLabel()->getID()->getName()
<< "', which is not a null-terminated string";
// Generate a report for this bug.
EnhancedBugReport *report = new EnhancedBugReport(*BT_NotCString,
os.str(), N);
report->addRange(Ex->getSourceRange());
C.EmitReport(report);
}
return UndefinedVal();
}
// If it's not a region and not a label, give up.
return UnknownVal();
}
// If we have a region, strip casts from it and see if we can figure out
// its length. For anything we can't figure out, just return UnknownVal.
MR = MR->StripCasts();
switch (MR->getKind()) {
case MemRegion::StringRegionKind: {
// Modifying the contents of string regions is undefined [C99 6.4.5p6],
// so we can assume that the byte length is the correct C string length.
ValueManager &ValMgr = C.getValueManager();
QualType SizeTy = ValMgr.getContext().getSizeType();
const StringLiteral *Str = cast<StringRegion>(MR)->getStringLiteral();
return ValMgr.makeIntVal(Str->getByteLength(), SizeTy);
}
case MemRegion::SymbolicRegionKind:
case MemRegion::AllocaRegionKind:
case MemRegion::VarRegionKind:
case MemRegion::FieldRegionKind:
case MemRegion::ObjCIvarRegionKind:
return GetCStringLengthForRegion(C, state, Ex, MR);
case MemRegion::CompoundLiteralRegionKind:
// FIXME: Can we track this? Is it necessary?
return UnknownVal();
case MemRegion::ElementRegionKind:
// FIXME: How can we handle this? It's not good enough to subtract the
// offset from the base string length; consider "123\x00567" and &a[5].
return UnknownVal();
default:
// Other regions (mostly non-data) can't have a reliable C string length.
// In this case, an error is emitted and UndefinedVal is returned.
// The caller should always be prepared to handle this case.
if (ExplodedNode *N = C.GenerateNode(state)) {
if (!BT_NotCString)
BT_NotCString = new BuiltinBug("API",
"Argument is not a null-terminated string.");
llvm::SmallString<120> buf;
llvm::raw_svector_ostream os(buf);
os << "Argument to byte string function is ";
if (SummarizeRegion(os, C.getASTContext(), MR))
os << ", which is not a null-terminated string";
else
os << "not a null-terminated string";
// Generate a report for this bug.
EnhancedBugReport *report = new EnhancedBugReport(*BT_NotCString,
os.str(), N);
report->addRange(Ex->getSourceRange());
C.EmitReport(report);
}
return UndefinedVal();
}
}
const GRState *CStringChecker::InvalidateBuffer(CheckerContext &C,
const GRState *state,
const Expr *E, SVal V) {
Loc *L = dyn_cast<Loc>(&V);
if (!L)
return state;
// FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
// some assumptions about the value that CFRefCount can't. Even so, it should
// probably be refactored.
if (loc::MemRegionVal* MR = dyn_cast<loc::MemRegionVal>(L)) {
const MemRegion *R = MR->getRegion()->StripCasts();
// Are we dealing with an ElementRegion? If so, we should be invalidating
// the super-region.
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
R = ER->getSuperRegion();
// FIXME: What about layers of ElementRegions?
}
// Invalidate this region.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
return state->InvalidateRegion(R, E, Count, NULL);
}
// If we have a non-region value by chance, just remove the binding.
// FIXME: is this necessary or correct? This handles the non-Region
// cases. Is it ever valid to store to these?
return state->unbindLoc(*L);
}
bool CStringChecker::SummarizeRegion(llvm::raw_ostream& os, ASTContext& Ctx,
const MemRegion *MR) {
const TypedRegion *TR = dyn_cast<TypedRegion>(MR);
if (!TR)
return false;
switch (TR->getKind()) {
case MemRegion::FunctionTextRegionKind: {
const FunctionDecl *FD = cast<FunctionTextRegion>(TR)->getDecl();
if (FD)
os << "the address of the function '" << FD << "'";
else
os << "the address of a function";
return true;
}
case MemRegion::BlockTextRegionKind:
os << "block text";
return true;
case MemRegion::BlockDataRegionKind:
os << "a block";
return true;
case MemRegion::CXXThisRegionKind:
case MemRegion::CXXObjectRegionKind:
os << "a C++ object of type " << TR->getValueType().getAsString();
return true;
case MemRegion::VarRegionKind:
os << "a variable of type" << TR->getValueType().getAsString();
return true;
case MemRegion::FieldRegionKind:
os << "a field of type " << TR->getValueType().getAsString();
return true;
case MemRegion::ObjCIvarRegionKind:
os << "an instance variable of type " << TR->getValueType().getAsString();
return true;
default:
return false;
}
}
//===----------------------------------------------------------------------===//
// Evaluation of individual function calls.
//===----------------------------------------------------------------------===//
void CStringChecker::EvalCopyCommon(CheckerContext &C, const GRState *state,
const Expr *Size, const Expr *Dest,
const Expr *Source, bool Restricted) {
// See if the size argument is zero.
SVal SizeVal = state->getSVal(Size);
QualType SizeTy = Size->getType();
const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// If the size is zero, there won't be any actual memory access.
if (StZeroSize)
C.addTransition(StZeroSize);
// If the size can be nonzero, we have to check the other arguments.
if (StNonZeroSize) {
state = StNonZeroSize;
state = CheckBufferAccess(C, state, Size, Dest, Source,
/* FirstIsDst = */ true);
if (Restricted)
state = CheckOverlap(C, state, Size, Dest, Source);
if (state) {
// Invalidate the destination.
// FIXME: Even if we can't perfectly model the copy, we should see if we
// can use LazyCompoundVals to copy the source values into the destination.
// This would probably remove any existing bindings past the end of the
// copied region, but that's still an improvement over blank invalidation.
state = InvalidateBuffer(C, state, Dest, state->getSVal(Dest));
C.addTransition(state);
}
}
}
void CStringChecker::EvalMemcpy(CheckerContext &C, const CallExpr *CE) {
// void *memcpy(void *restrict dst, const void *restrict src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1), true);
}
void CStringChecker::EvalMemmove(CheckerContext &C, const CallExpr *CE) {
// void *memmove(void *dst, const void *src, size_t n);
// The return value is the address of the destination buffer.
const Expr *Dest = CE->getArg(0);
const GRState *state = C.getState();
state = state->BindExpr(CE, state->getSVal(Dest));
EvalCopyCommon(C, state, CE->getArg(2), Dest, CE->getArg(1));
}
void CStringChecker::EvalBcopy(CheckerContext &C, const CallExpr *CE) {
// void bcopy(const void *src, void *dst, size_t n);
EvalCopyCommon(C, C.getState(), CE->getArg(2), CE->getArg(1), CE->getArg(0));
}
void CStringChecker::EvalMemcmp(CheckerContext &C, const CallExpr *CE) {
// int memcmp(const void *s1, const void *s2, size_t n);
const Expr *Left = CE->getArg(0);
const Expr *Right = CE->getArg(1);
const Expr *Size = CE->getArg(2);
const GRState *state = C.getState();
ValueManager &ValMgr = C.getValueManager();
SValuator &SV = ValMgr.getSValuator();
// See if the size argument is zero.
SVal SizeVal = state->getSVal(Size);
QualType SizeTy = Size->getType();
const GRState *StZeroSize, *StNonZeroSize;
llvm::tie(StZeroSize, StNonZeroSize) = AssumeZero(C, state, SizeVal, SizeTy);
// If the size can be zero, the result will be 0 in that case, and we don't
// have to check either of the buffers.
if (StZeroSize) {
state = StZeroSize;
state = state->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
}
// If the size can be nonzero, we have to check the other arguments.
if (StNonZeroSize) {
state = StNonZeroSize;
// If we know the two buffers are the same, we know the result is 0.
// First, get the two buffers' addresses. Another checker will have already
// made sure they're not undefined.
DefinedOrUnknownSVal LV = cast<DefinedOrUnknownSVal>(state->getSVal(Left));
DefinedOrUnknownSVal RV = cast<DefinedOrUnknownSVal>(state->getSVal(Right));
// See if they are the same.
DefinedOrUnknownSVal SameBuf = SV.EvalEQ(state, LV, RV);
const GRState *StSameBuf, *StNotSameBuf;
llvm::tie(StSameBuf, StNotSameBuf) = state->Assume(SameBuf);
// If the two arguments might be the same buffer, we know the result is zero,
// and we only need to check one size.
if (StSameBuf) {
state = StSameBuf;
state = CheckBufferAccess(C, state, Size, Left);
if (state) {
state = StSameBuf->BindExpr(CE, ValMgr.makeZeroVal(CE->getType()));
C.addTransition(state);
}
}
// If the two arguments might be different buffers, we have to check the
// size of both of them.
if (StNotSameBuf) {
state = StNotSameBuf;
state = CheckBufferAccess(C, state, Size, Left, Right);
if (state) {
// The return value is the comparison result, which we don't know.
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
SVal CmpV = ValMgr.getConjuredSymbolVal(NULL, CE, Count);
state = state->BindExpr(CE, CmpV);
C.addTransition(state);
}
}
}
}
void CStringChecker::EvalStrlen(CheckerContext &C, const CallExpr *CE) {
// size_t strlen(const char *s);
const GRState *state = C.getState();
const Expr *Arg = CE->getArg(0);
SVal ArgVal = state->getSVal(Arg);
// Check that the argument is non-null.
state = CheckNonNull(C, state, Arg, ArgVal);
if (state) {
SVal StrLen = GetCStringLength(C, state, Arg, ArgVal);
// If the argument isn't a valid C string, there's no valid state to
// transition to.
if (StrLen.isUndef())
return;
// If GetCStringLength couldn't figure out the length, conjure a return
// value, so it can be used in constraints, at least.
if (StrLen.isUnknown()) {
ValueManager &ValMgr = C.getValueManager();
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
StrLen = ValMgr.getConjuredSymbolVal(NULL, CE, Count);
}
// Bind the return value.
state = state->BindExpr(CE, StrLen);
C.addTransition(state);
}
}
void CStringChecker::EvalStrcpy(CheckerContext &C, const CallExpr *CE) {
// char *strcpy(char *restrict dst, const char *restrict src);
EvalStrcpyCommon(C, CE, /* ReturnEnd = */ false);
}
void CStringChecker::EvalStpcpy(CheckerContext &C, const CallExpr *CE) {
// char *stpcpy(char *restrict dst, const char *restrict src);
EvalStrcpyCommon(C, CE, /* ReturnEnd = */ true);
}
void CStringChecker::EvalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
bool ReturnEnd) {
const GRState *state = C.getState();
// Check that the destination is non-null
const Expr *Dst = CE->getArg(0);
SVal DstVal = state->getSVal(Dst);
state = CheckNonNull(C, state, Dst, DstVal);
if (!state)
return;
// Check that the source is non-null.
const Expr *Src = CE->getArg(1);
SVal SrcVal = state->getSVal(Src);
state = CheckNonNull(C, state, Src, SrcVal);
if (!state)
return;
// Get the string length of the source.
SVal StrLen = GetCStringLength(C, state, Src, SrcVal);
// If the source isn't a valid C string, give up.
if (StrLen.isUndef())
return;
SVal Result = (ReturnEnd ? UnknownVal() : DstVal);
// If the destination is a MemRegion, try to check for a buffer overflow and
// record the new string length.
if (loc::MemRegionVal *DstRegVal = dyn_cast<loc::MemRegionVal>(&DstVal)) {
// If the length is known, we can check for an overflow.
if (NonLoc *KnownStrLen = dyn_cast<NonLoc>(&StrLen)) {
SValuator &SV = C.getSValuator();
SVal LastElement = SV.EvalBinOpLN(state, BO_Add,
*DstRegVal, *KnownStrLen,
Dst->getType());
state = CheckLocation(C, state, Dst, LastElement, /* IsDst = */ true);
if (!state)
return;
// If this is a stpcpy-style copy, the last element is the return value.
if (ReturnEnd)
Result = LastElement;
}
// Invalidate the destination. This must happen before we set the C string
// length because invalidation will clear the length.
// FIXME: Even if we can't perfectly model the copy, we should see if we
// can use LazyCompoundVals to copy the source values into the destination.
// This would probably remove any existing bindings past the end of the
// string, but that's still an improvement over blank invalidation.
state = InvalidateBuffer(C, state, Dst, *DstRegVal);
// Set the C string length of the destination.
state = SetCStringLength(state, DstRegVal->getRegion(), StrLen);
}
// If this is a stpcpy-style copy, but we were unable to check for a buffer
// overflow, we still need a result. Conjure a return value.
if (ReturnEnd && Result.isUnknown()) {
ValueManager &ValMgr = C.getValueManager();
unsigned Count = C.getNodeBuilder().getCurrentBlockCount();
StrLen = ValMgr.getConjuredSymbolVal(NULL, CE, Count);
}
// Set the return value.
state = state->BindExpr(CE, Result);
C.addTransition(state);
}
//===----------------------------------------------------------------------===//
// The driver method, and other Checker callbacks.
//===----------------------------------------------------------------------===//
bool CStringChecker::EvalCallExpr(CheckerContext &C, const CallExpr *CE) {
// Get the callee. All the functions we care about are C functions
// with simple identifiers.
const GRState *state = C.getState();
const Expr *Callee = CE->getCallee();
const FunctionDecl *FD = state->getSVal(Callee).getAsFunctionDecl();
if (!FD)
return false;
// Get the name of the callee. If it's a builtin, strip off the prefix.
IdentifierInfo *II = FD->getIdentifier();
if (!II) // if no identifier, not a simple C function
return false;
llvm::StringRef Name = II->getName();
if (Name.startswith("__builtin_"))
Name = Name.substr(10);
FnCheck EvalFunction = llvm::StringSwitch<FnCheck>(Name)
.Cases("memcpy", "__memcpy_chk", &CStringChecker::EvalMemcpy)
.Cases("memcmp", "bcmp", &CStringChecker::EvalMemcmp)
.Cases("memmove", "__memmove_chk", &CStringChecker::EvalMemmove)
.Cases("strcpy", "__strcpy_chk", &CStringChecker::EvalStrcpy)
.Cases("stpcpy", "__stpcpy_chk", &CStringChecker::EvalStpcpy)
.Case("strlen", &CStringChecker::EvalStrlen)
.Case("bcopy", &CStringChecker::EvalBcopy)
.Default(NULL);
// If the callee isn't a string function, let another checker handle it.
if (!EvalFunction)
return false;
// Check and evaluate the call.
(this->*EvalFunction)(C, CE);
return true;
}
void CStringChecker::PreVisitDeclStmt(CheckerContext &C, const DeclStmt *DS) {
// Record string length for char a[] = "abc";
const GRState *state = C.getState();
for (DeclStmt::const_decl_iterator I = DS->decl_begin(), E = DS->decl_end();
I != E; ++I) {
const VarDecl *D = dyn_cast<VarDecl>(*I);
if (!D)
continue;
// FIXME: Handle array fields of structs.
if (!D->getType()->isArrayType())
continue;
const Expr *Init = D->getInit();
if (!Init)
continue;
if (!isa<StringLiteral>(Init))
continue;
Loc VarLoc = state->getLValue(D, C.getPredecessor()->getLocationContext());
const MemRegion *MR = VarLoc.getAsRegion();
if (!MR)
continue;
SVal StrVal = state->getSVal(Init);
assert(StrVal.isValid() && "Initializer string is unknown or undefined");
DefinedOrUnknownSVal StrLen
= cast<DefinedOrUnknownSVal>(GetCStringLength(C, state, Init, StrVal));
state = state->set<CStringLength>(MR, StrLen);
}
C.addTransition(state);
}
bool CStringChecker::WantsRegionChangeUpdate(const GRState *state) {
CStringLength::EntryMap Entries = state->get<CStringLength>();
return !Entries.isEmpty();
}
const GRState *CStringChecker::EvalRegionChanges(const GRState *state,
const MemRegion * const *Begin,
const MemRegion * const *End,
bool *) {
CStringLength::EntryMap Entries = state->get<CStringLength>();
if (Entries.isEmpty())
return state;
llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
// First build sets for the changed regions and their super-regions.
for ( ; Begin != End; ++Begin) {
const MemRegion *MR = *Begin;
Invalidated.insert(MR);
SuperRegions.insert(MR);
while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
MR = SR->getSuperRegion();
SuperRegions.insert(MR);
}
}
CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
// Then loop over the entries in the current state.
for (CStringLength::EntryMap::iterator I = Entries.begin(),
E = Entries.end(); I != E; ++I) {
const MemRegion *MR = I.getKey();
// Is this entry for a super-region of a changed region?
if (SuperRegions.count(MR)) {
Entries = F.Remove(Entries, MR);
continue;
}
// Is this entry for a sub-region of a changed region?
const MemRegion *Super = MR;
while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
Super = SR->getSuperRegion();
if (Invalidated.count(Super)) {
Entries = F.Remove(Entries, MR);
break;
}
}
}
return state->set<CStringLength>(Entries);
}
void CStringChecker::MarkLiveSymbols(const GRState *state, SymbolReaper &SR) {
// Mark all symbols in our string length map as valid.
CStringLength::EntryMap Entries = state->get<CStringLength>();
for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
I != E; ++I) {
SVal Len = I.getData();
if (SymbolRef Sym = Len.getAsSymbol())
SR.markInUse(Sym);
}
}
void CStringChecker::EvalDeadSymbols(CheckerContext &C, SymbolReaper &SR) {
if (!SR.hasDeadSymbols())
return;
const GRState *state = C.getState();
CStringLength::EntryMap Entries = state->get<CStringLength>();
if (Entries.isEmpty())
return;
CStringLength::EntryMap::Factory &F = state->get_context<CStringLength>();
for (CStringLength::EntryMap::iterator I = Entries.begin(), E = Entries.end();
I != E; ++I) {
SVal Len = I.getData();
if (SymbolRef Sym = Len.getAsSymbol()) {
if (SR.isDead(Sym))
Entries = F.Remove(Entries, I.getKey());
}
}
state = state->set<CStringLength>(Entries);
C.GenerateNode(state);
}