forked from OSchip/llvm-project
1894 lines
58 KiB
C++
1894 lines
58 KiB
C++
// BugReporter.cpp - Generate PathDiagnostics for Bugs ------------*- C++ -*--//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BugReporter, a utility class for generating
|
|
// PathDiagnostics.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Checker/BugReporter/BugReporter.h"
|
|
#include "clang/Checker/BugReporter/BugType.h"
|
|
#include "clang/Checker/PathSensitive/GRExprEngine.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/StmtObjC.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Checker/BugReporter/PathDiagnostic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include <queue>
|
|
|
|
using namespace clang;
|
|
|
|
BugReporterVisitor::~BugReporterVisitor() {}
|
|
BugReporterContext::~BugReporterContext() {
|
|
for (visitor_iterator I = visitor_begin(), E = visitor_end(); I != E; ++I)
|
|
if ((*I)->isOwnedByReporterContext()) delete *I;
|
|
}
|
|
|
|
void BugReporterContext::addVisitor(BugReporterVisitor* visitor) {
|
|
if (!visitor)
|
|
return;
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
visitor->Profile(ID);
|
|
void *InsertPos;
|
|
|
|
if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
|
|
delete visitor;
|
|
return;
|
|
}
|
|
|
|
CallbacksSet.InsertNode(visitor, InsertPos);
|
|
Callbacks = F.Add(visitor, Callbacks);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper routines for walking the ExplodedGraph and fetching statements.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static inline const Stmt* GetStmt(const ProgramPoint &P) {
|
|
if (const StmtPoint* SP = dyn_cast<StmtPoint>(&P))
|
|
return SP->getStmt();
|
|
else if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P))
|
|
return BE->getSrc()->getTerminator();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline const ExplodedNode*
|
|
GetPredecessorNode(const ExplodedNode* N) {
|
|
return N->pred_empty() ? NULL : *(N->pred_begin());
|
|
}
|
|
|
|
static inline const ExplodedNode*
|
|
GetSuccessorNode(const ExplodedNode* N) {
|
|
return N->succ_empty() ? NULL : *(N->succ_begin());
|
|
}
|
|
|
|
static const Stmt* GetPreviousStmt(const ExplodedNode* N) {
|
|
for (N = GetPredecessorNode(N); N; N = GetPredecessorNode(N))
|
|
if (const Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const Stmt* GetNextStmt(const ExplodedNode* N) {
|
|
for (N = GetSuccessorNode(N); N; N = GetSuccessorNode(N))
|
|
if (const Stmt *S = GetStmt(N->getLocation())) {
|
|
// Check if the statement is '?' or '&&'/'||'. These are "merges",
|
|
// not actual statement points.
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::ChooseExprClass:
|
|
case Stmt::ConditionalOperatorClass: continue;
|
|
case Stmt::BinaryOperatorClass: {
|
|
BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
|
|
if (Op == BO_LAnd || Op == BO_LOr)
|
|
continue;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Some expressions don't have locations.
|
|
if (S->getLocStart().isInvalid())
|
|
continue;
|
|
|
|
return S;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline const Stmt*
|
|
GetCurrentOrPreviousStmt(const ExplodedNode* N) {
|
|
if (const Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return GetPreviousStmt(N);
|
|
}
|
|
|
|
static inline const Stmt*
|
|
GetCurrentOrNextStmt(const ExplodedNode* N) {
|
|
if (const Stmt *S = GetStmt(N->getLocation()))
|
|
return S;
|
|
|
|
return GetNextStmt(N);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnosticBuilder and its associated routines and helper objects.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
typedef llvm::DenseMap<const ExplodedNode*,
|
|
const ExplodedNode*> NodeBackMap;
|
|
|
|
namespace {
|
|
class NodeMapClosure : public BugReport::NodeResolver {
|
|
NodeBackMap& M;
|
|
public:
|
|
NodeMapClosure(NodeBackMap *m) : M(*m) {}
|
|
~NodeMapClosure() {}
|
|
|
|
const ExplodedNode* getOriginalNode(const ExplodedNode* N) {
|
|
NodeBackMap::iterator I = M.find(N);
|
|
return I == M.end() ? 0 : I->second;
|
|
}
|
|
};
|
|
|
|
class PathDiagnosticBuilder : public BugReporterContext {
|
|
BugReport *R;
|
|
PathDiagnosticClient *PDC;
|
|
llvm::OwningPtr<ParentMap> PM;
|
|
NodeMapClosure NMC;
|
|
public:
|
|
PathDiagnosticBuilder(GRBugReporter &br,
|
|
BugReport *r, NodeBackMap *Backmap,
|
|
PathDiagnosticClient *pdc)
|
|
: BugReporterContext(br),
|
|
R(r), PDC(pdc), NMC(Backmap) {
|
|
addVisitor(R);
|
|
}
|
|
|
|
PathDiagnosticLocation ExecutionContinues(const ExplodedNode* N);
|
|
|
|
PathDiagnosticLocation ExecutionContinues(llvm::raw_string_ostream& os,
|
|
const ExplodedNode* N);
|
|
|
|
Decl const &getCodeDecl() { return R->getErrorNode()->getCodeDecl(); }
|
|
|
|
ParentMap& getParentMap() { return R->getErrorNode()->getParentMap(); }
|
|
|
|
const Stmt *getParent(const Stmt *S) {
|
|
return getParentMap().getParent(S);
|
|
}
|
|
|
|
virtual NodeMapClosure& getNodeResolver() { return NMC; }
|
|
|
|
PathDiagnosticLocation getEnclosingStmtLocation(const Stmt *S);
|
|
|
|
PathDiagnosticClient::PathGenerationScheme getGenerationScheme() const {
|
|
return PDC ? PDC->getGenerationScheme() : PathDiagnosticClient::Extensive;
|
|
}
|
|
|
|
bool supportsLogicalOpControlFlow() const {
|
|
return PDC ? PDC->supportsLogicalOpControlFlow() : true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::ExecutionContinues(const ExplodedNode* N) {
|
|
if (const Stmt *S = GetNextStmt(N))
|
|
return PathDiagnosticLocation(S, getSourceManager());
|
|
|
|
return FullSourceLoc(N->getLocationContext()->getDecl()->getBodyRBrace(),
|
|
getSourceManager());
|
|
}
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::ExecutionContinues(llvm::raw_string_ostream& os,
|
|
const ExplodedNode* N) {
|
|
|
|
// Slow, but probably doesn't matter.
|
|
if (os.str().empty())
|
|
os << ' ';
|
|
|
|
const PathDiagnosticLocation &Loc = ExecutionContinues(N);
|
|
|
|
if (Loc.asStmt())
|
|
os << "Execution continues on line "
|
|
<< getSourceManager().getInstantiationLineNumber(Loc.asLocation())
|
|
<< '.';
|
|
else {
|
|
os << "Execution jumps to the end of the ";
|
|
const Decl *D = N->getLocationContext()->getDecl();
|
|
if (isa<ObjCMethodDecl>(D))
|
|
os << "method";
|
|
else if (isa<FunctionDecl>(D))
|
|
os << "function";
|
|
else {
|
|
assert(isa<BlockDecl>(D));
|
|
os << "anonymous block";
|
|
}
|
|
os << '.';
|
|
}
|
|
|
|
return Loc;
|
|
}
|
|
|
|
static bool IsNested(const Stmt *S, ParentMap &PM) {
|
|
if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
|
|
return true;
|
|
|
|
const Stmt *Parent = PM.getParentIgnoreParens(S);
|
|
|
|
if (Parent)
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::WhileStmtClass:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
PathDiagnosticLocation
|
|
PathDiagnosticBuilder::getEnclosingStmtLocation(const Stmt *S) {
|
|
assert(S && "Null Stmt* passed to getEnclosingStmtLocation");
|
|
ParentMap &P = getParentMap();
|
|
SourceManager &SMgr = getSourceManager();
|
|
|
|
while (IsNested(S, P)) {
|
|
const Stmt *Parent = P.getParentIgnoreParens(S);
|
|
|
|
if (!Parent)
|
|
break;
|
|
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *B = cast<BinaryOperator>(Parent);
|
|
if (B->isLogicalOp())
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
break;
|
|
}
|
|
case Stmt::CompoundStmtClass:
|
|
case Stmt::StmtExprClass:
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
case Stmt::ChooseExprClass:
|
|
// Similar to '?' if we are referring to condition, just have the edge
|
|
// point to the entire choose expression.
|
|
if (cast<ChooseExpr>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
case Stmt::ConditionalOperatorClass:
|
|
// For '?', if we are referring to condition, just have the edge point
|
|
// to the entire '?' expression.
|
|
if (cast<ConditionalOperator>(Parent)->getCond() == S)
|
|
return PathDiagnosticLocation(Parent, SMgr);
|
|
else
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
case Stmt::DoStmtClass:
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
case Stmt::ForStmtClass:
|
|
if (cast<ForStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
break;
|
|
case Stmt::IfStmtClass:
|
|
if (cast<IfStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
break;
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
break;
|
|
case Stmt::WhileStmtClass:
|
|
if (cast<WhileStmt>(Parent)->getCond() != S)
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
S = Parent;
|
|
}
|
|
|
|
assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
|
|
|
|
// Special case: DeclStmts can appear in for statement declarations, in which
|
|
// case the ForStmt is the context.
|
|
if (isa<DeclStmt>(S)) {
|
|
if (const Stmt *Parent = P.getParent(S)) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::ForStmtClass:
|
|
case Stmt::ObjCForCollectionStmtClass:
|
|
return PathDiagnosticLocation(Parent, SMgr);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (isa<BinaryOperator>(S)) {
|
|
// Special case: the binary operator represents the initialization
|
|
// code in a for statement (this can happen when the variable being
|
|
// initialized is an old variable.
|
|
if (const ForStmt *FS =
|
|
dyn_cast_or_null<ForStmt>(P.getParentIgnoreParens(S))) {
|
|
if (FS->getInit() == S)
|
|
return PathDiagnosticLocation(FS, SMgr);
|
|
}
|
|
}
|
|
|
|
return PathDiagnosticLocation(S, SMgr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ScanNotableSymbols: closure-like callback for scanning Store bindings.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static const VarDecl*
|
|
GetMostRecentVarDeclBinding(const ExplodedNode* N,
|
|
GRStateManager& VMgr, SVal X) {
|
|
|
|
for ( ; N ; N = N->pred_empty() ? 0 : *N->pred_begin()) {
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
if (!isa<PostStmt>(P))
|
|
continue;
|
|
|
|
const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(cast<PostStmt>(P).getStmt());
|
|
|
|
if (!DR)
|
|
continue;
|
|
|
|
SVal Y = N->getState()->getSVal(DR);
|
|
|
|
if (X != Y)
|
|
continue;
|
|
|
|
const VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
|
|
if (!VD)
|
|
continue;
|
|
|
|
return VD;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
class NotableSymbolHandler
|
|
: public StoreManager::BindingsHandler {
|
|
|
|
SymbolRef Sym;
|
|
const GRState* PrevSt;
|
|
const Stmt* S;
|
|
GRStateManager& VMgr;
|
|
const ExplodedNode* Pred;
|
|
PathDiagnostic& PD;
|
|
BugReporter& BR;
|
|
|
|
public:
|
|
|
|
NotableSymbolHandler(SymbolRef sym, const GRState* prevst, const Stmt* s,
|
|
GRStateManager& vmgr, const ExplodedNode* pred,
|
|
PathDiagnostic& pd, BugReporter& br)
|
|
: Sym(sym), PrevSt(prevst), S(s), VMgr(vmgr), Pred(pred), PD(pd), BR(br) {}
|
|
|
|
bool HandleBinding(StoreManager& SMgr, Store store, const MemRegion* R,
|
|
SVal V) {
|
|
|
|
SymbolRef ScanSym = V.getAsSymbol();
|
|
|
|
if (ScanSym != Sym)
|
|
return true;
|
|
|
|
// Check if the previous state has this binding.
|
|
SVal X = PrevSt->getSVal(loc::MemRegionVal(R));
|
|
|
|
if (X == V) // Same binding?
|
|
return true;
|
|
|
|
// Different binding. Only handle assignments for now. We don't pull
|
|
// this check out of the loop because we will eventually handle other
|
|
// cases.
|
|
|
|
VarDecl *VD = 0;
|
|
|
|
if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
|
|
if (!B->isAssignmentOp())
|
|
return true;
|
|
|
|
// What variable did we assign to?
|
|
DeclRefExpr* DR = dyn_cast<DeclRefExpr>(B->getLHS()->IgnoreParenCasts());
|
|
|
|
if (!DR)
|
|
return true;
|
|
|
|
VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
}
|
|
else if (const DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
|
|
// FIXME: Eventually CFGs won't have DeclStmts. Right now we
|
|
// assume that each DeclStmt has a single Decl. This invariant
|
|
// holds by contruction in the CFG.
|
|
VD = dyn_cast<VarDecl>(*DS->decl_begin());
|
|
}
|
|
|
|
if (!VD)
|
|
return true;
|
|
|
|
// What is the most recently referenced variable with this binding?
|
|
const VarDecl* MostRecent = GetMostRecentVarDeclBinding(Pred, VMgr, V);
|
|
|
|
if (!MostRecent)
|
|
return true;
|
|
|
|
// Create the diagnostic.
|
|
FullSourceLoc L(S->getLocStart(), BR.getSourceManager());
|
|
|
|
if (Loc::IsLocType(VD->getType())) {
|
|
std::string msg = "'" + std::string(VD->getNameAsString()) +
|
|
"' now aliases '" + MostRecent->getNameAsString() + "'";
|
|
|
|
PD.push_front(new PathDiagnosticEventPiece(L, msg));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void HandleNotableSymbol(const ExplodedNode* N,
|
|
const Stmt* S,
|
|
SymbolRef Sym, BugReporter& BR,
|
|
PathDiagnostic& PD) {
|
|
|
|
const ExplodedNode* Pred = N->pred_empty() ? 0 : *N->pred_begin();
|
|
const GRState* PrevSt = Pred ? Pred->getState() : 0;
|
|
|
|
if (!PrevSt)
|
|
return;
|
|
|
|
// Look at the region bindings of the current state that map to the
|
|
// specified symbol. Are any of them not in the previous state?
|
|
GRStateManager& VMgr = cast<GRBugReporter>(BR).getStateManager();
|
|
NotableSymbolHandler H(Sym, PrevSt, S, VMgr, Pred, PD, BR);
|
|
cast<GRBugReporter>(BR).getStateManager().iterBindings(N->getState(), H);
|
|
}
|
|
|
|
namespace {
|
|
class ScanNotableSymbols
|
|
: public StoreManager::BindingsHandler {
|
|
|
|
llvm::SmallSet<SymbolRef, 10> AlreadyProcessed;
|
|
const ExplodedNode* N;
|
|
const Stmt* S;
|
|
GRBugReporter& BR;
|
|
PathDiagnostic& PD;
|
|
|
|
public:
|
|
ScanNotableSymbols(const ExplodedNode* n, const Stmt* s,
|
|
GRBugReporter& br, PathDiagnostic& pd)
|
|
: N(n), S(s), BR(br), PD(pd) {}
|
|
|
|
bool HandleBinding(StoreManager& SMgr, Store store,
|
|
const MemRegion* R, SVal V) {
|
|
|
|
SymbolRef ScanSym = V.getAsSymbol();
|
|
|
|
if (!ScanSym)
|
|
return true;
|
|
|
|
if (!BR.isNotable(ScanSym))
|
|
return true;
|
|
|
|
if (AlreadyProcessed.count(ScanSym))
|
|
return true;
|
|
|
|
AlreadyProcessed.insert(ScanSym);
|
|
|
|
HandleNotableSymbol(N, S, ScanSym, BR, PD);
|
|
return true;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Minimal" path diagnostic generation algorithm.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM);
|
|
|
|
static void GenerateMinimalPathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N) {
|
|
|
|
SourceManager& SMgr = PDB.getSourceManager();
|
|
const ExplodedNode* NextNode = N->pred_empty()
|
|
? NULL : *(N->pred_begin());
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
NextNode = GetPredecessorNode(N);
|
|
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
if (const BlockEdge* BE = dyn_cast<BlockEdge>(&P)) {
|
|
const CFGBlock* Src = BE->getSrc();
|
|
const CFGBlock* Dst = BE->getDst();
|
|
const Stmt* T = Src->getTerminator();
|
|
|
|
if (!T)
|
|
continue;
|
|
|
|
FullSourceLoc Start(T->getLocStart(), SMgr);
|
|
|
|
switch (T->getStmtClass()) {
|
|
default:
|
|
break;
|
|
|
|
case Stmt::GotoStmtClass:
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
const Stmt* S = GetNextStmt(N);
|
|
|
|
if (!S)
|
|
continue;
|
|
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
const PathDiagnosticLocation &End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
os << "Control jumps to line "
|
|
<< End.asLocation().getInstantiationLineNumber();
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
// Figure out what case arm we took.
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
if (const Stmt* S = Dst->getLabel()) {
|
|
PathDiagnosticLocation End(S, SMgr);
|
|
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
os << "No cases match in the switch statement. "
|
|
"Control jumps to line "
|
|
<< End.asLocation().getInstantiationLineNumber();
|
|
break;
|
|
case Stmt::DefaultStmtClass:
|
|
os << "Control jumps to the 'default' case at line "
|
|
<< End.asLocation().getInstantiationLineNumber();
|
|
break;
|
|
|
|
case Stmt::CaseStmtClass: {
|
|
os << "Control jumps to 'case ";
|
|
const CaseStmt* Case = cast<CaseStmt>(S);
|
|
const Expr* LHS = Case->getLHS()->IgnoreParenCasts();
|
|
|
|
// Determine if it is an enum.
|
|
bool GetRawInt = true;
|
|
|
|
if (const DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS)) {
|
|
// FIXME: Maybe this should be an assertion. Are there cases
|
|
// were it is not an EnumConstantDecl?
|
|
const EnumConstantDecl* D =
|
|
dyn_cast<EnumConstantDecl>(DR->getDecl());
|
|
|
|
if (D) {
|
|
GetRawInt = false;
|
|
os << D;
|
|
}
|
|
}
|
|
|
|
if (GetRawInt)
|
|
os << LHS->EvaluateAsInt(PDB.getASTContext());
|
|
|
|
os << ":' at line "
|
|
<< End.asLocation().getInstantiationLineNumber();
|
|
break;
|
|
}
|
|
}
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
os << "'Default' branch taken. ";
|
|
const PathDiagnosticLocation &End = PDB.ExecutionContinues(os, N);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::ContinueStmtClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for ternary '?'.
|
|
case Stmt::ConditionalOperatorClass: {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "'?' condition is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
os << "false";
|
|
else
|
|
os << "true";
|
|
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
break;
|
|
}
|
|
|
|
// Determine control-flow for short-circuited '&&' and '||'.
|
|
case Stmt::BinaryOperatorClass: {
|
|
if (!PDB.supportsLogicalOpControlFlow())
|
|
break;
|
|
|
|
const BinaryOperator *B = cast<BinaryOperator>(T);
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
os << "Left side of '";
|
|
|
|
if (B->getOpcode() == BO_LAnd) {
|
|
os << "&&" << "' is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
os << "false";
|
|
PathDiagnosticLocation End(B->getLHS(), SMgr);
|
|
PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
os << "true";
|
|
PathDiagnosticLocation Start(B->getLHS(), SMgr);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
}
|
|
else {
|
|
assert(B->getOpcode() == BO_LOr);
|
|
os << "||" << "' is ";
|
|
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
os << "false";
|
|
PathDiagnosticLocation Start(B->getLHS(), SMgr);
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
os << "true";
|
|
PathDiagnosticLocation End(B->getLHS(), SMgr);
|
|
PathDiagnosticLocation Start(B->getOperatorLoc(), SMgr);
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::DoStmtClass: {
|
|
if (*(Src->succ_begin()) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is true. ";
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Loop condition is false. Exiting loop"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
case Stmt::ForStmtClass: {
|
|
if (*(Src->succ_begin()+1) == Dst) {
|
|
std::string sbuf;
|
|
llvm::raw_string_ostream os(sbuf);
|
|
|
|
os << "Loop condition is false. ";
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(os, N);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
os.str()));
|
|
}
|
|
else {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Loop condition is true. Entering loop body"));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Stmt::IfStmtClass: {
|
|
PathDiagnosticLocation End = PDB.ExecutionContinues(N);
|
|
|
|
if (const Stmt *S = End.asStmt())
|
|
End = PDB.getEnclosingStmtLocation(S);
|
|
|
|
if (*(Src->succ_begin()+1) == Dst)
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Taking false branch"));
|
|
else
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(Start, End,
|
|
"Taking true branch"));
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NextNode) {
|
|
for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
|
|
E = PDB.visitor_end(); I!=E; ++I) {
|
|
if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB))
|
|
PD.push_front(p);
|
|
}
|
|
}
|
|
|
|
if (const PostStmt* PS = dyn_cast<PostStmt>(&P)) {
|
|
// Scan the region bindings, and see if a "notable" symbol has a new
|
|
// lval binding.
|
|
ScanNotableSymbols SNS(N, PS->getStmt(), PDB.getBugReporter(), PD);
|
|
PDB.getStateManager().iterBindings(N->getState(), SNS);
|
|
}
|
|
}
|
|
|
|
// After constructing the full PathDiagnostic, do a pass over it to compact
|
|
// PathDiagnosticPieces that occur within a macro.
|
|
CompactPathDiagnostic(PD, PDB.getSourceManager());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// "Extensive" PathDiagnostic generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool IsControlFlowExpr(const Stmt *S) {
|
|
const Expr *E = dyn_cast<Expr>(S);
|
|
|
|
if (!E)
|
|
return false;
|
|
|
|
E = E->IgnoreParenCasts();
|
|
|
|
if (isa<ConditionalOperator>(E))
|
|
return true;
|
|
|
|
if (const BinaryOperator *B = dyn_cast<BinaryOperator>(E))
|
|
if (B->isLogicalOp())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class ContextLocation : public PathDiagnosticLocation {
|
|
bool IsDead;
|
|
public:
|
|
ContextLocation(const PathDiagnosticLocation &L, bool isdead = false)
|
|
: PathDiagnosticLocation(L), IsDead(isdead) {}
|
|
|
|
void markDead() { IsDead = true; }
|
|
bool isDead() const { return IsDead; }
|
|
};
|
|
|
|
class EdgeBuilder {
|
|
std::vector<ContextLocation> CLocs;
|
|
typedef std::vector<ContextLocation>::iterator iterator;
|
|
PathDiagnostic &PD;
|
|
PathDiagnosticBuilder &PDB;
|
|
PathDiagnosticLocation PrevLoc;
|
|
|
|
bool IsConsumedExpr(const PathDiagnosticLocation &L);
|
|
|
|
bool containsLocation(const PathDiagnosticLocation &Container,
|
|
const PathDiagnosticLocation &Containee);
|
|
|
|
PathDiagnosticLocation getContextLocation(const PathDiagnosticLocation &L);
|
|
|
|
PathDiagnosticLocation cleanUpLocation(PathDiagnosticLocation L,
|
|
bool firstCharOnly = false) {
|
|
if (const Stmt *S = L.asStmt()) {
|
|
const Stmt *Original = S;
|
|
while (1) {
|
|
// Adjust the location for some expressions that are best referenced
|
|
// by one of their subexpressions.
|
|
switch (S->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::ParenExprClass:
|
|
S = cast<ParenExpr>(S)->IgnoreParens();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::ConditionalOperatorClass:
|
|
S = cast<ConditionalOperator>(S)->getCond();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::ChooseExprClass:
|
|
S = cast<ChooseExpr>(S)->getCond();
|
|
firstCharOnly = true;
|
|
continue;
|
|
case Stmt::BinaryOperatorClass:
|
|
S = cast<BinaryOperator>(S)->getLHS();
|
|
firstCharOnly = true;
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (S != Original)
|
|
L = PathDiagnosticLocation(S, L.getManager());
|
|
}
|
|
|
|
if (firstCharOnly)
|
|
L = PathDiagnosticLocation(L.asLocation());
|
|
|
|
return L;
|
|
}
|
|
|
|
void popLocation() {
|
|
if (!CLocs.back().isDead() && CLocs.back().asLocation().isFileID()) {
|
|
// For contexts, we only one the first character as the range.
|
|
rawAddEdge(cleanUpLocation(CLocs.back(), true));
|
|
}
|
|
CLocs.pop_back();
|
|
}
|
|
|
|
public:
|
|
EdgeBuilder(PathDiagnostic &pd, PathDiagnosticBuilder &pdb)
|
|
: PD(pd), PDB(pdb) {
|
|
|
|
// If the PathDiagnostic already has pieces, add the enclosing statement
|
|
// of the first piece as a context as well.
|
|
if (!PD.empty()) {
|
|
PrevLoc = PD.begin()->getLocation();
|
|
|
|
if (const Stmt *S = PrevLoc.asStmt())
|
|
addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
|
|
}
|
|
}
|
|
|
|
~EdgeBuilder() {
|
|
while (!CLocs.empty()) popLocation();
|
|
|
|
// Finally, add an initial edge from the start location of the first
|
|
// statement (if it doesn't already exist).
|
|
// FIXME: Should handle CXXTryStmt if analyser starts supporting C++.
|
|
if (const CompoundStmt *CS =
|
|
dyn_cast_or_null<CompoundStmt>(PDB.getCodeDecl().getBody()))
|
|
if (!CS->body_empty()) {
|
|
SourceLocation Loc = (*CS->body_begin())->getLocStart();
|
|
rawAddEdge(PathDiagnosticLocation(Loc, PDB.getSourceManager()));
|
|
}
|
|
|
|
}
|
|
|
|
void addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd = false);
|
|
|
|
void rawAddEdge(PathDiagnosticLocation NewLoc);
|
|
|
|
void addContext(const Stmt *S);
|
|
void addExtendedContext(const Stmt *S);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
PathDiagnosticLocation
|
|
EdgeBuilder::getContextLocation(const PathDiagnosticLocation &L) {
|
|
if (const Stmt *S = L.asStmt()) {
|
|
if (IsControlFlowExpr(S))
|
|
return L;
|
|
|
|
return PDB.getEnclosingStmtLocation(S);
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
bool EdgeBuilder::containsLocation(const PathDiagnosticLocation &Container,
|
|
const PathDiagnosticLocation &Containee) {
|
|
|
|
if (Container == Containee)
|
|
return true;
|
|
|
|
if (Container.asDecl())
|
|
return true;
|
|
|
|
if (const Stmt *S = Containee.asStmt())
|
|
if (const Stmt *ContainerS = Container.asStmt()) {
|
|
while (S) {
|
|
if (S == ContainerS)
|
|
return true;
|
|
S = PDB.getParent(S);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Less accurate: compare using source ranges.
|
|
SourceRange ContainerR = Container.asRange();
|
|
SourceRange ContaineeR = Containee.asRange();
|
|
|
|
SourceManager &SM = PDB.getSourceManager();
|
|
SourceLocation ContainerRBeg = SM.getInstantiationLoc(ContainerR.getBegin());
|
|
SourceLocation ContainerREnd = SM.getInstantiationLoc(ContainerR.getEnd());
|
|
SourceLocation ContaineeRBeg = SM.getInstantiationLoc(ContaineeR.getBegin());
|
|
SourceLocation ContaineeREnd = SM.getInstantiationLoc(ContaineeR.getEnd());
|
|
|
|
unsigned ContainerBegLine = SM.getInstantiationLineNumber(ContainerRBeg);
|
|
unsigned ContainerEndLine = SM.getInstantiationLineNumber(ContainerREnd);
|
|
unsigned ContaineeBegLine = SM.getInstantiationLineNumber(ContaineeRBeg);
|
|
unsigned ContaineeEndLine = SM.getInstantiationLineNumber(ContaineeREnd);
|
|
|
|
assert(ContainerBegLine <= ContainerEndLine);
|
|
assert(ContaineeBegLine <= ContaineeEndLine);
|
|
|
|
return (ContainerBegLine <= ContaineeBegLine &&
|
|
ContainerEndLine >= ContaineeEndLine &&
|
|
(ContainerBegLine != ContaineeBegLine ||
|
|
SM.getInstantiationColumnNumber(ContainerRBeg) <=
|
|
SM.getInstantiationColumnNumber(ContaineeRBeg)) &&
|
|
(ContainerEndLine != ContaineeEndLine ||
|
|
SM.getInstantiationColumnNumber(ContainerREnd) >=
|
|
SM.getInstantiationColumnNumber(ContainerREnd)));
|
|
}
|
|
|
|
void EdgeBuilder::rawAddEdge(PathDiagnosticLocation NewLoc) {
|
|
if (!PrevLoc.isValid()) {
|
|
PrevLoc = NewLoc;
|
|
return;
|
|
}
|
|
|
|
const PathDiagnosticLocation &NewLocClean = cleanUpLocation(NewLoc);
|
|
const PathDiagnosticLocation &PrevLocClean = cleanUpLocation(PrevLoc);
|
|
|
|
if (NewLocClean.asLocation() == PrevLocClean.asLocation())
|
|
return;
|
|
|
|
// FIXME: Ignore intra-macro edges for now.
|
|
if (NewLocClean.asLocation().getInstantiationLoc() ==
|
|
PrevLocClean.asLocation().getInstantiationLoc())
|
|
return;
|
|
|
|
PD.push_front(new PathDiagnosticControlFlowPiece(NewLocClean, PrevLocClean));
|
|
PrevLoc = NewLoc;
|
|
}
|
|
|
|
void EdgeBuilder::addEdge(PathDiagnosticLocation NewLoc, bool alwaysAdd) {
|
|
|
|
if (!alwaysAdd && NewLoc.asLocation().isMacroID())
|
|
return;
|
|
|
|
const PathDiagnosticLocation &CLoc = getContextLocation(NewLoc);
|
|
|
|
while (!CLocs.empty()) {
|
|
ContextLocation &TopContextLoc = CLocs.back();
|
|
|
|
// Is the top location context the same as the one for the new location?
|
|
if (TopContextLoc == CLoc) {
|
|
if (alwaysAdd) {
|
|
if (IsConsumedExpr(TopContextLoc) &&
|
|
!IsControlFlowExpr(TopContextLoc.asStmt()))
|
|
TopContextLoc.markDead();
|
|
|
|
rawAddEdge(NewLoc);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
if (containsLocation(TopContextLoc, CLoc)) {
|
|
if (alwaysAdd) {
|
|
rawAddEdge(NewLoc);
|
|
|
|
if (IsConsumedExpr(CLoc) && !IsControlFlowExpr(CLoc.asStmt())) {
|
|
CLocs.push_back(ContextLocation(CLoc, true));
|
|
return;
|
|
}
|
|
}
|
|
|
|
CLocs.push_back(CLoc);
|
|
return;
|
|
}
|
|
|
|
// Context does not contain the location. Flush it.
|
|
popLocation();
|
|
}
|
|
|
|
// If we reach here, there is no enclosing context. Just add the edge.
|
|
rawAddEdge(NewLoc);
|
|
}
|
|
|
|
bool EdgeBuilder::IsConsumedExpr(const PathDiagnosticLocation &L) {
|
|
if (const Expr *X = dyn_cast_or_null<Expr>(L.asStmt()))
|
|
return PDB.getParentMap().isConsumedExpr(X) && !IsControlFlowExpr(X);
|
|
|
|
return false;
|
|
}
|
|
|
|
void EdgeBuilder::addExtendedContext(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
|
|
const Stmt *Parent = PDB.getParent(S);
|
|
while (Parent) {
|
|
if (isa<CompoundStmt>(Parent))
|
|
Parent = PDB.getParent(Parent);
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (Parent) {
|
|
switch (Parent->getStmtClass()) {
|
|
case Stmt::DoStmtClass:
|
|
case Stmt::ObjCAtSynchronizedStmtClass:
|
|
addContext(Parent);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
addContext(S);
|
|
}
|
|
|
|
void EdgeBuilder::addContext(const Stmt *S) {
|
|
if (!S)
|
|
return;
|
|
|
|
PathDiagnosticLocation L(S, PDB.getSourceManager());
|
|
|
|
while (!CLocs.empty()) {
|
|
const PathDiagnosticLocation &TopContextLoc = CLocs.back();
|
|
|
|
// Is the top location context the same as the one for the new location?
|
|
if (TopContextLoc == L)
|
|
return;
|
|
|
|
if (containsLocation(TopContextLoc, L)) {
|
|
CLocs.push_back(L);
|
|
return;
|
|
}
|
|
|
|
// Context does not contain the location. Flush it.
|
|
popLocation();
|
|
}
|
|
|
|
CLocs.push_back(L);
|
|
}
|
|
|
|
static void GenerateExtensivePathDiagnostic(PathDiagnostic& PD,
|
|
PathDiagnosticBuilder &PDB,
|
|
const ExplodedNode *N) {
|
|
EdgeBuilder EB(PD, PDB);
|
|
|
|
const ExplodedNode* NextNode = N->pred_empty() ? NULL : *(N->pred_begin());
|
|
while (NextNode) {
|
|
N = NextNode;
|
|
NextNode = GetPredecessorNode(N);
|
|
ProgramPoint P = N->getLocation();
|
|
|
|
do {
|
|
// Block edges.
|
|
if (const BlockEdge *BE = dyn_cast<BlockEdge>(&P)) {
|
|
const CFGBlock &Blk = *BE->getSrc();
|
|
const Stmt *Term = Blk.getTerminator();
|
|
|
|
// Are we jumping to the head of a loop? Add a special diagnostic.
|
|
if (const Stmt *Loop = BE->getDst()->getLoopTarget()) {
|
|
PathDiagnosticLocation L(Loop, PDB.getSourceManager());
|
|
const CompoundStmt *CS = NULL;
|
|
|
|
if (!Term) {
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(FS->getBody());
|
|
else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Loop))
|
|
CS = dyn_cast<CompoundStmt>(WS->getBody());
|
|
}
|
|
|
|
PathDiagnosticEventPiece *p =
|
|
new PathDiagnosticEventPiece(L,
|
|
"Looping back to the head of the loop");
|
|
|
|
EB.addEdge(p->getLocation(), true);
|
|
PD.push_front(p);
|
|
|
|
if (CS) {
|
|
PathDiagnosticLocation BL(CS->getRBracLoc(),
|
|
PDB.getSourceManager());
|
|
BL = PathDiagnosticLocation(BL.asLocation());
|
|
EB.addEdge(BL);
|
|
}
|
|
}
|
|
|
|
if (Term)
|
|
EB.addContext(Term);
|
|
|
|
break;
|
|
}
|
|
|
|
if (const BlockEntrance *BE = dyn_cast<BlockEntrance>(&P)) {
|
|
if (CFGStmt S = BE->getFirstElement().getAs<CFGStmt>()) {
|
|
if (IsControlFlowExpr(S)) {
|
|
// Add the proper context for '&&', '||', and '?'.
|
|
EB.addContext(S);
|
|
}
|
|
else
|
|
EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
|
|
}
|
|
|
|
break;
|
|
}
|
|
} while (0);
|
|
|
|
if (!NextNode)
|
|
continue;
|
|
|
|
for (BugReporterContext::visitor_iterator I = PDB.visitor_begin(),
|
|
E = PDB.visitor_end(); I!=E; ++I) {
|
|
if (PathDiagnosticPiece* p = (*I)->VisitNode(N, NextNode, PDB)) {
|
|
const PathDiagnosticLocation &Loc = p->getLocation();
|
|
EB.addEdge(Loc, true);
|
|
PD.push_front(p);
|
|
if (const Stmt *S = Loc.asStmt())
|
|
EB.addExtendedContext(PDB.getEnclosingStmtLocation(S).asStmt());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugType and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
BugType::~BugType() {
|
|
// Free up the equivalence class objects. Observe that we get a pointer to
|
|
// the object first before incrementing the iterator, as destroying the
|
|
// node before doing so means we will read from freed memory.
|
|
for (iterator I = begin(), E = end(); I !=E; ) {
|
|
BugReportEquivClass *EQ = &*I;
|
|
++I;
|
|
delete EQ;
|
|
}
|
|
}
|
|
void BugType::FlushReports(BugReporter &BR) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReport and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
BugReport::~BugReport() {}
|
|
RangedBugReport::~RangedBugReport() {}
|
|
|
|
const Stmt* BugReport::getStmt() const {
|
|
ProgramPoint ProgP = ErrorNode->getLocation();
|
|
const Stmt *S = NULL;
|
|
|
|
if (BlockEntrance* BE = dyn_cast<BlockEntrance>(&ProgP)) {
|
|
CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
|
|
if (BE->getBlock() == &Exit)
|
|
S = GetPreviousStmt(ErrorNode);
|
|
}
|
|
if (!S)
|
|
S = GetStmt(ProgP);
|
|
|
|
return S;
|
|
}
|
|
|
|
PathDiagnosticPiece*
|
|
BugReport::getEndPath(BugReporterContext& BRC,
|
|
const ExplodedNode* EndPathNode) {
|
|
|
|
const Stmt* S = getStmt();
|
|
|
|
if (!S)
|
|
return NULL;
|
|
|
|
const SourceRange *Beg, *End;
|
|
getRanges(Beg, End);
|
|
PathDiagnosticLocation L(S, BRC.getSourceManager());
|
|
|
|
// Only add the statement itself as a range if we didn't specify any
|
|
// special ranges for this report.
|
|
PathDiagnosticPiece* P = new PathDiagnosticEventPiece(L, getDescription(),
|
|
Beg == End);
|
|
|
|
for (; Beg != End; ++Beg)
|
|
P->addRange(*Beg);
|
|
|
|
return P;
|
|
}
|
|
|
|
void BugReport::getRanges(const SourceRange*& beg, const SourceRange*& end) {
|
|
if (const Expr* E = dyn_cast_or_null<Expr>(getStmt())) {
|
|
R = E->getSourceRange();
|
|
assert(R.isValid());
|
|
beg = &R;
|
|
end = beg+1;
|
|
}
|
|
else
|
|
beg = end = 0;
|
|
}
|
|
|
|
SourceLocation BugReport::getLocation() const {
|
|
if (ErrorNode)
|
|
if (const Stmt* S = GetCurrentOrPreviousStmt(ErrorNode)) {
|
|
// For member expressions, return the location of the '.' or '->'.
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(S))
|
|
return ME->getMemberLoc();
|
|
// For binary operators, return the location of the operator.
|
|
if (const BinaryOperator *B = dyn_cast<BinaryOperator>(S))
|
|
return B->getOperatorLoc();
|
|
|
|
return S->getLocStart();
|
|
}
|
|
|
|
return FullSourceLoc();
|
|
}
|
|
|
|
PathDiagnosticPiece* BugReport::VisitNode(const ExplodedNode* N,
|
|
const ExplodedNode* PrevN,
|
|
BugReporterContext &BRC) {
|
|
return NULL;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Methods for BugReporter and subclasses.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BugReportEquivClass::~BugReportEquivClass() {
|
|
for (iterator I=begin(), E=end(); I!=E; ++I) delete *I;
|
|
}
|
|
|
|
GRBugReporter::~GRBugReporter() { }
|
|
BugReporterData::~BugReporterData() {}
|
|
|
|
ExplodedGraph &GRBugReporter::getGraph() { return Eng.getGraph(); }
|
|
|
|
GRStateManager&
|
|
GRBugReporter::getStateManager() { return Eng.getStateManager(); }
|
|
|
|
BugReporter::~BugReporter() { FlushReports(); }
|
|
|
|
void BugReporter::FlushReports() {
|
|
if (BugTypes.isEmpty())
|
|
return;
|
|
|
|
// First flush the warnings for each BugType. This may end up creating new
|
|
// warnings and new BugTypes. Because ImmutableSet is a functional data
|
|
// structure, we do not need to worry about the iterators being invalidated.
|
|
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I)
|
|
const_cast<BugType*>(*I)->FlushReports(*this);
|
|
|
|
// Iterate through BugTypes a second time. BugTypes may have been updated
|
|
// with new BugType objects and new warnings.
|
|
for (BugTypesTy::iterator I=BugTypes.begin(), E=BugTypes.end(); I!=E; ++I) {
|
|
BugType *BT = const_cast<BugType*>(*I);
|
|
|
|
typedef llvm::FoldingSet<BugReportEquivClass> SetTy;
|
|
SetTy& EQClasses = BT->EQClasses;
|
|
|
|
for (SetTy::iterator EI=EQClasses.begin(), EE=EQClasses.end(); EI!=EE;++EI){
|
|
BugReportEquivClass& EQ = *EI;
|
|
FlushReport(EQ);
|
|
}
|
|
|
|
// Delete the BugType object.
|
|
delete BT;
|
|
}
|
|
|
|
// Remove all references to the BugType objects.
|
|
BugTypes = F.GetEmptySet();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// PathDiagnostics generation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
|
|
std::pair<ExplodedNode*, unsigned> >
|
|
MakeReportGraph(const ExplodedGraph* G,
|
|
const ExplodedNode** NStart,
|
|
const ExplodedNode** NEnd) {
|
|
|
|
// Create the trimmed graph. It will contain the shortest paths from the
|
|
// error nodes to the root. In the new graph we should only have one
|
|
// error node unless there are two or more error nodes with the same minimum
|
|
// path length.
|
|
ExplodedGraph* GTrim;
|
|
InterExplodedGraphMap* NMap;
|
|
|
|
llvm::DenseMap<const void*, const void*> InverseMap;
|
|
llvm::tie(GTrim, NMap) = G->Trim(NStart, NEnd, &InverseMap);
|
|
|
|
// Create owning pointers for GTrim and NMap just to ensure that they are
|
|
// released when this function exists.
|
|
llvm::OwningPtr<ExplodedGraph> AutoReleaseGTrim(GTrim);
|
|
llvm::OwningPtr<InterExplodedGraphMap> AutoReleaseNMap(NMap);
|
|
|
|
// Find the (first) error node in the trimmed graph. We just need to consult
|
|
// the node map (NMap) which maps from nodes in the original graph to nodes
|
|
// in the new graph.
|
|
|
|
std::queue<const ExplodedNode*> WS;
|
|
typedef llvm::DenseMap<const ExplodedNode*, unsigned> IndexMapTy;
|
|
IndexMapTy IndexMap;
|
|
|
|
for (const ExplodedNode** I = NStart; I != NEnd; ++I)
|
|
if (const ExplodedNode *N = NMap->getMappedNode(*I)) {
|
|
unsigned NodeIndex = (I - NStart) / sizeof(*I);
|
|
WS.push(N);
|
|
IndexMap[*I] = NodeIndex;
|
|
}
|
|
|
|
assert(!WS.empty() && "No error node found in the trimmed graph.");
|
|
|
|
// Create a new (third!) graph with a single path. This is the graph
|
|
// that will be returned to the caller.
|
|
ExplodedGraph *GNew = new ExplodedGraph();
|
|
|
|
// Sometimes the trimmed graph can contain a cycle. Perform a reverse BFS
|
|
// to the root node, and then construct a new graph that contains only
|
|
// a single path.
|
|
llvm::DenseMap<const void*,unsigned> Visited;
|
|
|
|
unsigned cnt = 0;
|
|
const ExplodedNode* Root = 0;
|
|
|
|
while (!WS.empty()) {
|
|
const ExplodedNode* Node = WS.front();
|
|
WS.pop();
|
|
|
|
if (Visited.find(Node) != Visited.end())
|
|
continue;
|
|
|
|
Visited[Node] = cnt++;
|
|
|
|
if (Node->pred_empty()) {
|
|
Root = Node;
|
|
break;
|
|
}
|
|
|
|
for (ExplodedNode::const_pred_iterator I=Node->pred_begin(),
|
|
E=Node->pred_end(); I!=E; ++I)
|
|
WS.push(*I);
|
|
}
|
|
|
|
assert(Root);
|
|
|
|
// Now walk from the root down the BFS path, always taking the successor
|
|
// with the lowest number.
|
|
ExplodedNode *Last = 0, *First = 0;
|
|
NodeBackMap *BM = new NodeBackMap();
|
|
unsigned NodeIndex = 0;
|
|
|
|
for ( const ExplodedNode *N = Root ;;) {
|
|
// Lookup the number associated with the current node.
|
|
llvm::DenseMap<const void*,unsigned>::iterator I = Visited.find(N);
|
|
assert(I != Visited.end());
|
|
|
|
// Create the equivalent node in the new graph with the same state
|
|
// and location.
|
|
ExplodedNode* NewN = GNew->getNode(N->getLocation(), N->getState());
|
|
|
|
// Store the mapping to the original node.
|
|
llvm::DenseMap<const void*, const void*>::iterator IMitr=InverseMap.find(N);
|
|
assert(IMitr != InverseMap.end() && "No mapping to original node.");
|
|
(*BM)[NewN] = (const ExplodedNode*) IMitr->second;
|
|
|
|
// Link up the new node with the previous node.
|
|
if (Last)
|
|
NewN->addPredecessor(Last, *GNew);
|
|
|
|
Last = NewN;
|
|
|
|
// Are we at the final node?
|
|
IndexMapTy::iterator IMI =
|
|
IndexMap.find((const ExplodedNode*)(IMitr->second));
|
|
if (IMI != IndexMap.end()) {
|
|
First = NewN;
|
|
NodeIndex = IMI->second;
|
|
break;
|
|
}
|
|
|
|
// Find the next successor node. We choose the node that is marked
|
|
// with the lowest DFS number.
|
|
ExplodedNode::const_succ_iterator SI = N->succ_begin();
|
|
ExplodedNode::const_succ_iterator SE = N->succ_end();
|
|
N = 0;
|
|
|
|
for (unsigned MinVal = 0; SI != SE; ++SI) {
|
|
|
|
I = Visited.find(*SI);
|
|
|
|
if (I == Visited.end())
|
|
continue;
|
|
|
|
if (!N || I->second < MinVal) {
|
|
N = *SI;
|
|
MinVal = I->second;
|
|
}
|
|
}
|
|
|
|
assert(N);
|
|
}
|
|
|
|
assert(First);
|
|
|
|
return std::make_pair(std::make_pair(GNew, BM),
|
|
std::make_pair(First, NodeIndex));
|
|
}
|
|
|
|
/// CompactPathDiagnostic - This function postprocesses a PathDiagnostic object
|
|
/// and collapses PathDiagosticPieces that are expanded by macros.
|
|
static void CompactPathDiagnostic(PathDiagnostic &PD, const SourceManager& SM) {
|
|
typedef std::vector<std::pair<PathDiagnosticMacroPiece*, SourceLocation> >
|
|
MacroStackTy;
|
|
|
|
typedef std::vector<PathDiagnosticPiece*>
|
|
PiecesTy;
|
|
|
|
MacroStackTy MacroStack;
|
|
PiecesTy Pieces;
|
|
|
|
for (PathDiagnostic::iterator I = PD.begin(), E = PD.end(); I!=E; ++I) {
|
|
// Get the location of the PathDiagnosticPiece.
|
|
const FullSourceLoc Loc = I->getLocation().asLocation();
|
|
|
|
// Determine the instantiation location, which is the location we group
|
|
// related PathDiagnosticPieces.
|
|
SourceLocation InstantiationLoc = Loc.isMacroID() ?
|
|
SM.getInstantiationLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
if (Loc.isFileID()) {
|
|
MacroStack.clear();
|
|
Pieces.push_back(&*I);
|
|
continue;
|
|
}
|
|
|
|
assert(Loc.isMacroID());
|
|
|
|
// Is the PathDiagnosticPiece within the same macro group?
|
|
if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
|
|
MacroStack.back().first->push_back(&*I);
|
|
continue;
|
|
}
|
|
|
|
// We aren't in the same group. Are we descending into a new macro
|
|
// or are part of an old one?
|
|
PathDiagnosticMacroPiece *MacroGroup = 0;
|
|
|
|
SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
|
|
SM.getInstantiationLoc(Loc) :
|
|
SourceLocation();
|
|
|
|
// Walk the entire macro stack.
|
|
while (!MacroStack.empty()) {
|
|
if (InstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
if (ParentInstantiationLoc == MacroStack.back().second) {
|
|
MacroGroup = MacroStack.back().first;
|
|
break;
|
|
}
|
|
|
|
MacroStack.pop_back();
|
|
}
|
|
|
|
if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
|
|
// Create a new macro group and add it to the stack.
|
|
PathDiagnosticMacroPiece *NewGroup = new PathDiagnosticMacroPiece(Loc);
|
|
|
|
if (MacroGroup)
|
|
MacroGroup->push_back(NewGroup);
|
|
else {
|
|
assert(InstantiationLoc.isFileID());
|
|
Pieces.push_back(NewGroup);
|
|
}
|
|
|
|
MacroGroup = NewGroup;
|
|
MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
|
|
}
|
|
|
|
// Finally, add the PathDiagnosticPiece to the group.
|
|
MacroGroup->push_back(&*I);
|
|
}
|
|
|
|
// Now take the pieces and construct a new PathDiagnostic.
|
|
PD.resetPath(false);
|
|
|
|
for (PiecesTy::iterator I=Pieces.begin(), E=Pieces.end(); I!=E; ++I) {
|
|
if (PathDiagnosticMacroPiece *MP=dyn_cast<PathDiagnosticMacroPiece>(*I))
|
|
if (!MP->containsEvent()) {
|
|
delete MP;
|
|
continue;
|
|
}
|
|
|
|
PD.push_back(*I);
|
|
}
|
|
}
|
|
|
|
void GRBugReporter::GeneratePathDiagnostic(PathDiagnostic& PD,
|
|
BugReportEquivClass& EQ,
|
|
llvm::SmallVectorImpl<const ExplodedNode *> &Nodes) {
|
|
|
|
|
|
assert(!Nodes.empty());
|
|
|
|
// Construct a new graph that contains only a single path from the error
|
|
// node to a root.
|
|
const std::pair<std::pair<ExplodedGraph*, NodeBackMap*>,
|
|
std::pair<ExplodedNode*, unsigned> >&
|
|
GPair = MakeReportGraph(&getGraph(), &Nodes[0],
|
|
Nodes.data() + Nodes.size());
|
|
|
|
// Find the BugReport with the original location.
|
|
BugReport *R = 0;
|
|
unsigned i = 0;
|
|
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I, ++i)
|
|
if (i == GPair.second.second) { R = *I; break; }
|
|
|
|
assert(R && "No original report found for sliced graph.");
|
|
|
|
llvm::OwningPtr<ExplodedGraph> ReportGraph(GPair.first.first);
|
|
llvm::OwningPtr<NodeBackMap> BackMap(GPair.first.second);
|
|
const ExplodedNode *N = GPair.second.first;
|
|
|
|
// Start building the path diagnostic...
|
|
PathDiagnosticBuilder PDB(*this, R, BackMap.get(), getPathDiagnosticClient());
|
|
|
|
if (PathDiagnosticPiece* Piece = R->getEndPath(PDB, N))
|
|
PD.push_back(Piece);
|
|
else
|
|
return;
|
|
|
|
// Register node visitors.
|
|
R->registerInitialVisitors(PDB, N);
|
|
bugreporter::registerNilReceiverVisitor(PDB);
|
|
|
|
switch (PDB.getGenerationScheme()) {
|
|
case PathDiagnosticClient::Extensive:
|
|
GenerateExtensivePathDiagnostic(PD, PDB, N);
|
|
break;
|
|
case PathDiagnosticClient::Minimal:
|
|
GenerateMinimalPathDiagnostic(PD, PDB, N);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void BugReporter::Register(BugType *BT) {
|
|
BugTypes = F.Add(BugTypes, BT);
|
|
}
|
|
|
|
void BugReporter::EmitReport(BugReport* R) {
|
|
// Compute the bug report's hash to determine its equivalence class.
|
|
llvm::FoldingSetNodeID ID;
|
|
R->Profile(ID);
|
|
|
|
// Lookup the equivance class. If there isn't one, create it.
|
|
BugType& BT = R->getBugType();
|
|
Register(&BT);
|
|
void *InsertPos;
|
|
BugReportEquivClass* EQ = BT.EQClasses.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!EQ) {
|
|
EQ = new BugReportEquivClass(R);
|
|
BT.EQClasses.InsertNode(EQ, InsertPos);
|
|
}
|
|
else
|
|
EQ->AddReport(R);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Emitting reports in equivalence classes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct FRIEC_WLItem {
|
|
const ExplodedNode *N;
|
|
ExplodedNode::const_succ_iterator I, E;
|
|
|
|
FRIEC_WLItem(const ExplodedNode *n)
|
|
: N(n), I(N->succ_begin()), E(N->succ_end()) {}
|
|
};
|
|
}
|
|
|
|
static BugReport *
|
|
FindReportInEquivalenceClass(BugReportEquivClass& EQ,
|
|
llvm::SmallVectorImpl<const ExplodedNode*> &Nodes) {
|
|
|
|
BugReportEquivClass::iterator I = EQ.begin(), E = EQ.end();
|
|
assert(I != E);
|
|
BugReport *R = *I;
|
|
BugType& BT = R->getBugType();
|
|
|
|
// If we don't need to suppress any of the nodes because they are post-dominated
|
|
// by a sink, simply add all the nodes in the equivalence class to 'Nodes'.
|
|
if (!BT.isSuppressOnSink()) {
|
|
for (BugReportEquivClass::iterator I=EQ.begin(), E=EQ.end(); I!=E; ++I) {
|
|
const ExplodedNode* N = I->getErrorNode();
|
|
if (N) {
|
|
R = *I;
|
|
Nodes.push_back(N);
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// For bug reports that should be suppressed when all paths are post-dominated
|
|
// by a sink node, iterate through the reports in the equivalence class
|
|
// until we find one that isn't post-dominated (if one exists). We use a
|
|
// DFS traversal of the ExplodedGraph to find a non-sink node. We could write
|
|
// this as a recursive function, but we don't want to risk blowing out the
|
|
// stack for very long paths.
|
|
BugReport *ExampleReport = 0;
|
|
|
|
for (; I != E; ++I) {
|
|
R = *I;
|
|
const ExplodedNode *N = R->getErrorNode();
|
|
|
|
if (!N)
|
|
continue;
|
|
|
|
if (N->isSink()) {
|
|
assert(false &&
|
|
"BugType::isSuppressSink() should not be 'true' for sink end nodes");
|
|
return 0;
|
|
}
|
|
|
|
// No successors? By definition this nodes isn't post-dominated by a sink.
|
|
if (N->succ_empty()) {
|
|
Nodes.push_back(N);
|
|
if (!ExampleReport)
|
|
ExampleReport = R;
|
|
continue;
|
|
}
|
|
|
|
// At this point we know that 'N' is not a sink and it has at least one
|
|
// successor. Use a DFS worklist to find a non-sink end-of-path node.
|
|
typedef FRIEC_WLItem WLItem;
|
|
typedef llvm::SmallVector<WLItem, 10> DFSWorkList;
|
|
llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
|
|
|
|
DFSWorkList WL;
|
|
WL.push_back(N);
|
|
Visited[N] = 1;
|
|
|
|
while (!WL.empty()) {
|
|
WLItem &WI = WL.back();
|
|
assert(!WI.N->succ_empty());
|
|
|
|
for (; WI.I != WI.E; ++WI.I) {
|
|
const ExplodedNode *Succ = *WI.I;
|
|
// End-of-path node?
|
|
if (Succ->succ_empty()) {
|
|
// If we found an end-of-path node that is not a sink.
|
|
if (!Succ->isSink()) {
|
|
Nodes.push_back(N);
|
|
if (!ExampleReport)
|
|
ExampleReport = R;
|
|
WL.clear();
|
|
break;
|
|
}
|
|
// Found a sink? Continue on to the next successor.
|
|
continue;
|
|
}
|
|
// Mark the successor as visited. If it hasn't been explored,
|
|
// enqueue it to the DFS worklist.
|
|
unsigned &mark = Visited[Succ];
|
|
if (!mark) {
|
|
mark = 1;
|
|
WL.push_back(Succ);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// The worklist may have been cleared at this point. First
|
|
// check if it is empty before checking the last item.
|
|
if (!WL.empty() && &WL.back() == &WI)
|
|
WL.pop_back();
|
|
}
|
|
}
|
|
|
|
// ExampleReport will be NULL if all the nodes in the equivalence class
|
|
// were post-dominated by sinks.
|
|
return ExampleReport;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DiagnosticCache. This is a hack to cache analyzer diagnostics. It
|
|
// uses global state, which eventually should go elsewhere.
|
|
//===----------------------------------------------------------------------===//
|
|
namespace {
|
|
class DiagCacheItem : public llvm::FoldingSetNode {
|
|
llvm::FoldingSetNodeID ID;
|
|
public:
|
|
DiagCacheItem(BugReport *R, PathDiagnostic *PD) {
|
|
ID.AddString(R->getBugType().getName());
|
|
ID.AddString(R->getBugType().getCategory());
|
|
ID.AddString(R->getDescription());
|
|
ID.AddInteger(R->getLocation().getRawEncoding());
|
|
PD->Profile(ID);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &id) {
|
|
id = ID;
|
|
}
|
|
|
|
llvm::FoldingSetNodeID &getID() { return ID; }
|
|
};
|
|
}
|
|
|
|
static bool IsCachedDiagnostic(BugReport *R, PathDiagnostic *PD) {
|
|
// FIXME: Eventually this diagnostic cache should reside in something
|
|
// like AnalysisManager instead of being a static variable. This is
|
|
// really unsafe in the long term.
|
|
typedef llvm::FoldingSet<DiagCacheItem> DiagnosticCache;
|
|
static DiagnosticCache DC;
|
|
|
|
void *InsertPos;
|
|
DiagCacheItem *Item = new DiagCacheItem(R, PD);
|
|
|
|
if (DC.FindNodeOrInsertPos(Item->getID(), InsertPos)) {
|
|
delete Item;
|
|
return true;
|
|
}
|
|
|
|
DC.InsertNode(Item, InsertPos);
|
|
return false;
|
|
}
|
|
|
|
void BugReporter::FlushReport(BugReportEquivClass& EQ) {
|
|
llvm::SmallVector<const ExplodedNode*, 10> Nodes;
|
|
BugReport *R = FindReportInEquivalenceClass(EQ, Nodes);
|
|
|
|
if (!R)
|
|
return;
|
|
|
|
PathDiagnosticClient* PD = getPathDiagnosticClient();
|
|
|
|
// FIXME: Make sure we use the 'R' for the path that was actually used.
|
|
// Probably doesn't make a difference in practice.
|
|
BugType& BT = R->getBugType();
|
|
|
|
llvm::OwningPtr<PathDiagnostic>
|
|
D(new PathDiagnostic(R->getBugType().getName(),
|
|
!PD || PD->useVerboseDescription()
|
|
? R->getDescription() : R->getShortDescription(),
|
|
BT.getCategory()));
|
|
|
|
if (!Nodes.empty())
|
|
GeneratePathDiagnostic(*D.get(), EQ, Nodes);
|
|
|
|
if (IsCachedDiagnostic(R, D.get()))
|
|
return;
|
|
|
|
// Get the meta data.
|
|
std::pair<const char**, const char**> Meta = R->getExtraDescriptiveText();
|
|
for (const char** s = Meta.first; s != Meta.second; ++s)
|
|
D->addMeta(*s);
|
|
|
|
// Emit a summary diagnostic to the regular Diagnostics engine.
|
|
const SourceRange *Beg = 0, *End = 0;
|
|
R->getRanges(Beg, End);
|
|
Diagnostic& Diag = getDiagnostic();
|
|
FullSourceLoc L(R->getLocation(), getSourceManager());
|
|
|
|
// Search the description for '%', as that will be interpretted as a
|
|
// format character by FormatDiagnostics.
|
|
llvm::StringRef desc = R->getShortDescription();
|
|
unsigned ErrorDiag;
|
|
{
|
|
llvm::SmallString<512> TmpStr;
|
|
llvm::raw_svector_ostream Out(TmpStr);
|
|
for (llvm::StringRef::iterator I=desc.begin(), E=desc.end(); I!=E; ++I)
|
|
if (*I == '%')
|
|
Out << "%%";
|
|
else
|
|
Out << *I;
|
|
|
|
Out.flush();
|
|
ErrorDiag = Diag.getCustomDiagID(Diagnostic::Warning, TmpStr);
|
|
}
|
|
|
|
switch (End-Beg) {
|
|
default: assert(0 && "Don't handle this many ranges yet!");
|
|
case 0: Diag.Report(L, ErrorDiag); break;
|
|
case 1: Diag.Report(L, ErrorDiag) << Beg[0]; break;
|
|
case 2: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1]; break;
|
|
case 3: Diag.Report(L, ErrorDiag) << Beg[0] << Beg[1] << Beg[2]; break;
|
|
}
|
|
|
|
// Emit a full diagnostic for the path if we have a PathDiagnosticClient.
|
|
if (!PD)
|
|
return;
|
|
|
|
if (D->empty()) {
|
|
PathDiagnosticPiece* piece =
|
|
new PathDiagnosticEventPiece(L, R->getDescription());
|
|
|
|
for ( ; Beg != End; ++Beg) piece->addRange(*Beg);
|
|
D->push_back(piece);
|
|
}
|
|
|
|
PD->HandlePathDiagnostic(D.take());
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(llvm::StringRef name, llvm::StringRef str,
|
|
SourceLocation Loc,
|
|
SourceRange* RBeg, unsigned NumRanges) {
|
|
EmitBasicReport(name, "", str, Loc, RBeg, NumRanges);
|
|
}
|
|
|
|
void BugReporter::EmitBasicReport(llvm::StringRef name,
|
|
llvm::StringRef category,
|
|
llvm::StringRef str, SourceLocation Loc,
|
|
SourceRange* RBeg, unsigned NumRanges) {
|
|
|
|
// 'BT' will be owned by BugReporter as soon as we call 'EmitReport'.
|
|
BugType *BT = new BugType(name, category);
|
|
FullSourceLoc L = getContext().getFullLoc(Loc);
|
|
RangedBugReport *R = new DiagBugReport(*BT, str, L);
|
|
for ( ; NumRanges > 0 ; --NumRanges, ++RBeg) R->addRange(*RBeg);
|
|
EmitReport(R);
|
|
}
|