llvm-project/clang/lib/CodeGen/CGDebugInfo.cpp

4648 lines
178 KiB
C++

//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This coordinates the debug information generation while generating code.
//
//===----------------------------------------------------------------------===//
#include "CGDebugInfo.h"
#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGObjCRuntime.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/ModuleMap.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
using namespace clang;
using namespace clang::CodeGen;
static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) {
auto TI = Ctx.getTypeInfo(Ty);
return TI.AlignIsRequired ? TI.Align : 0;
}
static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) {
return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx);
}
static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) {
return D->hasAttr<AlignedAttr>() ? D->getMaxAlignment() : 0;
}
CGDebugInfo::CGDebugInfo(CodeGenModule &CGM)
: CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()),
DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs),
DBuilder(CGM.getModule()) {
for (const auto &KV : CGM.getCodeGenOpts().DebugPrefixMap)
DebugPrefixMap[KV.first] = KV.second;
CreateCompileUnit();
}
CGDebugInfo::~CGDebugInfo() {
assert(LexicalBlockStack.empty() &&
"Region stack mismatch, stack not empty!");
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation);
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF,
bool DefaultToEmpty,
SourceLocation TemporaryLocation)
: CGF(&CGF) {
init(TemporaryLocation, DefaultToEmpty);
}
void ApplyDebugLocation::init(SourceLocation TemporaryLocation,
bool DefaultToEmpty) {
auto *DI = CGF->getDebugInfo();
if (!DI) {
CGF = nullptr;
return;
}
OriginalLocation = CGF->Builder.getCurrentDebugLocation();
if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled())
return;
if (TemporaryLocation.isValid()) {
DI->EmitLocation(CGF->Builder, TemporaryLocation);
return;
}
if (DefaultToEmpty) {
CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc());
return;
}
// Construct a location that has a valid scope, but no line info.
assert(!DI->LexicalBlockStack.empty());
CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc::get(
0, 0, DI->LexicalBlockStack.back(), DI->getInlinedAt()));
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E)
: CGF(&CGF) {
init(E->getExprLoc());
}
ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
OriginalLocation = CGF.Builder.getCurrentDebugLocation();
if (Loc)
CGF.Builder.SetCurrentDebugLocation(std::move(Loc));
}
ApplyDebugLocation::~ApplyDebugLocation() {
// Query CGF so the location isn't overwritten when location updates are
// temporarily disabled (for C++ default function arguments)
if (CGF)
CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation));
}
ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF,
GlobalDecl InlinedFn)
: CGF(&CGF) {
if (!CGF.getDebugInfo()) {
this->CGF = nullptr;
return;
}
auto &DI = *CGF.getDebugInfo();
SavedLocation = DI.getLocation();
assert((DI.getInlinedAt() ==
CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) &&
"CGDebugInfo and IRBuilder are out of sync");
DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn);
}
ApplyInlineDebugLocation::~ApplyInlineDebugLocation() {
if (!CGF)
return;
auto &DI = *CGF->getDebugInfo();
DI.EmitInlineFunctionEnd(CGF->Builder);
DI.EmitLocation(CGF->Builder, SavedLocation);
}
void CGDebugInfo::setLocation(SourceLocation Loc) {
// If the new location isn't valid return.
if (Loc.isInvalid())
return;
CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc);
// If we've changed files in the middle of a lexical scope go ahead
// and create a new lexical scope with file node if it's different
// from the one in the scope.
if (LexicalBlockStack.empty())
return;
SourceManager &SM = CGM.getContext().getSourceManager();
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc);
if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc))
return;
if (auto *LBF = dyn_cast<llvm::DILexicalBlockFile>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile(
LBF->getScope(), getOrCreateFile(CurLoc)));
} else if (isa<llvm::DILexicalBlock>(Scope) ||
isa<llvm::DISubprogram>(Scope)) {
LexicalBlockStack.pop_back();
LexicalBlockStack.emplace_back(
DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc)));
}
}
llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) {
llvm::DIScope *Mod = getParentModuleOrNull(D);
return getContextDescriptor(cast<Decl>(D->getDeclContext()),
Mod ? Mod : TheCU);
}
llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context,
llvm::DIScope *Default) {
if (!Context)
return Default;
auto I = RegionMap.find(Context);
if (I != RegionMap.end()) {
llvm::Metadata *V = I->second;
return dyn_cast_or_null<llvm::DIScope>(V);
}
// Check namespace.
if (const auto *NSDecl = dyn_cast<NamespaceDecl>(Context))
return getOrCreateNamespace(NSDecl);
if (const auto *RDecl = dyn_cast<RecordDecl>(Context))
if (!RDecl->isDependentType())
return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl),
TheCU->getFile());
return Default;
}
PrintingPolicy CGDebugInfo::getPrintingPolicy() const {
PrintingPolicy PP = CGM.getContext().getPrintingPolicy();
// If we're emitting codeview, it's important to try to match MSVC's naming so
// that visualizers written for MSVC will trigger for our class names. In
// particular, we can't have spaces between arguments of standard templates
// like basic_string and vector.
if (CGM.getCodeGenOpts().EmitCodeView)
PP.MSVCFormatting = true;
// Apply -fdebug-prefix-map.
PP.RemapFilePaths = true;
PP.remapPath = [this](StringRef Path) { return remapDIPath(Path); };
return PP;
}
StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) {
assert(FD && "Invalid FunctionDecl!");
IdentifierInfo *FII = FD->getIdentifier();
FunctionTemplateSpecializationInfo *Info =
FD->getTemplateSpecializationInfo();
// Emit the unqualified name in normal operation. LLVM and the debugger can
// compute the fully qualified name from the scope chain. If we're only
// emitting line table info, there won't be any scope chains, so emit the
// fully qualified name here so that stack traces are more accurate.
// FIXME: Do this when emitting DWARF as well as when emitting CodeView after
// evaluating the size impact.
bool UseQualifiedName = DebugKind == codegenoptions::DebugLineTablesOnly &&
CGM.getCodeGenOpts().EmitCodeView;
if (!Info && FII && !UseQualifiedName)
return FII->getName();
SmallString<128> NS;
llvm::raw_svector_ostream OS(NS);
if (!UseQualifiedName)
FD->printName(OS);
else
FD->printQualifiedName(OS, getPrintingPolicy());
// Add any template specialization args.
if (Info) {
const TemplateArgumentList *TArgs = Info->TemplateArguments;
printTemplateArgumentList(OS, TArgs->asArray(), getPrintingPolicy());
}
// Copy this name on the side and use its reference.
return internString(OS.str());
}
StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) {
SmallString<256> MethodName;
llvm::raw_svector_ostream OS(MethodName);
OS << (OMD->isInstanceMethod() ? '-' : '+') << '[';
const DeclContext *DC = OMD->getDeclContext();
if (const auto *OID = dyn_cast<ObjCImplementationDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OID = dyn_cast<ObjCInterfaceDecl>(DC)) {
OS << OID->getName();
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(DC)) {
if (OC->IsClassExtension()) {
OS << OC->getClassInterface()->getName();
} else {
OS << OC->getIdentifier()->getNameStart() << '('
<< OC->getIdentifier()->getNameStart() << ')';
}
} else if (const auto *OCD = dyn_cast<ObjCCategoryImplDecl>(DC)) {
OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')';
} else if (isa<ObjCProtocolDecl>(DC)) {
// We can extract the type of the class from the self pointer.
if (ImplicitParamDecl *SelfDecl = OMD->getSelfDecl()) {
QualType ClassTy =
cast<ObjCObjectPointerType>(SelfDecl->getType())->getPointeeType();
ClassTy.print(OS, PrintingPolicy(LangOptions()));
}
}
OS << ' ' << OMD->getSelector().getAsString() << ']';
return internString(OS.str());
}
StringRef CGDebugInfo::getSelectorName(Selector S) {
return internString(S.getAsString());
}
StringRef CGDebugInfo::getClassName(const RecordDecl *RD) {
if (isa<ClassTemplateSpecializationDecl>(RD)) {
SmallString<128> Name;
llvm::raw_svector_ostream OS(Name);
RD->getNameForDiagnostic(OS, getPrintingPolicy(),
/*Qualified*/ false);
// Copy this name on the side and use its reference.
return internString(Name);
}
// quick optimization to avoid having to intern strings that are already
// stored reliably elsewhere
if (const IdentifierInfo *II = RD->getIdentifier())
return II->getName();
// The CodeView printer in LLVM wants to see the names of unnamed types: it is
// used to reconstruct the fully qualified type names.
if (CGM.getCodeGenOpts().EmitCodeView) {
if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) {
assert(RD->getDeclContext() == D->getDeclContext() &&
"Typedef should not be in another decl context!");
assert(D->getDeclName().getAsIdentifierInfo() &&
"Typedef was not named!");
return D->getDeclName().getAsIdentifierInfo()->getName();
}
if (CGM.getLangOpts().CPlusPlus) {
StringRef Name;
ASTContext &Context = CGM.getContext();
if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// declarator mangled in if they have one.
Name = DD->getName();
else if (const TypedefNameDecl *TND =
Context.getTypedefNameForUnnamedTagDecl(RD))
// Anonymous types without a name for linkage purposes have their
// associate typedef mangled in if they have one.
Name = TND->getName();
if (!Name.empty()) {
SmallString<256> UnnamedType("<unnamed-type-");
UnnamedType += Name;
UnnamedType += '>';
return internString(UnnamedType);
}
}
}
return StringRef();
}
Optional<llvm::DIFile::ChecksumKind>
CGDebugInfo::computeChecksum(FileID FID, SmallString<32> &Checksum) const {
Checksum.clear();
if (!CGM.getCodeGenOpts().EmitCodeView &&
CGM.getCodeGenOpts().DwarfVersion < 5)
return None;
SourceManager &SM = CGM.getContext().getSourceManager();
bool Invalid;
const llvm::MemoryBuffer *MemBuffer = SM.getBuffer(FID, &Invalid);
if (Invalid)
return None;
llvm::MD5 Hash;
llvm::MD5::MD5Result Result;
Hash.update(MemBuffer->getBuffer());
Hash.final(Result);
Hash.stringifyResult(Result, Checksum);
return llvm::DIFile::CSK_MD5;
}
Optional<StringRef> CGDebugInfo::getSource(const SourceManager &SM,
FileID FID) {
if (!CGM.getCodeGenOpts().EmbedSource)
return None;
bool SourceInvalid = false;
StringRef Source = SM.getBufferData(FID, &SourceInvalid);
if (SourceInvalid)
return None;
return Source;
}
llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) {
if (!Loc.isValid())
// If Location is not valid then use main input file.
return TheCU->getFile();
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
StringRef FileName = PLoc.getFilename();
if (PLoc.isInvalid() || FileName.empty())
// If the location is not valid then use main input file.
return TheCU->getFile();
// Cache the results.
auto It = DIFileCache.find(FileName.data());
if (It != DIFileCache.end()) {
// Verify that the information still exists.
if (llvm::Metadata *V = It->second)
return cast<llvm::DIFile>(V);
}
SmallString<32> Checksum;
// Compute the checksum if possible. If the location is affected by a #line
// directive that refers to a file, PLoc will have an invalid FileID, and we
// will correctly get no checksum.
Optional<llvm::DIFile::ChecksumKind> CSKind =
computeChecksum(PLoc.getFileID(), Checksum);
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc)));
}
llvm::DIFile *
CGDebugInfo::createFile(StringRef FileName,
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo,
Optional<StringRef> Source) {
StringRef Dir;
StringRef File;
std::string RemappedFile = remapDIPath(FileName);
std::string CurDir = remapDIPath(getCurrentDirname());
SmallString<128> DirBuf;
SmallString<128> FileBuf;
if (llvm::sys::path::is_absolute(RemappedFile)) {
// Strip the common prefix (if it is more than just "/") from current
// directory and FileName for a more space-efficient encoding.
auto FileIt = llvm::sys::path::begin(RemappedFile);
auto FileE = llvm::sys::path::end(RemappedFile);
auto CurDirIt = llvm::sys::path::begin(CurDir);
auto CurDirE = llvm::sys::path::end(CurDir);
for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt)
llvm::sys::path::append(DirBuf, *CurDirIt);
if (std::distance(llvm::sys::path::begin(CurDir), CurDirIt) == 1) {
// Don't strip the common prefix if it is only the root "/"
// since that would make LLVM diagnostic locations confusing.
Dir = {};
File = RemappedFile;
} else {
for (; FileIt != FileE; ++FileIt)
llvm::sys::path::append(FileBuf, *FileIt);
Dir = DirBuf;
File = FileBuf;
}
} else {
Dir = CurDir;
File = RemappedFile;
}
llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source);
DIFileCache[FileName.data()].reset(F);
return F;
}
std::string CGDebugInfo::remapDIPath(StringRef Path) const {
for (const auto &Entry : DebugPrefixMap)
if (Path.startswith(Entry.first))
return (Twine(Entry.second) + Path.substr(Entry.first.size())).str();
return Path.str();
}
unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) {
if (Loc.isInvalid() && CurLoc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
return PLoc.isValid() ? PLoc.getLine() : 0;
}
unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) {
// We may not want column information at all.
if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo)
return 0;
// If the location is invalid then use the current column.
if (Loc.isInvalid() && CurLoc.isInvalid())
return 0;
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc);
return PLoc.isValid() ? PLoc.getColumn() : 0;
}
StringRef CGDebugInfo::getCurrentDirname() {
if (!CGM.getCodeGenOpts().DebugCompilationDir.empty())
return CGM.getCodeGenOpts().DebugCompilationDir;
if (!CWDName.empty())
return CWDName;
SmallString<256> CWD;
llvm::sys::fs::current_path(CWD);
return CWDName = internString(CWD);
}
void CGDebugInfo::CreateCompileUnit() {
SmallString<32> Checksum;
Optional<llvm::DIFile::ChecksumKind> CSKind;
Optional<llvm::DIFile::ChecksumInfo<StringRef>> CSInfo;
// Should we be asking the SourceManager for the main file name, instead of
// accepting it as an argument? This just causes the main file name to
// mismatch with source locations and create extra lexical scopes or
// mismatched debug info (a CU with a DW_AT_file of "-", because that's what
// the driver passed, but functions/other things have DW_AT_file of "<stdin>"
// because that's what the SourceManager says)
// Get absolute path name.
SourceManager &SM = CGM.getContext().getSourceManager();
std::string MainFileName = CGM.getCodeGenOpts().MainFileName;
if (MainFileName.empty())
MainFileName = "<stdin>";
// The main file name provided via the "-main-file-name" option contains just
// the file name itself with no path information. This file name may have had
// a relative path, so we look into the actual file entry for the main
// file to determine the real absolute path for the file.
std::string MainFileDir;
if (const FileEntry *MainFile = SM.getFileEntryForID(SM.getMainFileID())) {
MainFileDir = remapDIPath(MainFile->getDir()->getName());
if (MainFileDir != ".") {
llvm::SmallString<1024> MainFileDirSS(MainFileDir);
llvm::sys::path::append(MainFileDirSS, MainFileName);
MainFileName = MainFileDirSS.str();
}
// If the main file name provided is identical to the input file name, and
// if the input file is a preprocessed source, use the module name for
// debug info. The module name comes from the name specified in the first
// linemarker if the input is a preprocessed source.
if (MainFile->getName() == MainFileName &&
FrontendOptions::getInputKindForExtension(
MainFile->getName().rsplit('.').second)
.isPreprocessed())
MainFileName = CGM.getModule().getName().str();
CSKind = computeChecksum(SM.getMainFileID(), Checksum);
}
llvm::dwarf::SourceLanguage LangTag;
const LangOptions &LO = CGM.getLangOpts();
if (LO.CPlusPlus) {
if (LO.ObjC)
LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus;
else
LangTag = llvm::dwarf::DW_LANG_C_plus_plus;
} else if (LO.ObjC) {
LangTag = llvm::dwarf::DW_LANG_ObjC;
} else if (LO.RenderScript) {
LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript;
} else if (LO.C99) {
LangTag = llvm::dwarf::DW_LANG_C99;
} else {
LangTag = llvm::dwarf::DW_LANG_C89;
}
std::string Producer = getClangFullVersion();
// Figure out which version of the ObjC runtime we have.
unsigned RuntimeVers = 0;
if (LO.ObjC)
RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1;
llvm::DICompileUnit::DebugEmissionKind EmissionKind;
switch (DebugKind) {
case codegenoptions::NoDebugInfo:
case codegenoptions::LocTrackingOnly:
EmissionKind = llvm::DICompileUnit::NoDebug;
break;
case codegenoptions::DebugLineTablesOnly:
EmissionKind = llvm::DICompileUnit::LineTablesOnly;
break;
case codegenoptions::DebugDirectivesOnly:
EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly;
break;
case codegenoptions::LimitedDebugInfo:
case codegenoptions::FullDebugInfo:
EmissionKind = llvm::DICompileUnit::FullDebug;
break;
}
uint64_t DwoId = 0;
auto &CGOpts = CGM.getCodeGenOpts();
// The DIFile used by the CU is distinct from the main source
// file. Its directory part specifies what becomes the
// DW_AT_comp_dir (the compilation directory), even if the source
// file was specified with an absolute path.
if (CSKind)
CSInfo.emplace(*CSKind, Checksum);
llvm::DIFile *CUFile = DBuilder.createFile(
remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo,
getSource(SM, SM.getMainFileID()));
// Create new compile unit.
TheCU = DBuilder.createCompileUnit(
LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "",
LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO,
CGOpts.DwarfDebugFlags, RuntimeVers,
(CGOpts.getSplitDwarfMode() != CodeGenOptions::NoFission)
? ""
: CGOpts.SplitDwarfFile,
EmissionKind, DwoId, CGOpts.SplitDwarfInlining,
CGOpts.DebugInfoForProfiling,
CGM.getTarget().getTriple().isNVPTX()
? llvm::DICompileUnit::DebugNameTableKind::None
: static_cast<llvm::DICompileUnit::DebugNameTableKind>(
CGOpts.DebugNameTable),
CGOpts.DebugRangesBaseAddress);
}
llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) {
llvm::dwarf::TypeKind Encoding;
StringRef BTName;
switch (BT->getKind()) {
#define BUILTIN_TYPE(Id, SingletonId)
#define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id:
#include "clang/AST/BuiltinTypes.def"
case BuiltinType::Dependent:
llvm_unreachable("Unexpected builtin type");
case BuiltinType::NullPtr:
return DBuilder.createNullPtrType();
case BuiltinType::Void:
return nullptr;
case BuiltinType::ObjCClass:
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
return ClassTy;
case BuiltinType::ObjCId: {
// typedef struct objc_class *Class;
// typedef struct objc_object {
// Class isa;
// } *id;
if (ObjTy)
return ObjTy;
if (!ClassTy)
ClassTy =
DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_class", TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
auto *ISATy = DBuilder.createPointerType(ClassTy, Size);
ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0,
0, 0, llvm::DINode::FlagZero, nullptr,
llvm::DINodeArray());
DBuilder.replaceArrays(
ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType(
ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0,
llvm::DINode::FlagZero, ISATy)));
return ObjTy;
}
case BuiltinType::ObjCSel: {
if (!SelTy)
SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
"objc_selector", TheCU,
TheCU->getFile(), 0);
return SelTy;
}
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \
SingletonId);
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLSampler:
return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy);
case BuiltinType::OCLEvent:
return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy);
case BuiltinType::OCLClkEvent:
return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy);
case BuiltinType::OCLQueue:
return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy);
case BuiltinType::OCLReserveID:
return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy);
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id: \
return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty);
#include "clang/Basic/OpenCLExtensionTypes.def"
case BuiltinType::UChar:
case BuiltinType::Char_U:
Encoding = llvm::dwarf::DW_ATE_unsigned_char;
break;
case BuiltinType::Char_S:
case BuiltinType::SChar:
Encoding = llvm::dwarf::DW_ATE_signed_char;
break;
case BuiltinType::Char8:
case BuiltinType::Char16:
case BuiltinType::Char32:
Encoding = llvm::dwarf::DW_ATE_UTF;
break;
case BuiltinType::UShort:
case BuiltinType::UInt:
case BuiltinType::UInt128:
case BuiltinType::ULong:
case BuiltinType::WChar_U:
case BuiltinType::ULongLong:
Encoding = llvm::dwarf::DW_ATE_unsigned;
break;
case BuiltinType::Short:
case BuiltinType::Int:
case BuiltinType::Int128:
case BuiltinType::Long:
case BuiltinType::WChar_S:
case BuiltinType::LongLong:
Encoding = llvm::dwarf::DW_ATE_signed;
break;
case BuiltinType::Bool:
Encoding = llvm::dwarf::DW_ATE_boolean;
break;
case BuiltinType::Half:
case BuiltinType::Float:
case BuiltinType::LongDouble:
case BuiltinType::Float16:
case BuiltinType::Float128:
case BuiltinType::Double:
// FIXME: For targets where long double and __float128 have the same size,
// they are currently indistinguishable in the debugger without some
// special treatment. However, there is currently no consensus on encoding
// and this should be updated once a DWARF encoding exists for distinct
// floating point types of the same size.
Encoding = llvm::dwarf::DW_ATE_float;
break;
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
Encoding = llvm::dwarf::DW_ATE_signed_fixed;
break;
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
Encoding = llvm::dwarf::DW_ATE_unsigned_fixed;
break;
}
switch (BT->getKind()) {
case BuiltinType::Long:
BTName = "long int";
break;
case BuiltinType::LongLong:
BTName = "long long int";
break;
case BuiltinType::ULong:
BTName = "long unsigned int";
break;
case BuiltinType::ULongLong:
BTName = "long long unsigned int";
break;
default:
BTName = BT->getName(CGM.getLangOpts());
break;
}
// Bit size and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(BT);
return DBuilder.createBasicType(BTName, Size, Encoding);
}
llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) {
// Bit size and offset of the type.
llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float;
if (Ty->isComplexIntegerType())
Encoding = llvm::dwarf::DW_ATE_lo_user;
uint64_t Size = CGM.getContext().getTypeSize(Ty);
return DBuilder.createBasicType("complex", Size, Encoding);
}
llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty,
llvm::DIFile *Unit) {
QualifierCollector Qc;
const Type *T = Qc.strip(Ty);
// Ignore these qualifiers for now.
Qc.removeObjCGCAttr();
Qc.removeAddressSpace();
Qc.removeObjCLifetime();
// We will create one Derived type for one qualifier and recurse to handle any
// additional ones.
llvm::dwarf::Tag Tag;
if (Qc.hasConst()) {
Tag = llvm::dwarf::DW_TAG_const_type;
Qc.removeConst();
} else if (Qc.hasVolatile()) {
Tag = llvm::dwarf::DW_TAG_volatile_type;
Qc.removeVolatile();
} else if (Qc.hasRestrict()) {
Tag = llvm::dwarf::DW_TAG_restrict_type;
Qc.removeRestrict();
} else {
assert(Qc.empty() && "Unknown type qualifier for debug info");
return getOrCreateType(QualType(T, 0), Unit);
}
auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit);
// No need to fill in the Name, Line, Size, Alignment, Offset in case of
// CVR derived types.
return DBuilder.createQualifiedType(Tag, FromTy);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty,
llvm::DIFile *Unit) {
// The frontend treats 'id' as a typedef to an ObjCObjectType,
// whereas 'id<protocol>' is treated as an ObjCPointerType. For the
// debug info, we want to emit 'id' in both cases.
if (Ty->isObjCQualifiedIdType())
return getOrCreateType(CGM.getContext().getObjCIdType(), Unit);
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty,
llvm::DIFile *Unit) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty,
Ty->getPointeeType(), Unit);
}
/// \return whether a C++ mangling exists for the type defined by TD.
static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) {
switch (TheCU->getSourceLanguage()) {
case llvm::dwarf::DW_LANG_C_plus_plus:
return true;
case llvm::dwarf::DW_LANG_ObjC_plus_plus:
return isa<CXXRecordDecl>(TD) || isa<EnumDecl>(TD);
default:
return false;
}
}
// Determines if the debug info for this tag declaration needs a type
// identifier. The purpose of the unique identifier is to deduplicate type
// information for identical types across TUs. Because of the C++ one definition
// rule (ODR), it is valid to assume that the type is defined the same way in
// every TU and its debug info is equivalent.
//
// C does not have the ODR, and it is common for codebases to contain multiple
// different definitions of a struct with the same name in different TUs.
// Therefore, if the type doesn't have a C++ mangling, don't give it an
// identifer. Type information in C is smaller and simpler than C++ type
// information, so the increase in debug info size is negligible.
//
// If the type is not externally visible, it should be unique to the current TU,
// and should not need an identifier to participate in type deduplication.
// However, when emitting CodeView, the format internally uses these
// unique type name identifers for references between debug info. For example,
// the method of a class in an anonymous namespace uses the identifer to refer
// to its parent class. The Microsoft C++ ABI attempts to provide unique names
// for such types, so when emitting CodeView, always use identifiers for C++
// types. This may create problems when attempting to emit CodeView when the MS
// C++ ABI is not in use.
static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
// We only add a type identifier for types with C++ name mangling.
if (!hasCXXMangling(TD, TheCU))
return false;
// Externally visible types with C++ mangling need a type identifier.
if (TD->isExternallyVisible())
return true;
// CodeView types with C++ mangling need a type identifier.
if (CGM.getCodeGenOpts().EmitCodeView)
return true;
return false;
}
// Returns a unique type identifier string if one exists, or an empty string.
static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM,
llvm::DICompileUnit *TheCU) {
SmallString<256> Identifier;
const TagDecl *TD = Ty->getDecl();
if (!needsTypeIdentifier(TD, CGM, TheCU))
return Identifier;
if (const auto *RD = dyn_cast<CXXRecordDecl>(TD))
if (RD->getDefinition())
if (RD->isDynamicClass() &&
CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage)
return Identifier;
// TODO: This is using the RTTI name. Is there a better way to get
// a unique string for a type?
llvm::raw_svector_ostream Out(Identifier);
CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out);
return Identifier;
}
/// \return the appropriate DWARF tag for a composite type.
static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) {
llvm::dwarf::Tag Tag;
if (RD->isStruct() || RD->isInterface())
Tag = llvm::dwarf::DW_TAG_structure_type;
else if (RD->isUnion())
Tag = llvm::dwarf::DW_TAG_union_type;
else {
// FIXME: This could be a struct type giving a default visibility different
// than C++ class type, but needs llvm metadata changes first.
assert(RD->isClass());
Tag = llvm::dwarf::DW_TAG_class_type;
}
return Tag;
}
llvm::DICompositeType *
CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty,
llvm::DIScope *Ctx) {
const RecordDecl *RD = Ty->getDecl();
if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD)))
return cast<llvm::DICompositeType>(T);
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
unsigned Line = getLineNumber(RD->getLocation());
StringRef RDName = getClassName(RD);
uint64_t Size = 0;
uint32_t Align = 0;
// Create the type.
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType(
getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align,
llvm::DINode::FlagFwdDecl, Identifier);
if (CGM.getCodeGenOpts().DebugFwdTemplateParams)
if (auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
DBuilder.replaceArrays(RetTy, llvm::DINodeArray(),
CollectCXXTemplateParams(TSpecial, DefUnit));
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
return RetTy;
}
llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag,
const Type *Ty,
QualType PointeeTy,
llvm::DIFile *Unit) {
// Bit size, align and offset of the type.
// Size is always the size of a pointer. We can't use getTypeSize here
// because that does not return the correct value for references.
unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(PointeeTy);
uint64_t Size = CGM.getTarget().getPointerWidth(AddressSpace);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(AddressSpace);
if (Tag == llvm::dwarf::DW_TAG_reference_type ||
Tag == llvm::dwarf::DW_TAG_rvalue_reference_type)
return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit),
Size, Align, DWARFAddressSpace);
else
return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size,
Align, DWARFAddressSpace);
}
llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name,
llvm::DIType *&Cache) {
if (Cache)
return Cache;
Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name,
TheCU, TheCU->getFile(), 0);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
Cache = DBuilder.createPointerType(Cache, Size);
return Cache;
}
uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer(
const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy,
unsigned LineNo, SmallVectorImpl<llvm::Metadata *> &EltTys) {
QualType FType;
// Advanced by calls to CreateMemberType in increments of FType, then
// returned as the overall size of the default elements.
uint64_t FieldOffset = 0;
// Blocks in OpenCL have unique constraints which make the standard fields
// redundant while requiring size and align fields for enqueue_kernel. See
// initializeForBlockHeader in CGBlocks.cpp
if (CGM.getLangOpts().OpenCL) {
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset));
} else {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset));
FType = CGM.getContext().getPointerType(Ty->getPointeeType());
EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset));
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
uint64_t FieldSize = CGM.getContext().getTypeSize(Ty);
uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty);
EltTys.push_back(DBuilder.createMemberType(
Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign,
FieldOffset, llvm::DINode::FlagZero, DescTy));
FieldOffset += FieldSize;
}
return FieldOffset;
}
llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty,
llvm::DIFile *Unit) {
SmallVector<llvm::Metadata *, 8> EltTys;
QualType FType;
uint64_t FieldOffset;
llvm::DINodeArray Elements;
FieldOffset = 0;
FType = CGM.getContext().UnsignedLongTy;
EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset));
Elements = DBuilder.getOrCreateArray(EltTys);
EltTys.clear();
llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock;
auto *EltTy =
DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0,
FieldOffset, 0, Flags, nullptr, Elements);
// Bit size, align and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto *DescTy = DBuilder.createPointerType(EltTy, Size);
FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy,
0, EltTys);
Elements = DBuilder.getOrCreateArray(EltTys);
// The __block_literal_generic structs are marked with a special
// DW_AT_APPLE_BLOCK attribute and are an implementation detail only
// the debugger needs to know about. To allow type uniquing, emit
// them without a name or a location.
EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0,
Flags, nullptr, Elements);
return DBuilder.createPointerType(EltTy, Size);
}
llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty,
llvm::DIFile *Unit) {
assert(Ty->isTypeAlias());
llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit);
auto *AliasDecl =
cast<TypeAliasTemplateDecl>(Ty->getTemplateName().getAsTemplateDecl())
->getTemplatedDecl();
if (AliasDecl->hasAttr<NoDebugAttr>())
return Src;
SmallString<128> NS;
llvm::raw_svector_ostream OS(NS);
Ty->getTemplateName().print(OS, getPrintingPolicy(), /*qualified*/ false);
printTemplateArgumentList(OS, Ty->template_arguments(), getPrintingPolicy());
SourceLocation Loc = AliasDecl->getLocation();
return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc),
getLineNumber(Loc),
getDeclContextDescriptor(AliasDecl));
}
llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty,
llvm::DIFile *Unit) {
llvm::DIType *Underlying =
getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit);
if (Ty->getDecl()->hasAttr<NoDebugAttr>())
return Underlying;
// We don't set size information, but do specify where the typedef was
// declared.
SourceLocation Loc = Ty->getDecl()->getLocation();
// Typedefs are derived from some other type.
return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(),
getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(Ty->getDecl()));
}
static unsigned getDwarfCC(CallingConv CC) {
switch (CC) {
case CC_C:
// Avoid emitting DW_AT_calling_convention if the C convention was used.
return 0;
case CC_X86StdCall:
return llvm::dwarf::DW_CC_BORLAND_stdcall;
case CC_X86FastCall:
return llvm::dwarf::DW_CC_BORLAND_msfastcall;
case CC_X86ThisCall:
return llvm::dwarf::DW_CC_BORLAND_thiscall;
case CC_X86VectorCall:
return llvm::dwarf::DW_CC_LLVM_vectorcall;
case CC_X86Pascal:
return llvm::dwarf::DW_CC_BORLAND_pascal;
case CC_Win64:
return llvm::dwarf::DW_CC_LLVM_Win64;
case CC_X86_64SysV:
return llvm::dwarf::DW_CC_LLVM_X86_64SysV;
case CC_AAPCS:
case CC_AArch64VectorCall:
return llvm::dwarf::DW_CC_LLVM_AAPCS;
case CC_AAPCS_VFP:
return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP;
case CC_IntelOclBicc:
return llvm::dwarf::DW_CC_LLVM_IntelOclBicc;
case CC_SpirFunction:
return llvm::dwarf::DW_CC_LLVM_SpirFunction;
case CC_OpenCLKernel:
return llvm::dwarf::DW_CC_LLVM_OpenCLKernel;
case CC_Swift:
return llvm::dwarf::DW_CC_LLVM_Swift;
case CC_PreserveMost:
return llvm::dwarf::DW_CC_LLVM_PreserveMost;
case CC_PreserveAll:
return llvm::dwarf::DW_CC_LLVM_PreserveAll;
case CC_X86RegCall:
return llvm::dwarf::DW_CC_LLVM_X86RegCall;
}
return 0;
}
llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty,
llvm::DIFile *Unit) {
SmallVector<llvm::Metadata *, 16> EltTys;
// Add the result type at least.
EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit));
// Set up remainder of arguments if there is a prototype.
// otherwise emit it as a variadic function.
if (isa<FunctionNoProtoType>(Ty))
EltTys.push_back(DBuilder.createUnspecifiedParameter());
else if (const auto *FPT = dyn_cast<FunctionProtoType>(Ty)) {
for (const QualType &ParamType : FPT->param_types())
EltTys.push_back(getOrCreateType(ParamType, Unit));
if (FPT->isVariadic())
EltTys.push_back(DBuilder.createUnspecifiedParameter());
}
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
getDwarfCC(Ty->getCallConv()));
}
/// Convert an AccessSpecifier into the corresponding DINode flag.
/// As an optimization, return 0 if the access specifier equals the
/// default for the containing type.
static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access,
const RecordDecl *RD) {
AccessSpecifier Default = clang::AS_none;
if (RD && RD->isClass())
Default = clang::AS_private;
else if (RD && (RD->isStruct() || RD->isUnion()))
Default = clang::AS_public;
if (Access == Default)
return llvm::DINode::FlagZero;
switch (Access) {
case clang::AS_private:
return llvm::DINode::FlagPrivate;
case clang::AS_protected:
return llvm::DINode::FlagProtected;
case clang::AS_public:
return llvm::DINode::FlagPublic;
case clang::AS_none:
return llvm::DINode::FlagZero;
}
llvm_unreachable("unexpected access enumerator");
}
llvm::DIType *CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl,
llvm::DIScope *RecordTy,
const RecordDecl *RD) {
StringRef Name = BitFieldDecl->getName();
QualType Ty = BitFieldDecl->getType();
SourceLocation Loc = BitFieldDecl->getLocation();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
llvm::DIType *DebugType = getOrCreateType(Ty, VUnit);
// Get the location for the field.
llvm::DIFile *File = getOrCreateFile(Loc);
unsigned Line = getLineNumber(Loc);
const CGBitFieldInfo &BitFieldInfo =
CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl);
uint64_t SizeInBits = BitFieldInfo.Size;
assert(SizeInBits > 0 && "found named 0-width bitfield");
uint64_t StorageOffsetInBits =
CGM.getContext().toBits(BitFieldInfo.StorageOffset);
uint64_t Offset = BitFieldInfo.Offset;
// The bit offsets for big endian machines are reversed for big
// endian target, compensate for that as the DIDerivedType requires
// un-reversed offsets.
if (CGM.getDataLayout().isBigEndian())
Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset;
uint64_t OffsetInBits = StorageOffsetInBits + Offset;
llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD);
return DBuilder.createBitFieldMemberType(
RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits,
Flags, DebugType);
}
llvm::DIType *
CGDebugInfo::createFieldType(StringRef name, QualType type, SourceLocation loc,
AccessSpecifier AS, uint64_t offsetInBits,
uint32_t AlignInBits, llvm::DIFile *tunit,
llvm::DIScope *scope, const RecordDecl *RD) {
llvm::DIType *debugType = getOrCreateType(type, tunit);
// Get the location for the field.
llvm::DIFile *file = getOrCreateFile(loc);
unsigned line = getLineNumber(loc);
uint64_t SizeInBits = 0;
auto Align = AlignInBits;
if (!type->isIncompleteArrayType()) {
TypeInfo TI = CGM.getContext().getTypeInfo(type);
SizeInBits = TI.Width;
if (!Align)
Align = getTypeAlignIfRequired(type, CGM.getContext());
}
llvm::DINode::DIFlags flags = getAccessFlag(AS, RD);
return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align,
offsetInBits, flags, debugType);
}
void CGDebugInfo::CollectRecordLambdaFields(
const CXXRecordDecl *CXXDecl, SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DIType *RecordTy) {
// For C++11 Lambdas a Field will be the same as a Capture, but the Capture
// has the name and the location of the variable so we should iterate over
// both concurrently.
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl);
RecordDecl::field_iterator Field = CXXDecl->field_begin();
unsigned fieldno = 0;
for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(),
E = CXXDecl->captures_end();
I != E; ++I, ++Field, ++fieldno) {
const LambdaCapture &C = *I;
if (C.capturesVariable()) {
SourceLocation Loc = C.getLocation();
assert(!Field->isBitField() && "lambdas don't have bitfield members!");
VarDecl *V = C.getCapturedVar();
StringRef VName = V->getName();
llvm::DIFile *VUnit = getOrCreateFile(Loc);
auto Align = getDeclAlignIfRequired(V, CGM.getContext());
llvm::DIType *FieldType = createFieldType(
VName, Field->getType(), Loc, Field->getAccess(),
layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl);
elements.push_back(FieldType);
} else if (C.capturesThis()) {
// TODO: Need to handle 'this' in some way by probably renaming the
// this of the lambda class and having a field member of 'this' or
// by using AT_object_pointer for the function and having that be
// used as 'this' for semantic references.
FieldDecl *f = *Field;
llvm::DIFile *VUnit = getOrCreateFile(f->getLocation());
QualType type = f->getType();
llvm::DIType *fieldType = createFieldType(
"this", type, f->getLocation(), f->getAccess(),
layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl);
elements.push_back(fieldType);
}
}
}
llvm::DIDerivedType *
CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy,
const RecordDecl *RD) {
// Create the descriptor for the static variable, with or without
// constant initializers.
Var = Var->getCanonicalDecl();
llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation());
llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit);
unsigned LineNumber = getLineNumber(Var->getLocation());
StringRef VName = Var->getName();
llvm::Constant *C = nullptr;
if (Var->getInit()) {
const APValue *Value = Var->evaluateValue();
if (Value) {
if (Value->isInt())
C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt());
if (Value->isFloat())
C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat());
}
}
llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD);
auto Align = getDeclAlignIfRequired(Var, CGM.getContext());
llvm::DIDerivedType *GV = DBuilder.createStaticMemberType(
RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Align);
StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV);
return GV;
}
void CGDebugInfo::CollectRecordNormalField(
const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements, llvm::DIType *RecordTy,
const RecordDecl *RD) {
StringRef name = field->getName();
QualType type = field->getType();
// Ignore unnamed fields unless they're anonymous structs/unions.
if (name.empty() && !type->isRecordType())
return;
llvm::DIType *FieldType;
if (field->isBitField()) {
FieldType = createBitFieldType(field, RecordTy, RD);
} else {
auto Align = getDeclAlignIfRequired(field, CGM.getContext());
FieldType =
createFieldType(name, type, field->getLocation(), field->getAccess(),
OffsetInBits, Align, tunit, RecordTy, RD);
}
elements.push_back(FieldType);
}
void CGDebugInfo::CollectRecordNestedType(
const TypeDecl *TD, SmallVectorImpl<llvm::Metadata *> &elements) {
QualType Ty = CGM.getContext().getTypeDeclType(TD);
// Injected class names are not considered nested records.
if (isa<InjectedClassNameType>(Ty))
return;
SourceLocation Loc = TD->getLocation();
llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc));
elements.push_back(nestedType);
}
void CGDebugInfo::CollectRecordFields(
const RecordDecl *record, llvm::DIFile *tunit,
SmallVectorImpl<llvm::Metadata *> &elements,
llvm::DICompositeType *RecordTy) {
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(record);
if (CXXDecl && CXXDecl->isLambda())
CollectRecordLambdaFields(CXXDecl, elements, RecordTy);
else {
const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record);
// Field number for non-static fields.
unsigned fieldNo = 0;
// Static and non-static members should appear in the same order as
// the corresponding declarations in the source program.
for (const auto *I : record->decls())
if (const auto *V = dyn_cast<VarDecl>(I)) {
if (V->hasAttr<NoDebugAttr>())
continue;
// Skip variable template specializations when emitting CodeView. MSVC
// doesn't emit them.
if (CGM.getCodeGenOpts().EmitCodeView &&
isa<VarTemplateSpecializationDecl>(V))
continue;
// Reuse the existing static member declaration if one exists
auto MI = StaticDataMemberCache.find(V->getCanonicalDecl());
if (MI != StaticDataMemberCache.end()) {
assert(MI->second &&
"Static data member declaration should still exist");
elements.push_back(MI->second);
} else {
auto Field = CreateRecordStaticField(V, RecordTy, record);
elements.push_back(Field);
}
} else if (const auto *field = dyn_cast<FieldDecl>(I)) {
CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit,
elements, RecordTy, record);
// Bump field number for next field.
++fieldNo;
} else if (CGM.getCodeGenOpts().EmitCodeView) {
// Debug info for nested types is included in the member list only for
// CodeView.
if (const auto *nestedType = dyn_cast<TypeDecl>(I))
if (!nestedType->isImplicit() &&
nestedType->getDeclContext() == record)
CollectRecordNestedType(nestedType, elements);
}
}
}
llvm::DISubroutineType *
CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method,
llvm::DIFile *Unit) {
const FunctionProtoType *Func = Method->getType()->getAs<FunctionProtoType>();
if (Method->isStatic())
return cast_or_null<llvm::DISubroutineType>(
getOrCreateType(QualType(Func, 0), Unit));
return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit);
}
llvm::DISubroutineType *CGDebugInfo::getOrCreateInstanceMethodType(
QualType ThisPtr, const FunctionProtoType *Func, llvm::DIFile *Unit) {
// Add "this" pointer.
llvm::DITypeRefArray Args(
cast<llvm::DISubroutineType>(getOrCreateType(QualType(Func, 0), Unit))
->getTypeArray());
assert(Args.size() && "Invalid number of arguments!");
SmallVector<llvm::Metadata *, 16> Elts;
// First element is always return type. For 'void' functions it is NULL.
Elts.push_back(Args[0]);
// "this" pointer is always first argument.
const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl();
if (isa<ClassTemplateSpecializationDecl>(RD)) {
// Create pointer type directly in this case.
const PointerType *ThisPtrTy = cast<PointerType>(ThisPtr);
QualType PointeeTy = ThisPtrTy->getPointeeType();
unsigned AS = CGM.getContext().getTargetAddressSpace(PointeeTy);
uint64_t Size = CGM.getTarget().getPointerWidth(AS);
auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext());
llvm::DIType *PointeeType = getOrCreateType(PointeeTy, Unit);
llvm::DIType *ThisPtrType =
DBuilder.createPointerType(PointeeType, Size, Align);
TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
// TODO: This and the artificial type below are misleading, the
// types aren't artificial the argument is, but the current
// metadata doesn't represent that.
ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
Elts.push_back(ThisPtrType);
} else {
llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit);
TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType);
ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType);
Elts.push_back(ThisPtrType);
}
// Copy rest of the arguments.
for (unsigned i = 1, e = Args.size(); i != e; ++i)
Elts.push_back(Args[i]);
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Func->getExtProtoInfo().RefQualifier == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Func->getExtProtoInfo().RefQualifier == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
return DBuilder.createSubroutineType(EltTypeArray, Flags,
getDwarfCC(Func->getCallConv()));
}
/// isFunctionLocalClass - Return true if CXXRecordDecl is defined
/// inside a function.
static bool isFunctionLocalClass(const CXXRecordDecl *RD) {
if (const auto *NRD = dyn_cast<CXXRecordDecl>(RD->getDeclContext()))
return isFunctionLocalClass(NRD);
if (isa<FunctionDecl>(RD->getDeclContext()))
return true;
return false;
}
llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction(
const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) {
bool IsCtorOrDtor =
isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method);
StringRef MethodName = getFunctionName(Method);
llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit);
// Since a single ctor/dtor corresponds to multiple functions, it doesn't
// make sense to give a single ctor/dtor a linkage name.
StringRef MethodLinkageName;
// FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional
// property to use here. It may've been intended to model "is non-external
// type" but misses cases of non-function-local but non-external classes such
// as those in anonymous namespaces as well as the reverse - external types
// that are function local, such as those in (non-local) inline functions.
if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent()))
MethodLinkageName = CGM.getMangledName(Method);
// Get the location for the method.
llvm::DIFile *MethodDefUnit = nullptr;
unsigned MethodLine = 0;
if (!Method->isImplicit()) {
MethodDefUnit = getOrCreateFile(Method->getLocation());
MethodLine = getLineNumber(Method->getLocation());
}
// Collect virtual method info.
llvm::DIType *ContainingType = nullptr;
unsigned VIndex = 0;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
int ThisAdjustment = 0;
if (Method->isVirtual()) {
if (Method->isPure())
SPFlags |= llvm::DISubprogram::SPFlagPureVirtual;
else
SPFlags |= llvm::DISubprogram::SPFlagVirtual;
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// It doesn't make sense to give a virtual destructor a vtable index,
// since a single destructor has two entries in the vtable.
if (!isa<CXXDestructorDecl>(Method))
VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method);
} else {
// Emit MS ABI vftable information. There is only one entry for the
// deleting dtor.
const auto *DD = dyn_cast<CXXDestructorDecl>(Method);
GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method);
MethodVFTableLocation ML =
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
VIndex = ML.Index;
// CodeView only records the vftable offset in the class that introduces
// the virtual method. This is possible because, unlike Itanium, the MS
// C++ ABI does not include all virtual methods from non-primary bases in
// the vtable for the most derived class. For example, if C inherits from
// A and B, C's primary vftable will not include B's virtual methods.
if (Method->size_overridden_methods() == 0)
Flags |= llvm::DINode::FlagIntroducedVirtual;
// The 'this' adjustment accounts for both the virtual and non-virtual
// portions of the adjustment. Presumably the debugger only uses it when
// it knows the dynamic type of an object.
ThisAdjustment = CGM.getCXXABI()
.getVirtualFunctionPrologueThisAdjustment(GD)
.getQuantity();
}
ContainingType = RecordTy;
}
if (Method->isStatic())
Flags |= llvm::DINode::FlagStaticMember;
if (Method->isImplicit())
Flags |= llvm::DINode::FlagArtificial;
Flags |= getAccessFlag(Method->getAccess(), Method->getParent());
if (const auto *CXXC = dyn_cast<CXXConstructorDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
} else if (const auto *CXXC = dyn_cast<CXXConversionDecl>(Method)) {
if (CXXC->isExplicit())
Flags |= llvm::DINode::FlagExplicit;
}
if (Method->hasPrototype())
Flags |= llvm::DINode::FlagPrototyped;
if (Method->getRefQualifier() == RQ_LValue)
Flags |= llvm::DINode::FlagLValueReference;
if (Method->getRefQualifier() == RQ_RValue)
Flags |= llvm::DINode::FlagRValueReference;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit);
llvm::DISubprogram *SP = DBuilder.createMethod(
RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine,
MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags,
TParamsArray.get());
SPCache[Method->getCanonicalDecl()].reset(SP);
return SP;
}
void CGDebugInfo::CollectCXXMemberFunctions(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy) {
// Since we want more than just the individual member decls if we
// have templated functions iterate over every declaration to gather
// the functions.
for (const auto *I : RD->decls()) {
const auto *Method = dyn_cast<CXXMethodDecl>(I);
// If the member is implicit, don't add it to the member list. This avoids
// the member being added to type units by LLVM, while still allowing it
// to be emitted into the type declaration/reference inside the compile
// unit.
// Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp.
// FIXME: Handle Using(Shadow?)Decls here to create
// DW_TAG_imported_declarations inside the class for base decls brought into
// derived classes. GDB doesn't seem to notice/leverage these when I tried
// it, so I'm not rushing to fix this. (GCC seems to produce them, if
// referenced)
if (!Method || Method->isImplicit() || Method->hasAttr<NoDebugAttr>())
continue;
if (Method->getType()->getAs<FunctionProtoType>()->getContainedAutoType())
continue;
// Reuse the existing member function declaration if it exists.
// It may be associated with the declaration of the type & should be
// reused as we're building the definition.
//
// This situation can arise in the vtable-based debug info reduction where
// implicit members are emitted in a non-vtable TU.
auto MI = SPCache.find(Method->getCanonicalDecl());
EltTys.push_back(MI == SPCache.end()
? CreateCXXMemberFunction(Method, Unit, RecordTy)
: static_cast<llvm::Metadata *>(MI->second));
}
}
void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys,
llvm::DIType *RecordTy) {
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> SeenTypes;
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes,
llvm::DINode::FlagZero);
// If we are generating CodeView debug info, we also need to emit records for
// indirect virtual base classes.
if (CGM.getCodeGenOpts().EmitCodeView) {
CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes,
llvm::DINode::FlagIndirectVirtualBase);
}
}
void CGDebugInfo::CollectCXXBasesAux(
const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys, llvm::DIType *RecordTy,
const CXXRecordDecl::base_class_const_range &Bases,
llvm::DenseSet<CanonicalDeclPtr<const CXXRecordDecl>> &SeenTypes,
llvm::DINode::DIFlags StartingFlags) {
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
for (const auto &BI : Bases) {
const auto *Base =
cast<CXXRecordDecl>(BI.getType()->getAs<RecordType>()->getDecl());
if (!SeenTypes.insert(Base).second)
continue;
auto *BaseTy = getOrCreateType(BI.getType(), Unit);
llvm::DINode::DIFlags BFlags = StartingFlags;
uint64_t BaseOffset;
uint32_t VBPtrOffset = 0;
if (BI.isVirtual()) {
if (CGM.getTarget().getCXXABI().isItaniumFamily()) {
// virtual base offset offset is -ve. The code generator emits dwarf
// expression where it expects +ve number.
BaseOffset = 0 - CGM.getItaniumVTableContext()
.getVirtualBaseOffsetOffset(RD, Base)
.getQuantity();
} else {
// In the MS ABI, store the vbtable offset, which is analogous to the
// vbase offset offset in Itanium.
BaseOffset =
4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base);
VBPtrOffset = CGM.getContext()
.getASTRecordLayout(RD)
.getVBPtrOffset()
.getQuantity();
}
BFlags |= llvm::DINode::FlagVirtual;
} else
BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base));
// FIXME: Inconsistent units for BaseOffset. It is in bytes when
// BI->isVirtual() and bits when not.
BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD);
llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset,
VBPtrOffset, BFlags);
EltTys.push_back(DTy);
}
}
llvm::DINodeArray
CGDebugInfo::CollectTemplateParams(const TemplateParameterList *TPList,
ArrayRef<TemplateArgument> TAList,
llvm::DIFile *Unit) {
SmallVector<llvm::Metadata *, 16> TemplateParams;
for (unsigned i = 0, e = TAList.size(); i != e; ++i) {
const TemplateArgument &TA = TAList[i];
StringRef Name;
if (TPList)
Name = TPList->getParam(i)->getName();
switch (TA.getKind()) {
case TemplateArgument::Type: {
llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit);
TemplateParams.push_back(
DBuilder.createTemplateTypeParameter(TheCU, Name, TTy));
} break;
case TemplateArgument::Integral: {
llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy,
llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral())));
} break;
case TemplateArgument::Declaration: {
const ValueDecl *D = TA.getAsDecl();
QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext());
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Skip retrieve the value if that template parameter has cuda device
// attribute, i.e. that value is not available at the host side.
if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice ||
!D->hasAttr<CUDADeviceAttr>()) {
const CXXMethodDecl *MD;
// Variable pointer template parameters have a value that is the address
// of the variable.
if (const auto *VD = dyn_cast<VarDecl>(D))
V = CGM.GetAddrOfGlobalVar(VD);
// Member function pointers have special support for building them,
// though this is currently unsupported in LLVM CodeGen.
else if ((MD = dyn_cast<CXXMethodDecl>(D)) && MD->isInstance())
V = CGM.getCXXABI().EmitMemberFunctionPointer(MD);
else if (const auto *FD = dyn_cast<FunctionDecl>(D))
V = CGM.GetAddrOfFunction(FD);
// Member data pointers have special handling too to compute the fixed
// offset within the object.
else if (const auto *MPT =
dyn_cast<MemberPointerType>(T.getTypePtr())) {
// These five lines (& possibly the above member function pointer
// handling) might be able to be refactored to use similar code in
// CodeGenModule::getMemberPointerConstant
uint64_t fieldOffset = CGM.getContext().getFieldOffset(D);
CharUnits chars =
CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset);
V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars);
}
V = V->stripPointerCasts();
}
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, cast_or_null<llvm::Constant>(V)));
} break;
case TemplateArgument::NullPtr: {
QualType T = TA.getNullPtrType();
llvm::DIType *TTy = getOrCreateType(T, Unit);
llvm::Constant *V = nullptr;
// Special case member data pointer null values since they're actually -1
// instead of zero.
if (const auto *MPT = dyn_cast<MemberPointerType>(T.getTypePtr()))
// But treat member function pointers as simple zero integers because
// it's easier than having a special case in LLVM's CodeGen. If LLVM
// CodeGen grows handling for values of non-null member function
// pointers then perhaps we could remove this special case and rely on
// EmitNullMemberPointer for member function pointers.
if (MPT->isMemberDataPointer())
V = CGM.getCXXABI().EmitNullMemberPointer(MPT);
if (!V)
V = llvm::ConstantInt::get(CGM.Int8Ty, 0);
TemplateParams.push_back(
DBuilder.createTemplateValueParameter(TheCU, Name, TTy, V));
} break;
case TemplateArgument::Template:
TemplateParams.push_back(DBuilder.createTemplateTemplateParameter(
TheCU, Name, nullptr,
TA.getAsTemplate().getAsTemplateDecl()->getQualifiedNameAsString()));
break;
case TemplateArgument::Pack:
TemplateParams.push_back(DBuilder.createTemplateParameterPack(
TheCU, Name, nullptr,
CollectTemplateParams(nullptr, TA.getPackAsArray(), Unit)));
break;
case TemplateArgument::Expression: {
const Expr *E = TA.getAsExpr();
QualType T = E->getType();
if (E->isGLValue())
T = CGM.getContext().getLValueReferenceType(T);
llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T);
assert(V && "Expression in template argument isn't constant");
llvm::DIType *TTy = getOrCreateType(T, Unit);
TemplateParams.push_back(DBuilder.createTemplateValueParameter(
TheCU, Name, TTy, V->stripPointerCasts()));
} break;
// And the following should never occur:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::Null:
llvm_unreachable(
"These argument types shouldn't exist in concrete types");
}
}
return DBuilder.getOrCreateArray(TemplateParams);
}
llvm::DINodeArray
CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD,
llvm::DIFile *Unit) {
if (FD->getTemplatedKind() ==
FunctionDecl::TK_FunctionTemplateSpecialization) {
const TemplateParameterList *TList = FD->getTemplateSpecializationInfo()
->getTemplate()
->getTemplateParameters();
return CollectTemplateParams(
TList, FD->getTemplateSpecializationArgs()->asArray(), Unit);
}
return llvm::DINodeArray();
}
llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL,
llvm::DIFile *Unit) {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
auto *TS = dyn_cast<VarTemplateSpecializationDecl>(VL);
if (!TS)
return llvm::DINodeArray();
VarTemplateDecl *T = TS->getSpecializedTemplate();
const TemplateParameterList *TList = T->getTemplateParameters();
auto TA = TS->getTemplateArgs().asArray();
return CollectTemplateParams(TList, TA, Unit);
}
llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(
const ClassTemplateSpecializationDecl *TSpecial, llvm::DIFile *Unit) {
// Always get the full list of parameters, not just the ones from the
// specialization. A partial specialization may have fewer parameters than
// there are arguments.
TemplateParameterList *TPList =
TSpecial->getSpecializedTemplate()->getTemplateParameters();
const TemplateArgumentList &TAList = TSpecial->getTemplateArgs();
return CollectTemplateParams(TPList, TAList.asArray(), Unit);
}
llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) {
if (VTablePtrType)
return VTablePtrType;
ASTContext &Context = CGM.getContext();
/* Function type */
llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit);
llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy);
llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements);
unsigned Size = Context.getTypeSize(Context.VoidPtrTy);
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType(
SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type");
VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size);
return VTablePtrType;
}
StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) {
// Copy the gdb compatible name on the side and use its reference.
return internString("_vptr$", RD->getNameAsString());
}
StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD,
DynamicInitKind StubKind,
llvm::Function *InitFn) {
// If we're not emitting codeview, use the mangled name. For Itanium, this is
// arbitrary.
if (!CGM.getCodeGenOpts().EmitCodeView)
return InitFn->getName();
// Print the normal qualified name for the variable, then break off the last
// NNS, and add the appropriate other text. Clang always prints the global
// variable name without template arguments, so we can use rsplit("::") and
// then recombine the pieces.
SmallString<128> QualifiedGV;
StringRef Quals;
StringRef GVName;
{
llvm::raw_svector_ostream OS(QualifiedGV);
VD->printQualifiedName(OS, getPrintingPolicy());
std::tie(Quals, GVName) = OS.str().rsplit("::");
if (GVName.empty())
std::swap(Quals, GVName);
}
SmallString<128> InitName;
llvm::raw_svector_ostream OS(InitName);
if (!Quals.empty())
OS << Quals << "::";
switch (StubKind) {
case DynamicInitKind::NoStub:
llvm_unreachable("not an initializer");
case DynamicInitKind::Initializer:
OS << "`dynamic initializer for '";
break;
case DynamicInitKind::AtExit:
OS << "`dynamic atexit destructor for '";
break;
}
OS << GVName;
// Add any template specialization args.
if (const auto *VTpl = dyn_cast<VarTemplateSpecializationDecl>(VD)) {
printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(),
getPrintingPolicy());
}
OS << '\'';
return internString(OS.str());
}
void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &EltTys,
llvm::DICompositeType *RecordTy) {
// If this class is not dynamic then there is not any vtable info to collect.
if (!RD->isDynamicClass())
return;
// Don't emit any vtable shape or vptr info if this class doesn't have an
// extendable vfptr. This can happen if the class doesn't have virtual
// methods, or in the MS ABI if those virtual methods only come from virtually
// inherited bases.
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
if (!RL.hasExtendableVFPtr())
return;
// CodeView needs to know how large the vtable of every dynamic class is, so
// emit a special named pointer type into the element list. The vptr type
// points to this type as well.
llvm::DIType *VPtrTy = nullptr;
bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView &&
CGM.getTarget().getCXXABI().isMicrosoft();
if (NeedVTableShape) {
uint64_t PtrWidth =
CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
const VTableLayout &VFTLayout =
CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero());
unsigned VSlotCount =
VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData;
unsigned VTableWidth = PtrWidth * VSlotCount;
unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace();
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace);
// Create a very wide void* type and insert it directly in the element list.
llvm::DIType *VTableType = DBuilder.createPointerType(
nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type");
EltTys.push_back(VTableType);
// The vptr is a pointer to this special vtable type.
VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth);
}
// If there is a primary base then the artificial vptr member lives there.
if (RL.getPrimaryBase())
return;
if (!VPtrTy)
VPtrTy = getOrCreateVTablePtrType(Unit);
unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy);
llvm::DIType *VPtrMember =
DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0,
llvm::DINode::FlagArtificial, VPtrTy);
EltTys.push_back(VPtrMember);
}
llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy,
SourceLocation Loc) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc));
return T;
}
llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D,
SourceLocation Loc) {
return getOrCreateStandaloneType(D, Loc);
}
llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D,
SourceLocation Loc) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
assert(!D.isNull() && "null type");
llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc));
assert(T && "could not create debug info for type");
RetainedTypes.push_back(D.getAsOpaquePtr());
return T;
}
void CGDebugInfo::addHeapAllocSiteMetadata(llvm::Instruction *CI,
QualType D,
SourceLocation Loc) {
llvm::MDNode *node;
if (D.getTypePtr()->isVoidPointerType()) {
node = llvm::MDNode::get(CGM.getLLVMContext(), None);
} else {
QualType PointeeTy = D.getTypePtr()->getPointeeType();
node = getOrCreateType(PointeeTy, getOrCreateFile(Loc));
}
CI->setMetadata("heapallocsite", node);
}
void CGDebugInfo::completeType(const EnumDecl *ED) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getEnumType(ED);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I == TypeCache.end() || !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<EnumType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
void CGDebugInfo::completeType(const RecordDecl *RD) {
if (DebugKind > codegenoptions::LimitedDebugInfo ||
!CGM.getLangOpts().CPlusPlus)
completeRequiredType(RD);
}
/// Return true if the class or any of its methods are marked dllimport.
static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) {
if (RD->hasAttr<DLLImportAttr>())
return true;
for (const CXXMethodDecl *MD : RD->methods())
if (MD->hasAttr<DLLImportAttr>())
return true;
return false;
}
/// Does a type definition exist in an imported clang module?
static bool isDefinedInClangModule(const RecordDecl *RD) {
// Only definitions that where imported from an AST file come from a module.
if (!RD || !RD->isFromASTFile())
return false;
// Anonymous entities cannot be addressed. Treat them as not from module.
if (!RD->isExternallyVisible() && RD->getName().empty())
return false;
if (auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD)) {
if (!CXXDecl->isCompleteDefinition())
return false;
// Check wether RD is a template.
auto TemplateKind = CXXDecl->getTemplateSpecializationKind();
if (TemplateKind != TSK_Undeclared) {
// Unfortunately getOwningModule() isn't accurate enough to find the
// owning module of a ClassTemplateSpecializationDecl that is inside a
// namespace spanning multiple modules.
bool Explicit = false;
if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(CXXDecl))
Explicit = TD->isExplicitInstantiationOrSpecialization();
if (!Explicit && CXXDecl->getEnclosingNamespaceContext())
return false;
// This is a template, check the origin of the first member.
if (CXXDecl->field_begin() == CXXDecl->field_end())
return TemplateKind == TSK_ExplicitInstantiationDeclaration;
if (!CXXDecl->field_begin()->isFromASTFile())
return false;
}
}
return true;
}
void CGDebugInfo::completeClassData(const RecordDecl *RD) {
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->isDynamicClass() &&
CGM.getVTableLinkage(CXXRD) ==
llvm::GlobalValue::AvailableExternallyLinkage &&
!isClassOrMethodDLLImport(CXXRD))
return;
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return;
completeClass(RD);
}
void CGDebugInfo::completeClass(const RecordDecl *RD) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
QualType Ty = CGM.getContext().getRecordType(RD);
void *TyPtr = Ty.getAsOpaquePtr();
auto I = TypeCache.find(TyPtr);
if (I != TypeCache.end() && !cast<llvm::DIType>(I->second)->isForwardDecl())
return;
llvm::DIType *Res = CreateTypeDefinition(Ty->castAs<RecordType>());
assert(!Res->isForwardDecl());
TypeCache[TyPtr].reset(Res);
}
static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I,
CXXRecordDecl::method_iterator End) {
for (CXXMethodDecl *MD : llvm::make_range(I, End))
if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction())
if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() &&
!MD->getMemberSpecializationInfo()->isExplicitSpecialization())
return true;
return false;
}
static bool shouldOmitDefinition(codegenoptions::DebugInfoKind DebugKind,
bool DebugTypeExtRefs, const RecordDecl *RD,
const LangOptions &LangOpts) {
if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition()))
return true;
if (auto *ES = RD->getASTContext().getExternalSource())
if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always)
return true;
if (DebugKind > codegenoptions::LimitedDebugInfo)
return false;
if (!LangOpts.CPlusPlus)
return false;
if (!RD->isCompleteDefinitionRequired())
return true;
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
if (!CXXDecl)
return false;
// Only emit complete debug info for a dynamic class when its vtable is
// emitted. However, Microsoft debuggers don't resolve type information
// across DLL boundaries, so skip this optimization if the class or any of its
// methods are marked dllimport. This isn't a complete solution, since objects
// without any dllimport methods can be used in one DLL and constructed in
// another, but it is the current behavior of LimitedDebugInfo.
if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() &&
!isClassOrMethodDLLImport(CXXDecl))
return true;
TemplateSpecializationKind Spec = TSK_Undeclared;
if (const auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD))
Spec = SD->getSpecializationKind();
if (Spec == TSK_ExplicitInstantiationDeclaration &&
hasExplicitMemberDefinition(CXXDecl->method_begin(),
CXXDecl->method_end()))
return true;
return false;
}
void CGDebugInfo::completeRequiredType(const RecordDecl *RD) {
if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts()))
return;
QualType Ty = CGM.getContext().getRecordType(RD);
llvm::DIType *T = getTypeOrNull(Ty);
if (T && T->isForwardDecl())
completeClassData(RD);
}
llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
llvm::DIType *T = cast_or_null<llvm::DIType>(getTypeOrNull(QualType(Ty, 0)));
if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD,
CGM.getLangOpts())) {
if (!T)
T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD));
return T;
}
return CreateTypeDefinition(Ty);
}
llvm::DIType *CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
// Get overall information about the record type for the debug info.
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
// Records and classes and unions can all be recursive. To handle them, we
// first generate a debug descriptor for the struct as a forward declaration.
// Then (if it is a definition) we go through and get debug info for all of
// its members. Finally, we create a descriptor for the complete type (which
// may refer to the forward decl if the struct is recursive) and replace all
// uses of the forward declaration with the final definition.
llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty, DefUnit);
const RecordDecl *D = RD->getDefinition();
if (!D || !D->isCompleteDefinition())
return FwdDecl;
if (const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD))
CollectContainingType(CXXDecl, FwdDecl);
// Push the struct on region stack.
LexicalBlockStack.emplace_back(&*FwdDecl);
RegionMap[Ty->getDecl()].reset(FwdDecl);
// Convert all the elements.
SmallVector<llvm::Metadata *, 16> EltTys;
// what about nested types?
// Note: The split of CXXDecl information here is intentional, the
// gdb tests will depend on a certain ordering at printout. The debug
// information offsets are still correct if we merge them all together
// though.
const auto *CXXDecl = dyn_cast<CXXRecordDecl>(RD);
if (CXXDecl) {
CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl);
CollectVTableInfo(CXXDecl, DefUnit, EltTys, FwdDecl);
}
// Collect data fields (including static variables and any initializers).
CollectRecordFields(RD, DefUnit, EltTys, FwdDecl);
if (CXXDecl)
CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl);
LexicalBlockStack.pop_back();
RegionMap.erase(Ty->getDecl());
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(FwdDecl, Elements);
if (FwdDecl->isTemporary())
FwdDecl =
llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl));
RegionMap[Ty->getDecl()].reset(FwdDecl);
return FwdDecl;
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty,
llvm::DIFile *Unit) {
// Ignore protocols.
return getOrCreateType(Ty->getBaseType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty,
llvm::DIFile *Unit) {
// Ignore protocols.
SourceLocation Loc = Ty->getDecl()->getLocation();
// Use Typedefs to represent ObjCTypeParamType.
return DBuilder.createTypedef(
getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit),
Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc),
getDeclContextDescriptor(Ty->getDecl()));
}
/// \return true if Getter has the default name for the property PD.
static bool hasDefaultGetterName(const ObjCPropertyDecl *PD,
const ObjCMethodDecl *Getter) {
assert(PD);
if (!Getter)
return true;
assert(Getter->getDeclName().isObjCZeroArgSelector());
return PD->getName() ==
Getter->getDeclName().getObjCSelector().getNameForSlot(0);
}
/// \return true if Setter has the default name for the property PD.
static bool hasDefaultSetterName(const ObjCPropertyDecl *PD,
const ObjCMethodDecl *Setter) {
assert(PD);
if (!Setter)
return true;
assert(Setter->getDeclName().isObjCOneArgSelector());
return SelectorTable::constructSetterName(PD->getName()) ==
Setter->getDeclName().getObjCSelector().getNameForSlot(0);
}
llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty,
llvm::DIFile *Unit) {
ObjCInterfaceDecl *ID = Ty->getDecl();
if (!ID)
return nullptr;
// Return a forward declaration if this type was imported from a clang module,
// and this is not the compile unit with the implementation of the type (which
// may contain hidden ivars).
if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() &&
!ID->getImplementation())
return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type,
ID->getName(),
getDeclContextDescriptor(ID), Unit, 0);
// Get overall information about the record type for the debug info.
llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
unsigned Line = getLineNumber(ID->getLocation());
auto RuntimeLang =
static_cast<llvm::dwarf::SourceLanguage>(TheCU->getSourceLanguage());
// If this is just a forward declaration return a special forward-declaration
// debug type since we won't be able to lay out the entire type.
ObjCInterfaceDecl *Def = ID->getDefinition();
if (!Def || !Def->getImplementation()) {
llvm::DIScope *Mod = getParentModuleOrNull(ID);
llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU,
DefUnit, Line, RuntimeLang);
ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit));
return FwdDecl;
}
return CreateTypeDefinition(Ty, Unit);
}
llvm::DIModule *
CGDebugInfo::getOrCreateModuleRef(ExternalASTSource::ASTSourceDescriptor Mod,
bool CreateSkeletonCU) {
// Use the Module pointer as the key into the cache. This is a
// nullptr if the "Module" is a PCH, which is safe because we don't
// support chained PCH debug info, so there can only be a single PCH.
const Module *M = Mod.getModuleOrNull();
auto ModRef = ModuleCache.find(M);
if (ModRef != ModuleCache.end())
return cast<llvm::DIModule>(ModRef->second);
// Macro definitions that were defined with "-D" on the command line.
SmallString<128> ConfigMacros;
{
llvm::raw_svector_ostream OS(ConfigMacros);
const auto &PPOpts = CGM.getPreprocessorOpts();
unsigned I = 0;
// Translate the macro definitions back into a command line.
for (auto &M : PPOpts.Macros) {
if (++I > 1)
OS << " ";
const std::string &Macro = M.first;
bool Undef = M.second;
OS << "\"-" << (Undef ? 'U' : 'D');
for (char c : Macro)
switch (c) {
case '\\':
OS << "\\\\";
break;
case '"':
OS << "\\\"";
break;
default:
OS << c;
}
OS << '\"';
}
}
bool IsRootModule = M ? !M->Parent : true;
// When a module name is specified as -fmodule-name, that module gets a
// clang::Module object, but it won't actually be built or imported; it will
// be textual.
if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M)
assert(StringRef(M->Name).startswith(CGM.getLangOpts().ModuleName) &&
"clang module without ASTFile must be specified by -fmodule-name");
if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) {
// PCH files don't have a signature field in the control block,
// but LLVM detects skeleton CUs by looking for a non-zero DWO id.
// We use the lower 64 bits for debug info.
uint64_t Signature =
Mod.getSignature()
? (uint64_t)Mod.getSignature()[1] << 32 | Mod.getSignature()[0]
: ~1ULL;
llvm::DIBuilder DIB(CGM.getModule());
DIB.createCompileUnit(TheCU->getSourceLanguage(),
// TODO: Support "Source" from external AST providers?
DIB.createFile(Mod.getModuleName(), Mod.getPath()),
TheCU->getProducer(), true, StringRef(), 0,
Mod.getASTFile(), llvm::DICompileUnit::FullDebug,
Signature);
DIB.finalize();
}
llvm::DIModule *Parent =
IsRootModule ? nullptr
: getOrCreateModuleRef(
ExternalASTSource::ASTSourceDescriptor(*M->Parent),
CreateSkeletonCU);
llvm::DIModule *DIMod =
DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros,
Mod.getPath(), CGM.getHeaderSearchOpts().Sysroot);
ModuleCache[M].reset(DIMod);
return DIMod;
}
llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty,
llvm::DIFile *Unit) {
ObjCInterfaceDecl *ID = Ty->getDecl();
llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation());
unsigned Line = getLineNumber(ID->getLocation());
unsigned RuntimeLang = TheCU->getSourceLanguage();
// Bit size, align and offset of the type.
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (ID->getImplementation())
Flags |= llvm::DINode::FlagObjcClassComplete;
llvm::DIScope *Mod = getParentModuleOrNull(ID);
llvm::DICompositeType *RealDecl = DBuilder.createStructType(
Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags,
nullptr, llvm::DINodeArray(), RuntimeLang);
QualType QTy(Ty, 0);
TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl);
// Push the struct on region stack.
LexicalBlockStack.emplace_back(RealDecl);
RegionMap[Ty->getDecl()].reset(RealDecl);
// Convert all the elements.
SmallVector<llvm::Metadata *, 16> EltTys;
ObjCInterfaceDecl *SClass = ID->getSuperClass();
if (SClass) {
llvm::DIType *SClassTy =
getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit);
if (!SClassTy)
return nullptr;
llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0,
llvm::DINode::FlagZero);
EltTys.push_back(InhTag);
}
// Create entries for all of the properties.
auto AddProperty = [&](const ObjCPropertyDecl *PD) {
SourceLocation Loc = PD->getLocation();
llvm::DIFile *PUnit = getOrCreateFile(Loc);
unsigned PLine = getLineNumber(Loc);
ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
llvm::MDNode *PropertyNode = DBuilder.createObjCProperty(
PD->getName(), PUnit, PLine,
hasDefaultGetterName(PD, Getter) ? ""
: getSelectorName(PD->getGetterName()),
hasDefaultSetterName(PD, Setter) ? ""
: getSelectorName(PD->getSetterName()),
PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit));
EltTys.push_back(PropertyNode);
};
{
llvm::SmallPtrSet<const IdentifierInfo *, 16> PropertySet;
for (const ObjCCategoryDecl *ClassExt : ID->known_extensions())
for (auto *PD : ClassExt->properties()) {
PropertySet.insert(PD->getIdentifier());
AddProperty(PD);
}
for (const auto *PD : ID->properties()) {
// Don't emit duplicate metadata for properties that were already in a
// class extension.
if (!PropertySet.insert(PD->getIdentifier()).second)
continue;
AddProperty(PD);
}
}
const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID);
unsigned FieldNo = 0;
for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field;
Field = Field->getNextIvar(), ++FieldNo) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
if (!FieldTy)
return nullptr;
StringRef FieldName = Field->getName();
// Ignore unnamed fields.
if (FieldName.empty())
continue;
// Get the location for the field.
llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation());
unsigned FieldLine = getLineNumber(Field->getLocation());
QualType FType = Field->getType();
uint64_t FieldSize = 0;
uint32_t FieldAlign = 0;
if (!FType->isIncompleteArrayType()) {
// Bit size, align and offset of the type.
FieldSize = Field->isBitField()
? Field->getBitWidthValue(CGM.getContext())
: CGM.getContext().getTypeSize(FType);
FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
}
uint64_t FieldOffset;
if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) {
// We don't know the runtime offset of an ivar if we're using the
// non-fragile ABI. For bitfields, use the bit offset into the first
// byte of storage of the bitfield. For other fields, use zero.
if (Field->isBitField()) {
FieldOffset =
CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field);
FieldOffset %= CGM.getContext().getCharWidth();
} else {
FieldOffset = 0;
}
} else {
FieldOffset = RL.getFieldOffset(FieldNo);
}
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (Field->getAccessControl() == ObjCIvarDecl::Protected)
Flags = llvm::DINode::FlagProtected;
else if (Field->getAccessControl() == ObjCIvarDecl::Private)
Flags = llvm::DINode::FlagPrivate;
else if (Field->getAccessControl() == ObjCIvarDecl::Public)
Flags = llvm::DINode::FlagPublic;
llvm::MDNode *PropertyNode = nullptr;
if (ObjCImplementationDecl *ImpD = ID->getImplementation()) {
if (ObjCPropertyImplDecl *PImpD =
ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) {
if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) {
SourceLocation Loc = PD->getLocation();
llvm::DIFile *PUnit = getOrCreateFile(Loc);
unsigned PLine = getLineNumber(Loc);
ObjCMethodDecl *Getter = PD->getGetterMethodDecl();
ObjCMethodDecl *Setter = PD->getSetterMethodDecl();
PropertyNode = DBuilder.createObjCProperty(
PD->getName(), PUnit, PLine,
hasDefaultGetterName(PD, Getter)
? ""
: getSelectorName(PD->getGetterName()),
hasDefaultSetterName(PD, Setter)
? ""
: getSelectorName(PD->getSetterName()),
PD->getPropertyAttributes(),
getOrCreateType(PD->getType(), PUnit));
}
}
}
FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine,
FieldSize, FieldAlign, FieldOffset, Flags,
FieldTy, PropertyNode);
EltTys.push_back(FieldTy);
}
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(RealDecl, Elements);
LexicalBlockStack.pop_back();
return RealDecl;
}
llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty,
llvm::DIFile *Unit) {
llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit);
int64_t Count = Ty->getNumElements();
llvm::Metadata *Subscript;
QualType QTy(Ty, 0);
auto SizeExpr = SizeExprCache.find(QTy);
if (SizeExpr != SizeExprCache.end())
Subscript = DBuilder.getOrCreateSubrange(0, SizeExpr->getSecond());
else
Subscript = DBuilder.getOrCreateSubrange(0, Count ? Count : -1);
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript);
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getTypeAlignIfRequired(Ty, CGM.getContext());
return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray);
}
llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) {
uint64_t Size;
uint32_t Align;
// FIXME: make getTypeAlign() aware of VLAs and incomplete array types
if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
Size = 0;
Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT),
CGM.getContext());
} else if (Ty->isIncompleteArrayType()) {
Size = 0;
if (Ty->getElementType()->isIncompleteType())
Align = 0;
else
Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext());
} else if (Ty->isIncompleteType()) {
Size = 0;
Align = 0;
} else {
// Size and align of the whole array, not the element type.
Size = CGM.getContext().getTypeSize(Ty);
Align = getTypeAlignIfRequired(Ty, CGM.getContext());
}
// Add the dimensions of the array. FIXME: This loses CV qualifiers from
// interior arrays, do we care? Why aren't nested arrays represented the
// obvious/recursive way?
SmallVector<llvm::Metadata *, 8> Subscripts;
QualType EltTy(Ty, 0);
while ((Ty = dyn_cast<ArrayType>(EltTy))) {
// If the number of elements is known, then count is that number. Otherwise,
// it's -1. This allows us to represent a subrange with an array of 0
// elements, like this:
//
// struct foo {
// int x[0];
// };
int64_t Count = -1; // Count == -1 is an unbounded array.
if (const auto *CAT = dyn_cast<ConstantArrayType>(Ty))
Count = CAT->getSize().getZExtValue();
else if (const auto *VAT = dyn_cast<VariableArrayType>(Ty)) {
if (Expr *Size = VAT->getSizeExpr()) {
Expr::EvalResult Result;
if (Size->EvaluateAsInt(Result, CGM.getContext()))
Count = Result.Val.getInt().getExtValue();
}
}
auto SizeNode = SizeExprCache.find(EltTy);
if (SizeNode != SizeExprCache.end())
Subscripts.push_back(
DBuilder.getOrCreateSubrange(0, SizeNode->getSecond()));
else
Subscripts.push_back(DBuilder.getOrCreateSubrange(0, Count));
EltTy = Ty->getElementType();
}
llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts);
return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit),
SubscriptArray);
}
llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty,
llvm::DIFile *Unit) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty,
llvm::DIFile *Unit) {
return CreatePointerLikeType(llvm::dwarf::DW_TAG_rvalue_reference_type, Ty,
Ty->getPointeeType(), Unit);
}
llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty,
llvm::DIFile *U) {
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
uint64_t Size = 0;
if (!Ty->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(Ty);
// Set the MS inheritance model. There is no flag for the unspecified model.
if (CGM.getTarget().getCXXABI().isMicrosoft()) {
switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) {
case MSInheritanceAttr::Keyword_single_inheritance:
Flags |= llvm::DINode::FlagSingleInheritance;
break;
case MSInheritanceAttr::Keyword_multiple_inheritance:
Flags |= llvm::DINode::FlagMultipleInheritance;
break;
case MSInheritanceAttr::Keyword_virtual_inheritance:
Flags |= llvm::DINode::FlagVirtualInheritance;
break;
case MSInheritanceAttr::Keyword_unspecified_inheritance:
break;
}
}
}
llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U);
if (Ty->isMemberDataPointerType())
return DBuilder.createMemberPointerType(
getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0,
Flags);
const FunctionProtoType *FPT =
Ty->getPointeeType()->getAs<FunctionProtoType>();
return DBuilder.createMemberPointerType(
getOrCreateInstanceMethodType(
CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()),
FPT, U),
ClassType, Size, /*Align=*/0, Flags);
}
llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) {
auto *FromTy = getOrCreateType(Ty->getValueType(), U);
return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy);
}
llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) {
return getOrCreateType(Ty->getElementType(), U);
}
llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) {
const EnumDecl *ED = Ty->getDecl();
uint64_t Size = 0;
uint32_t Align = 0;
if (!ED->getTypeForDecl()->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
Align = getDeclAlignIfRequired(ED, CGM.getContext());
}
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
bool isImportedFromModule =
DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition();
// If this is just a forward declaration, construct an appropriately
// marked node and just return it.
if (isImportedFromModule || !ED->getDefinition()) {
// Note that it is possible for enums to be created as part of
// their own declcontext. In this case a FwdDecl will be created
// twice. This doesn't cause a problem because both FwdDecls are
// entered into the ReplaceMap: finalize() will replace the first
// FwdDecl with the second and then replace the second with
// complete type.
llvm::DIScope *EDContext = getDeclContextDescriptor(ED);
llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0));
unsigned Line = getLineNumber(ED->getLocation());
StringRef EDName = ED->getName();
llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType(
llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line,
0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier);
ReplaceMap.emplace_back(
std::piecewise_construct, std::make_tuple(Ty),
std::make_tuple(static_cast<llvm::Metadata *>(RetTy)));
return RetTy;
}
return CreateTypeDefinition(Ty);
}
llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) {
const EnumDecl *ED = Ty->getDecl();
uint64_t Size = 0;
uint32_t Align = 0;
if (!ED->getTypeForDecl()->isIncompleteType()) {
Size = CGM.getContext().getTypeSize(ED->getTypeForDecl());
Align = getDeclAlignIfRequired(ED, CGM.getContext());
}
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
// Create elements for each enumerator.
SmallVector<llvm::Metadata *, 16> Enumerators;
ED = ED->getDefinition();
bool IsSigned = ED->getIntegerType()->isSignedIntegerType();
for (const auto *Enum : ED->enumerators()) {
const auto &InitVal = Enum->getInitVal();
auto Value = IsSigned ? InitVal.getSExtValue() : InitVal.getZExtValue();
Enumerators.push_back(
DBuilder.createEnumerator(Enum->getName(), Value, !IsSigned));
}
// Return a CompositeType for the enum itself.
llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators);
llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation());
unsigned Line = getLineNumber(ED->getLocation());
llvm::DIScope *EnumContext = getDeclContextDescriptor(ED);
llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit);
return DBuilder.createEnumerationType(EnumContext, ED->getName(), DefUnit,
Line, Size, Align, EltArray, ClassTy,
Identifier, ED->isScoped());
}
llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent,
unsigned MType, SourceLocation LineLoc,
StringRef Name, StringRef Value) {
unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
return DBuilder.createMacro(Parent, Line, MType, Name, Value);
}
llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent,
SourceLocation LineLoc,
SourceLocation FileLoc) {
llvm::DIFile *FName = getOrCreateFile(FileLoc);
unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc);
return DBuilder.createTempMacroFile(Parent, Line, FName);
}
static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) {
Qualifiers Quals;
do {
Qualifiers InnerQuals = T.getLocalQualifiers();
// Qualifiers::operator+() doesn't like it if you add a Qualifier
// that is already there.
Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals);
Quals += InnerQuals;
QualType LastT = T;
switch (T->getTypeClass()) {
default:
return C.getQualifiedType(T.getTypePtr(), Quals);
case Type::TemplateSpecialization: {
const auto *Spec = cast<TemplateSpecializationType>(T);
if (Spec->isTypeAlias())
return C.getQualifiedType(T.getTypePtr(), Quals);
T = Spec->desugar();
break;
}
case Type::TypeOfExpr:
T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType();
break;
case Type::TypeOf:
T = cast<TypeOfType>(T)->getUnderlyingType();
break;
case Type::Decltype:
T = cast<DecltypeType>(T)->getUnderlyingType();
break;
case Type::UnaryTransform:
T = cast<UnaryTransformType>(T)->getUnderlyingType();
break;
case Type::Attributed:
T = cast<AttributedType>(T)->getEquivalentType();
break;
case Type::Elaborated:
T = cast<ElaboratedType>(T)->getNamedType();
break;
case Type::Paren:
T = cast<ParenType>(T)->getInnerType();
break;
case Type::MacroQualified:
T = cast<MacroQualifiedType>(T)->getUnderlyingType();
break;
case Type::SubstTemplateTypeParm:
T = cast<SubstTemplateTypeParmType>(T)->getReplacementType();
break;
case Type::Auto:
case Type::DeducedTemplateSpecialization: {
QualType DT = cast<DeducedType>(T)->getDeducedType();
assert(!DT.isNull() && "Undeduced types shouldn't reach here.");
T = DT;
break;
}
case Type::Adjusted:
case Type::Decayed:
// Decayed and adjusted types use the adjusted type in LLVM and DWARF.
T = cast<AdjustedType>(T)->getAdjustedType();
break;
}
assert(T != LastT && "Type unwrapping failed to unwrap!");
(void)LastT;
} while (true);
}
llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) {
// Unwrap the type as needed for debug information.
Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
auto It = TypeCache.find(Ty.getAsOpaquePtr());
if (It != TypeCache.end()) {
// Verify that the debug info still exists.
if (llvm::Metadata *V = It->second)
return cast<llvm::DIType>(V);
}
return nullptr;
}
void CGDebugInfo::completeTemplateDefinition(
const ClassTemplateSpecializationDecl &SD) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
completeUnusedClass(SD);
}
void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) {
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
completeClassData(&D);
// In case this type has no member function definitions being emitted, ensure
// it is retained
RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr());
}
llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) {
if (Ty.isNull())
return nullptr;
// Unwrap the type as needed for debug information.
Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext());
if (auto *T = getTypeOrNull(Ty))
return T;
llvm::DIType *Res = CreateTypeNode(Ty, Unit);
void *TyPtr = Ty.getAsOpaquePtr();
// And update the type cache.
TypeCache[TyPtr].reset(Res);
return Res;
}
llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) {
// A forward declaration inside a module header does not belong to the module.
if (isa<RecordDecl>(D) && !cast<RecordDecl>(D)->getDefinition())
return nullptr;
if (DebugTypeExtRefs && D->isFromASTFile()) {
// Record a reference to an imported clang module or precompiled header.
auto *Reader = CGM.getContext().getExternalSource();
auto Idx = D->getOwningModuleID();
auto Info = Reader->getSourceDescriptor(Idx);
if (Info)
return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true);
} else if (ClangModuleMap) {
// We are building a clang module or a precompiled header.
//
// TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies
// and it wouldn't be necessary to specify the parent scope
// because the type is already unique by definition (it would look
// like the output of -fno-standalone-debug). On the other hand,
// the parent scope helps a consumer to quickly locate the object
// file where the type's definition is located, so it might be
// best to make this behavior a command line or debugger tuning
// option.
if (Module *M = D->getOwningModule()) {
// This is a (sub-)module.
auto Info = ExternalASTSource::ASTSourceDescriptor(*M);
return getOrCreateModuleRef(Info, /*SkeletonCU=*/false);
} else {
// This the precompiled header being built.
return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false);
}
}
return nullptr;
}
llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) {
// Handle qualifiers, which recursively handles what they refer to.
if (Ty.hasLocalQualifiers())
return CreateQualifiedType(Ty, Unit);
// Work out details of type.
switch (Ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
llvm_unreachable("Dependent types cannot show up in debug information");
case Type::ExtVector:
case Type::Vector:
return CreateType(cast<VectorType>(Ty), Unit);
case Type::ObjCObjectPointer:
return CreateType(cast<ObjCObjectPointerType>(Ty), Unit);
case Type::ObjCObject:
return CreateType(cast<ObjCObjectType>(Ty), Unit);
case Type::ObjCTypeParam:
return CreateType(cast<ObjCTypeParamType>(Ty), Unit);
case Type::ObjCInterface:
return CreateType(cast<ObjCInterfaceType>(Ty), Unit);
case Type::Builtin:
return CreateType(cast<BuiltinType>(Ty));
case Type::Complex:
return CreateType(cast<ComplexType>(Ty));
case Type::Pointer:
return CreateType(cast<PointerType>(Ty), Unit);
case Type::BlockPointer:
return CreateType(cast<BlockPointerType>(Ty), Unit);
case Type::Typedef:
return CreateType(cast<TypedefType>(Ty), Unit);
case Type::Record:
return CreateType(cast<RecordType>(Ty));
case Type::Enum:
return CreateEnumType(cast<EnumType>(Ty));
case Type::FunctionProto:
case Type::FunctionNoProto:
return CreateType(cast<FunctionType>(Ty), Unit);
case Type::ConstantArray:
case Type::VariableArray:
case Type::IncompleteArray:
return CreateType(cast<ArrayType>(Ty), Unit);
case Type::LValueReference:
return CreateType(cast<LValueReferenceType>(Ty), Unit);
case Type::RValueReference:
return CreateType(cast<RValueReferenceType>(Ty), Unit);
case Type::MemberPointer:
return CreateType(cast<MemberPointerType>(Ty), Unit);
case Type::Atomic:
return CreateType(cast<AtomicType>(Ty), Unit);
case Type::Pipe:
return CreateType(cast<PipeType>(Ty), Unit);
case Type::TemplateSpecialization:
return CreateType(cast<TemplateSpecializationType>(Ty), Unit);
case Type::Auto:
case Type::Attributed:
case Type::Adjusted:
case Type::Decayed:
case Type::DeducedTemplateSpecialization:
case Type::Elaborated:
case Type::Paren:
case Type::MacroQualified:
case Type::SubstTemplateTypeParm:
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::UnaryTransform:
case Type::PackExpansion:
break;
}
llvm_unreachable("type should have been unwrapped!");
}
llvm::DICompositeType *CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty,
llvm::DIFile *Unit) {
QualType QTy(Ty, 0);
auto *T = cast_or_null<llvm::DICompositeType>(getTypeOrNull(QTy));
// We may have cached a forward decl when we could have created
// a non-forward decl. Go ahead and create a non-forward decl
// now.
if (T && !T->isForwardDecl())
return T;
// Otherwise create the type.
llvm::DICompositeType *Res = CreateLimitedType(Ty);
// Propagate members from the declaration to the definition
// CreateType(const RecordType*) will overwrite this with the members in the
// correct order if the full type is needed.
DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray());
// And update the type cache.
TypeCache[QTy.getAsOpaquePtr()].reset(Res);
return Res;
}
// TODO: Currently used for context chains when limiting debug info.
llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) {
RecordDecl *RD = Ty->getDecl();
// Get overall information about the record type for the debug info.
llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation());
unsigned Line = getLineNumber(RD->getLocation());
StringRef RDName = getClassName(RD);
llvm::DIScope *RDContext = getDeclContextDescriptor(RD);
// If we ended up creating the type during the context chain construction,
// just return that.
auto *T = cast_or_null<llvm::DICompositeType>(
getTypeOrNull(CGM.getContext().getRecordType(RD)));
if (T && (!T->isForwardDecl() || !RD->getDefinition()))
return T;
// If this is just a forward or incomplete declaration, construct an
// appropriately marked node and just return it.
const RecordDecl *D = RD->getDefinition();
if (!D || !D->isCompleteDefinition())
return getOrCreateRecordFwdDecl(Ty, RDContext);
uint64_t Size = CGM.getContext().getTypeSize(Ty);
auto Align = getDeclAlignIfRequired(D, CGM.getContext());
SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU);
// Explicitly record the calling convention for C++ records.
auto Flags = llvm::DINode::FlagZero;
if (auto CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect)
Flags |= llvm::DINode::FlagTypePassByReference;
else
Flags |= llvm::DINode::FlagTypePassByValue;
// Record if a C++ record is non-trivial type.
if (!CXXRD->isTrivial())
Flags |= llvm::DINode::FlagNonTrivial;
}
llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType(
getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align,
Flags, Identifier);
// Elements of composite types usually have back to the type, creating
// uniquing cycles. Distinct nodes are more efficient.
switch (RealDecl->getTag()) {
default:
llvm_unreachable("invalid composite type tag");
case llvm::dwarf::DW_TAG_array_type:
case llvm::dwarf::DW_TAG_enumeration_type:
// Array elements and most enumeration elements don't have back references,
// so they don't tend to be involved in uniquing cycles and there is some
// chance of merging them when linking together two modules. Only make
// them distinct if they are ODR-uniqued.
if (Identifier.empty())
break;
LLVM_FALLTHROUGH;
case llvm::dwarf::DW_TAG_structure_type:
case llvm::dwarf::DW_TAG_union_type:
case llvm::dwarf::DW_TAG_class_type:
// Immediately resolve to a distinct node.
RealDecl =
llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl));
break;
}
RegionMap[Ty->getDecl()].reset(RealDecl);
TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl);
if (const auto *TSpecial = dyn_cast<ClassTemplateSpecializationDecl>(RD))
DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(),
CollectCXXTemplateParams(TSpecial, DefUnit));
return RealDecl;
}
void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD,
llvm::DICompositeType *RealDecl) {
// A class's primary base or the class itself contains the vtable.
llvm::DICompositeType *ContainingType = nullptr;
const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD);
if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) {
// Seek non-virtual primary base root.
while (1) {
const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase);
const CXXRecordDecl *PBT = BRL.getPrimaryBase();
if (PBT && !BRL.isPrimaryBaseVirtual())
PBase = PBT;
else
break;
}
ContainingType = cast<llvm::DICompositeType>(
getOrCreateType(QualType(PBase->getTypeForDecl(), 0),
getOrCreateFile(RD->getLocation())));
} else if (RD->isDynamicClass())
ContainingType = RealDecl;
DBuilder.replaceVTableHolder(RealDecl, ContainingType);
}
llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType,
StringRef Name, uint64_t *Offset) {
llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit);
uint64_t FieldSize = CGM.getContext().getTypeSize(FType);
auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext());
llvm::DIType *Ty =
DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign,
*Offset, llvm::DINode::FlagZero, FieldTy);
*Offset += FieldSize;
return Ty;
}
void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit,
StringRef &Name,
StringRef &LinkageName,
llvm::DIScope *&FDContext,
llvm::DINodeArray &TParamsArray,
llvm::DINode::DIFlags &Flags) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
Name = getFunctionName(FD);
// Use mangled name as linkage name for C/C++ functions.
if (FD->hasPrototype()) {
LinkageName = CGM.getMangledName(GD);
Flags |= llvm::DINode::FlagPrototyped;
}
// No need to replicate the linkage name if it isn't different from the
// subprogram name, no need to have it at all unless coverage is enabled or
// debug is set to more than just line tables or extra debug info is needed.
if (LinkageName == Name || (!CGM.getCodeGenOpts().EmitGcovArcs &&
!CGM.getCodeGenOpts().EmitGcovNotes &&
!CGM.getCodeGenOpts().DebugInfoForProfiling &&
DebugKind <= codegenoptions::DebugLineTablesOnly))
LinkageName = StringRef();
if (DebugKind >= codegenoptions::LimitedDebugInfo) {
if (const NamespaceDecl *NSDecl =
dyn_cast_or_null<NamespaceDecl>(FD->getDeclContext()))
FDContext = getOrCreateNamespace(NSDecl);
else if (const RecordDecl *RDecl =
dyn_cast_or_null<RecordDecl>(FD->getDeclContext())) {
llvm::DIScope *Mod = getParentModuleOrNull(RDecl);
FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU);
}
// Check if it is a noreturn-marked function
if (FD->isNoReturn())
Flags |= llvm::DINode::FlagNoReturn;
// Collect template parameters.
TParamsArray = CollectFunctionTemplateParams(FD, Unit);
}
}
void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit,
unsigned &LineNo, QualType &T,
StringRef &Name, StringRef &LinkageName,
llvm::MDTuple *&TemplateParameters,
llvm::DIScope *&VDContext) {
Unit = getOrCreateFile(VD->getLocation());
LineNo = getLineNumber(VD->getLocation());
setLocation(VD->getLocation());
T = VD->getType();
if (T->isIncompleteArrayType()) {
// CodeGen turns int[] into int[1] so we'll do the same here.
llvm::APInt ConstVal(32, 1);
QualType ET = CGM.getContext().getAsArrayType(T)->getElementType();
T = CGM.getContext().getConstantArrayType(ET, ConstVal, ArrayType::Normal,
0);
}
Name = VD->getName();
if (VD->getDeclContext() && !isa<FunctionDecl>(VD->getDeclContext()) &&
!isa<ObjCMethodDecl>(VD->getDeclContext()))
LinkageName = CGM.getMangledName(VD);
if (LinkageName == Name)
LinkageName = StringRef();
if (isa<VarTemplateSpecializationDecl>(VD)) {
llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit);
TemplateParameters = parameterNodes.get();
} else {
TemplateParameters = nullptr;
}
// Since we emit declarations (DW_AT_members) for static members, place the
// definition of those static members in the namespace they were declared in
// in the source code (the lexical decl context).
// FIXME: Generalize this for even non-member global variables where the
// declaration and definition may have different lexical decl contexts, once
// we have support for emitting declarations of (non-member) global variables.
const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext()
: VD->getDeclContext();
// When a record type contains an in-line initialization of a static data
// member, and the record type is marked as __declspec(dllexport), an implicit
// definition of the member will be created in the record context. DWARF
// doesn't seem to have a nice way to describe this in a form that consumers
// are likely to understand, so fake the "normal" situation of a definition
// outside the class by putting it in the global scope.
if (DC->isRecord())
DC = CGM.getContext().getTranslationUnitDecl();
llvm::DIScope *Mod = getParentModuleOrNull(VD);
VDContext = getContextDescriptor(cast<Decl>(DC), Mod ? Mod : TheCU);
}
llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD,
bool Stub) {
llvm::DINodeArray TParamsArray;
StringRef Name, LinkageName;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
SourceLocation Loc = GD.getDecl()->getLocation();
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *DContext = Unit;
unsigned Line = getLineNumber(Loc);
collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray,
Flags);
auto *FD = dyn_cast<FunctionDecl>(GD.getDecl());
// Build function type.
SmallVector<QualType, 16> ArgTypes;
if (FD)
for (const ParmVarDecl *Parm : FD->parameters())
ArgTypes.push_back(Parm->getType());
CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
QualType FnType = CGM.getContext().getFunctionType(
FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC));
if (!FD->isExternallyVisible())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
if (Stub) {
Flags |= getCallSiteRelatedAttrs();
SPFlags |= llvm::DISubprogram::SPFlagDefinition;
return DBuilder.createFunction(
DContext, Name, LinkageName, Unit, Line,
getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
TParamsArray.get(), getFunctionDeclaration(FD));
}
llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl(
DContext, Name, LinkageName, Unit, Line,
getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags,
TParamsArray.get(), getFunctionDeclaration(FD));
const FunctionDecl *CanonDecl = FD->getCanonicalDecl();
FwdDeclReplaceMap.emplace_back(std::piecewise_construct,
std::make_tuple(CanonDecl),
std::make_tuple(SP));
return SP;
}
llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) {
return getFunctionFwdDeclOrStub(GD, /* Stub = */ false);
}
llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) {
return getFunctionFwdDeclOrStub(GD, /* Stub = */ true);
}
llvm::DIGlobalVariable *
CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) {
QualType T;
StringRef Name, LinkageName;
SourceLocation Loc = VD->getLocation();
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *DContext = Unit;
unsigned Line = getLineNumber(Loc);
llvm::MDTuple *TemplateParameters = nullptr;
collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters,
DContext);
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
auto *GV = DBuilder.createTempGlobalVariableFwdDecl(
DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit),
!VD->isExternallyVisible(), nullptr, TemplateParameters, Align);
FwdDeclReplaceMap.emplace_back(
std::piecewise_construct,
std::make_tuple(cast<VarDecl>(VD->getCanonicalDecl())),
std::make_tuple(static_cast<llvm::Metadata *>(GV)));
return GV;
}
llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) {
// We only need a declaration (not a definition) of the type - so use whatever
// we would otherwise do to get a type for a pointee. (forward declarations in
// limited debug info, full definitions (if the type definition is available)
// in unlimited debug info)
if (const auto *TD = dyn_cast<TypeDecl>(D))
return getOrCreateType(CGM.getContext().getTypeDeclType(TD),
getOrCreateFile(TD->getLocation()));
auto I = DeclCache.find(D->getCanonicalDecl());
if (I != DeclCache.end()) {
auto N = I->second;
if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(N))
return GVE->getVariable();
return dyn_cast_or_null<llvm::DINode>(N);
}
// No definition for now. Emit a forward definition that might be
// merged with a potential upcoming definition.
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return getFunctionForwardDeclaration(FD);
else if (const auto *VD = dyn_cast<VarDecl>(D))
return getGlobalVariableForwardDeclaration(VD);
return nullptr;
}
llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) {
if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly)
return nullptr;
const auto *FD = dyn_cast<FunctionDecl>(D);
if (!FD)
return nullptr;
// Setup context.
auto *S = getDeclContextDescriptor(D);
auto MI = SPCache.find(FD->getCanonicalDecl());
if (MI == SPCache.end()) {
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD->getCanonicalDecl())) {
return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()),
cast<llvm::DICompositeType>(S));
}
}
if (MI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
if (SP && !SP->isDefinition())
return SP;
}
for (auto NextFD : FD->redecls()) {
auto MI = SPCache.find(NextFD->getCanonicalDecl());
if (MI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(MI->second);
if (SP && !SP->isDefinition())
return SP;
}
}
return nullptr;
}
// getOrCreateFunctionType - Construct type. If it is a c++ method, include
// implicit parameter "this".
llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D,
QualType FnType,
llvm::DIFile *F) {
if (!D || DebugKind <= codegenoptions::DebugLineTablesOnly)
// Create fake but valid subroutine type. Otherwise -verify would fail, and
// subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields.
return DBuilder.createSubroutineType(DBuilder.getOrCreateTypeArray(None));
if (const auto *Method = dyn_cast<CXXMethodDecl>(D))
return getOrCreateMethodType(Method, F);
const auto *FTy = FnType->getAs<FunctionType>();
CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C;
if (const auto *OMethod = dyn_cast<ObjCMethodDecl>(D)) {
// Add "self" and "_cmd"
SmallVector<llvm::Metadata *, 16> Elts;
// First element is always return type. For 'void' functions it is NULL.
QualType ResultTy = OMethod->getReturnType();
// Replace the instancetype keyword with the actual type.
if (ResultTy == CGM.getContext().getObjCInstanceType())
ResultTy = CGM.getContext().getPointerType(
QualType(OMethod->getClassInterface()->getTypeForDecl(), 0));
Elts.push_back(getOrCreateType(ResultTy, F));
// "self" pointer is always first argument.
QualType SelfDeclTy;
if (auto *SelfDecl = OMethod->getSelfDecl())
SelfDeclTy = SelfDecl->getType();
else if (auto *FPT = dyn_cast<FunctionProtoType>(FnType))
if (FPT->getNumParams() > 1)
SelfDeclTy = FPT->getParamType(0);
if (!SelfDeclTy.isNull())
Elts.push_back(
CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F)));
// "_cmd" pointer is always second argument.
Elts.push_back(DBuilder.createArtificialType(
getOrCreateType(CGM.getContext().getObjCSelType(), F)));
// Get rest of the arguments.
for (const auto *PI : OMethod->parameters())
Elts.push_back(getOrCreateType(PI->getType(), F));
// Variadic methods need a special marker at the end of the type list.
if (OMethod->isVariadic())
Elts.push_back(DBuilder.createUnspecifiedParameter());
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts);
return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
getDwarfCC(CC));
}
// Handle variadic function types; they need an additional
// unspecified parameter.
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (FD->isVariadic()) {
SmallVector<llvm::Metadata *, 16> EltTys;
EltTys.push_back(getOrCreateType(FD->getReturnType(), F));
if (const auto *FPT = dyn_cast<FunctionProtoType>(FnType))
for (QualType ParamType : FPT->param_types())
EltTys.push_back(getOrCreateType(ParamType, F));
EltTys.push_back(DBuilder.createUnspecifiedParameter());
llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys);
return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero,
getDwarfCC(CC));
}
return cast<llvm::DISubroutineType>(getOrCreateType(FnType, F));
}
void CGDebugInfo::EmitFunctionStart(GlobalDecl GD, SourceLocation Loc,
SourceLocation ScopeLoc, QualType FnType,
llvm::Function *Fn, bool CurFuncIsThunk,
CGBuilderTy &Builder) {
StringRef Name;
StringRef LinkageName;
FnBeginRegionCount.push_back(LexicalBlockStack.size());
const Decl *D = GD.getDecl();
bool HasDecl = (D != nullptr);
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *FDContext = Unit;
llvm::DINodeArray TParamsArray;
if (!HasDecl) {
// Use llvm function name.
LinkageName = Fn->getName();
} else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// If there is a subprogram for this function available then use it.
auto FI = SPCache.find(FD->getCanonicalDecl());
if (FI != SPCache.end()) {
auto *SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
if (SP && SP->isDefinition()) {
LexicalBlockStack.emplace_back(SP);
RegionMap[D].reset(SP);
return;
}
}
collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
TParamsArray, Flags);
} else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
Name = getObjCMethodName(OMD);
Flags |= llvm::DINode::FlagPrototyped;
} else if (isa<VarDecl>(D) &&
GD.getDynamicInitKind() != DynamicInitKind::NoStub) {
// This is a global initializer or atexit destructor for a global variable.
Name = getDynamicInitializerName(cast<VarDecl>(D), GD.getDynamicInitKind(),
Fn);
} else {
// Use llvm function name.
Name = Fn->getName();
Flags |= llvm::DINode::FlagPrototyped;
}
if (Name.startswith("\01"))
Name = Name.substr(1);
if (!HasDecl || D->isImplicit() || D->hasAttr<ArtificialAttr>()) {
Flags |= llvm::DINode::FlagArtificial;
// Artificial functions should not silently reuse CurLoc.
CurLoc = SourceLocation();
}
if (CurFuncIsThunk)
Flags |= llvm::DINode::FlagThunk;
if (Fn->hasLocalLinkage())
SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs();
llvm::DISubprogram::DISPFlags SPFlagsForDef =
SPFlags | llvm::DISubprogram::SPFlagDefinition;
unsigned LineNo = getLineNumber(Loc);
unsigned ScopeLine = getLineNumber(ScopeLoc);
// FIXME: The function declaration we're constructing here is mostly reusing
// declarations from CXXMethodDecl and not constructing new ones for arbitrary
// FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for
// all subprograms instead of the actual context since subprogram definitions
// are emitted as CU level entities by the backend.
llvm::DISubprogram *SP = DBuilder.createFunction(
FDContext, Name, LinkageName, Unit, LineNo,
getOrCreateFunctionType(D, FnType, Unit), ScopeLine, FlagsForDef,
SPFlagsForDef, TParamsArray.get(), getFunctionDeclaration(D));
Fn->setSubprogram(SP);
// We might get here with a VarDecl in the case we're generating
// code for the initialization of globals. Do not record these decls
// as they will overwrite the actual VarDecl Decl in the cache.
if (HasDecl && isa<FunctionDecl>(D))
DeclCache[D->getCanonicalDecl()].reset(SP);
if (CGM.getCodeGenOpts().DwarfVersion >= 5) {
// Starting with DWARF V5 method declarations are emitted as children of
// the interface type.
if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) {
const ObjCInterfaceDecl *ID = OMD->getClassInterface();
QualType QTy(ID->getTypeForDecl(), 0);
auto It = TypeCache.find(QTy.getAsOpaquePtr());
if (It != TypeCache.end()) {
llvm::DICompositeType *InterfaceDecl =
cast<llvm::DICompositeType>(It->second);
llvm::DISubprogram *FD = DBuilder.createFunction(
InterfaceDecl, Name, LinkageName, Unit, LineNo,
getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags,
TParamsArray.get());
DBuilder.finalizeSubprogram(FD);
ObjCMethodCache[ID].push_back(FD);
}
}
}
// Push the function onto the lexical block stack.
LexicalBlockStack.emplace_back(SP);
if (HasDecl)
RegionMap[D].reset(SP);
}
void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc,
QualType FnType) {
StringRef Name;
StringRef LinkageName;
const Decl *D = GD.getDecl();
if (!D)
return;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
llvm::DIFile *Unit = getOrCreateFile(Loc);
llvm::DIScope *FDContext = getDeclContextDescriptor(D);
llvm::DINodeArray TParamsArray;
if (isa<FunctionDecl>(D)) {
// If there is a DISubprogram for this function available then use it.
collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext,
TParamsArray, Flags);
} else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D)) {
Name = getObjCMethodName(OMD);
Flags |= llvm::DINode::FlagPrototyped;
} else {
llvm_unreachable("not a function or ObjC method");
}
if (!Name.empty() && Name[0] == '\01')
Name = Name.substr(1);
if (D->isImplicit()) {
Flags |= llvm::DINode::FlagArtificial;
// Artificial functions without a location should not silently reuse CurLoc.
if (Loc.isInvalid())
CurLoc = SourceLocation();
}
unsigned LineNo = getLineNumber(Loc);
unsigned ScopeLine = 0;
llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero;
if (CGM.getLangOpts().Optimize)
SPFlags |= llvm::DISubprogram::SPFlagOptimized;
DBuilder.retainType(DBuilder.createFunction(
FDContext, Name, LinkageName, Unit, LineNo,
getOrCreateFunctionType(D, FnType, Unit), ScopeLine, Flags, SPFlags,
TParamsArray.get(), getFunctionDeclaration(D)));
}
void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) {
const auto *FD = cast<FunctionDecl>(GD.getDecl());
// If there is a subprogram for this function available then use it.
auto FI = SPCache.find(FD->getCanonicalDecl());
llvm::DISubprogram *SP = nullptr;
if (FI != SPCache.end())
SP = dyn_cast_or_null<llvm::DISubprogram>(FI->second);
if (!SP || !SP->isDefinition())
SP = getFunctionStub(GD);
FnBeginRegionCount.push_back(LexicalBlockStack.size());
LexicalBlockStack.emplace_back(SP);
setInlinedAt(Builder.getCurrentDebugLocation());
EmitLocation(Builder, FD->getLocation());
}
void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) {
assert(CurInlinedAt && "unbalanced inline scope stack");
EmitFunctionEnd(Builder, nullptr);
setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt());
}
void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) {
// Update our current location
setLocation(Loc);
if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty())
return;
llvm::MDNode *Scope = LexicalBlockStack.back();
Builder.SetCurrentDebugLocation(llvm::DebugLoc::get(
getLineNumber(CurLoc), getColumnNumber(CurLoc), Scope, CurInlinedAt));
}
void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) {
llvm::MDNode *Back = nullptr;
if (!LexicalBlockStack.empty())
Back = LexicalBlockStack.back().get();
LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock(
cast<llvm::DIScope>(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc),
getColumnNumber(CurLoc)));
}
void CGDebugInfo::AppendAddressSpaceXDeref(
unsigned AddressSpace, SmallVectorImpl<int64_t> &Expr) const {
Optional<unsigned> DWARFAddressSpace =
CGM.getTarget().getDWARFAddressSpace(AddressSpace);
if (!DWARFAddressSpace)
return;
Expr.push_back(llvm::dwarf::DW_OP_constu);
Expr.push_back(DWARFAddressSpace.getValue());
Expr.push_back(llvm::dwarf::DW_OP_swap);
Expr.push_back(llvm::dwarf::DW_OP_xderef);
}
void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder,
SourceLocation Loc) {
// Set our current location.
setLocation(Loc);
// Emit a line table change for the current location inside the new scope.
Builder.SetCurrentDebugLocation(
llvm::DebugLoc::get(getLineNumber(Loc), getColumnNumber(Loc),
LexicalBlockStack.back(), CurInlinedAt));
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
// Create a new lexical block and push it on the stack.
CreateLexicalBlock(Loc);
}
void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder,
SourceLocation Loc) {
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
// Provide an entry in the line table for the end of the block.
EmitLocation(Builder, Loc);
if (DebugKind <= codegenoptions::DebugLineTablesOnly)
return;
LexicalBlockStack.pop_back();
}
void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) {
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
unsigned RCount = FnBeginRegionCount.back();
assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch");
// Pop all regions for this function.
while (LexicalBlockStack.size() != RCount) {
// Provide an entry in the line table for the end of the block.
EmitLocation(Builder, CurLoc);
LexicalBlockStack.pop_back();
}
FnBeginRegionCount.pop_back();
if (Fn && Fn->getSubprogram())
DBuilder.finalizeSubprogram(Fn->getSubprogram());
}
CGDebugInfo::BlockByRefType
CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD,
uint64_t *XOffset) {
SmallVector<llvm::Metadata *, 5> EltTys;
QualType FType;
uint64_t FieldSize, FieldOffset;
uint32_t FieldAlign;
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
QualType Type = VD->getType();
FieldOffset = 0;
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset));
FType = CGM.getContext().IntTy;
EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset));
EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset));
bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD);
if (HasCopyAndDispose) {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(
CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset));
EltTys.push_back(
CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset));
}
bool HasByrefExtendedLayout;
Qualifiers::ObjCLifetime Lifetime;
if (CGM.getContext().getByrefLifetime(Type, Lifetime,
HasByrefExtendedLayout) &&
HasByrefExtendedLayout) {
FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy);
EltTys.push_back(
CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset));
}
CharUnits Align = CGM.getContext().getDeclAlign(VD);
if (Align > CGM.getContext().toCharUnitsFromBits(
CGM.getTarget().getPointerAlign(0))) {
CharUnits FieldOffsetInBytes =
CGM.getContext().toCharUnitsFromBits(FieldOffset);
CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align);
CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes;
if (NumPaddingBytes.isPositive()) {
llvm::APInt pad(32, NumPaddingBytes.getQuantity());
FType = CGM.getContext().getConstantArrayType(CGM.getContext().CharTy,
pad, ArrayType::Normal, 0);
EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset));
}
}
FType = Type;
llvm::DIType *WrappedTy = getOrCreateType(FType, Unit);
FieldSize = CGM.getContext().getTypeSize(FType);
FieldAlign = CGM.getContext().toBits(Align);
*XOffset = FieldOffset;
llvm::DIType *FieldTy = DBuilder.createMemberType(
Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset,
llvm::DINode::FlagZero, WrappedTy);
EltTys.push_back(FieldTy);
FieldOffset += FieldSize;
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0,
llvm::DINode::FlagZero, nullptr, Elements),
WrappedTy};
}
llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD,
llvm::Value *Storage,
llvm::Optional<unsigned> ArgNo,
CGBuilderTy &Builder) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (VD->hasAttr<NoDebugAttr>())
return nullptr;
bool Unwritten =
VD->isImplicit() || (isa<Decl>(VD->getDeclContext()) &&
cast<Decl>(VD->getDeclContext())->isImplicit());
llvm::DIFile *Unit = nullptr;
if (!Unwritten)
Unit = getOrCreateFile(VD->getLocation());
llvm::DIType *Ty;
uint64_t XOffset = 0;
if (VD->hasAttr<BlocksAttr>())
Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
else
Ty = getOrCreateType(VD->getType(), Unit);
// If there is no debug info for this type then do not emit debug info
// for this variable.
if (!Ty)
return nullptr;
// Get location information.
unsigned Line = 0;
unsigned Column = 0;
if (!Unwritten) {
Line = getLineNumber(VD->getLocation());
Column = getColumnNumber(VD->getLocation());
}
SmallVector<int64_t, 13> Expr;
llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero;
if (VD->isImplicit())
Flags |= llvm::DINode::FlagArtificial;
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
unsigned AddressSpace = CGM.getContext().getTargetAddressSpace(VD->getType());
AppendAddressSpaceXDeref(AddressSpace, Expr);
// If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an
// object pointer flag.
if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD)) {
if (IPD->getParameterKind() == ImplicitParamDecl::CXXThis ||
IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf)
Flags |= llvm::DINode::FlagObjectPointer;
}
// Note: Older versions of clang used to emit byval references with an extra
// DW_OP_deref, because they referenced the IR arg directly instead of
// referencing an alloca. Newer versions of LLVM don't treat allocas
// differently from other function arguments when used in a dbg.declare.
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
StringRef Name = VD->getName();
if (!Name.empty()) {
if (VD->hasAttr<BlocksAttr>()) {
// Here, we need an offset *into* the alloca.
CharUnits offset = CharUnits::fromQuantity(32);
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of __forwarding field
offset = CGM.getContext().toCharUnitsFromBits(
CGM.getTarget().getPointerWidth(0));
Expr.push_back(offset.getQuantity());
Expr.push_back(llvm::dwarf::DW_OP_deref);
Expr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of x field
offset = CGM.getContext().toCharUnitsFromBits(XOffset);
Expr.push_back(offset.getQuantity());
}
} else if (const auto *RT = dyn_cast<RecordType>(VD->getType())) {
// If VD is an anonymous union then Storage represents value for
// all union fields.
const RecordDecl *RD = RT->getDecl();
if (RD->isUnion() && RD->isAnonymousStructOrUnion()) {
// GDB has trouble finding local variables in anonymous unions, so we emit
// artificial local variables for each of the members.
//
// FIXME: Remove this code as soon as GDB supports this.
// The debug info verifier in LLVM operates based on the assumption that a
// variable has the same size as its storage and we had to disable the
// check for artificial variables.
for (const auto *Field : RD->fields()) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
StringRef FieldName = Field->getName();
// Ignore unnamed fields. Do not ignore unnamed records.
if (FieldName.empty() && !isa<RecordType>(Field->getType()))
continue;
// Use VarDecl's Tag, Scope and Line number.
auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext());
auto *D = DBuilder.createAutoVariable(
Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize,
Flags | llvm::DINode::FlagArtificial, FieldAlign);
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(
Storage, D, DBuilder.createExpression(Expr),
llvm::DebugLoc::get(Line, Column, Scope, CurInlinedAt),
Builder.GetInsertBlock());
}
}
}
// Create the descriptor for the variable.
auto *D = ArgNo ? DBuilder.createParameterVariable(
Scope, Name, *ArgNo, Unit, Line, Ty,
CGM.getLangOpts().Optimize, Flags)
: DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty,
CGM.getLangOpts().Optimize,
Flags, Align);
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr),
llvm::DebugLoc::get(Line, Column, Scope, CurInlinedAt),
Builder.GetInsertBlock());
return D;
}
llvm::DILocalVariable *
CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage,
CGBuilderTy &Builder) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
return EmitDeclare(VD, Storage, llvm::None, Builder);
}
void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (D->hasAttr<NoDebugAttr>())
return;
auto *Scope = cast<llvm::DIScope>(LexicalBlockStack.back());
llvm::DIFile *Unit = getOrCreateFile(D->getLocation());
// Get location information.
unsigned Line = getLineNumber(D->getLocation());
unsigned Column = getColumnNumber(D->getLocation());
StringRef Name = D->getName();
// Create the descriptor for the label.
auto *L =
DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize);
// Insert an llvm.dbg.label into the current block.
DBuilder.insertLabel(L,
llvm::DebugLoc::get(Line, Column, Scope, CurInlinedAt),
Builder.GetInsertBlock());
}
llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy,
llvm::DIType *Ty) {
llvm::DIType *CachedTy = getTypeOrNull(QualTy);
if (CachedTy)
Ty = CachedTy;
return DBuilder.createObjectPointerType(Ty);
}
void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable(
const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder,
const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!");
if (Builder.GetInsertBlock() == nullptr)
return;
if (VD->hasAttr<NoDebugAttr>())
return;
bool isByRef = VD->hasAttr<BlocksAttr>();
uint64_t XOffset = 0;
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
llvm::DIType *Ty;
if (isByRef)
Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType;
else
Ty = getOrCreateType(VD->getType(), Unit);
// Self is passed along as an implicit non-arg variable in a
// block. Mark it as the object pointer.
if (const auto *IPD = dyn_cast<ImplicitParamDecl>(VD))
if (IPD->getParameterKind() == ImplicitParamDecl::ObjCSelf)
Ty = CreateSelfType(VD->getType(), Ty);
// Get location information.
unsigned Line = getLineNumber(VD->getLocation());
unsigned Column = getColumnNumber(VD->getLocation());
const llvm::DataLayout &target = CGM.getDataLayout();
CharUnits offset = CharUnits::fromQuantity(
target.getStructLayout(blockInfo.StructureType)
->getElementOffset(blockInfo.getCapture(VD).getIndex()));
SmallVector<int64_t, 9> addr;
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
addr.push_back(offset.getQuantity());
if (isByRef) {
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of __forwarding field
offset =
CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0));
addr.push_back(offset.getQuantity());
addr.push_back(llvm::dwarf::DW_OP_deref);
addr.push_back(llvm::dwarf::DW_OP_plus_uconst);
// offset of x field
offset = CGM.getContext().toCharUnitsFromBits(XOffset);
addr.push_back(offset.getQuantity());
}
// Create the descriptor for the variable.
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
auto *D = DBuilder.createAutoVariable(
cast<llvm::DILocalScope>(LexicalBlockStack.back()), VD->getName(), Unit,
Line, Ty, false, llvm::DINode::FlagZero, Align);
// Insert an llvm.dbg.declare into the current block.
auto DL =
llvm::DebugLoc::get(Line, Column, LexicalBlockStack.back(), CurInlinedAt);
auto *Expr = DBuilder.createExpression(addr);
if (InsertPoint)
DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint);
else
DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock());
}
void CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI,
unsigned ArgNo,
CGBuilderTy &Builder) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
EmitDeclare(VD, AI, ArgNo, Builder);
}
namespace {
struct BlockLayoutChunk {
uint64_t OffsetInBits;
const BlockDecl::Capture *Capture;
};
bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) {
return l.OffsetInBits < r.OffsetInBits;
}
} // namespace
void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare(
const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc,
const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit,
SmallVectorImpl<llvm::Metadata *> &Fields) {
// Blocks in OpenCL have unique constraints which make the standard fields
// redundant while requiring size and align fields for enqueue_kernel. See
// initializeForBlockHeader in CGBlocks.cpp
if (CGM.getLangOpts().OpenCL) {
Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(0),
Unit, Unit));
Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(1),
Unit, Unit));
} else {
Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(0),
Unit, Unit));
Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(1),
Unit, Unit));
Fields.push_back(
createFieldType("__reserved", Context.IntTy, Loc, AS_public,
BlockLayout.getElementOffsetInBits(2), Unit, Unit));
auto *FnTy = Block.getBlockExpr()->getFunctionType();
auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar());
Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public,
BlockLayout.getElementOffsetInBits(3),
Unit, Unit));
Fields.push_back(createFieldType(
"__descriptor",
Context.getPointerType(Block.NeedsCopyDispose
? Context.getBlockDescriptorExtendedType()
: Context.getBlockDescriptorType()),
Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit));
}
}
void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block,
StringRef Name,
unsigned ArgNo,
llvm::AllocaInst *Alloca,
CGBuilderTy &Builder) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
ASTContext &C = CGM.getContext();
const BlockDecl *blockDecl = block.getBlockDecl();
// Collect some general information about the block's location.
SourceLocation loc = blockDecl->getCaretLocation();
llvm::DIFile *tunit = getOrCreateFile(loc);
unsigned line = getLineNumber(loc);
unsigned column = getColumnNumber(loc);
// Build the debug-info type for the block literal.
getDeclContextDescriptor(blockDecl);
const llvm::StructLayout *blockLayout =
CGM.getDataLayout().getStructLayout(block.StructureType);
SmallVector<llvm::Metadata *, 16> fields;
collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit,
fields);
// We want to sort the captures by offset, not because DWARF
// requires this, but because we're paranoid about debuggers.
SmallVector<BlockLayoutChunk, 8> chunks;
// 'this' capture.
if (blockDecl->capturesCXXThis()) {
BlockLayoutChunk chunk;
chunk.OffsetInBits =
blockLayout->getElementOffsetInBits(block.CXXThisIndex);
chunk.Capture = nullptr;
chunks.push_back(chunk);
}
// Variable captures.
for (const auto &capture : blockDecl->captures()) {
const VarDecl *variable = capture.getVariable();
const CGBlockInfo::Capture &captureInfo = block.getCapture(variable);
// Ignore constant captures.
if (captureInfo.isConstant())
continue;
BlockLayoutChunk chunk;
chunk.OffsetInBits =
blockLayout->getElementOffsetInBits(captureInfo.getIndex());
chunk.Capture = &capture;
chunks.push_back(chunk);
}
// Sort by offset.
llvm::array_pod_sort(chunks.begin(), chunks.end());
for (const BlockLayoutChunk &Chunk : chunks) {
uint64_t offsetInBits = Chunk.OffsetInBits;
const BlockDecl::Capture *capture = Chunk.Capture;
// If we have a null capture, this must be the C++ 'this' capture.
if (!capture) {
QualType type;
if (auto *Method =
cast_or_null<CXXMethodDecl>(blockDecl->getNonClosureContext()))
type = Method->getThisType();
else if (auto *RDecl = dyn_cast<CXXRecordDecl>(blockDecl->getParent()))
type = QualType(RDecl->getTypeForDecl(), 0);
else
llvm_unreachable("unexpected block declcontext");
fields.push_back(createFieldType("this", type, loc, AS_public,
offsetInBits, tunit, tunit));
continue;
}
const VarDecl *variable = capture->getVariable();
StringRef name = variable->getName();
llvm::DIType *fieldType;
if (capture->isByRef()) {
TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy);
auto Align = PtrInfo.AlignIsRequired ? PtrInfo.Align : 0;
// FIXME: This recomputes the layout of the BlockByRefWrapper.
uint64_t xoffset;
fieldType =
EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper;
fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width);
fieldType = DBuilder.createMemberType(tunit, name, tunit, line,
PtrInfo.Width, Align, offsetInBits,
llvm::DINode::FlagZero, fieldType);
} else {
auto Align = getDeclAlignIfRequired(variable, CGM.getContext());
fieldType = createFieldType(name, variable->getType(), loc, AS_public,
offsetInBits, Align, tunit, tunit);
}
fields.push_back(fieldType);
}
SmallString<36> typeName;
llvm::raw_svector_ostream(typeName)
<< "__block_literal_" << CGM.getUniqueBlockCount();
llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields);
llvm::DIType *type =
DBuilder.createStructType(tunit, typeName.str(), tunit, line,
CGM.getContext().toBits(block.BlockSize), 0,
llvm::DINode::FlagZero, nullptr, fieldsArray);
type = DBuilder.createPointerType(type, CGM.PointerWidthInBits);
// Get overall information about the block.
llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial;
auto *scope = cast<llvm::DILocalScope>(LexicalBlockStack.back());
// Create the descriptor for the parameter.
auto *debugVar = DBuilder.createParameterVariable(
scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags);
// Insert an llvm.dbg.declare into the current block.
DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(),
llvm::DebugLoc::get(line, column, scope, CurInlinedAt),
Builder.GetInsertBlock());
}
llvm::DIDerivedType *
CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) {
if (!D || !D->isStaticDataMember())
return nullptr;
auto MI = StaticDataMemberCache.find(D->getCanonicalDecl());
if (MI != StaticDataMemberCache.end()) {
assert(MI->second && "Static data member declaration should still exist");
return MI->second;
}
// If the member wasn't found in the cache, lazily construct and add it to the
// type (used when a limited form of the type is emitted).
auto DC = D->getDeclContext();
auto *Ctxt = cast<llvm::DICompositeType>(getDeclContextDescriptor(D));
return CreateRecordStaticField(D, Ctxt, cast<RecordDecl>(DC));
}
llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls(
const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo,
StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) {
llvm::DIGlobalVariableExpression *GVE = nullptr;
for (const auto *Field : RD->fields()) {
llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit);
StringRef FieldName = Field->getName();
// Ignore unnamed fields, but recurse into anonymous records.
if (FieldName.empty()) {
if (const auto *RT = dyn_cast<RecordType>(Field->getType()))
GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName,
Var, DContext);
continue;
}
// Use VarDecl's Tag, Scope and Line number.
GVE = DBuilder.createGlobalVariableExpression(
DContext, FieldName, LinkageName, Unit, LineNo, FieldTy,
Var->hasLocalLinkage());
Var->addDebugInfo(GVE);
}
return GVE;
}
void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var,
const VarDecl *D) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
if (D->hasAttr<NoDebugAttr>())
return;
// If we already created a DIGlobalVariable for this declaration, just attach
// it to the llvm::GlobalVariable.
auto Cached = DeclCache.find(D->getCanonicalDecl());
if (Cached != DeclCache.end())
return Var->addDebugInfo(
cast<llvm::DIGlobalVariableExpression>(Cached->second));
// Create global variable debug descriptor.
llvm::DIFile *Unit = nullptr;
llvm::DIScope *DContext = nullptr;
unsigned LineNo;
StringRef DeclName, LinkageName;
QualType T;
llvm::MDTuple *TemplateParameters = nullptr;
collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName,
TemplateParameters, DContext);
// Attempt to store one global variable for the declaration - even if we
// emit a lot of fields.
llvm::DIGlobalVariableExpression *GVE = nullptr;
// If this is an anonymous union then we'll want to emit a global
// variable for each member of the anonymous union so that it's possible
// to find the name of any field in the union.
if (T->isUnionType() && DeclName.empty()) {
const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
assert(RD->isAnonymousStructOrUnion() &&
"unnamed non-anonymous struct or union?");
GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext);
} else {
auto Align = getDeclAlignIfRequired(D, CGM.getContext());
SmallVector<int64_t, 4> Expr;
unsigned AddressSpace =
CGM.getContext().getTargetAddressSpace(D->getType());
if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) {
if (D->hasAttr<CUDASharedAttr>())
AddressSpace =
CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared);
else if (D->hasAttr<CUDAConstantAttr>())
AddressSpace =
CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant);
}
AppendAddressSpaceXDeref(AddressSpace, Expr);
GVE = DBuilder.createGlobalVariableExpression(
DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit),
Var->hasLocalLinkage(),
Expr.empty() ? nullptr : DBuilder.createExpression(Expr),
getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters,
Align);
Var->addDebugInfo(GVE);
}
DeclCache[D->getCanonicalDecl()].reset(GVE);
}
void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) {
assert(DebugKind >= codegenoptions::LimitedDebugInfo);
if (VD->hasAttr<NoDebugAttr>())
return;
auto Align = getDeclAlignIfRequired(VD, CGM.getContext());
// Create the descriptor for the variable.
llvm::DIFile *Unit = getOrCreateFile(VD->getLocation());
StringRef Name = VD->getName();
llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit);
// Do not use global variables for enums, unless for CodeView.
if (const auto *ECD = dyn_cast<EnumConstantDecl>(VD)) {
const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
assert(isa<EnumType>(ED->getTypeForDecl()) && "Enum without EnumType?");
(void)ED;
if (!CGM.getCodeGenOpts().EmitCodeView)
return;
}
llvm::DIScope *DContext = nullptr;
// Do not emit separate definitions for function local consts.
if (isa<FunctionDecl>(VD->getDeclContext()))
return;
// Emit definition for static members in CodeView.
VD = cast<ValueDecl>(VD->getCanonicalDecl());
auto *VarD = dyn_cast<VarDecl>(VD);
if (VarD && VarD->isStaticDataMember()) {
auto *RD = cast<RecordDecl>(VarD->getDeclContext());
getDeclContextDescriptor(VarD);
// Ensure that the type is retained even though it's otherwise unreferenced.
//
// FIXME: This is probably unnecessary, since Ty should reference RD
// through its scope.
RetainedTypes.push_back(
CGM.getContext().getRecordType(RD).getAsOpaquePtr());
if (!CGM.getCodeGenOpts().EmitCodeView)
return;
// Use the global scope for static members.
DContext = getContextDescriptor(
cast<Decl>(CGM.getContext().getTranslationUnitDecl()), TheCU);
} else {
DContext = getDeclContextDescriptor(VD);
}
auto &GV = DeclCache[VD];
if (GV)
return;
llvm::DIExpression *InitExpr = nullptr;
if (CGM.getContext().getTypeSize(VD->getType()) <= 64) {
// FIXME: Add a representation for integer constants wider than 64 bits.
if (Init.isInt())
InitExpr =
DBuilder.createConstantValueExpression(Init.getInt().getExtValue());
else if (Init.isFloat())
InitExpr = DBuilder.createConstantValueExpression(
Init.getFloat().bitcastToAPInt().getZExtValue());
}
llvm::MDTuple *TemplateParameters = nullptr;
if (isa<VarTemplateSpecializationDecl>(VD))
if (VarD) {
llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit);
TemplateParameters = parameterNodes.get();
}
GV.reset(DBuilder.createGlobalVariableExpression(
DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty,
true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD),
TemplateParameters, Align));
}
llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) {
if (!LexicalBlockStack.empty())
return LexicalBlockStack.back();
llvm::DIScope *Mod = getParentModuleOrNull(D);
return getContextDescriptor(D, Mod ? Mod : TheCU);
}
void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) {
if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo)
return;
const NamespaceDecl *NSDecl = UD.getNominatedNamespace();
if (!NSDecl->isAnonymousNamespace() ||
CGM.getCodeGenOpts().DebugExplicitImport) {
auto Loc = UD.getLocation();
DBuilder.createImportedModule(
getCurrentContextDescriptor(cast<Decl>(UD.getDeclContext())),
getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc));
}
}
void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) {
if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo)
return;
assert(UD.shadow_size() &&
"We shouldn't be codegening an invalid UsingDecl containing no decls");
// Emitting one decl is sufficient - debuggers can detect that this is an
// overloaded name & provide lookup for all the overloads.
const UsingShadowDecl &USD = **UD.shadow_begin();
// FIXME: Skip functions with undeduced auto return type for now since we
// don't currently have the plumbing for separate declarations & definitions
// of free functions and mismatched types (auto in the declaration, concrete
// return type in the definition)
if (const auto *FD = dyn_cast<FunctionDecl>(USD.getUnderlyingDecl()))
if (const auto *AT =
FD->getType()->getAs<FunctionProtoType>()->getContainedAutoType())
if (AT->getDeducedType().isNull())
return;
if (llvm::DINode *Target =
getDeclarationOrDefinition(USD.getUnderlyingDecl())) {
auto Loc = USD.getLocation();
DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(USD.getDeclContext())), Target,
getOrCreateFile(Loc), getLineNumber(Loc));
}
}
void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) {
if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB)
return;
if (Module *M = ID.getImportedModule()) {
auto Info = ExternalASTSource::ASTSourceDescriptor(*M);
auto Loc = ID.getLocation();
DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(ID.getDeclContext())),
getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc),
getLineNumber(Loc));
}
}
llvm::DIImportedEntity *
CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) {
if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo)
return nullptr;
auto &VH = NamespaceAliasCache[&NA];
if (VH)
return cast<llvm::DIImportedEntity>(VH);
llvm::DIImportedEntity *R;
auto Loc = NA.getLocation();
if (const auto *Underlying =
dyn_cast<NamespaceAliasDecl>(NA.getAliasedNamespace()))
// This could cache & dedup here rather than relying on metadata deduping.
R = DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc),
getLineNumber(Loc), NA.getName());
else
R = DBuilder.createImportedDeclaration(
getCurrentContextDescriptor(cast<Decl>(NA.getDeclContext())),
getOrCreateNamespace(cast<NamespaceDecl>(NA.getAliasedNamespace())),
getOrCreateFile(Loc), getLineNumber(Loc), NA.getName());
VH.reset(R);
return R;
}
llvm::DINamespace *
CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) {
// Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued
// if necessary, and this way multiple declarations of the same namespace in
// different parent modules stay distinct.
auto I = NamespaceCache.find(NSDecl);
if (I != NamespaceCache.end())
return cast<llvm::DINamespace>(I->second);
llvm::DIScope *Context = getDeclContextDescriptor(NSDecl);
// Don't trust the context if it is a DIModule (see comment above).
llvm::DINamespace *NS =
DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline());
NamespaceCache[NSDecl].reset(NS);
return NS;
}
void CGDebugInfo::setDwoId(uint64_t Signature) {
assert(TheCU && "no main compile unit");
TheCU->setDWOId(Signature);
}
void CGDebugInfo::finalize() {
// Creating types might create further types - invalidating the current
// element and the size(), so don't cache/reference them.
for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) {
ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i];
llvm::DIType *Ty = E.Type->getDecl()->getDefinition()
? CreateTypeDefinition(E.Type, E.Unit)
: E.Decl;
DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty);
}
if (CGM.getCodeGenOpts().DwarfVersion >= 5) {
// Add methods to interface.
for (const auto &P : ObjCMethodCache) {
if (P.second.empty())
continue;
QualType QTy(P.first->getTypeForDecl(), 0);
auto It = TypeCache.find(QTy.getAsOpaquePtr());
assert(It != TypeCache.end());
llvm::DICompositeType *InterfaceDecl =
cast<llvm::DICompositeType>(It->second);
SmallVector<llvm::Metadata *, 16> EltTys;
auto CurrenetElts = InterfaceDecl->getElements();
EltTys.append(CurrenetElts.begin(), CurrenetElts.end());
for (auto &MD : P.second)
EltTys.push_back(MD);
llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys);
DBuilder.replaceArrays(InterfaceDecl, Elements);
}
}
for (const auto &P : ReplaceMap) {
assert(P.second);
auto *Ty = cast<llvm::DIType>(P.second);
assert(Ty->isForwardDecl());
auto It = TypeCache.find(P.first);
assert(It != TypeCache.end());
assert(It->second);
DBuilder.replaceTemporary(llvm::TempDIType(Ty),
cast<llvm::DIType>(It->second));
}
for (const auto &P : FwdDeclReplaceMap) {
assert(P.second);
llvm::TempMDNode FwdDecl(cast<llvm::MDNode>(P.second));
llvm::Metadata *Repl;
auto It = DeclCache.find(P.first);
// If there has been no definition for the declaration, call RAUW
// with ourselves, that will destroy the temporary MDNode and
// replace it with a standard one, avoiding leaking memory.
if (It == DeclCache.end())
Repl = P.second;
else
Repl = It->second;
if (auto *GVE = dyn_cast_or_null<llvm::DIGlobalVariableExpression>(Repl))
Repl = GVE->getVariable();
DBuilder.replaceTemporary(std::move(FwdDecl), cast<llvm::MDNode>(Repl));
}
// We keep our own list of retained types, because we need to look
// up the final type in the type cache.
for (auto &RT : RetainedTypes)
if (auto MD = TypeCache[RT])
DBuilder.retainType(cast<llvm::DIType>(MD));
DBuilder.finalize();
}
void CGDebugInfo::EmitExplicitCastType(QualType Ty) {
if (CGM.getCodeGenOpts().getDebugInfo() < codegenoptions::LimitedDebugInfo)
return;
if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile()))
// Don't ignore in case of explicit cast where it is referenced indirectly.
DBuilder.retainType(DieTy);
}
llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) {
if (LexicalBlockStack.empty())
return llvm::DebugLoc();
llvm::MDNode *Scope = LexicalBlockStack.back();
return llvm::DebugLoc::get(getLineNumber(Loc), getColumnNumber(Loc), Scope);
}
llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const {
// Call site-related attributes are only useful in optimized programs, and
// when there's a possibility of debugging backtraces.
if (!CGM.getLangOpts().Optimize || DebugKind == codegenoptions::NoDebugInfo ||
DebugKind == codegenoptions::LocTrackingOnly)
return llvm::DINode::FlagZero;
// Call site-related attributes are available in DWARF v5. Some debuggers,
// while not fully DWARF v5-compliant, may accept these attributes as if they
// were part of DWARF v4.
bool SupportsDWARFv4Ext =
CGM.getCodeGenOpts().DwarfVersion == 4 &&
CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB;
if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5)
return llvm::DINode::FlagZero;
return llvm::DINode::FlagAllCallsDescribed;
}