llvm-project/llvm/unittests/Analysis/CGSCCPassManagerTest.cpp

1971 lines
75 KiB
C++

//===- CGSCCPassManagerTest.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LazyCallGraph.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
public:
struct Result {
Result(int Count) : FunctionCount(Count) {}
int FunctionCount;
bool invalidate(Module &, const PreservedAnalyses &PA,
ModuleAnalysisManager::Invalidator &) {
// Check whether the analysis or all analyses on modules have been
// preserved.
auto PAC = PA.getChecker<TestModuleAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
}
};
TestModuleAnalysis(int &Runs) : Runs(Runs) {}
Result run(Module &M, ModuleAnalysisManager &AM) {
++Runs;
return Result(M.size());
}
private:
friend AnalysisInfoMixin<TestModuleAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestModuleAnalysis::Key;
class TestSCCAnalysis : public AnalysisInfoMixin<TestSCCAnalysis> {
public:
struct Result {
Result(int Count) : FunctionCount(Count) {}
int FunctionCount;
bool invalidate(LazyCallGraph::SCC &, const PreservedAnalyses &PA,
CGSCCAnalysisManager::Invalidator &) {
// Check whether the analysis or all analyses on SCCs have been
// preserved.
auto PAC = PA.getChecker<TestSCCAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>());
}
};
TestSCCAnalysis(int &Runs) : Runs(Runs) {}
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &) {
++Runs;
return Result(C.size());
}
private:
friend AnalysisInfoMixin<TestSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestSCCAnalysis::Key;
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
bool invalidate(Function &, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &) {
// Check whether the analysis or all analyses on functions have been
// preserved.
auto PAC = PA.getChecker<TestFunctionAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
}
};
TestFunctionAnalysis(int &Runs) : Runs(Runs) {}
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
int Count = 0;
for (Instruction &I : instructions(F)) {
(void)I;
++Count;
}
return Result(Count);
}
private:
friend AnalysisInfoMixin<TestFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestFunctionAnalysis::Key;
class TestImmutableFunctionAnalysis
: public AnalysisInfoMixin<TestImmutableFunctionAnalysis> {
public:
struct Result {
bool invalidate(Function &, const PreservedAnalyses &,
FunctionAnalysisManager::Invalidator &) {
return false;
}
};
TestImmutableFunctionAnalysis(int &Runs) : Runs(Runs) {}
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
return Result();
}
private:
friend AnalysisInfoMixin<TestImmutableFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestImmutableFunctionAnalysis::Key;
struct LambdaModulePass : public PassInfoMixin<LambdaModulePass> {
template <typename T>
LambdaModulePass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(Module &F, ModuleAnalysisManager &AM) {
return Func(F, AM);
}
std::function<PreservedAnalyses(Module &, ModuleAnalysisManager &)> Func;
};
struct LambdaSCCPass : public PassInfoMixin<LambdaSCCPass> {
template <typename T> LambdaSCCPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
return Func(C, AM, CG, UR);
}
std::function<PreservedAnalyses(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &)>
Func;
};
struct LambdaFunctionPass : public PassInfoMixin<LambdaFunctionPass> {
template <typename T>
LambdaFunctionPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
return Func(F, AM);
}
std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)> Func;
};
std::unique_ptr<Module> parseIR(const char *IR) {
// We just use a static context here. This is never called from multiple
// threads so it is harmless no matter how it is implemented. We just need
// the context to outlive the module which it does.
static LLVMContext C;
SMDiagnostic Err;
return parseAssemblyString(IR, Err, C);
}
class CGSCCPassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
std::unique_ptr<Module> M;
public:
CGSCCPassManagerTest()
: FAM(), CGAM(), MAM(),
M(parseIR(
// Define a module with the following call graph, where calls go
// out the bottom of nodes and enter the top:
//
// f
// |\ _
// | \ / |
// g h1 |
// | | |
// | h2 |
// | | |
// | h3 |
// | / \_/
// |/
// x
//
"define void @x() {\n"
"entry:\n"
" ret void\n"
"}\n"
"define void @h3() {\n"
"entry:\n"
" call void @h1()\n"
" ret void\n"
"}\n"
"define void @h2() {\n"
"entry:\n"
" call void @h3()\n"
" call void @x()\n"
" ret void\n"
"}\n"
"define void @h1() {\n"
"entry:\n"
" call void @h2()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
"entry:\n"
" call void @g()\n"
" call void @x()\n"
" ret void\n"
"}\n"
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h1()\n"
" ret void\n"
"}\n")) {
FAM.registerPass([&] { return TargetLibraryAnalysis(); });
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
// Register required pass instrumentation analysis.
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
CGAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
// Cross-register proxies.
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
CGAM.registerPass([&] { return FunctionAnalysisManagerCGSCCProxy(); });
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
}
};
TEST_F(CGSCCPassManagerTest, Basic) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
int ImmutableFunctionAnalysisRuns = 0;
FAM.registerPass([&] {
return TestImmutableFunctionAnalysis(ImmutableFunctionAnalysisRuns);
});
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM;
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
CGSCCPassManager CGPM1;
FunctionPassManager FPM1;
int FunctionPassRunCount1 = 0;
FPM1.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount1;
return PreservedAnalyses::none();
}));
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
int SCCPassRunCount1 = 0;
int AnalyzedInstrCount1 = 0;
int AnalyzedSCCFunctionCount1 = 0;
int AnalyzedModuleFunctionCount1 = 0;
CGPM1.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
++SCCPassRunCount1;
// Note: The proper way to get to a module pass from a CGSCC pass is
// through the ModuleAnalysisManagerCGSCCProxy:
// ```
// const auto &MAMProxy =
// AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
// ```
// However getting a stateful analysis is incorrect usage, and the call
// to getCachedResult below asserts:
// ```
// if (TestModuleAnalysis::Result *TMA =
// MAMProxy.getCachedResult<TestModuleAnalysis>(
// *C.begin()->getFunction().getParent()))
// AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
// ```
// For the purposes of this unittest, use the above MAM directly.
if (TestModuleAnalysis::Result *TMA =
MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent()))
AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
TestSCCAnalysis::Result &AR = AM.getResult<TestSCCAnalysis>(C, CG);
AnalyzedSCCFunctionCount1 += AR.FunctionCount;
for (LazyCallGraph::Node &N : C) {
TestFunctionAnalysis::Result &FAR =
FAM.getResult<TestFunctionAnalysis>(N.getFunction());
AnalyzedInstrCount1 += FAR.InstructionCount;
// Just ensure we get the immutable results.
(void)FAM.getResult<TestImmutableFunctionAnalysis>(N.getFunction());
}
return PreservedAnalyses::all();
}));
FunctionPassManager FPM2;
int FunctionPassRunCount2 = 0;
FPM2.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount2;
return PreservedAnalyses::none();
}));
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
FunctionPassManager FPM3;
int FunctionPassRunCount3 = 0;
FPM3.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
++FunctionPassRunCount3;
return PreservedAnalyses::none();
}));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(4, SCCPassRunCount1);
EXPECT_EQ(6, FunctionPassRunCount1);
EXPECT_EQ(6, FunctionPassRunCount2);
EXPECT_EQ(6, FunctionPassRunCount3);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_EQ(4, SCCAnalysisRuns);
EXPECT_EQ(6, FunctionAnalysisRuns);
EXPECT_EQ(6, ImmutableFunctionAnalysisRuns);
EXPECT_EQ(14, AnalyzedInstrCount1);
EXPECT_EQ(6, AnalyzedSCCFunctionCount1);
EXPECT_EQ(4 * 6, AnalyzedModuleFunctionCount1);
}
// Test that an SCC pass which fails to preserve a module analysis does in fact
// invalidate that module analysis.
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesModuleAnalysis) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM;
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
// The first CGSCC run we preserve everything and make sure that works and
// the module analysis is available in the second CGSCC run from the one
// required module pass above.
CGSCCPassManager CGPM1;
int CountFoundModuleAnalysis1 = 0;
CGPM1.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
*C.begin()->getFunction().getParent()))
++CountFoundModuleAnalysis1;
return PreservedAnalyses::all();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// The second CGSCC run checks that the module analysis got preserved the
// previous time and in one SCC fails to preserve it.
CGSCCPassManager CGPM2;
int CountFoundModuleAnalysis2 = 0;
CGPM2.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
const auto &MAMProxy =
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
*C.begin()->getFunction().getParent()))
++CountFoundModuleAnalysis2;
// Only fail to preserve analyses on one SCC and make sure that gets
// propagated.
return C.getName() == "(g)" ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
// The third CGSCC run should fail to find a cached module analysis as it
// should have been invalidated by the above CGSCC run.
CGSCCPassManager CGPM3;
int CountFoundModuleAnalysis3 = 0;
CGPM3.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(
*C.begin()->getFunction().getParent()))
++CountFoundModuleAnalysis3;
return PreservedAnalyses::none();
}));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_EQ(4, CountFoundModuleAnalysis1);
EXPECT_EQ(4, CountFoundModuleAnalysis2);
EXPECT_EQ(0, CountFoundModuleAnalysis3);
}
// Similar to the above, but test that this works for function passes embedded
// *within* a CGSCC layer.
TEST_F(CGSCCPassManagerTest, TestFunctionPassInsideCGSCCInvalidatesModuleAnalysis) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
ModulePassManager MPM;
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
// The first run we preserve everything and make sure that works and the
// module analysis is available in the second run from the one required
// module pass above.
FunctionPassManager FPM1;
// Start true and mark false if we ever failed to find a module analysis
// because we expect this to succeed for each SCC.
bool FoundModuleAnalysis1 = true;
FPM1.addPass(LambdaFunctionPass([&](Function &F,
FunctionAnalysisManager &AM) {
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
if (!MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
FoundModuleAnalysis1 = false;
return PreservedAnalyses::all();
}));
CGSCCPassManager CGPM1;
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// The second run checks that the module analysis got preserved the previous
// time and in one function fails to preserve it.
FunctionPassManager FPM2;
// Again, start true and mark false if we ever failed to find a module analysis
// because we expect this to succeed for each SCC.
bool FoundModuleAnalysis2 = true;
FPM2.addPass(LambdaFunctionPass([&](Function &F,
FunctionAnalysisManager &AM) {
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
if (!MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
FoundModuleAnalysis2 = false;
// Only fail to preserve analyses on one SCC and make sure that gets
// propagated.
return F.getName() == "h2" ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}));
CGSCCPassManager CGPM2;
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
// The third run should fail to find a cached module analysis as it should
// have been invalidated by the above run.
FunctionPassManager FPM3;
// Start false and mark true if we ever *succeeded* to find a module
// analysis, as we expect this to fail for every function.
bool FoundModuleAnalysis3 = false;
FPM3.addPass(LambdaFunctionPass([&](Function &F,
FunctionAnalysisManager &AM) {
const auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
if (MAMProxy.cachedResultExists<TestModuleAnalysis>(*F.getParent()))
FoundModuleAnalysis3 = true;
return PreservedAnalyses::none();
}));
CGSCCPassManager CGPM3;
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM3)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
MPM.run(*M, MAM);
EXPECT_EQ(1, ModuleAnalysisRuns);
EXPECT_TRUE(FoundModuleAnalysis1);
EXPECT_TRUE(FoundModuleAnalysis2);
EXPECT_FALSE(FoundModuleAnalysis3);
}
// Test that a Module pass which fails to preserve an SCC analysis in fact
// invalidates that analysis.
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysis) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
CGSCCPassManager CGPM1;
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph and the proxy but
// not the SCC analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
CGSCCPassManager CGPM2;
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and four SCCs.
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
}
// Check that marking the SCC analysis preserved is sufficient to avoid
// invaliadtion. This should only run the analysis once for each SCC.
TEST_F(CGSCCPassManagerTest, TestModulePassCanPreserveSCCAnalysis) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
CGSCCPassManager CGPM1;
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves each of the necessary components
// (but not everything).
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
PA.preserve<TestSCCAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again but find
// it in the cache.
CGSCCPassManager CGPM2;
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Four SCCs
EXPECT_EQ(4, SCCAnalysisRuns);
}
// Check that even when the analysis is preserved, if the SCC information isn't
// we still nuke things because the SCC keys could change.
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysisOnCGChange) {
int SCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
CGSCCPassManager CGPM1;
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the analysis but not the call
// graph or proxy.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<TestSCCAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again.
CGSCCPassManager CGPM2;
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and four SCCs.
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
}
// Test that an SCC pass which fails to preserve a Function analysis in fact
// invalidates that analysis.
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesFunctionAnalysis) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
// Create a very simple module with a single function and SCC to make testing
// these issues much easier.
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
"declare void @h()\n"
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n");
CGSCCPassManager CGPM;
// First force the analysis to be run.
FunctionPassManager FPM1;
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
// Now run a module pass that preserves the LazyCallGraph and proxy but not
// the SCC analysis.
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2;
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
EXPECT_EQ(2, FunctionAnalysisRuns);
}
// Check that marking the SCC analysis preserved is sufficient. This should
// only run the analysis once the SCC.
TEST_F(CGSCCPassManagerTest, TestSCCPassCanPreserveFunctionAnalysis) {
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
// Create a very simple module with a single function and SCC to make testing
// these issues much easier.
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
"declare void @h()\n"
"define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n");
CGSCCPassManager CGPM;
// First force the analysis to be run.
FunctionPassManager FPM1;
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
// Now run a module pass that preserves each of the necessary components
// (but
// not everything).
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserve<TestFunctionAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again but find
// it in the cache.
FunctionPassManager FPM2;
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
EXPECT_EQ(1, FunctionAnalysisRuns);
}
// Note that there is no test for invalidating the call graph or other
// structure with an SCC pass because there is no mechanism to do that from
// withinsuch a pass. Instead, such a pass has to directly update the call
// graph structure.
// Test that a madule pass invalidates function analyses when the CGSCC proxies
// and pass manager.
TEST_F(CGSCCPassManagerTest,
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCC) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
FunctionPassManager FPM1;
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1;
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph and proxies but not
// the Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2;
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2;
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and 6 functions.
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
}
// Check that by marking the function pass and proxies as preserved, this
// propagates all the way through.
TEST_F(CGSCCPassManagerTest,
TestModulePassCanPreserveFunctionAnalysisNestedInCGSCC) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
FunctionPassManager FPM1;
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1;
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph, the proxy, and
// the Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
PA.preserve<LazyCallGraphAnalysis>();
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserve<FunctionAnalysisManagerModuleProxy>();
PA.preserve<TestFunctionAnalysis>();
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2;
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2;
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// One run and 6 functions.
EXPECT_EQ(6, FunctionAnalysisRuns);
}
// Check that if the lazy call graph itself isn't preserved we still manage to
// invalidate everything.
TEST_F(CGSCCPassManagerTest,
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCCOnCGChange) {
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModulePassManager MPM;
// First force the analysis to be run.
FunctionPassManager FPM1;
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM1;
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
// Now run a module pass that preserves the LazyCallGraph but not the
// Function analysis.
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
PreservedAnalyses PA;
return PA;
}));
// And now a second CGSCC run which requires the SCC analysis again. This
// will trigger re-running it.
FunctionPassManager FPM2;
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
CGSCCPassManager CGPM2;
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// Two runs and 6 functions.
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
}
/// A test CGSCC-level analysis pass which caches in its result another
/// analysis pass and uses it to serve queries. This requires the result to
/// invalidate itself when its dependency is invalidated.
///
/// FIXME: Currently this doesn't also depend on a function analysis, and if it
/// did we would fail to invalidate it correctly.
struct TestIndirectSCCAnalysis
: public AnalysisInfoMixin<TestIndirectSCCAnalysis> {
struct Result {
Result(TestSCCAnalysis::Result &SCCDep, TestModuleAnalysis::Result &MDep)
: SCCDep(SCCDep), MDep(MDep) {}
TestSCCAnalysis::Result &SCCDep;
TestModuleAnalysis::Result &MDep;
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
CGSCCAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestIndirectSCCAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
Inv.invalidate<TestSCCAnalysis>(C, PA);
}
};
TestIndirectSCCAnalysis(int &Runs, ModuleAnalysisManager &MAM)
: Runs(Runs), MAM(MAM) {}
/// Run the analysis pass over the function and return a result.
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG) {
++Runs;
auto &SCCDep = AM.getResult<TestSCCAnalysis>(C, CG);
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
// For the test, we insist that the module analysis starts off in the
// cache. Getting a cached result that isn't stateless triggers an assert.
// auto &MDep = *ModuleProxy.getCachedResult<TestModuleAnalysis>(
// *C.begin()->getFunction().getParent());
// Use MAM, for the purposes of this unittest.
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(
*C.begin()->getFunction().getParent());
// Register the dependency as module analysis dependencies have to be
// pre-registered on the proxy.
ModuleProxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
TestIndirectSCCAnalysis>();
return Result(SCCDep, MDep);
}
private:
friend AnalysisInfoMixin<TestIndirectSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
ModuleAnalysisManager &MAM;
};
AnalysisKey TestIndirectSCCAnalysis::Key;
/// A test analysis pass which caches in its result the result from the above
/// indirect analysis pass.
///
/// This allows us to ensure that whenever an analysis pass is invalidated due
/// to dependencies (especially dependencies across IR units that trigger
/// asynchronous invalidation) we correctly detect that this may in turn cause
/// other analysis to be invalidated.
struct TestDoublyIndirectSCCAnalysis
: public AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis> {
struct Result {
Result(TestIndirectSCCAnalysis::Result &IDep) : IDep(IDep) {}
TestIndirectSCCAnalysis::Result &IDep;
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
CGSCCAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestDoublyIndirectSCCAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
Inv.invalidate<TestIndirectSCCAnalysis>(C, PA);
}
};
TestDoublyIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG) {
++Runs;
auto &IDep = AM.getResult<TestIndirectSCCAnalysis>(C, CG);
return Result(IDep);
}
private:
friend AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestDoublyIndirectSCCAnalysis::Key;
/// A test analysis pass which caches results from three different IR unit
/// layers and requires intermediate layers to correctly propagate the entire
/// distance.
struct TestIndirectFunctionAnalysis
: public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
struct Result {
Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep,
TestSCCAnalysis::Result &SCCDep)
: FDep(FDep), MDep(MDep), SCCDep(SCCDep) {}
TestFunctionAnalysis::Result &FDep;
TestModuleAnalysis::Result &MDep;
TestSCCAnalysis::Result &SCCDep;
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
Inv.invalidate<TestFunctionAnalysis>(F, PA);
}
};
TestIndirectFunctionAnalysis(int &Runs, ModuleAnalysisManager &MAM,
CGSCCAnalysisManager &CGAM)
: Runs(Runs), MAM(MAM), CGAM(CGAM) {}
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
// For the test, we insist that the module analysis starts off in the
// cache. Getting a cached result that isn't stateless triggers an assert.
// Use MAM, for the purposes of this unittest.
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
// Register the dependency as module analysis dependencies have to be
// pre-registered on the proxy.
ModuleProxy.registerOuterAnalysisInvalidation<
TestModuleAnalysis, TestIndirectFunctionAnalysis>();
// For the test we assume this is run inside a CGSCC pass manager.
// Use MAM, for the purposes of this unittest.
const LazyCallGraph &CG =
*MAM.getCachedResult<LazyCallGraphAnalysis>(*F.getParent());
auto &CGSCCProxy = AM.getResult<CGSCCAnalysisManagerFunctionProxy>(F);
// For the test, we insist that the CGSCC analysis starts off in the cache.
// Getting a cached result that isn't stateless triggers an assert.
// Use CGAM, for the purposes of this unittest.
auto &SCCDep =
*CGAM.getCachedResult<TestSCCAnalysis>(*CG.lookupSCC(*CG.lookup(F)));
// Register the dependency as CGSCC analysis dependencies have to be
// pre-registered on the proxy.
CGSCCProxy.registerOuterAnalysisInvalidation<
TestSCCAnalysis, TestIndirectFunctionAnalysis>();
return Result(FDep, MDep, SCCDep);
}
private:
friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
ModuleAnalysisManager &MAM;
CGSCCAnalysisManager &CGAM;
};
AnalysisKey TestIndirectFunctionAnalysis::Key;
TEST_F(CGSCCPassManagerTest, TestIndirectAnalysisInvalidation) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
DoublyIndirectSCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
CGAM.registerPass(
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns, MAM); });
CGAM.registerPass([&] {
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
});
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
FAM.registerPass([&] {
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns, MAM,
CGAM);
});
ModulePassManager MPM;
int FunctionCount = 0;
CGSCCPassManager CGPM;
// First just use the analysis to get the function count and preserve
// everything.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
// Next, invalidate
// - both analyses for the (f) and (x) SCCs,
// - just the underlying (indirect) analysis for (g) SCC, and
// - just the direct analysis for (h1,h2,h3) SCC.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
auto PA = PreservedAnalyses::none();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserveSet<AllAnalysesOn<Function>>();
if (C.getName() == "(g)")
PA.preserve<TestSCCAnalysis>();
else if (C.getName() == "(h3, h1, h2)")
PA.preserve<TestIndirectSCCAnalysis>();
return PA;
}));
// Finally, use the analysis again on each SCC (and function), forcing
// re-computation for all of them.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
// Create a second CGSCC pass manager. This will cause the module-level
// invalidation to occur, which will force yet another invalidation of the
// indirect SCC-level analysis as the module analysis it depends on gets
// invalidated.
CGSCCPassManager CGPM2;
CGPM2.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
auto &IndirectResult = DoublyIndirectResult.IDep;
FunctionCount += IndirectResult.SCCDep.FunctionCount;
return PreservedAnalyses::all();
}));
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
// Add a requires pass to populate the module analysis and then our CGSCC
// pass pipeline.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
// Now require the module analysis again (it will have been invalidated once)
// and then use it again from our second CGSCC pipeline..
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.run(*M, MAM);
// There are generally two possible runs for each of the four SCCs. But
// for one SCC, we only invalidate the indirect analysis so the base one
// only gets run seven times.
EXPECT_EQ(7, SCCAnalysisRuns);
// The module analysis pass should be run twice here.
EXPECT_EQ(2, ModuleAnalysisRuns);
// The indirect analysis is invalidated (either directly or indirectly) three
// times for each of four SCCs.
EXPECT_EQ(3 * 4, IndirectSCCAnalysisRuns);
EXPECT_EQ(3 * 4, DoublyIndirectSCCAnalysisRuns);
// We run the indirect function analysis once per function the first time.
// Then we re-run it for every SCC but "(g)". Then we re-run it for every
// function again.
EXPECT_EQ(6 + 5 + 6, IndirectFunctionAnalysisRuns);
// Four passes count each of six functions once (via SCCs).
EXPECT_EQ(4 * 6, FunctionCount);
}
TEST_F(CGSCCPassManagerTest, TestAnalysisInvalidationCGSCCUpdate) {
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
DoublyIndirectSCCAnalysisRuns = 0;
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
CGAM.registerPass(
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns, MAM); });
CGAM.registerPass([&] {
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
});
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
FAM.registerPass([&] {
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns, MAM,
CGAM);
});
ModulePassManager MPM;
CGSCCPassManager CGPM;
// First just use the analysis to get the function count and preserve
// everything.
using RequireTestIndirectFunctionAnalysisPass =
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>;
using RequireTestDoublyIndirectSCCAnalysisPass =
RequireAnalysisPass<TestDoublyIndirectSCCAnalysis, LazyCallGraph::SCC,
CGSCCAnalysisManager, LazyCallGraph &,
CGSCCUpdateResult &>;
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
RequireTestIndirectFunctionAnalysisPass()));
// Next, we inject an SCC pass that invalidates everything for the `(h3, h1,
// h2)` SCC but also deletes the call edge from `h2` to `h3` and updates the
// CG. This should successfully invalidate (and force to be re-run) all the
// analyses for that SCC and for the functions.
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
if (C.getName() != "(h3, h1, h2)")
return PreservedAnalyses::all();
// Build the preserved set.
auto PA = PreservedAnalyses::none();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserve<TestIndirectSCCAnalysis>();
PA.preserve<TestDoublyIndirectSCCAnalysis>();
// Delete the call from `h2` to `h3`.
auto &H2N = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
auto &H2F = H2N.getFunction();
auto &H3F = *cast<CallInst>(H2F.begin()->begin())->getCalledFunction();
assert(H3F.getName() == "h3" && "Wrong called function!");
H2F.begin()->begin()->eraseFromParent();
// Insert a bitcast of `h3` so that we retain a ref edge to it.
(void)CastInst::CreatePointerCast(&H3F,
Type::getInt8PtrTy(H2F.getContext()),
"dummy", &*H2F.begin()->begin());
// Now update the call graph.
auto &NewC =
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM);
assert(&NewC != &C && "Should get a new SCC due to update!");
(void)&NewC;
return PA;
}));
// Now use the analysis again on each SCC and function, forcing
// re-computation for all of them.
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
RequireTestIndirectFunctionAnalysisPass()));
// Create another CGSCC pipeline that requires all the analyses again.
CGSCCPassManager CGPM2;
CGPM2.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
RequireTestIndirectFunctionAnalysisPass()));
// Next we inject an SCC pass that finds the `(h2)` SCC, adds a call to `h3`
// back to `h2`, and then invalidates everything for what will then be the
// `(h3, h1, h2)` SCC again.
CGSCCPassManager CGPM3;
CGPM3.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
if (C.getName() != "(h2)")
return PreservedAnalyses::all();
// Build the preserved set.
auto PA = PreservedAnalyses::none();
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
PA.preserve<TestIndirectSCCAnalysis>();
PA.preserve<TestDoublyIndirectSCCAnalysis>();
// Delete the bitcast of `h3` that we added earlier.
auto &H2N = *C.begin();
auto &H2F = H2N.getFunction();
auto &H3F = *cast<Function>(cast<BitCastInst>(H2F.begin()->begin())->getOperand(0));
assert(H3F.getName() == "h3" && "Wrong called function!");
H2F.begin()->begin()->eraseFromParent();
// And insert a call to `h3`.
(void)CallInst::Create(&H3F, {}, "", &*H2F.begin()->begin());
// Now update the call graph.
auto &NewC =
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM);
assert(&NewC != &C && "Should get a new SCC due to update!");
(void)&NewC;
return PA;
}));
// Now use the analysis again on each SCC and function, forcing
// re-computation for all of them.
CGPM3.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(
RequireTestIndirectFunctionAnalysisPass()));
// Create a second CGSCC pass manager. This will cause the module-level
// invalidation to occur, which will force yet another invalidation of the
// indirect SCC-level analysis as the module analysis it depends on gets
// invalidated.
CGSCCPassManager CGPM4;
CGPM4.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
CGPM4.addPass(createCGSCCToFunctionPassAdaptor(
RequireTestIndirectFunctionAnalysisPass()));
// Add a requires pass to populate the module analysis and then one of our
// CGSCC pipelines. Repeat for all four CGSCC pipelines.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM4)));
MPM.run(*M, MAM);
// We run over four SCCs the first time. But then we split an SCC into three.
// And then we merge those three back into one. However, this also
// invalidates all three SCCs further down in the PO walk.
EXPECT_EQ(4 + 3 + 3, SCCAnalysisRuns);
// The module analysis pass should be run three times.
EXPECT_EQ(3, ModuleAnalysisRuns);
// We run over four SCCs the first time. Then over the two new ones. Then the
// entire module is invalidated causing a full run over all seven. Then we
// fold three SCCs back to one, re-compute for it and the two SCCs above it
// in the graph, and then run over the whole module again.
EXPECT_EQ(4 + 2 + 7 + 3 + 4, IndirectSCCAnalysisRuns);
EXPECT_EQ(4 + 2 + 7 + 3 + 4, DoublyIndirectSCCAnalysisRuns);
// First we run over all six functions. Then we re-run it over three when we
// split their SCCs. Then we re-run over the whole module. Then we re-run
// over three functions merged back into a single SCC, then those three
// functions again, the two functions in SCCs above it in the graph, and then
// over the whole module again.
EXPECT_EQ(6 + 3 + 6 + 3 + 2 + 6, FunctionAnalysisRuns);
// Re run the function analysis over the entire module, and then re-run it
// over the `(h3, h1, h2)` SCC due to invalidation. Then we re-run it over
// the entire module, then the three functions merged back into a single SCC,
// those three functions again, then the two functions in SCCs above it in
// the graph, and then over the whole module.
EXPECT_EQ(6 + 3 + 6 + 3 + 2 + 6, IndirectFunctionAnalysisRuns);
}
// The (negative) tests below check for assertions so we only run them if NDEBUG
// is not defined.
#ifndef NDEBUG
struct LambdaSCCPassNoPreserve : public PassInfoMixin<LambdaSCCPassNoPreserve> {
template <typename T>
LambdaSCCPassNoPreserve(T &&Arg) : Func(std::forward<T>(Arg)) {}
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
Func(C, AM, CG, UR);
PreservedAnalyses PA;
// We update the core CGSCC data structures and so can preserve the proxy to
// the function analysis manager.
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
return PA;
}
std::function<void(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
LazyCallGraph &, CGSCCUpdateResult &)>
Func;
};
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses0) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(h3, h1, h2)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnX = M->getFunction("x");
Function *FnH1 = M->getFunction("h1");
Function *FnH2 = M->getFunction("h2");
Function *FnH3 = M->getFunction("h3");
ASSERT_NE(FnX, nullptr);
ASSERT_NE(FnH1, nullptr);
ASSERT_NE(FnH2, nullptr);
ASSERT_NE(FnH3, nullptr);
// And insert a call to `h1`, `h2`, and `h3`.
Instruction *IP = &FnH2->getEntryBlock().front();
(void)CallInst::Create(FnH1, {}, "", IP);
(void)CallInst::Create(FnH2, {}, "", IP);
(void)CallInst::Create(FnH3, {}, "", IP);
auto &H2N = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, H2N, AM, UR, FAM));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses1) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(h3, h1, h2)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnX = M->getFunction("x");
Function *FnH1 = M->getFunction("h1");
Function *FnH2 = M->getFunction("h2");
Function *FnH3 = M->getFunction("h3");
ASSERT_NE(FnX, nullptr);
ASSERT_NE(FnH1, nullptr);
ASSERT_NE(FnH2, nullptr);
ASSERT_NE(FnH3, nullptr);
// And insert a call to `h1`, `h2`, and `h3`.
Instruction *IP = &FnH2->getEntryBlock().front();
(void)CallInst::Create(FnH1, {}, "", IP);
(void)CallInst::Create(FnH2, {}, "", IP);
(void)CallInst::Create(FnH3, {}, "", IP);
auto &H2N = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
ASSERT_DEATH(
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR, FAM),
"Any new calls should be modeled as");
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses2) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnF = M->getFunction("f");
Function *FnH2 = M->getFunction("h2");
ASSERT_NE(FnF, nullptr);
ASSERT_NE(FnH2, nullptr);
// And insert a call to `h2`
Instruction *IP = &FnF->getEntryBlock().front();
(void)CallInst::Create(FnH2, {}, "", IP);
auto &FN = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses3) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnF = M->getFunction("f");
Function *FnH2 = M->getFunction("h2");
ASSERT_NE(FnF, nullptr);
ASSERT_NE(FnH2, nullptr);
// And insert a call to `h2`
Instruction *IP = &FnF->getEntryBlock().front();
(void)CallInst::Create(FnH2, {}, "", IP);
auto &FN = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
ASSERT_DEATH(
updateCGAndAnalysisManagerForFunctionPass(CG, C, FN, AM, UR, FAM),
"Any new calls should be modeled as");
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses4) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnF = M->getFunction("f");
Function *FnewF = Function::Create(FnF->getFunctionType(),
FnF->getLinkage(), "newF", *M);
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
ReturnInst::Create(FnewF->getContext(), BB);
// And insert a call to `newF`
Instruction *IP = &FnF->getEntryBlock().front();
(void)CallInst::Create(FnewF, {}, "", IP);
// Use the CallGraphUpdater to update the call graph for the new
// function.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
CGU.registerOutlinedFunction(*FnF, *FnewF);
auto &FN = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses5) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
Function *FnF = M->getFunction("f");
Function *FnewF =
Function::Create(FnF->getFunctionType(), FnF->getLinkage(), "newF", *M);
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
ReturnInst::Create(FnewF->getContext(), BB);
// Use the CallGraphUpdater to update the call graph for the new
// function.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
// And insert a call to `newF`
Instruction *IP = &FnF->getEntryBlock().front();
(void)CallInst::Create(FnewF, {}, "", IP);
auto &FN = *llvm::find_if(
C, [](LazyCallGraph::Node &N) { return N.getName() == "f"; });
ASSERT_DEATH(updateCGAndAnalysisManagerForCGSCCPass(CG, C, FN, AM, UR, FAM),
"should already have an associated node");
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses6) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(h3, h1, h2)")
return;
Function *FnX = M->getFunction("x");
Function *FnH1 = M->getFunction("h1");
Function *FnH2 = M->getFunction("h2");
Function *FnH3 = M->getFunction("h3");
ASSERT_NE(FnX, nullptr);
ASSERT_NE(FnH1, nullptr);
ASSERT_NE(FnH2, nullptr);
ASSERT_NE(FnH3, nullptr);
// And insert a call to `h1`, `h2`, and `h3`.
Instruction *IP = &FnH2->getEntryBlock().front();
(void)CallInst::Create(FnH1, {}, "", IP);
(void)CallInst::Create(FnH2, {}, "", IP);
(void)CallInst::Create(FnH3, {}, "", IP);
// Use the CallGraphUpdater to update the call graph for the new
// function.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnH2));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses7) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
Function *FnF = M->getFunction("f");
Function *FnH2 = M->getFunction("h2");
ASSERT_NE(FnF, nullptr);
ASSERT_NE(FnH2, nullptr);
// And insert a call to `h2`
Instruction *IP = &FnF->getEntryBlock().front();
(void)CallInst::Create(FnH2, {}, "", IP);
// Use the CallGraphUpdater to update the call graph for the new
// function.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnF));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses8) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
Function *FnF = M->getFunction("f");
Function *FnewF = Function::Create(FnF->getFunctionType(),
FnF->getLinkage(), "newF", *M);
BasicBlock *BB = BasicBlock::Create(FnewF->getContext(), "", FnewF);
auto *RI = ReturnInst::Create(FnewF->getContext(), BB);
while (FnF->getEntryBlock().size() > 1)
FnF->getEntryBlock().front().moveBefore(RI);
ASSERT_NE(FnF, nullptr);
// Create an unsused constant that is referencing the old (=replaced)
// function.
ConstantExpr::getBitCast(FnF, Type::getInt8PtrTy(FnF->getContext()));
// Use the CallGraphUpdater to update the call graph.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
ASSERT_NO_FATAL_FAILURE(CGU.replaceFunctionWith(*FnF, *FnewF));
ASSERT_TRUE(FnF->isDeclaration());
ASSERT_EQ(FnF->getNumUses(), 0U);
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses9) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(f)")
return;
Function *FnF = M->getFunction("f");
// Use the CallGraphUpdater to update the call graph.
{
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
ASSERT_NO_FATAL_FAILURE(CGU.removeFunction(*FnF));
ASSERT_EQ(M->getFunctionList().size(), 6U);
}
ASSERT_EQ(M->getFunctionList().size(), 5U);
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
TEST_F(CGSCCPassManagerTest, TestUpdateCGAndAnalysisManagerForPasses10) {
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (C.getName() != "(h3, h1, h2)")
return;
Function *FnX = M->getFunction("x");
Function *FnH1 = M->getFunction("h1");
Function *FnH2 = M->getFunction("h2");
Function *FnH3 = M->getFunction("h3");
ASSERT_NE(FnX, nullptr);
ASSERT_NE(FnH1, nullptr);
ASSERT_NE(FnH2, nullptr);
ASSERT_NE(FnH3, nullptr);
// And insert a call to `h1`, and `h3`.
Instruction *IP = &FnH1->getEntryBlock().front();
(void)CallInst::Create(FnH1, {}, "", IP);
(void)CallInst::Create(FnH3, {}, "", IP);
// Remove the `h2` call.
ASSERT_TRUE(isa<CallBase>(IP));
ASSERT_EQ(cast<CallBase>(IP)->getCalledFunction(), FnH2);
IP->eraseFromParent();
// Use the CallGraphUpdater to update the call graph.
CallGraphUpdater CGU;
CGU.initialize(CG, C, AM, UR);
ASSERT_NO_FATAL_FAILURE(CGU.reanalyzeFunction(*FnH1));
ASSERT_NO_FATAL_FAILURE(CGU.removeFunction(*FnH2));
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
}
// Returns a vector containing the SCC's nodes. Useful for not iterating over an
// SCC while mutating it.
static SmallVector<LazyCallGraph::Node *> SCCNodes(LazyCallGraph::SCC &C) {
SmallVector<LazyCallGraph::Node *> Nodes;
for (auto &N : C)
Nodes.push_back(&N);
return Nodes;
}
// Start with call recursive f, create f -> g and ref recursive f.
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewFunctions1) {
std::unique_ptr<Module> M = parseIR("define void @f() {\n"
"entry:\n"
" call void @f()\n"
" ret void\n"
"}\n");
bool Ran = false;
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve(
[&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (Ran)
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
for (LazyCallGraph::Node *N : SCCNodes(C)) {
Function &F = N->getFunction();
if (F.getName() != "f")
continue;
// Create a new function 'g'.
auto *G = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getAddressSpace(), "g", F.getParent());
auto *GBB =
BasicBlock::Create(F.getParent()->getContext(), "entry", G);
(void)ReturnInst::Create(G->getContext(), GBB);
// Instruct the LazyCallGraph to create a new node for 'g', as the
// single node in a new SCC, into the call graph. As a result
// the call graph is composed of a single RefSCC with two SCCs:
// [(f), (g)].
// "Demote" the 'f -> f' call edge to a ref edge.
// 1. Erase the call edge from 'f' to 'f'.
F.getEntryBlock().front().eraseFromParent();
// 2. Insert a ref edge from 'f' to 'f'.
(void)CastInst::CreatePointerCast(
&F, Type::getInt8PtrTy(F.getContext()), "f.ref",
&F.getEntryBlock().front());
// 3. Insert a ref edge from 'f' to 'g'.
(void)CastInst::CreatePointerCast(
G, Type::getInt8PtrTy(F.getContext()), "g.ref",
&F.getEntryBlock().front());
CG.addSplitFunction(F, *G);
ASSERT_FALSE(verifyModule(*F.getParent(), &errs()));
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
<< "Updating the call graph with a demoted, self-referential "
"call edge 'f -> f', and a newly inserted ref edge 'f -> g', "
"caused a fatal failure";
Ran = true;
}
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
ASSERT_TRUE(Ran);
}
// Start with f, end with f -> g1, f -> g2, and f -ref-> (h1 <-ref-> h2).
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewFunctions2) {
std::unique_ptr<Module> M = parseIR("define void @f() {\n"
"entry:\n"
" ret void\n"
"}\n");
bool Ran = false;
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (Ran)
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
for (LazyCallGraph::Node *N : SCCNodes(C)) {
Function &F = N->getFunction();
if (F.getName() != "f")
continue;
// Create g1 and g2.
auto *G1 = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getAddressSpace(), "g1", F.getParent());
auto *G2 = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getAddressSpace(), "g2", F.getParent());
BasicBlock *G1BB =
BasicBlock::Create(F.getParent()->getContext(), "entry", G1);
BasicBlock *G2BB =
BasicBlock::Create(F.getParent()->getContext(), "entry", G2);
(void)ReturnInst::Create(G1->getContext(), G1BB);
(void)ReturnInst::Create(G2->getContext(), G2BB);
// Add 'f -> g1' call edge.
(void)CallInst::Create(G1, {}, "", &F.getEntryBlock().front());
// Add 'f -> g2' call edge.
(void)CallInst::Create(G2, {}, "", &F.getEntryBlock().front());
CG.addSplitFunction(F, *G1);
CG.addSplitFunction(F, *G2);
// Create mutually recursive functions (ref only) 'h1' and 'h2'.
auto *H1 = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getAddressSpace(), "h1", F.getParent());
auto *H2 = Function::Create(F.getFunctionType(), F.getLinkage(),
F.getAddressSpace(), "h2", F.getParent());
BasicBlock *H1BB =
BasicBlock::Create(F.getParent()->getContext(), "entry", H1);
BasicBlock *H2BB =
BasicBlock::Create(F.getParent()->getContext(), "entry", H2);
(void)CastInst::CreatePointerCast(H2, Type::getInt8PtrTy(F.getContext()),
"h2.ref", H1BB);
(void)ReturnInst::Create(H1->getContext(), H1BB);
(void)CastInst::CreatePointerCast(H1, Type::getInt8PtrTy(F.getContext()),
"h1.ref", H2BB);
(void)ReturnInst::Create(H2->getContext(), H2BB);
// Add 'f -> h1' ref edge.
(void)CastInst::CreatePointerCast(H1, Type::getInt8PtrTy(F.getContext()),
"h1.ref", &F.getEntryBlock().front());
// Add 'f -> h2' ref edge.
(void)CastInst::CreatePointerCast(H2, Type::getInt8PtrTy(F.getContext()),
"h2.ref", &F.getEntryBlock().front());
CG.addSplitRefRecursiveFunctions(F, SmallVector<Function *, 2>({H1, H2}));
ASSERT_FALSE(verifyModule(*F.getParent(), &errs()));
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
<< "Updating the call graph with mutually recursive g1 <-> g2, h1 "
"<-> h2 caused a fatal failure";
Ran = true;
}
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
ASSERT_TRUE(Ran);
}
TEST_F(CGSCCPassManagerTest, TestInsertionOfNewNonTrivialCallEdge) {
std::unique_ptr<Module> M = parseIR("define void @f1() {\n"
"entry:\n"
" %a = bitcast void ()* @f4 to i8*\n"
" %b = bitcast void ()* @f2 to i8*\n"
" ret void\n"
"}\n"
"define void @f2() {\n"
"entry:\n"
" %a = bitcast void ()* @f1 to i8*\n"
" %b = bitcast void ()* @f3 to i8*\n"
" ret void\n"
"}\n"
"define void @f3() {\n"
"entry:\n"
" %a = bitcast void ()* @f2 to i8*\n"
" %b = bitcast void ()* @f4 to i8*\n"
" ret void\n"
"}\n"
"define void @f4() {\n"
"entry:\n"
" %a = bitcast void ()* @f3 to i8*\n"
" %b = bitcast void ()* @f1 to i8*\n"
" ret void\n"
"}\n");
bool Ran = false;
CGSCCPassManager CGPM;
CGPM.addPass(LambdaSCCPassNoPreserve([&](LazyCallGraph::SCC &C,
CGSCCAnalysisManager &AM,
LazyCallGraph &CG,
CGSCCUpdateResult &UR) {
if (Ran)
return;
auto &FAM =
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
for (LazyCallGraph::Node *N : SCCNodes(C)) {
Function &F = N->getFunction();
if (F.getName() != "f1")
continue;
Function *F3 = F.getParent()->getFunction("f3");
ASSERT_TRUE(F3 != nullptr);
// Create call from f1 to f3.
(void)CallInst::Create(F3, {}, "", F.getEntryBlock().getTerminator());
ASSERT_NO_FATAL_FAILURE(
updateCGAndAnalysisManagerForCGSCCPass(CG, C, *N, AM, UR, FAM))
<< "Updating the call graph with mutually recursive g1 <-> g2, h1 "
"<-> h2 caused a fatal failure";
Ran = true;
}
}));
ModulePassManager MPM;
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
ASSERT_TRUE(Ran);
}
TEST_F(CGSCCPassManagerTest, TestFunctionPassesAreQueriedForInvalidation) {
std::unique_ptr<Module> M = parseIR("define void @f() { ret void }");
CGSCCPassManager CGPM;
bool SCCCalled = false;
FunctionPassManager FPM;
int ImmRuns = 0;
FAM.registerPass([&] { return TestImmutableFunctionAnalysis(ImmRuns); });
FPM.addPass(RequireAnalysisPass<TestImmutableFunctionAnalysis, Function>());
CGPM.addPass(
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
SCCCalled = true;
return PreservedAnalyses::none();
}));
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
RequireAnalysisPass<TestImmutableFunctionAnalysis, Function>()));
ModulePassManager MPM;
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
MPM.run(*M, MAM);
ASSERT_EQ(ImmRuns, 1);
ASSERT_TRUE(SCCCalled);
}
#endif
} // namespace