llvm-project/llvm/test/CodeGen/RISCV/double-bitmanip-dagcombines.ll

138 lines
4.1 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=riscv32 -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV32I %s
; RUN: llc -mtriple=riscv32 -mattr=+d -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV32IFD %s
; RUN: llc -mtriple=riscv64 -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV64I %s
; RUN: llc -mtriple=riscv64 -mattr=+d -verify-machineinstrs < %s \
; RUN: | FileCheck -check-prefix=RV64IFD %s
;
; This file tests cases where simple floating point operations can be
; profitably handled though bit manipulation if a soft-float ABI is being used
; (e.g. fneg implemented by XORing the sign bit). This is typically handled in
; DAGCombiner::visitBITCAST, but this target-independent code may not trigger
; in cases where we perform custom legalisation (e.g. RV32IFD).
; TODO: Add an appropriate target-specific DAG combine that can handle
; RISCVISD::SplitF64/BuildPairF64 used for RV32IFD.
define double @fneg(double %a) nounwind {
; RV32I-LABEL: fneg:
; RV32I: # %bb.0:
; RV32I-NEXT: lui a2, 524288
; RV32I-NEXT: xor a1, a1, a2
; RV32I-NEXT: ret
;
; RV32IFD-LABEL: fneg:
; RV32IFD: # %bb.0:
; RV32IFD-NEXT: lui a2, 524288
; RV32IFD-NEXT: xor a1, a1, a2
; RV32IFD-NEXT: ret
;
; RV64I-LABEL: fneg:
; RV64I: # %bb.0:
; RV64I-NEXT: li a1, -1
; RV64I-NEXT: slli a1, a1, 63
; RV64I-NEXT: xor a0, a0, a1
; RV64I-NEXT: ret
;
; RV64IFD-LABEL: fneg:
; RV64IFD: # %bb.0:
; RV64IFD-NEXT: li a1, -1
; RV64IFD-NEXT: slli a1, a1, 63
; RV64IFD-NEXT: xor a0, a0, a1
; RV64IFD-NEXT: ret
%1 = fneg double %a
ret double %1
}
declare double @llvm.fabs.f64(double)
define double @fabs(double %a) nounwind {
; RV32I-LABEL: fabs:
; RV32I: # %bb.0:
; RV32I-NEXT: slli a1, a1, 1
; RV32I-NEXT: srli a1, a1, 1
; RV32I-NEXT: ret
;
; RV32IFD-LABEL: fabs:
; RV32IFD: # %bb.0:
; RV32IFD-NEXT: slli a1, a1, 1
; RV32IFD-NEXT: srli a1, a1, 1
; RV32IFD-NEXT: ret
;
; RV64I-LABEL: fabs:
; RV64I: # %bb.0:
; RV64I-NEXT: slli a0, a0, 1
; RV64I-NEXT: srli a0, a0, 1
; RV64I-NEXT: ret
;
; RV64IFD-LABEL: fabs:
; RV64IFD: # %bb.0:
; RV64IFD-NEXT: slli a0, a0, 1
; RV64IFD-NEXT: srli a0, a0, 1
; RV64IFD-NEXT: ret
%1 = call double @llvm.fabs.f64(double %a)
ret double %1
}
declare double @llvm.copysign.f64(double, double)
; DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN will convert to bitwise
; operations if floating point isn't supported. A combine could be written to
; do the same even when f64 is legal.
define double @fcopysign_fneg(double %a, double %b) nounwind {
; RV32I-LABEL: fcopysign_fneg:
; RV32I: # %bb.0:
; RV32I-NEXT: not a2, a3
; RV32I-NEXT: lui a3, 524288
; RV32I-NEXT: and a2, a2, a3
; RV32I-NEXT: slli a1, a1, 1
; RV32I-NEXT: srli a1, a1, 1
; RV32I-NEXT: or a1, a1, a2
; RV32I-NEXT: ret
;
; RV32IFD-LABEL: fcopysign_fneg:
; RV32IFD: # %bb.0:
; RV32IFD-NEXT: addi sp, sp, -16
; RV32IFD-NEXT: sw a2, 8(sp)
; RV32IFD-NEXT: sw a3, 12(sp)
; RV32IFD-NEXT: fld ft0, 8(sp)
; RV32IFD-NEXT: sw a0, 8(sp)
; RV32IFD-NEXT: sw a1, 12(sp)
; RV32IFD-NEXT: fld ft1, 8(sp)
; RV32IFD-NEXT: fsgnjn.d ft0, ft1, ft0
; RV32IFD-NEXT: fsd ft0, 8(sp)
; RV32IFD-NEXT: lw a0, 8(sp)
; RV32IFD-NEXT: lw a1, 12(sp)
; RV32IFD-NEXT: addi sp, sp, 16
; RV32IFD-NEXT: ret
;
; RV64I-LABEL: fcopysign_fneg:
; RV64I: # %bb.0:
; RV64I-NEXT: not a1, a1
; RV64I-NEXT: li a2, -1
; RV64I-NEXT: slli a2, a2, 63
; RV64I-NEXT: and a1, a1, a2
; RV64I-NEXT: slli a0, a0, 1
; RV64I-NEXT: srli a0, a0, 1
; RV64I-NEXT: or a0, a0, a1
; RV64I-NEXT: ret
;
; RV64IFD-LABEL: fcopysign_fneg:
; RV64IFD: # %bb.0:
; RV64IFD-NEXT: li a2, -1
; RV64IFD-NEXT: slli a2, a2, 63
; RV64IFD-NEXT: xor a1, a1, a2
; RV64IFD-NEXT: fmv.d.x ft0, a1
; RV64IFD-NEXT: fmv.d.x ft1, a0
; RV64IFD-NEXT: fsgnj.d ft0, ft1, ft0
; RV64IFD-NEXT: fmv.x.d a0, ft0
; RV64IFD-NEXT: ret
%1 = fneg double %b
%2 = call double @llvm.copysign.f64(double %a, double %1)
ret double %2
}