llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

6737 lines
241 KiB
C++

//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/BitcodeReader.h"
#include "MetadataLoader.h"
#include "ValueList.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Bitstream/BitstreamReader.h"
#include "llvm/Bitcode/LLVMBitCodes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalIndirectSymbol.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<bool> PrintSummaryGUIDs(
"print-summary-global-ids", cl::init(false), cl::Hidden,
cl::desc(
"Print the global id for each value when reading the module summary"));
namespace {
enum {
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
};
} // end anonymous namespace
static Error error(const Twine &Message) {
return make_error<StringError>(
Message, make_error_code(BitcodeError::CorruptedBitcode));
}
static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
if (!Stream.canSkipToPos(4))
return createStringError(std::errc::illegal_byte_sequence,
"file too small to contain bitcode header");
for (unsigned C : {'B', 'C'})
if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
if (Res.get() != C)
return createStringError(std::errc::illegal_byte_sequence,
"file doesn't start with bitcode header");
} else
return Res.takeError();
for (unsigned C : {0x0, 0xC, 0xE, 0xD})
if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
if (Res.get() != C)
return createStringError(std::errc::illegal_byte_sequence,
"file doesn't start with bitcode header");
} else
return Res.takeError();
return Error::success();
}
static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
if (Buffer.getBufferSize() & 3)
return error("Invalid bitcode signature");
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
return error("Invalid bitcode wrapper header");
BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
if (Error Err = hasInvalidBitcodeHeader(Stream))
return std::move(Err);
return std::move(Stream);
}
/// Convert a string from a record into an std::string, return true on failure.
template <typename StrTy>
static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
}
// Strip all the TBAA attachment for the module.
static void stripTBAA(Module *M) {
for (auto &F : *M) {
if (F.isMaterializable())
continue;
for (auto &I : instructions(F))
I.setMetadata(LLVMContext::MD_tbaa, nullptr);
}
}
/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
/// "epoch" encoded in the bitcode, and return the producer name if any.
static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
return std::move(Err);
// Read all the records.
SmallVector<uint64_t, 64> Record;
std::string ProducerIdentification;
while (true) {
BitstreamEntry Entry;
if (Expected<BitstreamEntry> Res = Stream.advance())
Entry = Res.get();
else
return Res.takeError();
switch (Entry.Kind) {
default:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return ProducerIdentification;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default: // Default behavior: reject
return error("Invalid value");
case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
convertToString(Record, 0, ProducerIdentification);
break;
case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
unsigned epoch = (unsigned)Record[0];
if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
return error(
Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
"' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
}
}
}
}
}
static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
if (Stream.AtEndOfStream())
return "";
BitstreamEntry Entry;
if (Expected<BitstreamEntry> Res = Stream.advance())
Entry = std::move(Res.get());
else
return Res.takeError();
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
return readIdentificationBlock(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
continue;
else
return Skipped.takeError();
}
}
}
static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
// Read all the records for this module.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default:
break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
// Check for the i386 and other (x86_64, ARM) conventions
if (S.find("__DATA,__objc_catlist") != std::string::npos ||
S.find("__OBJC,__category") != std::string::npos)
return true;
break;
}
}
Record.clear();
}
llvm_unreachable("Exit infinite loop");
}
static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
BitstreamEntry Entry;
if (Expected<BitstreamEntry> Res = Stream.advance())
Entry = std::move(Res.get());
else
return Res.takeError();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return hasObjCCategoryInModule(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
continue;
else
return Skipped.takeError();
}
}
}
static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
std::string Triple;
// Read all the records for this module.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Triple;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
Triple = S;
break;
}
}
Record.clear();
}
llvm_unreachable("Exit infinite loop");
}
static Expected<std::string> readTriple(BitstreamCursor &Stream) {
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return "";
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return readModuleTriple(Stream);
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
continue;
else
return Skipped.takeError();
}
}
}
namespace {
class BitcodeReaderBase {
protected:
BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
: Stream(std::move(Stream)), Strtab(Strtab) {
this->Stream.setBlockInfo(&BlockInfo);
}
BitstreamBlockInfo BlockInfo;
BitstreamCursor Stream;
StringRef Strtab;
/// In version 2 of the bitcode we store names of global values and comdats in
/// a string table rather than in the VST.
bool UseStrtab = false;
Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
/// If this module uses a string table, pop the reference to the string table
/// and return the referenced string and the rest of the record. Otherwise
/// just return the record itself.
std::pair<StringRef, ArrayRef<uint64_t>>
readNameFromStrtab(ArrayRef<uint64_t> Record);
bool readBlockInfo();
// Contains an arbitrary and optional string identifying the bitcode producer
std::string ProducerIdentification;
Error error(const Twine &Message);
};
} // end anonymous namespace
Error BitcodeReaderBase::error(const Twine &Message) {
std::string FullMsg = Message.str();
if (!ProducerIdentification.empty())
FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
LLVM_VERSION_STRING "')";
return ::error(FullMsg);
}
Expected<unsigned>
BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
if (Record.empty())
return error("Invalid record");
unsigned ModuleVersion = Record[0];
if (ModuleVersion > 2)
return error("Invalid value");
UseStrtab = ModuleVersion >= 2;
return ModuleVersion;
}
std::pair<StringRef, ArrayRef<uint64_t>>
BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
if (!UseStrtab)
return {"", Record};
// Invalid reference. Let the caller complain about the record being empty.
if (Record[0] + Record[1] > Strtab.size())
return {"", {}};
return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
}
namespace {
class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
LLVMContext &Context;
Module *TheModule = nullptr;
// Next offset to start scanning for lazy parsing of function bodies.
uint64_t NextUnreadBit = 0;
// Last function offset found in the VST.
uint64_t LastFunctionBlockBit = 0;
bool SeenValueSymbolTable = false;
uint64_t VSTOffset = 0;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
std::vector<Type*> TypeList;
DenseMap<Function *, FunctionType *> FunctionTypes;
BitcodeReaderValueList ValueList;
Optional<MetadataLoader> MDLoader;
std::vector<Comdat *> ComdatList;
SmallVector<Instruction *, 64> InstructionList;
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
/// The set of attributes by index. Index zero in the file is for null, and
/// is thus not represented here. As such all indices are off by one.
std::vector<AttributeList> MAttributes;
/// The set of attribute groups.
std::map<unsigned, AttributeList> MAttributeGroups;
/// While parsing a function body, this is a list of the basic blocks for the
/// function.
std::vector<BasicBlock*> FunctionBBs;
// When reading the module header, this list is populated with functions that
// have bodies later in the file.
std::vector<Function*> FunctionsWithBodies;
// When intrinsic functions are encountered which require upgrading they are
// stored here with their replacement function.
using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
UpdatedIntrinsicMap UpgradedIntrinsics;
// Intrinsics which were remangled because of types rename
UpdatedIntrinsicMap RemangledIntrinsics;
// Several operations happen after the module header has been read, but
// before function bodies are processed. This keeps track of whether
// we've done this yet.
bool SeenFirstFunctionBody = false;
/// When function bodies are initially scanned, this map contains info about
/// where to find deferred function body in the stream.
DenseMap<Function*, uint64_t> DeferredFunctionInfo;
/// When Metadata block is initially scanned when parsing the module, we may
/// choose to defer parsing of the metadata. This vector contains info about
/// which Metadata blocks are deferred.
std::vector<uint64_t> DeferredMetadataInfo;
/// These are basic blocks forward-referenced by block addresses. They are
/// inserted lazily into functions when they're loaded. The basic block ID is
/// its index into the vector.
DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
std::deque<Function *> BasicBlockFwdRefQueue;
/// Indicates that we are using a new encoding for instruction operands where
/// most operands in the current FUNCTION_BLOCK are encoded relative to the
/// instruction number, for a more compact encoding. Some instruction
/// operands are not relative to the instruction ID: basic block numbers, and
/// types. Once the old style function blocks have been phased out, we would
/// not need this flag.
bool UseRelativeIDs = false;
/// True if all functions will be materialized, negating the need to process
/// (e.g.) blockaddress forward references.
bool WillMaterializeAllForwardRefs = false;
bool StripDebugInfo = false;
TBAAVerifier TBAAVerifyHelper;
std::vector<std::string> BundleTags;
SmallVector<SyncScope::ID, 8> SSIDs;
public:
BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
StringRef ProducerIdentification, LLVMContext &Context);
Error materializeForwardReferencedFunctions();
Error materialize(GlobalValue *GV) override;
Error materializeModule() override;
std::vector<StructType *> getIdentifiedStructTypes() const override;
/// Main interface to parsing a bitcode buffer.
/// \returns true if an error occurred.
Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
bool IsImporting = false);
static uint64_t decodeSignRotatedValue(uint64_t V);
/// Materialize any deferred Metadata block.
Error materializeMetadata() override;
void setStripDebugInfo() override;
private:
std::vector<StructType *> IdentifiedStructTypes;
StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
StructType *createIdentifiedStructType(LLVMContext &Context);
/// Map all pointer types within \param Ty to the opaque pointer
/// type in the same address space if opaque pointers are being
/// used, otherwise nop. This converts a bitcode-reader internal
/// type into one suitable for use in a Value.
Type *flattenPointerTypes(Type *Ty) {
return Ty;
}
/// Given a fully structured pointer type (i.e. not opaque), return
/// the flattened form of its element, suitable for use in a Value.
Type *getPointerElementFlatType(Type *Ty) {
return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
}
/// Given a fully structured pointer type, get its element type in
/// both fully structured form, and flattened form suitable for use
/// in a Value.
std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
Type *ElTy = cast<PointerType>(FullTy)->getElementType();
return std::make_pair(ElTy, flattenPointerTypes(ElTy));
}
/// Return the flattened type (suitable for use in a Value)
/// specified by the given \param ID .
Type *getTypeByID(unsigned ID) {
return flattenPointerTypes(getFullyStructuredTypeByID(ID));
}
/// Return the fully structured (bitcode-reader internal) type
/// corresponding to the given \param ID .
Type *getFullyStructuredTypeByID(unsigned ID);
Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
if (Ty && Ty->isMetadataTy())
return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
return ValueList.getValueFwdRef(ID, Ty, FullTy);
}
Metadata *getFnMetadataByID(unsigned ID) {
return MDLoader->getMetadataFwdRefOrLoad(ID);
}
BasicBlock *getBasicBlock(unsigned ID) const {
if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
return FunctionBBs[ID];
}
AttributeList getAttributes(unsigned i) const {
if (i-1 < MAttributes.size())
return MAttributes[i-1];
return AttributeList();
}
/// Read a value/type pair out of the specified record from slot 'Slot'.
/// Increment Slot past the number of slots used in the record. Return true on
/// failure.
bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Value *&ResVal,
Type **FullTy = nullptr) {
if (Slot == Record.size()) return true;
unsigned ValNo = (unsigned)Record[Slot++];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
if (ValNo < InstNum) {
// If this is not a forward reference, just return the value we already
// have.
ResVal = getFnValueByID(ValNo, nullptr, FullTy);
return ResVal == nullptr;
}
if (Slot == Record.size())
return true;
unsigned TypeNo = (unsigned)Record[Slot++];
ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
if (FullTy)
*FullTy = getFullyStructuredTypeByID(TypeNo);
return ResVal == nullptr;
}
/// Read a value out of the specified record from slot 'Slot'. Increment Slot
/// past the number of slots used by the value in the record. Return true if
/// there is an error.
bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
unsigned InstNum, Type *Ty, Value *&ResVal) {
if (getValue(Record, Slot, InstNum, Ty, ResVal))
return true;
// All values currently take a single record slot.
++Slot;
return false;
}
/// Like popValue, but does not increment the Slot number.
bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty, Value *&ResVal) {
ResVal = getValue(Record, Slot, InstNum, Ty);
return ResVal == nullptr;
}
/// Version of getValue that returns ResVal directly, or 0 if there is an
/// error.
Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty) {
if (Slot == Record.size()) return nullptr;
unsigned ValNo = (unsigned)Record[Slot];
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty);
}
/// Like getValue, but decodes signed VBRs.
Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
unsigned InstNum, Type *Ty) {
if (Slot == Record.size()) return nullptr;
unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
// Adjust the ValNo, if it was encoded relative to the InstNum.
if (UseRelativeIDs)
ValNo = InstNum - ValNo;
return getFnValueByID(ValNo, Ty);
}
/// Upgrades old-style typeless byval attributes by adding the corresponding
/// argument's pointee type.
void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
/// Converts alignment exponent (i.e. power of two (or zero)) to the
/// corresponding alignment to use. If alignment is too large, returns
/// a corresponding error code.
Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
Error parseComdatRecord(ArrayRef<uint64_t> Record);
Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
Error parseFunctionRecord(ArrayRef<uint64_t> Record);
Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
ArrayRef<uint64_t> Record);
Error parseAttributeBlock();
Error parseAttributeGroupBlock();
Error parseTypeTable();
Error parseTypeTableBody();
Error parseOperandBundleTags();
Error parseSyncScopeNames();
Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
unsigned NameIndex, Triple &TT);
void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
ArrayRef<uint64_t> Record);
Error parseValueSymbolTable(uint64_t Offset = 0);
Error parseGlobalValueSymbolTable();
Error parseConstants();
Error rememberAndSkipFunctionBodies();
Error rememberAndSkipFunctionBody();
/// Save the positions of the Metadata blocks and skip parsing the blocks.
Error rememberAndSkipMetadata();
Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
Error parseFunctionBody(Function *F);
Error globalCleanup();
Error resolveGlobalAndIndirectSymbolInits();
Error parseUseLists();
Error findFunctionInStream(
Function *F,
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
SyncScope::ID getDecodedSyncScopeID(unsigned Val);
};
/// Class to manage reading and parsing function summary index bitcode
/// files/sections.
class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
/// The module index built during parsing.
ModuleSummaryIndex &TheIndex;
/// Indicates whether we have encountered a global value summary section
/// yet during parsing.
bool SeenGlobalValSummary = false;
/// Indicates whether we have already parsed the VST, used for error checking.
bool SeenValueSymbolTable = false;
/// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
/// Used to enable on-demand parsing of the VST.
uint64_t VSTOffset = 0;
// Map to save ValueId to ValueInfo association that was recorded in the
// ValueSymbolTable. It is used after the VST is parsed to convert
// call graph edges read from the function summary from referencing
// callees by their ValueId to using the ValueInfo instead, which is how
// they are recorded in the summary index being built.
// We save a GUID which refers to the same global as the ValueInfo, but
// ignoring the linkage, i.e. for values other than local linkage they are
// identical.
DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
ValueIdToValueInfoMap;
/// Map populated during module path string table parsing, from the
/// module ID to a string reference owned by the index's module
/// path string table, used to correlate with combined index
/// summary records.
DenseMap<uint64_t, StringRef> ModuleIdMap;
/// Original source file name recorded in a bitcode record.
std::string SourceFileName;
/// The string identifier given to this module by the client, normally the
/// path to the bitcode file.
StringRef ModulePath;
/// For per-module summary indexes, the unique numerical identifier given to
/// this module by the client.
unsigned ModuleId;
public:
ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
ModuleSummaryIndex &TheIndex,
StringRef ModulePath, unsigned ModuleId);
Error parseModule();
private:
void setValueGUID(uint64_t ValueID, StringRef ValueName,
GlobalValue::LinkageTypes Linkage,
StringRef SourceFileName);
Error parseValueSymbolTable(
uint64_t Offset,
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
bool IsOldProfileFormat,
bool HasProfile,
bool HasRelBF);
Error parseEntireSummary(unsigned ID);
Error parseModuleStringTable();
void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
TypeIdCompatibleVtableInfo &TypeId);
std::pair<ValueInfo, GlobalValue::GUID>
getValueInfoFromValueId(unsigned ValueId);
void addThisModule();
ModuleSummaryIndex::ModuleInfo *getThisModule();
};
} // end anonymous namespace
std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
Error Err) {
if (Err) {
std::error_code EC;
handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
EC = EIB.convertToErrorCode();
Ctx.emitError(EIB.message());
});
return EC;
}
return std::error_code();
}
BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
StringRef ProducerIdentification,
LLVMContext &Context)
: BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
ValueList(Context, Stream.SizeInBytes()) {
this->ProducerIdentification = std::string(ProducerIdentification);
}
Error BitcodeReader::materializeForwardReferencedFunctions() {
if (WillMaterializeAllForwardRefs)
return Error::success();
// Prevent recursion.
WillMaterializeAllForwardRefs = true;
while (!BasicBlockFwdRefQueue.empty()) {
Function *F = BasicBlockFwdRefQueue.front();
BasicBlockFwdRefQueue.pop_front();
assert(F && "Expected valid function");
if (!BasicBlockFwdRefs.count(F))
// Already materialized.
continue;
// Check for a function that isn't materializable to prevent an infinite
// loop. When parsing a blockaddress stored in a global variable, there
// isn't a trivial way to check if a function will have a body without a
// linear search through FunctionsWithBodies, so just check it here.
if (!F->isMaterializable())
return error("Never resolved function from blockaddress");
// Try to materialize F.
if (Error Err = materialize(F))
return Err;
}
assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
// Reset state.
WillMaterializeAllForwardRefs = false;
return Error::success();
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
static bool hasImplicitComdat(size_t Val) {
switch (Val) {
default:
return false;
case 1: // Old WeakAnyLinkage
case 4: // Old LinkOnceAnyLinkage
case 10: // Old WeakODRLinkage
case 11: // Old LinkOnceODRLinkage
return true;
}
}
static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0:
return GlobalValue::ExternalLinkage;
case 2:
return GlobalValue::AppendingLinkage;
case 3:
return GlobalValue::InternalLinkage;
case 5:
return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
case 6:
return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
case 7:
return GlobalValue::ExternalWeakLinkage;
case 8:
return GlobalValue::CommonLinkage;
case 9:
return GlobalValue::PrivateLinkage;
case 12:
return GlobalValue::AvailableExternallyLinkage;
case 13:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
case 14:
return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
case 15:
return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
case 1: // Old value with implicit comdat.
case 16:
return GlobalValue::WeakAnyLinkage;
case 10: // Old value with implicit comdat.
case 17:
return GlobalValue::WeakODRLinkage;
case 4: // Old value with implicit comdat.
case 18:
return GlobalValue::LinkOnceAnyLinkage;
case 11: // Old value with implicit comdat.
case 19:
return GlobalValue::LinkOnceODRLinkage;
}
}
static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
FunctionSummary::FFlags Flags;
Flags.ReadNone = RawFlags & 0x1;
Flags.ReadOnly = (RawFlags >> 1) & 0x1;
Flags.NoRecurse = (RawFlags >> 2) & 0x1;
Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
Flags.NoInline = (RawFlags >> 4) & 0x1;
Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
return Flags;
}
/// Decode the flags for GlobalValue in the summary.
static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
uint64_t Version) {
// Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
// like getDecodedLinkage() above. Any future change to the linkage enum and
// to getDecodedLinkage() will need to be taken into account here as above.
auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
RawFlags = RawFlags >> 4;
bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
// The Live flag wasn't introduced until version 3. For dead stripping
// to work correctly on earlier versions, we must conservatively treat all
// values as live.
bool Live = (RawFlags & 0x2) || Version < 3;
bool Local = (RawFlags & 0x4);
bool AutoHide = (RawFlags & 0x8);
return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
}
// Decode the flags for GlobalVariable in the summary
static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
return GlobalVarSummary::GVarFlags(
(RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
(RawFlags & 0x4) ? true : false,
(GlobalObject::VCallVisibility)(RawFlags >> 3));
}
static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static GlobalValue::DLLStorageClassTypes
getDecodedDLLStorageClass(unsigned Val) {
switch (Val) {
default: // Map unknown values to default.
case 0: return GlobalValue::DefaultStorageClass;
case 1: return GlobalValue::DLLImportStorageClass;
case 2: return GlobalValue::DLLExportStorageClass;
}
}
static bool getDecodedDSOLocal(unsigned Val) {
switch(Val) {
default: // Map unknown values to preemptable.
case 0: return false;
case 1: return true;
}
}
static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
switch (Val) {
case 0: return GlobalVariable::NotThreadLocal;
default: // Map unknown non-zero value to general dynamic.
case 1: return GlobalVariable::GeneralDynamicTLSModel;
case 2: return GlobalVariable::LocalDynamicTLSModel;
case 3: return GlobalVariable::InitialExecTLSModel;
case 4: return GlobalVariable::LocalExecTLSModel;
}
}
static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
switch (Val) {
default: // Map unknown to UnnamedAddr::None.
case 0: return GlobalVariable::UnnamedAddr::None;
case 1: return GlobalVariable::UnnamedAddr::Global;
case 2: return GlobalVariable::UnnamedAddr::Local;
}
}
static int getDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
}
}
static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
bool IsFP = Ty->isFPOrFPVectorTy();
// UnOps are only valid for int/fp or vector of int/fp types
if (!IsFP && !Ty->isIntOrIntVectorTy())
return -1;
switch (Val) {
default:
return -1;
case bitc::UNOP_FNEG:
return IsFP ? Instruction::FNeg : -1;
}
}
static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
bool IsFP = Ty->isFPOrFPVectorTy();
// BinOps are only valid for int/fp or vector of int/fp types
if (!IsFP && !Ty->isIntOrIntVectorTy())
return -1;
switch (Val) {
default:
return -1;
case bitc::BINOP_ADD:
return IsFP ? Instruction::FAdd : Instruction::Add;
case bitc::BINOP_SUB:
return IsFP ? Instruction::FSub : Instruction::Sub;
case bitc::BINOP_MUL:
return IsFP ? Instruction::FMul : Instruction::Mul;
case bitc::BINOP_UDIV:
return IsFP ? -1 : Instruction::UDiv;
case bitc::BINOP_SDIV:
return IsFP ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM:
return IsFP ? -1 : Instruction::URem;
case bitc::BINOP_SREM:
return IsFP ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL:
return IsFP ? -1 : Instruction::Shl;
case bitc::BINOP_LSHR:
return IsFP ? -1 : Instruction::LShr;
case bitc::BINOP_ASHR:
return IsFP ? -1 : Instruction::AShr;
case bitc::BINOP_AND:
return IsFP ? -1 : Instruction::And;
case bitc::BINOP_OR:
return IsFP ? -1 : Instruction::Or;
case bitc::BINOP_XOR:
return IsFP ? -1 : Instruction::Xor;
}
}
static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
switch (Val) {
default: return AtomicRMWInst::BAD_BINOP;
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
case bitc::RMW_ADD: return AtomicRMWInst::Add;
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
case bitc::RMW_AND: return AtomicRMWInst::And;
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
case bitc::RMW_OR: return AtomicRMWInst::Or;
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
case bitc::RMW_MAX: return AtomicRMWInst::Max;
case bitc::RMW_MIN: return AtomicRMWInst::Min;
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
}
}
static AtomicOrdering getDecodedOrdering(unsigned Val) {
switch (Val) {
case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
default: // Map unknown orderings to sequentially-consistent.
case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
}
}
static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
switch (Val) {
default: // Map unknown selection kinds to any.
case bitc::COMDAT_SELECTION_KIND_ANY:
return Comdat::Any;
case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
return Comdat::ExactMatch;
case bitc::COMDAT_SELECTION_KIND_LARGEST:
return Comdat::Largest;
case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
return Comdat::NoDuplicates;
case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
return Comdat::SameSize;
}
}
static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
FastMathFlags FMF;
if (0 != (Val & bitc::UnsafeAlgebra))
FMF.setFast();
if (0 != (Val & bitc::AllowReassoc))
FMF.setAllowReassoc();
if (0 != (Val & bitc::NoNaNs))
FMF.setNoNaNs();
if (0 != (Val & bitc::NoInfs))
FMF.setNoInfs();
if (0 != (Val & bitc::NoSignedZeros))
FMF.setNoSignedZeros();
if (0 != (Val & bitc::AllowReciprocal))
FMF.setAllowReciprocal();
if (0 != (Val & bitc::AllowContract))
FMF.setAllowContract(true);
if (0 != (Val & bitc::ApproxFunc))
FMF.setApproxFunc();
return FMF;
}
static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
switch (Val) {
case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
}
}
Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
// The type table size is always specified correctly.
if (ID >= TypeList.size())
return nullptr;
if (Type *Ty = TypeList[ID])
return Ty;
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
return TypeList[ID] = createIdentifiedStructType(Context);
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
StringRef Name) {
auto *Ret = StructType::create(Context, Name);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
auto *Ret = StructType::create(Context);
IdentifiedStructTypes.push_back(Ret);
return Ret;
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
switch (Val) {
case Attribute::EndAttrKinds:
case Attribute::EmptyKey:
case Attribute::TombstoneKey:
llvm_unreachable("Synthetic enumerators which should never get here");
case Attribute::None: return 0;
case Attribute::ZExt: return 1 << 0;
case Attribute::SExt: return 1 << 1;
case Attribute::NoReturn: return 1 << 2;
case Attribute::InReg: return 1 << 3;
case Attribute::StructRet: return 1 << 4;
case Attribute::NoUnwind: return 1 << 5;
case Attribute::NoAlias: return 1 << 6;
case Attribute::ByVal: return 1 << 7;
case Attribute::Nest: return 1 << 8;
case Attribute::ReadNone: return 1 << 9;
case Attribute::ReadOnly: return 1 << 10;
case Attribute::NoInline: return 1 << 11;
case Attribute::AlwaysInline: return 1 << 12;
case Attribute::OptimizeForSize: return 1 << 13;
case Attribute::StackProtect: return 1 << 14;
case Attribute::StackProtectReq: return 1 << 15;
case Attribute::Alignment: return 31 << 16;
case Attribute::NoCapture: return 1 << 21;
case Attribute::NoRedZone: return 1 << 22;
case Attribute::NoImplicitFloat: return 1 << 23;
case Attribute::Naked: return 1 << 24;
case Attribute::InlineHint: return 1 << 25;
case Attribute::StackAlignment: return 7 << 26;
case Attribute::ReturnsTwice: return 1 << 29;
case Attribute::UWTable: return 1 << 30;
case Attribute::NonLazyBind: return 1U << 31;
case Attribute::SanitizeAddress: return 1ULL << 32;
case Attribute::MinSize: return 1ULL << 33;
case Attribute::NoDuplicate: return 1ULL << 34;
case Attribute::StackProtectStrong: return 1ULL << 35;
case Attribute::SanitizeThread: return 1ULL << 36;
case Attribute::SanitizeMemory: return 1ULL << 37;
case Attribute::NoBuiltin: return 1ULL << 38;
case Attribute::Returned: return 1ULL << 39;
case Attribute::Cold: return 1ULL << 40;
case Attribute::Builtin: return 1ULL << 41;
case Attribute::OptimizeNone: return 1ULL << 42;
case Attribute::InAlloca: return 1ULL << 43;
case Attribute::NonNull: return 1ULL << 44;
case Attribute::JumpTable: return 1ULL << 45;
case Attribute::Convergent: return 1ULL << 46;
case Attribute::SafeStack: return 1ULL << 47;
case Attribute::NoRecurse: return 1ULL << 48;
case Attribute::InaccessibleMemOnly: return 1ULL << 49;
case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
case Attribute::SwiftSelf: return 1ULL << 51;
case Attribute::SwiftError: return 1ULL << 52;
case Attribute::WriteOnly: return 1ULL << 53;
case Attribute::Speculatable: return 1ULL << 54;
case Attribute::StrictFP: return 1ULL << 55;
case Attribute::SanitizeHWAddress: return 1ULL << 56;
case Attribute::NoCfCheck: return 1ULL << 57;
case Attribute::OptForFuzzing: return 1ULL << 58;
case Attribute::ShadowCallStack: return 1ULL << 59;
case Attribute::SpeculativeLoadHardening:
return 1ULL << 60;
case Attribute::ImmArg:
return 1ULL << 61;
case Attribute::WillReturn:
return 1ULL << 62;
case Attribute::NoFree:
return 1ULL << 63;
default:
// Other attributes are not supported in the raw format,
// as we ran out of space.
return 0;
}
llvm_unreachable("Unsupported attribute type");
}
static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
if (!Val) return;
for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
I = Attribute::AttrKind(I + 1)) {
if (uint64_t A = (Val & getRawAttributeMask(I))) {
if (I == Attribute::Alignment)
B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
else if (I == Attribute::StackAlignment)
B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
else
B.addAttribute(I);
}
}
}
/// This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
uint64_t EncodedAttrs) {
// FIXME: Remove in 4.0.
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
// the bits above 31 down by 11 bits.
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
assert((!Alignment || isPowerOf2_32(Alignment)) &&
"Alignment must be a power of two.");
if (Alignment)
B.addAlignmentAttr(Alignment);
addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
(EncodedAttrs & 0xffff));
}
Error BitcodeReader::parseAttributeBlock() {
if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Err;
if (!MAttributes.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeList, 8> Attrs;
// Read all the records.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
// FIXME: Remove in 4.0.
if (Record.size() & 1)
return error("Invalid record");
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
AttrBuilder B;
decodeLLVMAttributesForBitcode(B, Record[i+1]);
Attrs.push_back(AttributeList::get(Context, Record[i], B));
}
MAttributes.push_back(AttributeList::get(Context, Attrs));
Attrs.clear();
break;
case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
for (unsigned i = 0, e = Record.size(); i != e; ++i)
Attrs.push_back(MAttributeGroups[Record[i]]);
MAttributes.push_back(AttributeList::get(Context, Attrs));
Attrs.clear();
break;
}
}
}
// Returns Attribute::None on unrecognized codes.
static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
switch (Code) {
default:
return Attribute::None;
case bitc::ATTR_KIND_ALIGNMENT:
return Attribute::Alignment;
case bitc::ATTR_KIND_ALWAYS_INLINE:
return Attribute::AlwaysInline;
case bitc::ATTR_KIND_ARGMEMONLY:
return Attribute::ArgMemOnly;
case bitc::ATTR_KIND_BUILTIN:
return Attribute::Builtin;
case bitc::ATTR_KIND_BY_VAL:
return Attribute::ByVal;
case bitc::ATTR_KIND_IN_ALLOCA:
return Attribute::InAlloca;
case bitc::ATTR_KIND_COLD:
return Attribute::Cold;
case bitc::ATTR_KIND_CONVERGENT:
return Attribute::Convergent;
case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
return Attribute::InaccessibleMemOnly;
case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
return Attribute::InaccessibleMemOrArgMemOnly;
case bitc::ATTR_KIND_INLINE_HINT:
return Attribute::InlineHint;
case bitc::ATTR_KIND_IN_REG:
return Attribute::InReg;
case bitc::ATTR_KIND_JUMP_TABLE:
return Attribute::JumpTable;
case bitc::ATTR_KIND_MIN_SIZE:
return Attribute::MinSize;
case bitc::ATTR_KIND_NAKED:
return Attribute::Naked;
case bitc::ATTR_KIND_NEST:
return Attribute::Nest;
case bitc::ATTR_KIND_NO_ALIAS:
return Attribute::NoAlias;
case bitc::ATTR_KIND_NO_BUILTIN:
return Attribute::NoBuiltin;
case bitc::ATTR_KIND_NO_CAPTURE:
return Attribute::NoCapture;
case bitc::ATTR_KIND_NO_DUPLICATE:
return Attribute::NoDuplicate;
case bitc::ATTR_KIND_NOFREE:
return Attribute::NoFree;
case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
return Attribute::NoImplicitFloat;
case bitc::ATTR_KIND_NO_INLINE:
return Attribute::NoInline;
case bitc::ATTR_KIND_NO_RECURSE:
return Attribute::NoRecurse;
case bitc::ATTR_KIND_NO_MERGE:
return Attribute::NoMerge;
case bitc::ATTR_KIND_NON_LAZY_BIND:
return Attribute::NonLazyBind;
case bitc::ATTR_KIND_NON_NULL:
return Attribute::NonNull;
case bitc::ATTR_KIND_DEREFERENCEABLE:
return Attribute::Dereferenceable;
case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
return Attribute::DereferenceableOrNull;
case bitc::ATTR_KIND_ALLOC_SIZE:
return Attribute::AllocSize;
case bitc::ATTR_KIND_NO_RED_ZONE:
return Attribute::NoRedZone;
case bitc::ATTR_KIND_NO_RETURN:
return Attribute::NoReturn;
case bitc::ATTR_KIND_NOSYNC:
return Attribute::NoSync;
case bitc::ATTR_KIND_NOCF_CHECK:
return Attribute::NoCfCheck;
case bitc::ATTR_KIND_NO_UNWIND:
return Attribute::NoUnwind;
case bitc::ATTR_KIND_OPT_FOR_FUZZING:
return Attribute::OptForFuzzing;
case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
return Attribute::OptimizeForSize;
case bitc::ATTR_KIND_OPTIMIZE_NONE:
return Attribute::OptimizeNone;
case bitc::ATTR_KIND_READ_NONE:
return Attribute::ReadNone;
case bitc::ATTR_KIND_READ_ONLY:
return Attribute::ReadOnly;
case bitc::ATTR_KIND_RETURNED:
return Attribute::Returned;
case bitc::ATTR_KIND_RETURNS_TWICE:
return Attribute::ReturnsTwice;
case bitc::ATTR_KIND_S_EXT:
return Attribute::SExt;
case bitc::ATTR_KIND_SPECULATABLE:
return Attribute::Speculatable;
case bitc::ATTR_KIND_STACK_ALIGNMENT:
return Attribute::StackAlignment;
case bitc::ATTR_KIND_STACK_PROTECT:
return Attribute::StackProtect;
case bitc::ATTR_KIND_STACK_PROTECT_REQ:
return Attribute::StackProtectReq;
case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
return Attribute::StackProtectStrong;
case bitc::ATTR_KIND_SAFESTACK:
return Attribute::SafeStack;
case bitc::ATTR_KIND_SHADOWCALLSTACK:
return Attribute::ShadowCallStack;
case bitc::ATTR_KIND_STRICT_FP:
return Attribute::StrictFP;
case bitc::ATTR_KIND_STRUCT_RET:
return Attribute::StructRet;
case bitc::ATTR_KIND_SANITIZE_ADDRESS:
return Attribute::SanitizeAddress;
case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
return Attribute::SanitizeHWAddress;
case bitc::ATTR_KIND_SANITIZE_THREAD:
return Attribute::SanitizeThread;
case bitc::ATTR_KIND_SANITIZE_MEMORY:
return Attribute::SanitizeMemory;
case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
return Attribute::SpeculativeLoadHardening;
case bitc::ATTR_KIND_SWIFT_ERROR:
return Attribute::SwiftError;
case bitc::ATTR_KIND_SWIFT_SELF:
return Attribute::SwiftSelf;
case bitc::ATTR_KIND_UW_TABLE:
return Attribute::UWTable;
case bitc::ATTR_KIND_WILLRETURN:
return Attribute::WillReturn;
case bitc::ATTR_KIND_WRITEONLY:
return Attribute::WriteOnly;
case bitc::ATTR_KIND_Z_EXT:
return Attribute::ZExt;
case bitc::ATTR_KIND_IMMARG:
return Attribute::ImmArg;
case bitc::ATTR_KIND_SANITIZE_MEMTAG:
return Attribute::SanitizeMemTag;
case bitc::ATTR_KIND_PREALLOCATED:
return Attribute::Preallocated;
}
}
Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
MaybeAlign &Alignment) {
// Note: Alignment in bitcode files is incremented by 1, so that zero
// can be used for default alignment.
if (Exponent > Value::MaxAlignmentExponent + 1)
return error("Invalid alignment value");
Alignment = decodeMaybeAlign(Exponent);
return Error::success();
}
Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
*Kind = getAttrFromCode(Code);
if (*Kind == Attribute::None)
return error("Unknown attribute kind (" + Twine(Code) + ")");
return Error::success();
}
Error BitcodeReader::parseAttributeGroupBlock() {
if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
return Err;
if (!MAttributeGroups.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
if (Record.size() < 3)
return error("Invalid record");
uint64_t GrpID = Record[0];
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
AttrBuilder B;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Record[i] == 0) { // Enum attribute
Attribute::AttrKind Kind;
if (Error Err = parseAttrKind(Record[++i], &Kind))
return Err;
// Upgrade old-style byval attribute to one with a type, even if it's
// nullptr. We will have to insert the real type when we associate
// this AttributeList with a function.
if (Kind == Attribute::ByVal)
B.addByValAttr(nullptr);
B.addAttribute(Kind);
} else if (Record[i] == 1) { // Integer attribute
Attribute::AttrKind Kind;
if (Error Err = parseAttrKind(Record[++i], &Kind))
return Err;
if (Kind == Attribute::Alignment)
B.addAlignmentAttr(Record[++i]);
else if (Kind == Attribute::StackAlignment)
B.addStackAlignmentAttr(Record[++i]);
else if (Kind == Attribute::Dereferenceable)
B.addDereferenceableAttr(Record[++i]);
else if (Kind == Attribute::DereferenceableOrNull)
B.addDereferenceableOrNullAttr(Record[++i]);
else if (Kind == Attribute::AllocSize)
B.addAllocSizeAttrFromRawRepr(Record[++i]);
} else if (Record[i] == 3 || Record[i] == 4) { // String attribute
bool HasValue = (Record[i++] == 4);
SmallString<64> KindStr;
SmallString<64> ValStr;
while (Record[i] != 0 && i != e)
KindStr += Record[i++];
assert(Record[i] == 0 && "Kind string not null terminated");
if (HasValue) {
// Has a value associated with it.
++i; // Skip the '0' that terminates the "kind" string.
while (Record[i] != 0 && i != e)
ValStr += Record[i++];
assert(Record[i] == 0 && "Value string not null terminated");
}
B.addAttribute(KindStr.str(), ValStr.str());
} else {
assert((Record[i] == 5 || Record[i] == 6) &&
"Invalid attribute group entry");
bool HasType = Record[i] == 6;
Attribute::AttrKind Kind;
if (Error Err = parseAttrKind(Record[++i], &Kind))
return Err;
if (Kind == Attribute::ByVal) {
B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
} else if (Kind == Attribute::Preallocated) {
B.addPreallocatedAttr(getTypeByID(Record[++i]));
}
}
}
UpgradeFramePointerAttributes(B);
MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
break;
}
}
}
}
Error BitcodeReader::parseTypeTable() {
if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
return Err;
return parseTypeTableBody();
}
Error BitcodeReader::parseTypeTableBody() {
if (!TypeList.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
SmallString<64> TypeName;
// Read all the records for this type table.
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (NumRecords != TypeList.size())
return error("Malformed block");
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *ResultTy = nullptr;
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default:
return error("Invalid value");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return error("Invalid record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_HALF: // HALF
ResultTy = Type::getHalfTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
ResultTy = Type::getX86_MMXTy(Context);
break;
case bitc::TYPE_CODE_TOKEN: // TOKEN
ResultTy = Type::getTokenTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
if (Record.size() < 1)
return error("Invalid record");
uint64_t NumBits = Record[0];
if (NumBits < IntegerType::MIN_INT_BITS ||
NumBits > IntegerType::MAX_INT_BITS)
return error("Bitwidth for integer type out of range");
ResultTy = IntegerType::get(Context, NumBits);
break;
}
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return error("Invalid record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (!ResultTy ||
!PointerType::isValidElementType(ResultTy))
return error("Invalid type");
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION_OLD: {
// FIXME: attrid is dead, remove it in LLVM 4.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[2]);
if (!ResultTy || ArgTys.size() < Record.size()-3)
return error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (Record.size() < 2)
return error("Invalid record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i])) {
if (!FunctionType::isValidArgumentType(T))
return error("Invalid function argument type");
ArgTys.push_back(T);
}
else
break;
}
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || ArgTys.size() < Record.size()-2)
return error("Invalid type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return error("Invalid record");
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return error("Invalid type");
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (convertToString(Record, 0, TypeName))
return error("Invalid record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return error("Invalid record");
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return error("Invalid record");
Res->setBody(EltTys, Record[0]);
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
return error("Invalid record");
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = nullptr;
} else // Otherwise, create a new struct with no body.
Res = createIdentifiedStructType(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return error("Invalid record");
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
return error("Invalid type");
ResultTy = ArrayType::get(ResultTy, Record[0]);
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
// [numelts, eltty, scalable]
if (Record.size() < 2)
return error("Invalid record");
if (Record[0] == 0)
return error("Invalid vector length");
ResultTy = getTypeByID(Record[1]);
if (!ResultTy || !StructType::isValidElementType(ResultTy))
return error("Invalid type");
bool Scalable = Record.size() > 2 ? Record[2] : false;
ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
break;
}
if (NumRecords >= TypeList.size())
return error("Invalid TYPE table");
if (TypeList[NumRecords])
return error(
"Invalid TYPE table: Only named structs can be forward referenced");
assert(ResultTy && "Didn't read a type?");
TypeList[NumRecords++] = ResultTy;
}
}
Error BitcodeReader::parseOperandBundleTags() {
if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
return Err;
if (!BundleTags.empty())
return error("Invalid multiple blocks");
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Tags are implicitly mapped to integers by their order.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
return error("Invalid record");
// OPERAND_BUNDLE_TAG: [strchr x N]
BundleTags.emplace_back();
if (convertToString(Record, 0, BundleTags.back()))
return error("Invalid record");
Record.clear();
}
}
Error BitcodeReader::parseSyncScopeNames() {
if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
return Err;
if (!SSIDs.empty())
return error("Invalid multiple synchronization scope names blocks");
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (SSIDs.empty())
return error("Invalid empty synchronization scope names block");
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Synchronization scope names are implicitly mapped to synchronization
// scope IDs by their order.
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
return error("Invalid record");
SmallString<16> SSN;
if (convertToString(Record, 0, SSN))
return error("Invalid record");
SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
Record.clear();
}
}
/// Associate a value with its name from the given index in the provided record.
Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
unsigned NameIndex, Triple &TT) {
SmallString<128> ValueName;
if (convertToString(Record, NameIndex, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size() || !ValueList[ValueID])
return error("Invalid record");
Value *V = ValueList[ValueID];
StringRef NameStr(ValueName.data(), ValueName.size());
if (NameStr.find_first_of(0) != StringRef::npos)
return error("Invalid value name");
V->setName(NameStr);
auto *GO = dyn_cast<GlobalObject>(V);
if (GO) {
if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
if (TT.supportsCOMDAT())
GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
else
GO->setComdat(nullptr);
}
}
return V;
}
/// Helper to note and return the current location, and jump to the given
/// offset.
static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
BitstreamCursor &Stream) {
// Save the current parsing location so we can jump back at the end
// of the VST read.
uint64_t CurrentBit = Stream.GetCurrentBitNo();
if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
return std::move(JumpFailed);
Expected<BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
return CurrentBit;
}
void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
Function *F,
ArrayRef<uint64_t> Record) {
// Note that we subtract 1 here because the offset is relative to one word
// before the start of the identification or module block, which was
// historically always the start of the regular bitcode header.
uint64_t FuncWordOffset = Record[1] - 1;
uint64_t FuncBitOffset = FuncWordOffset * 32;
DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
// Set the LastFunctionBlockBit to point to the last function block.
// Later when parsing is resumed after function materialization,
// we can simply skip that last function block.
if (FuncBitOffset > LastFunctionBlockBit)
LastFunctionBlockBit = FuncBitOffset;
}
/// Read a new-style GlobalValue symbol table.
Error BitcodeReader::parseGlobalValueSymbolTable() {
unsigned FuncBitcodeOffsetDelta =
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
break;
}
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
case bitc::VST_CODE_FNENTRY: // [valueid, offset]
setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
cast<Function>(ValueList[Record[0]]), Record);
break;
}
}
}
/// Parse the value symbol table at either the current parsing location or
/// at the given bit offset if provided.
Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
uint64_t CurrentBit;
// Pass in the Offset to distinguish between calling for the module-level
// VST (where we want to jump to the VST offset) and the function-level
// VST (where we don't).
if (Offset > 0) {
Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
if (!MaybeCurrentBit)
return MaybeCurrentBit.takeError();
CurrentBit = MaybeCurrentBit.get();
// If this module uses a string table, read this as a module-level VST.
if (UseStrtab) {
if (Error Err = parseGlobalValueSymbolTable())
return Err;
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
}
// Otherwise, the VST will be in a similar format to a function-level VST,
// and will contain symbol names.
}
// Compute the delta between the bitcode indices in the VST (the word offset
// to the word-aligned ENTER_SUBBLOCK for the function block, and that
// expected by the lazy reader. The reader's EnterSubBlock expects to have
// already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
// (size BlockIDWidth). Note that we access the stream's AbbrevID width here
// just before entering the VST subblock because: 1) the EnterSubBlock
// changes the AbbrevID width; 2) the VST block is nested within the same
// outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
// AbbrevID width before calling EnterSubBlock; and 3) when we want to
// jump to the FUNCTION_BLOCK using this offset later, we don't want
// to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
unsigned FuncBitcodeOffsetDelta =
Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
Triple TT(TheModule->getTargetTriple());
// Read all the records for this value table.
SmallString<128> ValueName;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (Offset > 0)
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
if (Error Err = ValOrErr.takeError())
return Err;
ValOrErr.get();
break;
}
case bitc::VST_CODE_FNENTRY: {
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
if (Error Err = ValOrErr.takeError())
return Err;
Value *V = ValOrErr.get();
// Ignore function offsets emitted for aliases of functions in older
// versions of LLVM.
if (auto *F = dyn_cast<Function>(V))
setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
break;
}
case bitc::VST_CODE_BBENTRY: {
if (convertToString(Record, 1, ValueName))
return error("Invalid record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (!BB)
return error("Invalid record");
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
}
}
}
/// Decode a signed value stored with the sign bit in the LSB for dense VBR
/// encoding.
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// Resolve all of the initializers for global values and aliases that we can.
Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
IndirectSymbolInitWorklist;
std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
GlobalInitWorklist.swap(GlobalInits);
IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
FunctionPrefixWorklist.swap(FunctionPrefixes);
FunctionPrologueWorklist.swap(FunctionPrologues);
FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
return error("Expected a constant");
}
GlobalInitWorklist.pop_back();
}
while (!IndirectSymbolInitWorklist.empty()) {
unsigned ValID = IndirectSymbolInitWorklist.back().second;
if (ValID >= ValueList.size()) {
IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
} else {
Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
if (!C)
return error("Expected a constant");
GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
return error("Alias and aliasee types don't match");
GIS->setIndirectSymbol(C);
}
IndirectSymbolInitWorklist.pop_back();
}
while (!FunctionPrefixWorklist.empty()) {
unsigned ValID = FunctionPrefixWorklist.back().second;
if (ValID >= ValueList.size()) {
FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPrefixWorklist.back().first->setPrefixData(C);
else
return error("Expected a constant");
}
FunctionPrefixWorklist.pop_back();
}
while (!FunctionPrologueWorklist.empty()) {
unsigned ValID = FunctionPrologueWorklist.back().second;
if (ValID >= ValueList.size()) {
FunctionPrologues.push_back(FunctionPrologueWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPrologueWorklist.back().first->setPrologueData(C);
else
return error("Expected a constant");
}
FunctionPrologueWorklist.pop_back();
}
while (!FunctionPersonalityFnWorklist.empty()) {
unsigned ValID = FunctionPersonalityFnWorklist.back().second;
if (ValID >= ValueList.size()) {
FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
} else {
if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
else
return error("Expected a constant");
}
FunctionPersonalityFnWorklist.pop_back();
}
return Error::success();
}
APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
SmallVector<uint64_t, 8> Words(Vals.size());
transform(Vals, Words.begin(),
BitcodeReader::decodeSignRotatedValue);
return APInt(TypeBits, Words);
}
Error BitcodeReader::parseConstants() {
if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
Type *CurTy = Type::getInt32Ty(Context);
Type *CurFullTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
struct DelayedShufTy {
VectorType *OpTy;
VectorType *RTy;
Type *CurFullTy;
uint64_t Op0Idx;
uint64_t Op1Idx;
uint64_t Op2Idx;
};
std::vector<DelayedShufTy> DelayedShuffles;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
if (NextCstNo != ValueList.size())
return error("Invalid constant reference");
// Once all the constants have been read, go through and resolve forward
// references.
//
// We have to treat shuffles specially because they don't have three
// operands anymore. We need to convert the shuffle mask into an array,
// and we can't convert a forward reference.
for (auto &DelayedShuffle : DelayedShuffles) {
VectorType *OpTy = DelayedShuffle.OpTy;
VectorType *RTy = DelayedShuffle.RTy;
uint64_t Op0Idx = DelayedShuffle.Op0Idx;
uint64_t Op1Idx = DelayedShuffle.Op1Idx;
uint64_t Op2Idx = DelayedShuffle.Op2Idx;
Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
Type *ShufTy =
VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
return error("Invalid shufflevector operands");
SmallVector<int, 16> Mask;
ShuffleVectorInst::getShuffleMask(Op2, Mask);
Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy);
++NextCstNo;
}
ValueList.resolveConstantForwardRefs();
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *VoidType = Type::getVoidTy(Context);
Value *V = nullptr;
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return error("Invalid record");
if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
return error("Invalid record");
if (TypeList[Record[0]] == VoidType)
return error("Invalid constant type");
CurFullTy = TypeList[Record[0]];
CurTy = flattenPointerTypes(CurFullTy);
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
return error("Invalid type for a constant null value");
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntegerTy() || Record.empty())
return error("Invalid record");
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntegerTy() || Record.empty())
return error("Invalid record");
APInt VInt =
readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
V = ConstantInt::get(Context, VInt);
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return error("Invalid record");
if (CurTy->isHalfTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
APInt(16, (uint16_t)Record[0])));
else if (CurTy->isFloatTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
APInt(128, Record)));
else if (CurTy->isPPC_FP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
APInt(128, Record)));
else
V = UndefValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return error("Invalid record");
unsigned Size = Record.size();
SmallVector<Constant*, 16> Elts;
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
STy->getElementType(i)));
V = ConstantStruct::get(STy, Elts);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
Type *EltTy = ATy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantArray::get(ATy, Elts);
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
Type *EltTy = VTy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantVector::get(Elts);
} else {
V = UndefValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: // STRING: [values]
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return error("Invalid record");
SmallString<16> Elts(Record.begin(), Record.end());
V = ConstantDataArray::getString(Context, Elts,
BitCode == bitc::CST_CODE_CSTRING);
break;
}
case bitc::CST_CODE_DATA: {// DATA: [n x value]
if (Record.empty())
return error("Invalid record");
Type *EltTy;
if (auto *Array = dyn_cast<ArrayType>(CurTy))
EltTy = Array->getElementType();
else
EltTy = cast<VectorType>(CurTy)->getElementType();
if (EltTy->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isHalfTy()) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(Context, Elts);
else
V = ConstantDataArray::getFP(Context, Elts);
} else if (EltTy->isFloatTy()) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(Context, Elts);
else
V = ConstantDataArray::getFP(Context, Elts);
} else if (EltTy->isDoubleTy()) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::getFP(Context, Elts);
else
V = ConstantDataArray::getFP(Context, Elts);
} else {
return error("Invalid type for value");
}
break;
}
case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
if (Record.size() < 2)
return error("Invalid record");
int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown unop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
unsigned Flags = 0;
V = ConstantExpr::get(Opc, LHS, Flags);
}
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3)
return error("Invalid record");
int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
unsigned Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[3] & (1 << bitc::PEO_EXACT))
Flags |= SDivOperator::IsExact;
}
}
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3)
return error("Invalid record");
int Opc = getDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
Type *OpTy = getTypeByID(Record[1]);
if (!OpTy)
return error("Invalid record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = UpgradeBitCastExpr(Opc, Op, CurTy);
if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
}
case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
// operands]
unsigned OpNum = 0;
Type *PointeeType = nullptr;
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
Record.size() % 2)
PointeeType = getTypeByID(Record[OpNum++]);
bool InBounds = false;
Optional<unsigned> InRangeIndex;
if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
uint64_t Op = Record[OpNum++];
InBounds = Op & 1;
InRangeIndex = Op >> 1;
} else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
InBounds = true;
SmallVector<Constant*, 16> Elts;
Type *Elt0FullTy = nullptr;
while (OpNum != Record.size()) {
if (!Elt0FullTy)
Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
Type *ElTy = getTypeByID(Record[OpNum++]);
if (!ElTy)
return error("Invalid record");
Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
}
if (Elts.size() < 1)
return error("Invalid gep with no operands");
Type *ImplicitPointeeType =
getPointerElementFlatType(Elt0FullTy->getScalarType());
if (!PointeeType)
PointeeType = ImplicitPointeeType;
else if (PointeeType != ImplicitPointeeType)
return error("Explicit gep operator type does not match pointee type "
"of pointer operand");
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
InBounds, InRangeIndex);
break;
}
case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3)
return error("Invalid record");
Type *SelectorTy = Type::getInt1Ty(Context);
// The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
// Get the type from the ValueList before getting a forward ref.
if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
if (Value *V = ValueList[Record[0]])
if (SelectorTy != V->getType())
SelectorTy = VectorType::get(SelectorTy,
VTy->getElementCount());
V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
SelectorTy),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
}
case bitc::CST_CODE_CE_EXTRACTELT
: { // CE_EXTRACTELT: [opty, opval, opty, opval]
if (Record.size() < 3)
return error("Invalid record");
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (!OpTy)
return error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = nullptr;
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
return error("Invalid record");
Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op1)
return error("Invalid record");
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
case bitc::CST_CODE_CE_INSERTELT
: { // CE_INSERTELT: [opval, opval, opty, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
Constant *Op2 = nullptr;
if (Record.size() == 4) {
Type *IdxTy = getTypeByID(Record[2]);
if (!IdxTy)
return error("Invalid record");
Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
} else // TODO: Remove with llvm 4.0
Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
if (!Op2)
return error("Invalid record");
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || !OpTy)
return error("Invalid record");
DelayedShuffles.push_back(
{OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]});
continue;
}
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
VectorType *RTy = dyn_cast<VectorType>(CurTy);
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || !RTy || !OpTy)
return error("Invalid record");
DelayedShuffles.push_back(
{OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]});
continue;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4)
return error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
if (!OpTy)
return error("Invalid record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
if (OpTy->isFPOrFPVectorTy())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
else
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
break;
}
// This maintains backward compatibility, pre-asm dialect keywords.
// FIXME: Remove with the 4.0 release.
case bitc::CST_CODE_INLINEASM_OLD: {
if (Record.size() < 2)
return error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
UpgradeInlineAsmString(&AsmStr);
V = InlineAsm::get(
cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
ConstrStr, HasSideEffects, IsAlignStack);
break;
}
// This version adds support for the asm dialect keywords (e.g.,
// inteldialect).
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2)
return error("Invalid record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = (Record[0] >> 1) & 1;
unsigned AsmDialect = Record[0] >> 2;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return error("Invalid record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return error("Invalid record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
UpgradeInlineAsmString(&AsmStr);
V = InlineAsm::get(
cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
ConstrStr, HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect));
break;
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3)
return error("Invalid record");
Type *FnTy = getTypeByID(Record[0]);
if (!FnTy)
return error("Invalid record");
Function *Fn =
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
if (!Fn)
return error("Invalid record");
// If the function is already parsed we can insert the block address right
// away.
BasicBlock *BB;
unsigned BBID = Record[2];
if (!BBID)
// Invalid reference to entry block.
return error("Invalid ID");
if (!Fn->empty()) {
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
for (size_t I = 0, E = BBID; I != E; ++I) {
if (BBI == BBE)
return error("Invalid ID");
++BBI;
}
BB = &*BBI;
} else {
// Otherwise insert a placeholder and remember it so it can be inserted
// when the function is parsed.
auto &FwdBBs = BasicBlockFwdRefs[Fn];
if (FwdBBs.empty())
BasicBlockFwdRefQueue.push_back(Fn);
if (FwdBBs.size() < BBID + 1)
FwdBBs.resize(BBID + 1);
if (!FwdBBs[BBID])
FwdBBs[BBID] = BasicBlock::Create(Context);
BB = FwdBBs[BBID];
}
V = BlockAddress::get(Fn, BB);
break;
}
}
assert(V->getType() == flattenPointerTypes(CurFullTy) &&
"Incorrect fully structured type provided for Constant");
ValueList.assignValue(V, NextCstNo, CurFullTy);
++NextCstNo;
}
}
Error BitcodeReader::parseUseLists() {
if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
return Err;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a use list record.
Record.clear();
bool IsBB = false;
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: unknown type.
break;
case bitc::USELIST_CODE_BB:
IsBB = true;
LLVM_FALLTHROUGH;
case bitc::USELIST_CODE_DEFAULT: {
unsigned RecordLength = Record.size();
if (RecordLength < 3)
// Records should have at least an ID and two indexes.
return error("Invalid record");
unsigned ID = Record.back();
Record.pop_back();
Value *V;
if (IsBB) {
assert(ID < FunctionBBs.size() && "Basic block not found");
V = FunctionBBs[ID];
} else
V = ValueList[ID];
unsigned NumUses = 0;
SmallDenseMap<const Use *, unsigned, 16> Order;
for (const Use &U : V->materialized_uses()) {
if (++NumUses > Record.size())
break;
Order[&U] = Record[NumUses - 1];
}
if (Order.size() != Record.size() || NumUses > Record.size())
// Mismatches can happen if the functions are being materialized lazily
// (out-of-order), or a value has been upgraded.
break;
V->sortUseList([&](const Use &L, const Use &R) {
return Order.lookup(&L) < Order.lookup(&R);
});
break;
}
}
}
}
/// When we see the block for metadata, remember where it is and then skip it.
/// This lets us lazily deserialize the metadata.
Error BitcodeReader::rememberAndSkipMetadata() {
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredMetadataInfo.push_back(CurBit);
// Skip over the block for now.
if (Error Err = Stream.SkipBlock())
return Err;
return Error::success();
}
Error BitcodeReader::materializeMetadata() {
for (uint64_t BitPos : DeferredMetadataInfo) {
// Move the bit stream to the saved position.
if (Error JumpFailed = Stream.JumpToBit(BitPos))
return JumpFailed;
if (Error Err = MDLoader->parseModuleMetadata())
return Err;
}
// Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
// metadata.
if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
NamedMDNode *LinkerOpts =
TheModule->getOrInsertNamedMetadata("llvm.linker.options");
for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
LinkerOpts->addOperand(cast<MDNode>(MDOptions));
}
DeferredMetadataInfo.clear();
return Error::success();
}
void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
/// When we see the block for a function body, remember where it is and then
/// skip it. This lets us lazily deserialize the functions.
Error BitcodeReader::rememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
assert(
(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
"Mismatch between VST and scanned function offsets");
DeferredFunctionInfo[Fn] = CurBit;
// Skip over the function block for now.
if (Error Err = Stream.SkipBlock())
return Err;
return Error::success();
}
Error BitcodeReader::globalCleanup() {
// Patch the initializers for globals and aliases up.
if (Error Err = resolveGlobalAndIndirectSymbolInits())
return Err;
if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
return error("Malformed global initializer set");
// Look for intrinsic functions which need to be upgraded at some point
for (Function &F : *TheModule) {
MDLoader->upgradeDebugIntrinsics(F);
Function *NewFn;
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
// Some types could be renamed during loading if several modules are
// loaded in the same LLVMContext (LTO scenario). In this case we should
// remangle intrinsics names as well.
RemangledIntrinsics[&F] = Remangled.getValue();
}
// Look for global variables which need to be renamed.
std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
for (GlobalVariable &GV : TheModule->globals())
if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
UpgradedVariables.emplace_back(&GV, Upgraded);
for (auto &Pair : UpgradedVariables) {
Pair.first->eraseFromParent();
TheModule->getGlobalList().push_back(Pair.second);
}
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
IndirectSymbolInits);
return Error::success();
}
/// Support for lazy parsing of function bodies. This is required if we
/// either have an old bitcode file without a VST forward declaration record,
/// or if we have an anonymous function being materialized, since anonymous
/// functions do not have a name and are therefore not in the VST.
Error BitcodeReader::rememberAndSkipFunctionBodies() {
if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
return JumpFailed;
if (Stream.AtEndOfStream())
return error("Could not find function in stream");
if (!SeenFirstFunctionBody)
return error("Trying to materialize functions before seeing function blocks");
// An old bitcode file with the symbol table at the end would have
// finished the parse greedily.
assert(SeenValueSymbolTable);
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
default:
return error("Expect SubBlock");
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default:
return error("Expect function block");
case bitc::FUNCTION_BLOCK_ID:
if (Error Err = rememberAndSkipFunctionBody())
return Err;
NextUnreadBit = Stream.GetCurrentBitNo();
return Error::success();
}
}
}
}
bool BitcodeReaderBase::readBlockInfo() {
Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
Stream.ReadBlockInfoBlock();
if (!MaybeNewBlockInfo)
return true; // FIXME Handle the error.
Optional<BitstreamBlockInfo> NewBlockInfo =
std::move(MaybeNewBlockInfo.get());
if (!NewBlockInfo)
return true;
BlockInfo = std::move(*NewBlockInfo);
return false;
}
Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
// v1: [selection_kind, name]
// v2: [strtab_offset, strtab_size, selection_kind]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.empty())
return error("Invalid record");
Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
std::string OldFormatName;
if (!UseStrtab) {
if (Record.size() < 2)
return error("Invalid record");
unsigned ComdatNameSize = Record[1];
OldFormatName.reserve(ComdatNameSize);
for (unsigned i = 0; i != ComdatNameSize; ++i)
OldFormatName += (char)Record[2 + i];
Name = OldFormatName;
}
Comdat *C = TheModule->getOrInsertComdat(Name);
C->setSelectionKind(SK);
ComdatList.push_back(C);
return Error::success();
}
static void inferDSOLocal(GlobalValue *GV) {
// infer dso_local from linkage and visibility if it is not encoded.
if (GV->hasLocalLinkage() ||
(!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
GV->setDSOLocal(true);
}
Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
// v1: [pointer type, isconst, initid, linkage, alignment, section,
// visibility, threadlocal, unnamed_addr, externally_initialized,
// dllstorageclass, comdat, attributes, preemption specifier,
// partition strtab offset, partition strtab size] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.size() < 6)
return error("Invalid record");
Type *FullTy = getFullyStructuredTypeByID(Record[0]);
Type *Ty = flattenPointerTypes(FullTy);
if (!Ty)
return error("Invalid record");
bool isConstant = Record[1] & 1;
bool explicitType = Record[1] & 2;
unsigned AddressSpace;
if (explicitType) {
AddressSpace = Record[1] >> 2;
} else {
if (!Ty->isPointerTy())
return error("Invalid type for value");
AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
}
uint64_t RawLinkage = Record[3];
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
MaybeAlign Alignment;
if (Error Err = parseAlignmentValue(Record[4], Alignment))
return Err;
std::string Section;
if (Record[5]) {
if (Record[5] - 1 >= SectionTable.size())
return error("Invalid ID");
Section = SectionTable[Record[5] - 1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
// Local linkage must have default visibility.
if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
// FIXME: Change to an error if non-default in 4.0.
Visibility = getDecodedVisibility(Record[6]);
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
if (Record.size() > 7)
TLM = getDecodedThreadLocalMode(Record[7]);
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
if (Record.size() > 8)
UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
bool ExternallyInitialized = false;
if (Record.size() > 9)
ExternallyInitialized = Record[9];
GlobalVariable *NewGV =
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
nullptr, TLM, AddressSpace, ExternallyInitialized);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10)
NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
else
upgradeDLLImportExportLinkage(NewGV, RawLinkage);
FullTy = PointerType::get(FullTy, AddressSpace);
assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
"Incorrect fully specified type for GlobalVariable");
ValueList.push_back(NewGV, FullTy);
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
if (Record.size() > 11) {
if (unsigned ComdatID = Record[11]) {
if (ComdatID > ComdatList.size())
return error("Invalid global variable comdat ID");
NewGV->setComdat(ComdatList[ComdatID - 1]);
}
} else if (hasImplicitComdat(RawLinkage)) {
NewGV->setComdat(reinterpret_cast<Comdat *>(1));
}
if (Record.size() > 12) {
auto AS = getAttributes(Record[12]).getFnAttributes();
NewGV->setAttributes(AS);
}
if (Record.size() > 13) {
NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
}
inferDSOLocal(NewGV);
// Check whether we have enough values to read a partition name.
if (Record.size() > 15)
NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
return Error::success();
}
Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
// v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
// visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
// prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
if (Record.size() < 8)
return error("Invalid record");
Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
Type *FTy = flattenPointerTypes(FullFTy);
if (!FTy)
return error("Invalid record");
if (isa<PointerType>(FTy))
std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
if (!isa<FunctionType>(FTy))
return error("Invalid type for value");
auto CC = static_cast<CallingConv::ID>(Record[1]);
if (CC & ~CallingConv::MaxID)
return error("Invalid calling convention ID");
unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
if (Record.size() > 16)
AddrSpace = Record[16];
Function *Func =
Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
AddrSpace, Name, TheModule);
assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
"Incorrect fully specified type provided for function");
FunctionTypes[Func] = cast<FunctionType>(FullFTy);
Func->setCallingConv(CC);
bool isProto = Record[2];
uint64_t RawLinkage = Record[3];
Func->setLinkage(getDecodedLinkage(RawLinkage));
Func->setAttributes(getAttributes(Record[4]));
// Upgrade any old-style byval without a type by propagating the argument's
// pointee type. There should be no opaque pointers where the byval type is
// implicit.
for (unsigned i = 0; i != Func->arg_size(); ++i) {
if (!Func->hasParamAttribute(i, Attribute::ByVal))
continue;
Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
Func->removeParamAttr(i, Attribute::ByVal);
Func->addParamAttr(i, Attribute::getWithByValType(
Context, getPointerElementFlatType(PTy)));
}
MaybeAlign Alignment;
if (Error Err = parseAlignmentValue(Record[5], Alignment))
return Err;
Func->setAlignment(Alignment);
if (Record[6]) {
if (Record[6] - 1 >= SectionTable.size())
return error("Invalid ID");
Func->setSection(SectionTable[Record[6] - 1]);
}
// Local linkage must have default visibility.
if (!Func->hasLocalLinkage())
// FIXME: Change to an error if non-default in 4.0.
Func->setVisibility(getDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8] - 1 >= GCTable.size())
return error("Invalid ID");
Func->setGC(GCTable[Record[8] - 1]);
}
GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
if (Record.size() > 9)
UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
Func->setUnnamedAddr(UnnamedAddr);
if (Record.size() > 10 && Record[10] != 0)
FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
if (Record.size() > 11)
Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
else
upgradeDLLImportExportLinkage(Func, RawLinkage);
if (Record.size() > 12) {
if (unsigned ComdatID = Record[12]) {
if (ComdatID > ComdatList.size())
return error("Invalid function comdat ID");
Func->setComdat(ComdatList[ComdatID - 1]);
}
} else if (hasImplicitComdat(RawLinkage)) {
Func->setComdat(reinterpret_cast<Comdat *>(1));
}
if (Record.size() > 13 && Record[13] != 0)
FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
if (Record.size() > 14 && Record[14] != 0)
FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
if (Record.size() > 15) {
Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
}
inferDSOLocal(Func);
// Record[16] is the address space number.
// Check whether we have enough values to read a partition name.
if (Record.size() > 18)
Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
Type *FullTy = PointerType::get(FullFTy, AddrSpace);
assert(Func->getType() == flattenPointerTypes(FullTy) &&
"Incorrect fully specified type provided for Function");
ValueList.push_back(Func, FullTy);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto) {
Func->setIsMaterializable(true);
FunctionsWithBodies.push_back(Func);
DeferredFunctionInfo[Func] = 0;
}
return Error::success();
}
Error BitcodeReader::parseGlobalIndirectSymbolRecord(
unsigned BitCode, ArrayRef<uint64_t> Record) {
// v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
// dllstorageclass, threadlocal, unnamed_addr,
// preemption specifier] (name in VST)
// v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
// visibility, dllstorageclass, threadlocal, unnamed_addr,
// preemption specifier] (name in VST)
// v2: [strtab_offset, strtab_size, v1]
StringRef Name;
std::tie(Name, Record) = readNameFromStrtab(Record);
bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
if (Record.size() < (3 + (unsigned)NewRecord))
return error("Invalid record");
unsigned OpNum = 0;
Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
Type *Ty = flattenPointerTypes(FullTy);
if (!Ty)
return error("Invalid record");
unsigned AddrSpace;
if (!NewRecord) {
auto *PTy = dyn_cast<PointerType>(Ty);
if (!PTy)
return error("Invalid type for value");
std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
AddrSpace = PTy->getAddressSpace();
} else {
AddrSpace = Record[OpNum++];
}
auto Val = Record[OpNum++];
auto Linkage = Record[OpNum++];
GlobalIndirectSymbol *NewGA;
if (BitCode == bitc::MODULE_CODE_ALIAS ||
BitCode == bitc::MODULE_CODE_ALIAS_OLD)
NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
TheModule);
else
NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
nullptr, TheModule);
assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
"Incorrect fully structured type provided for GlobalIndirectSymbol");
// Old bitcode files didn't have visibility field.
// Local linkage must have default visibility.
if (OpNum != Record.size()) {
auto VisInd = OpNum++;
if (!NewGA->hasLocalLinkage())
// FIXME: Change to an error if non-default in 4.0.
NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
}
if (BitCode == bitc::MODULE_CODE_ALIAS ||
BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
if (OpNum != Record.size())
NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
else
upgradeDLLImportExportLinkage(NewGA, Linkage);
if (OpNum != Record.size())
NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
if (OpNum != Record.size())
NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
}
if (OpNum != Record.size())
NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
inferDSOLocal(NewGA);
// Check whether we have enough values to read a partition name.
if (OpNum + 1 < Record.size()) {
NewGA->setPartition(
StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
OpNum += 2;
}
FullTy = PointerType::get(FullTy, AddrSpace);
assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
"Incorrect fully structured type provided for GlobalIndirectSymbol");
ValueList.push_back(NewGA, FullTy);
IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
return Error::success();
}
Error BitcodeReader::parseModule(uint64_t ResumeBit,
bool ShouldLazyLoadMetadata) {
if (ResumeBit) {
if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
return JumpFailed;
} else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Read all the records for this module.
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return globalCleanup();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (readBlockInfo())
return error("Malformed block");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (Error Err = parseAttributeBlock())
return Err;
break;
case bitc::PARAMATTR_GROUP_BLOCK_ID:
if (Error Err = parseAttributeGroupBlock())
return Err;
break;
case bitc::TYPE_BLOCK_ID_NEW:
if (Error Err = parseTypeTable())
return Err;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (!SeenValueSymbolTable) {
// Either this is an old form VST without function index and an
// associated VST forward declaration record (which would have caused
// the VST to be jumped to and parsed before it was encountered
// normally in the stream), or there were no function blocks to
// trigger an earlier parsing of the VST.
assert(VSTOffset == 0 || FunctionsWithBodies.empty());
if (Error Err = parseValueSymbolTable())
return Err;
SeenValueSymbolTable = true;
} else {
// We must have had a VST forward declaration record, which caused
// the parser to jump to and parse the VST earlier.
assert(VSTOffset > 0);
if (Error Err = Stream.SkipBlock())
return Err;
}
break;
case bitc::CONSTANTS_BLOCK_ID:
if (Error Err = parseConstants())
return Err;
if (Error Err = resolveGlobalAndIndirectSymbolInits())
return Err;
break;
case bitc::METADATA_BLOCK_ID:
if (ShouldLazyLoadMetadata) {
if (Error Err = rememberAndSkipMetadata())
return Err;
break;
}
assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
if (Error Err = MDLoader->parseModuleMetadata())
return Err;
break;
case bitc::METADATA_KIND_BLOCK_ID:
if (Error Err = MDLoader->parseMetadataKinds())
return Err;
break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!SeenFirstFunctionBody) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
if (Error Err = globalCleanup())
return Err;
SeenFirstFunctionBody = true;
}
if (VSTOffset > 0) {
// If we have a VST forward declaration record, make sure we
// parse the VST now if we haven't already. It is needed to
// set up the DeferredFunctionInfo vector for lazy reading.
if (!SeenValueSymbolTable) {
if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
return Err;
SeenValueSymbolTable = true;
// Fall through so that we record the NextUnreadBit below.
// This is necessary in case we have an anonymous function that
// is later materialized. Since it will not have a VST entry we
// need to fall back to the lazy parse to find its offset.
} else {
// If we have a VST forward declaration record, but have already
// parsed the VST (just above, when the first function body was
// encountered here), then we are resuming the parse after
// materializing functions. The ResumeBit points to the
// start of the last function block recorded in the
// DeferredFunctionInfo map. Skip it.
if (Error Err = Stream.SkipBlock())
return Err;
continue;
}
}
// Support older bitcode files that did not have the function
// index in the VST, nor a VST forward declaration record, as
// well as anonymous functions that do not have VST entries.
// Build the DeferredFunctionInfo vector on the fly.
if (Error Err = rememberAndSkipFunctionBody())
return Err;
// Suspend parsing when we reach the function bodies. Subsequent
// materialization calls will resume it when necessary. If the bitcode
// file is old, the symbol table will be at the end instead and will not
// have been seen yet. In this case, just finish the parse now.
if (SeenValueSymbolTable) {
NextUnreadBit = Stream.GetCurrentBitNo();
// After the VST has been parsed, we need to make sure intrinsic name
// are auto-upgraded.
return globalCleanup();
}
break;
case bitc::USELIST_BLOCK_ID:
if (Error Err = parseUseLists())
return Err;
break;
case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
if (Error Err = parseOperandBundleTags())
return Err;
break;
case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
if (Error Err = parseSyncScopeNames())
return Err;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: {
Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
if (!VersionOrErr)
return VersionOrErr.takeError();
UseRelativeIDs = *VersionOrErr >= 1;
break;
}
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
// FIXME: Remove in 4.0.
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
// Ignore value.
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (convertToString(Record, 0, S))
return error("Invalid record");
GCTable.push_back(S);
break;
}
case bitc::MODULE_CODE_COMDAT:
if (Error Err = parseComdatRecord(Record))
return Err;
break;
case bitc::MODULE_CODE_GLOBALVAR:
if (Error Err = parseGlobalVarRecord(Record))
return Err;
break;
case bitc::MODULE_CODE_FUNCTION:
if (Error Err = parseFunctionRecord(Record))
return Err;
break;
case bitc::MODULE_CODE_IFUNC:
case bitc::MODULE_CODE_ALIAS:
case bitc::MODULE_CODE_ALIAS_OLD:
if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
return Err;
break;
/// MODULE_CODE_VSTOFFSET: [offset]
case bitc::MODULE_CODE_VSTOFFSET:
if (Record.size() < 1)
return error("Invalid record");
// Note that we subtract 1 here because the offset is relative to one word
// before the start of the identification or module block, which was
// historically always the start of the regular bitcode header.
VSTOffset = Record[0] - 1;
break;
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
case bitc::MODULE_CODE_SOURCE_FILENAME:
SmallString<128> ValueName;
if (convertToString(Record, 0, ValueName))
return error("Invalid record");
TheModule->setSourceFileName(ValueName);
break;
}
Record.clear();
// Upgrade data layout string.
std::string DL = llvm::UpgradeDataLayoutString(
TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
TheModule->setDataLayout(DL);
}
}
Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
bool IsImporting) {
TheModule = M;
MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
[&](unsigned ID) { return getTypeByID(ID); });
return parseModule(0, ShouldLazyLoadMetadata);
}
Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
if (!isa<PointerType>(PtrType))
return error("Load/Store operand is not a pointer type");
Type *ElemType = cast<PointerType>(PtrType)->getElementType();
if (ValType && ValType != ElemType)
return error("Explicit load/store type does not match pointee "
"type of pointer operand");
if (!PointerType::isLoadableOrStorableType(ElemType))
return error("Cannot load/store from pointer");
return Error::success();
}
void BitcodeReader::propagateByValTypes(CallBase *CB,
ArrayRef<Type *> ArgsFullTys) {
for (unsigned i = 0; i != CB->arg_size(); ++i) {
if (!CB->paramHasAttr(i, Attribute::ByVal))
continue;
CB->removeParamAttr(i, Attribute::ByVal);
CB->addParamAttr(
i, Attribute::getWithByValType(
Context, getPointerElementFlatType(ArgsFullTys[i])));
}
}
/// Lazily parse the specified function body block.
Error BitcodeReader::parseFunctionBody(Function *F) {
if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Err;
// Unexpected unresolved metadata when parsing function.
if (MDLoader->hasFwdRefs())
return error("Invalid function metadata: incoming forward references");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
unsigned ModuleMDLoaderSize = MDLoader->size();
// Add all the function arguments to the value table.
unsigned ArgNo = 0;
FunctionType *FullFTy = FunctionTypes[F];
for (Argument &I : F->args()) {
assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
"Incorrect fully specified type for Function Argument");
ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
}
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = nullptr;
unsigned CurBBNo = 0;
DebugLoc LastLoc;
auto getLastInstruction = [&]() -> Instruction * {
if (CurBB && !CurBB->empty())
return &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
!FunctionBBs[CurBBNo - 1]->empty())
return &FunctionBBs[CurBBNo - 1]->back();
return nullptr;
};
std::vector<OperandBundleDef> OperandBundles;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
goto OutOfRecordLoop;
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (Error Err = parseConstants())
return Err;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (Error Err = parseValueSymbolTable())
return Err;
break;
case bitc::METADATA_ATTACHMENT_ID:
if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
return Err;
break;
case bitc::METADATA_BLOCK_ID:
assert(DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level");
if (Error Err = MDLoader->parseFunctionMetadata())
return Err;
break;
case bitc::USELIST_BLOCK_ID:
if (Error Err = parseUseLists())
return Err;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Instruction *I = nullptr;
Type *FullTy = nullptr;
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: reject
return error("Invalid value");
case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
if (Record.size() < 1 || Record[0] == 0)
return error("Invalid record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
// See if anything took the address of blocks in this function.
auto BBFRI = BasicBlockFwdRefs.find(F);
if (BBFRI == BasicBlockFwdRefs.end()) {
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
} else {
auto &BBRefs = BBFRI->second;
// Check for invalid basic block references.
if (BBRefs.size() > FunctionBBs.size())
return error("Invalid ID");
assert(!BBRefs.empty() && "Unexpected empty array");
assert(!BBRefs.front() && "Invalid reference to entry block");
for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
++I)
if (I < RE && BBRefs[I]) {
BBRefs[I]->insertInto(F);
FunctionBBs[I] = BBRefs[I];
} else {
FunctionBBs[I] = BasicBlock::Create(Context, "", F);
}
// Erase from the table.
BasicBlockFwdRefs.erase(BBFRI);
}
CurBB = FunctionBBs[0];
continue;
}
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
// This record indicates that the last instruction is at the same
// location as the previous instruction with a location.
I = getLastInstruction();
if (!I)
return error("Invalid record");
I->setDebugLoc(LastLoc);
I = nullptr;
continue;
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
I = getLastInstruction();
if (!I || Record.size() < 4)
return error("Invalid record");
unsigned Line = Record[0], Col = Record[1];
unsigned ScopeID = Record[2], IAID = Record[3];
bool isImplicitCode = Record.size() == 5 && Record[4];
MDNode *Scope = nullptr, *IA = nullptr;
if (ScopeID) {
Scope = dyn_cast_or_null<MDNode>(
MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
if (!Scope)
return error("Invalid record");
}
if (IAID) {
IA = dyn_cast_or_null<MDNode>(
MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
if (!IA)
return error("Invalid record");
}
LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
I->setDebugLoc(LastLoc);
I = nullptr;
continue;
}
case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
unsigned OpNum = 0;
Value *LHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
OpNum+1 > Record.size())
return error("Invalid record");
int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1)
return error("Invalid record");
I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
}
break;
}
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
OpNum+1 > Record.size())
return error("Invalid record");
int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1)
return error("Invalid record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
cast<BinaryOperator>(I)->setIsExact(true);
} else if (isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
}
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return error("Invalid record");
FullTy = getFullyStructuredTypeByID(Record[OpNum]);
Type *ResTy = flattenPointerTypes(FullTy);
int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
if (Opc == -1 || !ResTy)
return error("Invalid record");
Instruction *Temp = nullptr;
if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
if (Temp) {
InstructionList.push_back(Temp);
assert(CurBB && "No current BB?");
CurBB->getInstList().push_back(Temp);
}
} else {
auto CastOp = (Instruction::CastOps)Opc;
if (!CastInst::castIsValid(CastOp, Op, ResTy))
return error("Invalid cast");
I = CastInst::Create(CastOp, Op, ResTy);
}
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
case bitc::FUNC_CODE_INST_GEP_OLD:
case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
unsigned OpNum = 0;
Type *Ty;
bool InBounds;
if (BitCode == bitc::FUNC_CODE_INST_GEP) {
InBounds = Record[OpNum++];
FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
Ty = flattenPointerTypes(FullTy);
} else {
InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
Ty = nullptr;
}
Value *BasePtr;
Type *FullBaseTy = nullptr;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
return error("Invalid record");
if (!Ty) {
std::tie(FullTy, Ty) =
getPointerElementTypes(FullBaseTy->getScalarType());
} else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
return error(
"Explicit gep type does not match pointee type of pointer operand");
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return error("Invalid record");
GEPIdx.push_back(Op);
}
I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
InstructionList.push_back(I);
if (InBounds)
cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
return error("Invalid record");
unsigned RecSize = Record.size();
if (OpNum == RecSize)
return error("EXTRACTVAL: Invalid instruction with 0 indices");
SmallVector<unsigned, 4> EXTRACTVALIdx;
for (; OpNum != RecSize; ++OpNum) {
bool IsArray = FullTy->isArrayTy();
bool IsStruct = FullTy->isStructTy();
uint64_t Index = Record[OpNum];
if (!IsStruct && !IsArray)
return error("EXTRACTVAL: Invalid type");
if ((unsigned)Index != Index)
return error("Invalid value");
if (IsStruct && Index >= FullTy->getStructNumElements())
return error("EXTRACTVAL: Invalid struct index");
if (IsArray && Index >= FullTy->getArrayNumElements())
return error("EXTRACTVAL: Invalid array index");
EXTRACTVALIdx.push_back((unsigned)Index);
if (IsStruct)
FullTy = FullTy->getStructElementType(Index);
else
FullTy = FullTy->getArrayElementType();
}
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
return error("Invalid record");
Value *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
return error("Invalid record");
unsigned RecSize = Record.size();
if (OpNum == RecSize)
return error("INSERTVAL: Invalid instruction with 0 indices");
SmallVector<unsigned, 4> INSERTVALIdx;
Type *CurTy = Agg->getType();
for (; OpNum != RecSize; ++OpNum) {
bool IsArray = CurTy->isArrayTy();
bool IsStruct = CurTy->isStructTy();
uint64_t Index = Record[OpNum];
if (!IsStruct && !IsArray)
return error("INSERTVAL: Invalid type");
if ((unsigned)Index != Index)
return error("Invalid value");
if (IsStruct && Index >= CurTy->getStructNumElements())
return error("INSERTVAL: Invalid struct index");
if (IsArray && Index >= CurTy->getArrayNumElements())
return error("INSERTVAL: Invalid array index");
INSERTVALIdx.push_back((unsigned)Index);
if (IsStruct)
CurTy = CurTy->getStructElementType(Index);
else
CurTy = CurTy->getArrayElementType();
}
if (CurTy != Val->getType())
return error("Inserted value type doesn't match aggregate type");
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
return error("Invalid record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond))
return error("Invalid record");
// select condition can be either i1 or [N x i1]
if (VectorType* vector_type =
dyn_cast<VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::getInt1Ty(Context))
return error("Invalid type for value");
} else {
// expect i1
if (Cond->getType() != Type::getInt1Ty(Context))
return error("Invalid type for value");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx))
return error("Invalid record");
if (!Vec->getType()->isVectorTy())
return error("Invalid type for value");
I = ExtractElementInst::Create(Vec, Idx);
FullTy = cast<VectorType>(FullTy)->getElementType();
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
return error("Invalid record");
if (!Vec->getType()->isVectorTy())
return error("Invalid type for value");
if (popValue(Record, OpNum, NextValueNo,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
getValueTypePair(Record, OpNum, NextValueNo, Idx))
return error("Invalid record");
I = InsertElementInst::Create(Vec, Elt, Idx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
return error("Invalid record");
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
return error("Invalid record");
if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
return error("Invalid type for value");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
FullTy =
VectorType::get(cast<VectorType>(FullTy)->getElementType(),
cast<VectorType>(Mask->getType())->getElementCount());
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
// Old form of ICmp/FCmp returning bool
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
// both legal on vectors but had different behaviour.
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
// FCmp/ICmp returning bool or vector of bool
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
return error("Invalid record");
if (OpNum >= Record.size())
return error(
"Invalid record: operand number exceeded available operands");
unsigned PredVal = Record[OpNum];
bool IsFP = LHS->getType()->isFPOrFPVectorTy();
FastMathFlags FMF;
if (IsFP && Record.size() > OpNum+1)
FMF = getDecodedFastMathFlags(Record[++OpNum]);
if (OpNum+1 != Record.size())
return error("Invalid record");
if (LHS->getType()->isFPOrFPVectorTy())
I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
else
I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
if (FMF.any())
I->setFastMathFlags(FMF);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create(Context);
InstructionList.push_back(I);
break;
}
unsigned OpNum = 0;
Value *Op = nullptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return error("Invalid record");
if (OpNum != Record.size())
return error("Invalid record");
I = ReturnInst::Create(Context, Op);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
return error("Invalid record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (!TrueDest)
return error("Invalid record");
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
InstructionList.push_back(I);
}
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
Value *Cond = getValue(Record, 2, NextValueNo,
Type::getInt1Ty(Context));
if (!FalseDest || !Cond)
return error("Invalid record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
InstructionList.push_back(I);
}
break;
}
case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
if (Record.size() != 1 && Record.size() != 2)
return error("Invalid record");
unsigned Idx = 0;
Value *CleanupPad =
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
if (!CleanupPad)
return error("Invalid record");
BasicBlock *UnwindDest = nullptr;
if (Record.size() == 2) {
UnwindDest = getBasicBlock(Record[Idx++]);
if (!UnwindDest)
return error("Invalid record");
}
I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
if (Record.size() != 2)
return error("Invalid record");
unsigned Idx = 0;
Value *CatchPad =
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
if (!CatchPad)
return error("Invalid record");
BasicBlock *BB = getBasicBlock(Record[Idx++]);
if (!BB)
return error("Invalid record");
I = CatchReturnInst::Create(CatchPad, BB);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
// We must have, at minimum, the outer scope and the number of arguments.
if (Record.size() < 2)
return error("Invalid record");
unsigned Idx = 0;
Value *ParentPad =
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
unsigned NumHandlers = Record[Idx++];
SmallVector<BasicBlock *, 2> Handlers;
for (unsigned Op = 0; Op != NumHandlers; ++Op) {
BasicBlock *BB = getBasicBlock(Record[Idx++]);
if (!BB)
return error("Invalid record");
Handlers.push_back(BB);
}
BasicBlock *UnwindDest = nullptr;
if (Idx + 1 == Record.size()) {
UnwindDest = getBasicBlock(Record[Idx++]);
if (!UnwindDest)
return error("Invalid record");
}
if (Record.size() != Idx)
return error("Invalid record");
auto *CatchSwitch =
CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
for (BasicBlock *Handler : Handlers)
CatchSwitch->addHandler(Handler);
I = CatchSwitch;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CATCHPAD:
case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
// We must have, at minimum, the outer scope and the number of arguments.
if (Record.size() < 2)
return error("Invalid record");
unsigned Idx = 0;
Value *ParentPad =
getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
unsigned NumArgOperands = Record[Idx++];
SmallVector<Value *, 2> Args;
for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
Value *Val;
if (getValueTypePair(Record, Idx, NextValueNo, Val))
return error("Invalid record");
Args.push_back(Val);
}
if (Record.size() != Idx)
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
I = CleanupPadInst::Create(ParentPad, Args);
else
I = CatchPadInst::Create(ParentPad, Args);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
// Check magic
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
// "New" SwitchInst format with case ranges. The changes to write this
// format were reverted but we still recognize bitcode that uses it.
// Hopefully someday we will have support for case ranges and can use
// this format again.
Type *OpTy = getTypeByID(Record[1]);
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[3]);
if (!OpTy || !Cond || !Default)
return error("Invalid record");
unsigned NumCases = Record[4];
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
unsigned CurIdx = 5;
for (unsigned i = 0; i != NumCases; ++i) {
SmallVector<ConstantInt*, 1> CaseVals;
unsigned NumItems = Record[CurIdx++];
for (unsigned ci = 0; ci != NumItems; ++ci) {
bool isSingleNumber = Record[CurIdx++];
APInt Low;
unsigned ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
ValueBitWidth);
CurIdx += ActiveWords;
if (!isSingleNumber) {
ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
APInt High = readWideAPInt(
makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
CurIdx += ActiveWords;
// FIXME: It is not clear whether values in the range should be
// compared as signed or unsigned values. The partially
// implemented changes that used this format in the past used
// unsigned comparisons.
for ( ; Low.ule(High); ++Low)
CaseVals.push_back(ConstantInt::get(Context, Low));
} else
CaseVals.push_back(ConstantInt::get(Context, Low));
}
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
cve = CaseVals.end(); cvi != cve; ++cvi)
SI->addCase(*cvi, DestBB);
}
I = SI;
break;
}
// Old SwitchInst format without case ranges.
if (Record.size() < 3 || (Record.size() & 1) == 0)
return error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[2]);
if (!OpTy || !Cond || !Default)
return error("Invalid record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (!CaseVal || !DestBB) {
delete SI;
return error("Invalid record");
}
SI->addCase(CaseVal, DestBB);
}
I = SI;
break;
}
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
if (Record.size() < 2)
return error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
if (!OpTy || !Address)
return error("Invalid record");
unsigned NumDests = Record.size()-2;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
InstructionList.push_back(IBI);
for (unsigned i = 0, e = NumDests; i != e; ++i) {
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
IBI->addDestination(DestBB);
} else {
delete IBI;
return error("Invalid record");
}
}
I = IBI;
break;
}
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4)
return error("Invalid record");
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
FunctionType *FTy = nullptr;
FunctionType *FullFTy = nullptr;
if ((CCInfo >> 13) & 1) {
FullFTy =
dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
if (!FullFTy)
return error("Explicit invoke type is not a function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
}
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
return error("Invalid record");
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
if (!CalleeTy)
return error("Callee is not a pointer");
if (!FTy) {
FullFTy =
dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
if (!FullFTy)
return error("Callee is not of pointer to function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
} else if (getPointerElementFlatType(FullTy) != FTy)
return error("Explicit invoke type does not match pointee type of "
"callee operand");
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Ops;
SmallVector<Type *, 16> ArgsFullTys;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
ArgsFullTys.push_back(FullFTy->getParamType(i));
if (!Ops.back())
return error("Invalid record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return error("Invalid record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
Type *FullTy;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
return error("Invalid record");
Ops.push_back(Op);
ArgsFullTys.push_back(FullTy);
}
}
I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
OperandBundles);
FullTy = FullFTy->getReturnType();
OperandBundles.clear();
InstructionList.push_back(I);
cast<InvokeInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
cast<InvokeInst>(I)->setAttributes(PAL);
propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
break;
}
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
unsigned Idx = 0;
Value *Val = nullptr;
if (getValueTypePair(Record, Idx, NextValueNo, Val))
return error("Invalid record");
I = ResumeInst::Create(Val);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALLBR: {
// CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
unsigned NumIndirectDests = Record[OpNum++];
SmallVector<BasicBlock *, 16> IndirectDests;
for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
FunctionType *FTy = nullptr;
FunctionType *FullFTy = nullptr;
if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
FullFTy =
dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
if (!FullFTy)
return error("Explicit call type is not a function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
}
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
return error("Invalid record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
if (!OpTy)
return error("Callee is not a pointer type");
if (!FTy) {
FullFTy =
dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
if (!FullFTy)
return error("Callee is not of pointer to function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
} else if (getPointerElementFlatType(FullTy) != FTy)
return error("Explicit call type does not match pointee type of "
"callee operand");
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
if (FTy->getParamType(i)->isLabelTy())
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
if (!Args.back())
return error("Invalid record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return error("Invalid record");
} else {
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return error("Invalid record");
Args.push_back(Op);
}
}
I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
OperandBundles);
FullTy = FullFTy->getReturnType();
OperandBundles.clear();
InstructionList.push_back(I);
cast<CallBrInst>(I)->setCallingConv(
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
cast<CallBrInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
I = new UnreachableInst(Context);
InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1)
return error("Invalid record");
// The first record specifies the type.
FullTy = getFullyStructuredTypeByID(Record[0]);
Type *Ty = flattenPointerTypes(FullTy);
if (!Ty)
return error("Invalid record");
// Phi arguments are pairs of records of [value, basic block].
// There is an optional final record for fast-math-flags if this phi has a
// floating-point type.
size_t NumArgs = (Record.size() - 1) / 2;
PHINode *PN = PHINode::Create(Ty, NumArgs);
if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
return error("Invalid record");
InstructionList.push_back(PN);
for (unsigned i = 0; i != NumArgs; i++) {
Value *V;
// With the new function encoding, it is possible that operands have
// negative IDs (for forward references). Use a signed VBR
// representation to keep the encoding small.
if (UseRelativeIDs)
V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
else
V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
if (!V || !BB)
return error("Invalid record");
PN->addIncoming(V, BB);
}
I = PN;
// If there are an even number of records, the final record must be FMF.
if (Record.size() % 2 == 0) {
assert(isa<FPMathOperator>(I) && "Unexpected phi type");
FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
if (FMF.any())
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_LANDINGPAD:
case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
unsigned Idx = 0;
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
if (Record.size() < 3)
return error("Invalid record");
} else {
assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
if (Record.size() < 4)
return error("Invalid record");
}
FullTy = getFullyStructuredTypeByID(Record[Idx++]);
Type *Ty = flattenPointerTypes(FullTy);
if (!Ty)
return error("Invalid record");
if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
Value *PersFn = nullptr;
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
return error("Invalid record");
if (!F->hasPersonalityFn())
F->setPersonalityFn(cast<Constant>(PersFn));
else if (F->getPersonalityFn() != cast<Constant>(PersFn))
return error("Personality function mismatch");
}
bool IsCleanup = !!Record[Idx++];
unsigned NumClauses = Record[Idx++];
LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
LP->setCleanup(IsCleanup);
for (unsigned J = 0; J != NumClauses; ++J) {
LandingPadInst::ClauseType CT =
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
Value *Val;
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
delete LP;
return error("Invalid record");
}
assert((CT != LandingPadInst::Catch ||
!isa<ArrayType>(Val->getType())) &&
"Catch clause has a invalid type!");
assert((CT != LandingPadInst::Filter ||
isa<ArrayType>(Val->getType())) &&
"Filter clause has invalid type!");
LP->addClause(cast<Constant>(Val));
}
I = LP;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
if (Record.size() != 4)
return error("Invalid record");
uint64_t AlignRecord = Record[3];
const uint64_t InAllocaMask = uint64_t(1) << 5;
const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
const uint64_t SwiftErrorMask = uint64_t(1) << 7;
const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
SwiftErrorMask;
bool InAlloca = AlignRecord & InAllocaMask;
bool SwiftError = AlignRecord & SwiftErrorMask;
FullTy = getFullyStructuredTypeByID(Record[0]);
Type *Ty = flattenPointerTypes(FullTy);
if ((AlignRecord & ExplicitTypeMask) == 0) {
auto *PTy = dyn_cast_or_null<PointerType>(Ty);
if (!PTy)
return error("Old-style alloca with a non-pointer type");
std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
}
Type *OpTy = getTypeByID(Record[1]);
Value *Size = getFnValueByID(Record[2], OpTy);
MaybeAlign Align;
if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
return Err;
}
if (!Ty || !Size)
return error("Invalid record");
// FIXME: Make this an optional field.
const DataLayout &DL = TheModule->getDataLayout();
unsigned AS = DL.getAllocaAddrSpace();
AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
AI->setUsedWithInAlloca(InAlloca);
AI->setSwiftError(SwiftError);
I = AI;
FullTy = PointerType::get(FullTy, AS);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
(OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
return error("Invalid record");
if (!isa<PointerType>(Op->getType()))
return error("Load operand is not a pointer type");
Type *Ty = nullptr;
if (OpNum + 3 == Record.size()) {
FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
Ty = flattenPointerTypes(FullTy);
} else
std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
return Err;
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOADATOMIC: {
// LOADATOMIC: [opty, op, align, vol, ordering, ssid]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
(OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
return error("Invalid record");
if (!isa<PointerType>(Op->getType()))
return error("Load operand is not a pointer type");
Type *Ty = nullptr;
if (OpNum + 5 == Record.size()) {
FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
Ty = flattenPointerTypes(FullTy);
} else
std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
return Err;
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Release ||
Ordering == AtomicOrdering::AcquireRelease)
return error("Invalid record");
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE:
case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
Type *FullTy;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
(BitCode == bitc::FUNC_CODE_INST_STORE
? getValueTypePair(Record, OpNum, NextValueNo, Val)
: popValue(Record, OpNum, NextValueNo,
getPointerElementFlatType(FullTy), Val)) ||
OpNum + 2 != Record.size())
return error("Invalid record");
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
return Err;
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STOREATOMIC:
case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
unsigned OpNum = 0;
Value *Val, *Ptr;
Type *FullTy;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
!isa<PointerType>(Ptr->getType()) ||
(BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
? getValueTypePair(Record, OpNum, NextValueNo, Val)
: popValue(Record, OpNum, NextValueNo,
getPointerElementFlatType(FullTy), Val)) ||
OpNum + 4 != Record.size())
return error("Invalid record");
if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
return Err;
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Acquire ||
Ordering == AtomicOrdering::AcquireRelease)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
return error("Invalid record");
MaybeAlign Align;
if (Error Err = parseAlignmentValue(Record[OpNum], Align))
return Err;
I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
case bitc::FUNC_CODE_INST_CMPXCHG: {
// CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
// failureordering?, isweak?]
unsigned OpNum = 0;
Value *Ptr, *Cmp, *New;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
return error("Invalid record");
if (!isa<PointerType>(Ptr->getType()))
return error("Cmpxchg operand is not a pointer type");
if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
return error("Invalid record");
} else if (popValue(Record, OpNum, NextValueNo,
getPointerElementFlatType(FullTy), Cmp))
return error("Invalid record");
else
FullTy = cast<PointerType>(FullTy)->getElementType();
if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
return error("Invalid record");
AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
if (SuccessOrdering == AtomicOrdering::NotAtomic ||
SuccessOrdering == AtomicOrdering::Unordered)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
return Err;
AtomicOrdering FailureOrdering;
if (Record.size() < 7)
FailureOrdering =
AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
else
FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
SSID);
FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
if (Record.size() < 8) {
// Before weak cmpxchgs existed, the instruction simply returned the
// value loaded from memory, so bitcode files from that era will be
// expecting the first component of a modern cmpxchg.
CurBB->getInstList().push_back(I);
I = ExtractValueInst::Create(I, 0);
FullTy = cast<StructType>(FullTy)->getElementType(0);
} else {
cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
}
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ATOMICRMW: {
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
unsigned OpNum = 0;
Value *Ptr, *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
!isa<PointerType>(Ptr->getType()) ||
popValue(Record, OpNum, NextValueNo,
getPointerElementFlatType(FullTy), Val) ||
OpNum + 4 != Record.size())
return error("Invalid record");
AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
if (Operation < AtomicRMWInst::FIRST_BINOP ||
Operation > AtomicRMWInst::LAST_BINOP)
return error("Invalid record");
AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
FullTy = getPointerElementFlatType(FullTy);
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
if (2 != Record.size())
return error("Invalid record");
AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
if (Ordering == AtomicOrdering::NotAtomic ||
Ordering == AtomicOrdering::Unordered ||
Ordering == AtomicOrdering::Monotonic)
return error("Invalid record");
SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
I = new FenceInst(Context, Ordering, SSID);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return error("Invalid record");
unsigned OpNum = 0;
AttributeList PAL = getAttributes(Record[OpNum++]);
unsigned CCInfo = Record[OpNum++];
FastMathFlags FMF;
if ((CCInfo >> bitc::CALL_FMF) & 1) {
FMF = getDecodedFastMathFlags(Record[OpNum++]);
if (!FMF.any())
return error("Fast math flags indicator set for call with no FMF");
}
FunctionType *FTy = nullptr;
FunctionType *FullFTy = nullptr;
if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
FullFTy =
dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
if (!FullFTy)
return error("Explicit call type is not a function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
}
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
return error("Invalid record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
if (!OpTy)
return error("Callee is not a pointer type");
if (!FTy) {
FullFTy =
dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
if (!FullFTy)
return error("Callee is not of pointer to function type");
FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
} else if (getPointerElementFlatType(FullTy) != FTy)
return error("Explicit call type does not match pointee type of "
"callee operand");
if (Record.size() < FTy->getNumParams() + OpNum)
return error("Insufficient operands to call");
SmallVector<Value*, 16> Args;
SmallVector<Type*, 16> ArgsFullTys;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
if (FTy->getParamType(i)->isLabelTy())
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
ArgsFullTys.push_back(FullFTy->getParamType(i));
if (!Args.back())
return error("Invalid record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return error("Invalid record");
} else {
while (OpNum != Record.size()) {
Value *Op;
Type *FullTy;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
return error("Invalid record");
Args.push_back(Op);
ArgsFullTys.push_back(FullTy);
}
}
I = CallInst::Create(FTy, Callee, Args, OperandBundles);
FullTy = FullFTy->getReturnType();
OperandBundles.clear();
InstructionList.push_back(I);
cast<CallInst>(I)->setCallingConv(
static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
CallInst::TailCallKind TCK = CallInst::TCK_None;
if (CCInfo & 1 << bitc::CALL_TAIL)
TCK = CallInst::TCK_Tail;
if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
TCK = CallInst::TCK_MustTail;
if (CCInfo & (1 << bitc::CALL_NOTAIL))
TCK = CallInst::TCK_NoTail;
cast<CallInst>(I)->setTailCallKind(TCK);
cast<CallInst>(I)->setAttributes(PAL);
propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
if (FMF.any()) {
if (!isa<FPMathOperator>(I))
return error("Fast-math-flags specified for call without "
"floating-point scalar or vector return type");
I->setFastMathFlags(FMF);
}
break;
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
return error("Invalid record");
Type *OpTy = getTypeByID(Record[0]);
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
FullTy = getFullyStructuredTypeByID(Record[2]);
Type *ResTy = flattenPointerTypes(FullTy);
if (!OpTy || !Op || !ResTy)
return error("Invalid record");
I = new VAArgInst(Op, ResTy);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_OPERAND_BUNDLE: {
// A call or an invoke can be optionally prefixed with some variable
// number of operand bundle blocks. These blocks are read into
// OperandBundles and consumed at the next call or invoke instruction.
if (Record.size() < 1 || Record[0] >= BundleTags.size())
return error("Invalid record");
std::vector<Value *> Inputs;
unsigned OpNum = 1;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return error("Invalid record");
Inputs.push_back(Op);
}
OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
continue;
}
case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
unsigned OpNum = 0;
Value *Op = nullptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
return error("Invalid record");
if (OpNum != Record.size())
return error("Invalid record");
I = new FreezeInst(Op);
InstructionList.push_back(I);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject
// this file.
if (!CurBB) {
I->deleteValue();
return error("Invalid instruction with no BB");
}
if (!OperandBundles.empty()) {
I->deleteValue();
return error("Operand bundles found with no consumer");
}
CurBB->getInstList().push_back(I);
// If this was a terminator instruction, move to the next block.
if (I->isTerminator()) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
}
// Non-void values get registered in the value table for future use.
if (!I->getType()->isVoidTy()) {
if (!FullTy) {
FullTy = I->getType();
assert(
!FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
!isa<ArrayType>(FullTy) &&
(!isa<VectorType>(FullTy) ||
cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
"Structured types must be assigned with corresponding non-opaque "
"pointer type");
}
assert(I->getType() == flattenPointerTypes(FullTy) &&
"Incorrect fully structured type provided for Instruction");
ValueList.assignValue(I, NextValueNo++, FullTy);
}
}
OutOfRecordLoop:
if (!OperandBundles.empty())
return error("Operand bundles found with no consumer");
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (!A->getParent()) {
// We found at least one unresolved value. Nuke them all to avoid leaks.
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
A->replaceAllUsesWith(UndefValue::get(A->getType()));
delete A;
}
}
return error("Never resolved value found in function");
}
}
// Unexpected unresolved metadata about to be dropped.
if (MDLoader->hasFwdRefs())
return error("Invalid function metadata: outgoing forward refs");
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
MDLoader->shrinkTo(ModuleMDLoaderSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
return Error::success();
}
/// Find the function body in the bitcode stream
Error BitcodeReader::findFunctionInStream(
Function *F,
DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
while (DeferredFunctionInfoIterator->second == 0) {
// This is the fallback handling for the old format bitcode that
// didn't contain the function index in the VST, or when we have
// an anonymous function which would not have a VST entry.
// Assert that we have one of those two cases.
assert(VSTOffset == 0 || !F->hasName());
// Parse the next body in the stream and set its position in the
// DeferredFunctionInfo map.
if (Error Err = rememberAndSkipFunctionBodies())
return Err;
}
return Error::success();
}
SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
if (Val == SyncScope::SingleThread || Val == SyncScope::System)
return SyncScope::ID(Val);
if (Val >= SSIDs.size())
return SyncScope::System; // Map unknown synchronization scopes to system.
return SSIDs[Val];
}
//===----------------------------------------------------------------------===//
// GVMaterializer implementation
//===----------------------------------------------------------------------===//
Error BitcodeReader::materialize(GlobalValue *GV) {
Function *F = dyn_cast<Function>(GV);
// If it's not a function or is already material, ignore the request.
if (!F || !F->isMaterializable())
return Error::success();
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
// If its position is recorded as 0, its body is somewhere in the stream
// but we haven't seen it yet.
if (DFII->second == 0)
if (Error Err = findFunctionInStream(F, DFII))
return Err;
// Materialize metadata before parsing any function bodies.
if (Error Err = materializeMetadata())
return Err;
// Move the bit stream to the saved position of the deferred function body.
if (Error JumpFailed = Stream.JumpToBit(DFII->second))
return JumpFailed;
if (Error Err = parseFunctionBody(F))
return Err;
F->setIsMaterializable(false);
if (StripDebugInfo)
stripDebugInfo(*F);
// Upgrade any old intrinsic calls in the function.
for (auto &I : UpgradedIntrinsics) {
for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
UI != UE;) {
User *U = *UI;
++UI;
if (CallInst *CI = dyn_cast<CallInst>(U))
UpgradeIntrinsicCall(CI, I.second);
}
}
// Update calls to the remangled intrinsics
for (auto &I : RemangledIntrinsics)
for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
UI != UE;)
// Don't expect any other users than call sites
cast<CallBase>(*UI++)->setCalledFunction(I.second);
// Finish fn->subprogram upgrade for materialized functions.
if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
F->setSubprogram(SP);
// Check if the TBAA Metadata are valid, otherwise we will need to strip them.
if (!MDLoader->isStrippingTBAA()) {
for (auto &I : instructions(F)) {
MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
continue;
MDLoader->setStripTBAA(true);
stripTBAA(F->getParent());
}
}
// Bring in any functions that this function forward-referenced via
// blockaddresses.
return materializeForwardReferencedFunctions();
}
Error BitcodeReader::materializeModule() {
if (Error Err = materializeMetadata())
return Err;
// Promise to materialize all forward references.
WillMaterializeAllForwardRefs = true;
// Iterate over the module, deserializing any functions that are still on
// disk.
for (Function &F : *TheModule) {
if (Error Err = materialize(&F))
return Err;
}
// At this point, if there are any function bodies, parse the rest of
// the bits in the module past the last function block we have recorded
// through either lazy scanning or the VST.
if (LastFunctionBlockBit || NextUnreadBit)
if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
? LastFunctionBlockBit
: NextUnreadBit))
return Err;
// Check that all block address forward references got resolved (as we
// promised above).
if (!BasicBlockFwdRefs.empty())
return error("Never resolved function from blockaddress");
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
// with calls to the old function.
for (auto &I : UpgradedIntrinsics) {
for (auto *U : I.first->users()) {
if (CallInst *CI = dyn_cast<CallInst>(U))
UpgradeIntrinsicCall(CI, I.second);
}
if (!I.first->use_empty())
I.first->replaceAllUsesWith(I.second);
I.first->eraseFromParent();
}
UpgradedIntrinsics.clear();
// Do the same for remangled intrinsics
for (auto &I : RemangledIntrinsics) {
I.first->replaceAllUsesWith(I.second);
I.first->eraseFromParent();
}
RemangledIntrinsics.clear();
UpgradeDebugInfo(*TheModule);
UpgradeModuleFlags(*TheModule);
UpgradeARCRuntime(*TheModule);
return Error::success();
}
std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
return IdentifiedStructTypes;
}
ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
StringRef ModulePath, unsigned ModuleId)
: BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
ModulePath(ModulePath), ModuleId(ModuleId) {}
void ModuleSummaryIndexBitcodeReader::addThisModule() {
TheIndex.addModule(ModulePath, ModuleId);
}
ModuleSummaryIndex::ModuleInfo *
ModuleSummaryIndexBitcodeReader::getThisModule() {
return TheIndex.getModule(ModulePath);
}
std::pair<ValueInfo, GlobalValue::GUID>
ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
auto VGI = ValueIdToValueInfoMap[ValueId];
assert(VGI.first);
return VGI;
}
void ModuleSummaryIndexBitcodeReader::setValueGUID(
uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
StringRef SourceFileName) {
std::string GlobalId =
GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
auto ValueGUID = GlobalValue::getGUID(GlobalId);
auto OriginalNameID = ValueGUID;
if (GlobalValue::isLocalLinkage(Linkage))
OriginalNameID = GlobalValue::getGUID(ValueName);
if (PrintSummaryGUIDs)
dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
<< ValueName << "\n";
// UseStrtab is false for legacy summary formats and value names are
// created on stack. In that case we save the name in a string saver in
// the index so that the value name can be recorded.
ValueIdToValueInfoMap[ValueID] = std::make_pair(
TheIndex.getOrInsertValueInfo(
ValueGUID,
UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
OriginalNameID);
}
// Specialized value symbol table parser used when reading module index
// blocks where we don't actually create global values. The parsed information
// is saved in the bitcode reader for use when later parsing summaries.
Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
uint64_t Offset,
DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
// With a strtab the VST is not required to parse the summary.
if (UseStrtab)
return Error::success();
assert(Offset > 0 && "Expected non-zero VST offset");
Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
if (!MaybeCurrentBit)
return MaybeCurrentBit.takeError();
uint64_t CurrentBit = MaybeCurrentBit.get();
if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
// Done parsing VST, jump back to wherever we came from.
if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
return JumpFailed;
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
break;
case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
if (convertToString(Record, 1, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
assert(!SourceFileName.empty());
auto VLI = ValueIdToLinkageMap.find(ValueID);
assert(VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?");
auto Linkage = VLI->second;
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
ValueName.clear();
break;
}
case bitc::VST_CODE_FNENTRY: {
// VST_CODE_FNENTRY: [valueid, offset, namechar x N]
if (convertToString(Record, 2, ValueName))
return error("Invalid record");
unsigned ValueID = Record[0];
assert(!SourceFileName.empty());
auto VLI = ValueIdToLinkageMap.find(ValueID);
assert(VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?");
auto Linkage = VLI->second;
setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
ValueName.clear();
break;
}
case bitc::VST_CODE_COMBINED_ENTRY: {
// VST_CODE_COMBINED_ENTRY: [valueid, refguid]
unsigned ValueID = Record[0];
GlobalValue::GUID RefGUID = Record[1];
// The "original name", which is the second value of the pair will be
// overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
ValueIdToValueInfoMap[ValueID] =
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
break;
}
}
}
}
// Parse just the blocks needed for building the index out of the module.
// At the end of this routine the module Index is populated with a map
// from global value id to GlobalValueSummary objects.
Error ModuleSummaryIndexBitcodeReader::parseModule() {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
unsigned ValueId = 0;
// Read the index for this module.
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::BLOCKINFO_BLOCK_ID:
// Need to parse these to get abbrev ids (e.g. for VST)
if (readBlockInfo())
return error("Malformed block");
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
// Should have been parsed earlier via VSTOffset, unless there
// is no summary section.
assert(((SeenValueSymbolTable && VSTOffset > 0) ||
!SeenGlobalValSummary) &&
"Expected early VST parse via VSTOffset record");
if (Error Err = Stream.SkipBlock())
return Err;
break;
case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
// Add the module if it is a per-module index (has a source file name).
if (!SourceFileName.empty())
addThisModule();
assert(!SeenValueSymbolTable &&
"Already read VST when parsing summary block?");
// We might not have a VST if there were no values in the
// summary. An empty summary block generated when we are
// performing ThinLTO compiles so we don't later invoke
// the regular LTO process on them.
if (VSTOffset > 0) {
if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
return Err;
SeenValueSymbolTable = true;
}
SeenGlobalValSummary = true;
if (Error Err = parseEntireSummary(Entry.ID))
return Err;
break;
case bitc::MODULE_STRTAB_BLOCK_ID:
if (Error Err = parseModuleStringTable())
return Err;
break;
}
continue;
case BitstreamEntry::Record: {
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default:
break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: {
if (Error Err = parseVersionRecord(Record).takeError())
return Err;
break;
}
/// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
case bitc::MODULE_CODE_SOURCE_FILENAME: {
SmallString<128> ValueName;
if (convertToString(Record, 0, ValueName))
return error("Invalid record");
SourceFileName = ValueName.c_str();
break;
}
/// MODULE_CODE_HASH: [5*i32]
case bitc::MODULE_CODE_HASH: {
if (Record.size() != 5)
return error("Invalid hash length " + Twine(Record.size()).str());
auto &Hash = getThisModule()->second.second;
int Pos = 0;
for (auto &Val : Record) {
assert(!(Val >> 32) && "Unexpected high bits set");
Hash[Pos++] = Val;
}
break;
}
/// MODULE_CODE_VSTOFFSET: [offset]
case bitc::MODULE_CODE_VSTOFFSET:
if (Record.size() < 1)
return error("Invalid record");
// Note that we subtract 1 here because the offset is relative to one
// word before the start of the identification or module block, which
// was historically always the start of the regular bitcode header.
VSTOffset = Record[0] - 1;
break;
// v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
// v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
// v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
// v2: [strtab offset, strtab size, v1]
case bitc::MODULE_CODE_GLOBALVAR:
case bitc::MODULE_CODE_FUNCTION:
case bitc::MODULE_CODE_ALIAS: {
StringRef Name;
ArrayRef<uint64_t> GVRecord;
std::tie(Name, GVRecord) = readNameFromStrtab(Record);
if (GVRecord.size() <= 3)
return error("Invalid record");
uint64_t RawLinkage = GVRecord[3];
GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
if (!UseStrtab) {
ValueIdToLinkageMap[ValueId++] = Linkage;
break;
}
setValueGUID(ValueId++, Name, Linkage, SourceFileName);
break;
}
}
}
continue;
}
}
}
std::vector<ValueInfo>
ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
std::vector<ValueInfo> Ret;
Ret.reserve(Record.size());
for (uint64_t RefValueId : Record)
Ret.push_back(getValueInfoFromValueId(RefValueId).first);
return Ret;
}
std::vector<FunctionSummary::EdgeTy>
ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
bool IsOldProfileFormat,
bool HasProfile, bool HasRelBF) {
std::vector<FunctionSummary::EdgeTy> Ret;
Ret.reserve(Record.size());
for (unsigned I = 0, E = Record.size(); I != E; ++I) {
CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
uint64_t RelBF = 0;
ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
if (IsOldProfileFormat) {
I += 1; // Skip old callsitecount field
if (HasProfile)
I += 1; // Skip old profilecount field
} else if (HasProfile)
Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
else if (HasRelBF)
RelBF = Record[++I];
Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
}
return Ret;
}
static void
parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
WholeProgramDevirtResolution &Wpd) {
uint64_t ArgNum = Record[Slot++];
WholeProgramDevirtResolution::ByArg &B =
Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
Slot += ArgNum;
B.TheKind =
static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
B.Info = Record[Slot++];
B.Byte = Record[Slot++];
B.Bit = Record[Slot++];
}
static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
StringRef Strtab, size_t &Slot,
TypeIdSummary &TypeId) {
uint64_t Id = Record[Slot++];
WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
Wpd.SingleImplName = {Strtab.data() + Record[Slot],
static_cast<size_t>(Record[Slot + 1])};
Slot += 2;
uint64_t ResByArgNum = Record[Slot++];
for (uint64_t I = 0; I != ResByArgNum; ++I)
parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
}
static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
StringRef Strtab,
ModuleSummaryIndex &TheIndex) {
size_t Slot = 0;
TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
{Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
Slot += 2;
TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
TypeId.TTRes.AlignLog2 = Record[Slot++];
TypeId.TTRes.SizeM1 = Record[Slot++];
TypeId.TTRes.BitMask = Record[Slot++];
TypeId.TTRes.InlineBits = Record[Slot++];
while (Slot < Record.size())
parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
ArrayRef<uint64_t> Record, size_t &Slot,
TypeIdCompatibleVtableInfo &TypeId) {
uint64_t Offset = Record[Slot++];
ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
TypeId.push_back({Offset, Callee});
}
void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
ArrayRef<uint64_t> Record) {
size_t Slot = 0;
TypeIdCompatibleVtableInfo &TypeId =
TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
{Strtab.data() + Record[Slot],
static_cast<size_t>(Record[Slot + 1])});
Slot += 2;
while (Slot < Record.size())
parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
}
static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
unsigned WOCnt) {
// Readonly and writeonly refs are in the end of the refs list.
assert(ROCnt + WOCnt <= Refs.size());
unsigned FirstWORef = Refs.size() - WOCnt;
unsigned RefNo = FirstWORef - ROCnt;
for (; RefNo < FirstWORef; ++RefNo)
Refs[RefNo].setReadOnly();
for (; RefNo < Refs.size(); ++RefNo)
Refs[RefNo].setWriteOnly();
}
// Eagerly parse the entire summary block. This populates the GlobalValueSummary
// objects in the index.
Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
if (Error Err = Stream.EnterSubBlock(ID))
return Err;
SmallVector<uint64_t, 64> Record;
// Parse version
{
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
if (Entry.Kind != BitstreamEntry::Record)
return error("Invalid Summary Block: record for version expected");
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() != bitc::FS_VERSION)
return error("Invalid Summary Block: version expected");
}
const uint64_t Version = Record[0];
const bool IsOldProfileFormat = Version == 1;
if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
return error("Invalid summary version " + Twine(Version) +
". Version should be in the range [1-" +
Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
"].");
Record.clear();
// Keep around the last seen summary to be used when we see an optional
// "OriginalName" attachement.
GlobalValueSummary *LastSeenSummary = nullptr;
GlobalValue::GUID LastSeenGUID = 0;
// We can expect to see any number of type ID information records before
// each function summary records; these variables store the information
// collected so far so that it can be used to create the summary object.
std::vector<GlobalValue::GUID> PendingTypeTests;
std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
PendingTypeCheckedLoadVCalls;
std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
PendingTypeCheckedLoadConstVCalls;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record. The record format depends on whether this
// is a per-module index or a combined index file. In the per-module
// case the records contain the associated value's ID for correlation
// with VST entries. In the combined index the correlation is done
// via the bitcode offset of the summary records (which were saved
// in the combined index VST entries). The records also contain
// information used for ThinLTO renaming and importing.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (unsigned BitCode = MaybeBitCode.get()) {
default: // Default behavior: ignore.
break;
case bitc::FS_FLAGS: { // [flags]
TheIndex.setFlags(Record[0]);
break;
}
case bitc::FS_VALUE_GUID: { // [valueid, refguid]
uint64_t ValueID = Record[0];
GlobalValue::GUID RefGUID = Record[1];
ValueIdToValueInfoMap[ValueID] =
std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
break;
}
// FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid,
// n x (valueid, hotness)]
// FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
// numrefs x valueid,
// n x (valueid, relblockfreq)]
case bitc::FS_PERMODULE:
case bitc::FS_PERMODULE_RELBF:
case bitc::FS_PERMODULE_PROFILE: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned InstCount = Record[2];
uint64_t RawFunFlags = 0;
unsigned NumRefs = Record[3];
unsigned NumRORefs = 0, NumWORefs = 0;
int RefListStartIndex = 4;
if (Version >= 4) {
RawFunFlags = Record[3];
NumRefs = Record[4];
RefListStartIndex = 5;
if (Version >= 5) {
NumRORefs = Record[5];
RefListStartIndex = 6;
if (Version >= 7) {
NumWORefs = Record[6];
RefListStartIndex = 7;
}
}
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
// The module path string ref set in the summary must be owned by the
// index's module string table. Since we don't have a module path
// string table section in the per-module index, we create a single
// module path string table entry with an empty (0) ID to take
// ownership.
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
assert(Record.size() >= RefListStartIndex + NumRefs &&
"Record size inconsistent with number of references");
std::vector<ValueInfo> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, HasRelBF);
setSpecialRefs(Refs, NumRORefs, NumWORefs);
auto FS = std::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
std::move(PendingTypeTestAssumeVCalls),
std::move(PendingTypeCheckedLoadVCalls),
std::move(PendingTypeTestAssumeConstVCalls),
std::move(PendingTypeCheckedLoadConstVCalls));
auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
FS->setModulePath(getThisModule()->first());
FS->setOriginalName(VIAndOriginalGUID.second);
TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
break;
}
// FS_ALIAS: [valueid, flags, valueid]
// Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
// they expect all aliasee summaries to be available.
case bitc::FS_ALIAS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned AliaseeID = Record[2];
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
auto AS = std::make_unique<AliasSummary>(Flags);
// The module path string ref set in the summary must be owned by the
// index's module string table. Since we don't have a module path
// string table section in the per-module index, we create a single
// module path string table entry with an empty (0) ID to take
// ownership.
AS->setModulePath(getThisModule()->first());
auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
if (!AliaseeInModule)
return error("Alias expects aliasee summary to be parsed");
AS->setAliasee(AliaseeVI, AliaseeInModule);
auto GUID = getValueInfoFromValueId(ValueID);
AS->setOriginalName(GUID.second);
TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
break;
}
// FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
unsigned RefArrayStart = 2;
GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
/* WriteOnly */ false,
/* Constant */ false,
GlobalObject::VCallVisibilityPublic);
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
if (Version >= 5) {
GVF = getDecodedGVarFlags(Record[2]);
RefArrayStart = 3;
}
std::vector<ValueInfo> Refs =
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
auto FS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
FS->setModulePath(getThisModule()->first());
auto GUID = getValueInfoFromValueId(ValueID);
FS->setOriginalName(GUID.second);
TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
break;
}
// FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
// numrefs, numrefs x valueid,
// n x (valueid, offset)]
case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t RawFlags = Record[1];
GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
unsigned NumRefs = Record[3];
unsigned RefListStartIndex = 4;
unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
std::vector<ValueInfo> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
VTableFuncList VTableFuncs;
for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
uint64_t Offset = Record[++I];
VTableFuncs.push_back({Callee, Offset});
}
auto VS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
VS->setModulePath(getThisModule()->first());
VS->setVTableFuncs(VTableFuncs);
auto GUID = getValueInfoFromValueId(ValueID);
VS->setOriginalName(GUID.second);
TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
break;
}
// FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid)]
// FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
// numrefs x valueid, n x (valueid, hotness)]
case bitc::FS_COMBINED:
case bitc::FS_COMBINED_PROFILE: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned InstCount = Record[3];
uint64_t RawFunFlags = 0;
uint64_t EntryCount = 0;
unsigned NumRefs = Record[4];
unsigned NumRORefs = 0, NumWORefs = 0;
int RefListStartIndex = 5;
if (Version >= 4) {
RawFunFlags = Record[4];
RefListStartIndex = 6;
size_t NumRefsIndex = 5;
if (Version >= 5) {
unsigned NumRORefsOffset = 1;
RefListStartIndex = 7;
if (Version >= 6) {
NumRefsIndex = 6;
EntryCount = Record[5];
RefListStartIndex = 8;
if (Version >= 7) {
RefListStartIndex = 9;
NumWORefs = Record[8];
NumRORefsOffset = 2;
}
}
NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
}
NumRefs = Record[NumRefsIndex];
}
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
assert(Record.size() >= RefListStartIndex + NumRefs &&
"Record size inconsistent with number of references");
std::vector<ValueInfo> Refs = makeRefList(
ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
IsOldProfileFormat, HasProfile, false);
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
setSpecialRefs(Refs, NumRORefs, NumWORefs);
auto FS = std::make_unique<FunctionSummary>(
Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
std::move(PendingTypeTestAssumeVCalls),
std::move(PendingTypeCheckedLoadVCalls),
std::move(PendingTypeTestAssumeConstVCalls),
std::move(PendingTypeCheckedLoadConstVCalls));
LastSeenSummary = FS.get();
LastSeenGUID = VI.getGUID();
FS->setModulePath(ModuleIdMap[ModuleId]);
TheIndex.addGlobalValueSummary(VI, std::move(FS));
break;
}
// FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
// Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
// they expect all aliasee summaries to be available.
case bitc::FS_COMBINED_ALIAS: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned AliaseeValueId = Record[3];
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
auto AS = std::make_unique<AliasSummary>(Flags);
LastSeenSummary = AS.get();
AS->setModulePath(ModuleIdMap[ModuleId]);
auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
AS->setAliasee(AliaseeVI, AliaseeInModule);
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
LastSeenGUID = VI.getGUID();
TheIndex.addGlobalValueSummary(VI, std::move(AS));
break;
}
// FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
unsigned ValueID = Record[0];
uint64_t ModuleId = Record[1];
uint64_t RawFlags = Record[2];
unsigned RefArrayStart = 3;
GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
/* WriteOnly */ false,
/* Constant */ false,
GlobalObject::VCallVisibilityPublic);
auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
if (Version >= 5) {
GVF = getDecodedGVarFlags(Record[3]);
RefArrayStart = 4;
}
std::vector<ValueInfo> Refs =
makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
auto FS =
std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
LastSeenSummary = FS.get();
FS->setModulePath(ModuleIdMap[ModuleId]);
ValueInfo VI = getValueInfoFromValueId(ValueID).first;
LastSeenGUID = VI.getGUID();
TheIndex.addGlobalValueSummary(VI, std::move(FS));
break;
}
// FS_COMBINED_ORIGINAL_NAME: [original_name]
case bitc::FS_COMBINED_ORIGINAL_NAME: {
uint64_t OriginalName = Record[0];
if (!LastSeenSummary)
return error("Name attachment that does not follow a combined record");
LastSeenSummary->setOriginalName(OriginalName);
TheIndex.addOriginalName(LastSeenGUID, OriginalName);
// Reset the LastSeenSummary
LastSeenSummary = nullptr;
LastSeenGUID = 0;
break;
}
case bitc::FS_TYPE_TESTS:
assert(PendingTypeTests.empty());
PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
Record.end());
break;
case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
assert(PendingTypeTestAssumeVCalls.empty());
for (unsigned I = 0; I != Record.size(); I += 2)
PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
break;
case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
assert(PendingTypeCheckedLoadVCalls.empty());
for (unsigned I = 0; I != Record.size(); I += 2)
PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
break;
case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
PendingTypeTestAssumeConstVCalls.push_back(
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
break;
case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
PendingTypeCheckedLoadConstVCalls.push_back(
{{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
break;
case bitc::FS_CFI_FUNCTION_DEFS: {
std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
for (unsigned I = 0; I != Record.size(); I += 2)
CfiFunctionDefs.insert(
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
break;
}
case bitc::FS_CFI_FUNCTION_DECLS: {
std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
for (unsigned I = 0; I != Record.size(); I += 2)
CfiFunctionDecls.insert(
{Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
break;
}
case bitc::FS_TYPE_ID:
parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
break;
case bitc::FS_TYPE_ID_METADATA:
parseTypeIdCompatibleVtableSummaryRecord(Record);
break;
}
}
llvm_unreachable("Exit infinite loop");
}
// Parse the module string table block into the Index.
// This populates the ModulePathStringTable map in the index.
Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
return Err;
SmallVector<uint64_t, 64> Record;
SmallString<128> ModulePath;
ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return Error::success();
case BitstreamEntry::Record:
// The interesting case.
break;
}
Record.clear();
Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
if (!MaybeRecord)
return MaybeRecord.takeError();
switch (MaybeRecord.get()) {
default: // Default behavior: ignore.
break;
case bitc::MST_CODE_ENTRY: {
// MST_ENTRY: [modid, namechar x N]
uint64_t ModuleId = Record[0];
if (convertToString(Record, 1, ModulePath))
return error("Invalid record");
LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
ModuleIdMap[ModuleId] = LastSeenModule->first();
ModulePath.clear();
break;
}
/// MST_CODE_HASH: [5*i32]
case bitc::MST_CODE_HASH: {
if (Record.size() != 5)
return error("Invalid hash length " + Twine(Record.size()).str());
if (!LastSeenModule)
return error("Invalid hash that does not follow a module path");
int Pos = 0;
for (auto &Val : Record) {
assert(!(Val >> 32) && "Unexpected high bits set");
LastSeenModule->second.second[Pos++] = Val;
}
// Reset LastSeenModule to avoid overriding the hash unexpectedly.
LastSeenModule = nullptr;
break;
}
}
}
llvm_unreachable("Exit infinite loop");
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class BitcodeErrorCategoryType : public std::error_category {
const char *name() const noexcept override {
return "llvm.bitcode";
}
std::string message(int IE) const override {
BitcodeError E = static_cast<BitcodeError>(IE);
switch (E) {
case BitcodeError::CorruptedBitcode:
return "Corrupted bitcode";
}
llvm_unreachable("Unknown error type!");
}
};
} // end anonymous namespace
static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
const std::error_category &llvm::BitcodeErrorCategory() {
return *ErrorCategory;
}
static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
unsigned Block, unsigned RecordID) {
if (Error Err = Stream.EnterSubBlock(Block))
return std::move(Err);
StringRef Strtab;
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
return Strtab;
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock:
if (Error Err = Stream.SkipBlock())
return std::move(Err);
break;
case BitstreamEntry::Record:
StringRef Blob;
SmallVector<uint64_t, 1> Record;
Expected<unsigned> MaybeRecord =
Stream.readRecord(Entry.ID, Record, &Blob);
if (!MaybeRecord)
return MaybeRecord.takeError();
if (MaybeRecord.get() == RecordID)
Strtab = Blob;
break;
}
}
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
Expected<std::vector<BitcodeModule>>
llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
auto FOrErr = getBitcodeFileContents(Buffer);
if (!FOrErr)
return FOrErr.takeError();
return std::move(FOrErr->Mods);
}
Expected<BitcodeFileContents>
llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
BitstreamCursor &Stream = *StreamOrErr;
BitcodeFileContents F;
while (true) {
uint64_t BCBegin = Stream.getCurrentByteNo();
// We may be consuming bitcode from a client that leaves garbage at the end
// of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
// the end that there cannot possibly be another module, stop looking.
if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
return F;
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::EndBlock:
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::SubBlock: {
uint64_t IdentificationBit = -1ull;
if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
if (Error Err = Stream.SkipBlock())
return std::move(Err);
{
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
Entry = MaybeEntry.get();
}
if (Entry.Kind != BitstreamEntry::SubBlock ||
Entry.ID != bitc::MODULE_BLOCK_ID)
return error("Malformed block");
}
if (Entry.ID == bitc::MODULE_BLOCK_ID) {
uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
if (Error Err = Stream.SkipBlock())
return std::move(Err);
F.Mods.push_back({Stream.getBitcodeBytes().slice(
BCBegin, Stream.getCurrentByteNo() - BCBegin),
Buffer.getBufferIdentifier(), IdentificationBit,
ModuleBit});
continue;
}
if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
Expected<StringRef> Strtab =
readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
if (!Strtab)
return Strtab.takeError();
// This string table is used by every preceding bitcode module that does
// not have its own string table. A bitcode file may have multiple
// string tables if it was created by binary concatenation, for example
// with "llvm-cat -b".
for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
if (!I->Strtab.empty())
break;
I->Strtab = *Strtab;
}
// Similarly, the string table is used by every preceding symbol table;
// normally there will be just one unless the bitcode file was created
// by binary concatenation.
if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
F.StrtabForSymtab = *Strtab;
continue;
}
if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
Expected<StringRef> SymtabOrErr =
readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
if (!SymtabOrErr)
return SymtabOrErr.takeError();
// We can expect the bitcode file to have multiple symbol tables if it
// was created by binary concatenation. In that case we silently
// ignore any subsequent symbol tables, which is fine because this is a
// low level function. The client is expected to notice that the number
// of modules in the symbol table does not match the number of modules
// in the input file and regenerate the symbol table.
if (F.Symtab.empty())
F.Symtab = *SymtabOrErr;
continue;
}
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
}
case BitstreamEntry::Record:
if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
continue;
else
return StreamFailed.takeError();
}
}
}
/// Get a lazy one-at-time loading module from bitcode.
///
/// This isn't always used in a lazy context. In particular, it's also used by
/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
/// in forward-referenced functions from block address references.
///
/// \param[in] MaterializeAll Set to \c true if we should materialize
/// everything.
Expected<std::unique_ptr<Module>>
BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
bool ShouldLazyLoadMetadata, bool IsImporting) {
BitstreamCursor Stream(Buffer);
std::string ProducerIdentification;
if (IdentificationBit != -1ull) {
if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
return std::move(JumpFailed);
Expected<std::string> ProducerIdentificationOrErr =
readIdentificationBlock(Stream);
if (!ProducerIdentificationOrErr)
return ProducerIdentificationOrErr.takeError();
ProducerIdentification = *ProducerIdentificationOrErr;
}
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
Context);
std::unique_ptr<Module> M =
std::make_unique<Module>(ModuleIdentifier, Context);
M->setMaterializer(R);
// Delay parsing Metadata if ShouldLazyLoadMetadata is true.
if (Error Err =
R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
return std::move(Err);
if (MaterializeAll) {
// Read in the entire module, and destroy the BitcodeReader.
if (Error Err = M->materializeAll())
return std::move(Err);
} else {
// Resolve forward references from blockaddresses.
if (Error Err = R->materializeForwardReferencedFunctions())
return std::move(Err);
}
return std::move(M);
}
Expected<std::unique_ptr<Module>>
BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
bool IsImporting) {
return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
}
// Parse the specified bitcode buffer and merge the index into CombinedIndex.
// We don't use ModuleIdentifier here because the client may need to control the
// module path used in the combined summary (e.g. when reading summaries for
// regular LTO modules).
Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
StringRef ModulePath, uint64_t ModuleId) {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return JumpFailed;
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
ModulePath, ModuleId);
return R.parseModule();
}
// Parse the specified bitcode buffer, returning the function info index.
Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
ModuleIdentifier, 0);
if (Error Err = R.parseModule())
return std::move(Err);
return std::move(Index);
}
static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
unsigned ID) {
if (Error Err = Stream.EnterSubBlock(ID))
return std::move(Err);
SmallVector<uint64_t, 64> Record;
while (true) {
Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
if (!MaybeEntry)
return MaybeEntry.takeError();
BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
// If no flags record found, conservatively return true to mimic
// behavior before this flag was added.
return true;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Look for the FS_FLAGS record.
Record.clear();
Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
if (!MaybeBitCode)
return MaybeBitCode.takeError();
switch (MaybeBitCode.get()) {
default: // Default behavior: ignore.
break;
case bitc::FS_FLAGS: { // [flags]
uint64_t Flags = Record[0];
// Scan flags.
assert(Flags <= 0x3f && "Unexpected bits in flag");
return Flags & 0x8;
}
}
}
llvm_unreachable("Exit infinite loop");
}
// Check if the given bitcode buffer contains a global value summary block.
Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
BitstreamCursor Stream(Buffer);
if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
return std::move(JumpFailed);
if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return std::move(Err);
while (true) {
Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
if (!MaybeEntry)
return MaybeEntry.takeError();
llvm::BitstreamEntry Entry = MaybeEntry.get();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return error("Malformed block");
case BitstreamEntry::EndBlock:
return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
/*EnableSplitLTOUnit=*/false};
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
Expected<bool> EnableSplitLTOUnit =
getEnableSplitLTOUnitFlag(Stream, Entry.ID);
if (!EnableSplitLTOUnit)
return EnableSplitLTOUnit.takeError();
return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
*EnableSplitLTOUnit};
}
if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
Expected<bool> EnableSplitLTOUnit =
getEnableSplitLTOUnitFlag(Stream, Entry.ID);
if (!EnableSplitLTOUnit)
return EnableSplitLTOUnit.takeError();
return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
*EnableSplitLTOUnit};
}
// Ignore other sub-blocks.
if (Error Err = Stream.SkipBlock())
return std::move(Err);
continue;
case BitstreamEntry::Record:
if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
continue;
else
return StreamFailed.takeError();
}
}
}
static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
if (!MsOrErr)
return MsOrErr.takeError();
if (MsOrErr->size() != 1)
return error("Expected a single module");
return (*MsOrErr)[0];
}
Expected<std::unique_ptr<Module>>
llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
bool ShouldLazyLoadMetadata, bool IsImporting) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
}
Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
bool ShouldLazyLoadMetadata, bool IsImporting) {
auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
IsImporting);
if (MOrErr)
(*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
return MOrErr;
}
Expected<std::unique_ptr<Module>>
BitcodeModule::parseModule(LLVMContext &Context) {
return getModuleImpl(Context, true, false, false);
// TODO: Restore the use-lists to the in-memory state when the bitcode was
// written. We must defer until the Module has been fully materialized.
}
Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
LLVMContext &Context) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->parseModule(Context);
}
Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return readTriple(*StreamOrErr);
}
Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return hasObjCCategory(*StreamOrErr);
}
Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
if (!StreamOrErr)
return StreamOrErr.takeError();
return readIdentificationCode(*StreamOrErr);
}
Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
ModuleSummaryIndex &CombinedIndex,
uint64_t ModuleId) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
}
Expected<std::unique_ptr<ModuleSummaryIndex>>
llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getSummary();
}
Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
Expected<BitcodeModule> BM = getSingleModule(Buffer);
if (!BM)
return BM.takeError();
return BM->getLTOInfo();
}
Expected<std::unique_ptr<ModuleSummaryIndex>>
llvm::getModuleSummaryIndexForFile(StringRef Path,
bool IgnoreEmptyThinLTOIndexFile) {
ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
MemoryBuffer::getFileOrSTDIN(Path);
if (!FileOrErr)
return errorCodeToError(FileOrErr.getError());
if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
return nullptr;
return getModuleSummaryIndex(**FileOrErr);
}