forked from OSchip/llvm-project
266 lines
9.8 KiB
C++
266 lines
9.8 KiB
C++
//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
|
|
// there is at most one ret and one unreachable instruction, it ensures there is
|
|
// at most one divergent exiting block.
|
|
//
|
|
// StructurizeCFG can't deal with multi-exit regions formed by branches to
|
|
// multiple return nodes. It is not desirable to structurize regions with
|
|
// uniform branches, so unifying those to the same return block as divergent
|
|
// branches inhibits use of scalar branching. It still can't deal with the case
|
|
// where one branch goes to return, and one unreachable. Replace unreachable in
|
|
// this case with a return.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
|
|
|
|
namespace {
|
|
|
|
class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
|
|
initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// We can preserve non-critical-edgeness when we unify function exit nodes
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char AMDGPUUnifyDivergentExitNodes::ID = 0;
|
|
|
|
char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
|
"Unify divergent function exit nodes", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
|
"Unify divergent function exit nodes", false, false)
|
|
|
|
void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
|
|
// TODO: Preserve dominator tree.
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
|
|
// No divergent values are changed, only blocks and branch edges.
|
|
AU.addPreserved<LegacyDivergenceAnalysis>();
|
|
|
|
// We preserve the non-critical-edgeness property
|
|
AU.addPreservedID(BreakCriticalEdgesID);
|
|
|
|
// This is a cluster of orthogonal Transforms
|
|
AU.addPreservedID(LowerSwitchID);
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
|
|
/// \returns true if \p BB is reachable through only uniform branches.
|
|
/// XXX - Is there a more efficient way to find this?
|
|
static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
|
|
BasicBlock &BB) {
|
|
SmallVector<BasicBlock *, 8> Stack;
|
|
SmallPtrSet<BasicBlock *, 8> Visited;
|
|
|
|
for (BasicBlock *Pred : predecessors(&BB))
|
|
Stack.push_back(Pred);
|
|
|
|
while (!Stack.empty()) {
|
|
BasicBlock *Top = Stack.pop_back_val();
|
|
if (!DA.isUniform(Top->getTerminator()))
|
|
return false;
|
|
|
|
for (BasicBlock *Pred : predecessors(Top)) {
|
|
if (Visited.insert(Pred).second)
|
|
Stack.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static BasicBlock *unifyReturnBlockSet(Function &F,
|
|
ArrayRef<BasicBlock *> ReturningBlocks,
|
|
const TargetTransformInfo &TTI,
|
|
StringRef Name) {
|
|
// Otherwise, we need to insert a new basic block into the function, add a PHI
|
|
// nodes (if the function returns values), and convert all of the return
|
|
// instructions into unconditional branches.
|
|
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
|
|
|
|
PHINode *PN = nullptr;
|
|
if (F.getReturnType()->isVoidTy()) {
|
|
ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
|
|
} else {
|
|
// If the function doesn't return void... add a PHI node to the block...
|
|
PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
|
|
"UnifiedRetVal");
|
|
NewRetBlock->getInstList().push_back(PN);
|
|
ReturnInst::Create(F.getContext(), PN, NewRetBlock);
|
|
}
|
|
|
|
// Loop over all of the blocks, replacing the return instruction with an
|
|
// unconditional branch.
|
|
for (BasicBlock *BB : ReturningBlocks) {
|
|
// Add an incoming element to the PHI node for every return instruction that
|
|
// is merging into this new block...
|
|
if (PN)
|
|
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
|
|
|
|
// Remove and delete the return inst.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(NewRetBlock, BB);
|
|
}
|
|
|
|
for (BasicBlock *BB : ReturningBlocks) {
|
|
// Cleanup possible branch to unconditional branch to the return.
|
|
simplifyCFG(BB, TTI, {2});
|
|
}
|
|
|
|
return NewRetBlock;
|
|
}
|
|
|
|
bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
|
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
if (PDT.getRoots().size() <= 1)
|
|
return false;
|
|
|
|
LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
|
|
|
|
// Loop over all of the blocks in a function, tracking all of the blocks that
|
|
// return.
|
|
SmallVector<BasicBlock *, 4> ReturningBlocks;
|
|
SmallVector<BasicBlock *, 4> UnreachableBlocks;
|
|
|
|
// Dummy return block for infinite loop.
|
|
BasicBlock *DummyReturnBB = nullptr;
|
|
|
|
for (BasicBlock *BB : PDT.getRoots()) {
|
|
if (isa<ReturnInst>(BB->getTerminator())) {
|
|
if (!isUniformlyReached(DA, *BB))
|
|
ReturningBlocks.push_back(BB);
|
|
} else if (isa<UnreachableInst>(BB->getTerminator())) {
|
|
if (!isUniformlyReached(DA, *BB))
|
|
UnreachableBlocks.push_back(BB);
|
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
|
|
|
|
ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
|
|
if (DummyReturnBB == nullptr) {
|
|
DummyReturnBB = BasicBlock::Create(F.getContext(),
|
|
"DummyReturnBlock", &F);
|
|
Type *RetTy = F.getReturnType();
|
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
|
ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
|
|
ReturningBlocks.push_back(DummyReturnBB);
|
|
}
|
|
|
|
if (BI->isUnconditional()) {
|
|
BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
|
|
BI->eraseFromParent(); // Delete the unconditional branch.
|
|
// Add a new conditional branch with a dummy edge to the return block.
|
|
BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
|
|
} else { // Conditional branch.
|
|
// Create a new transition block to hold the conditional branch.
|
|
BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
|
|
|
|
// Create a branch that will always branch to the transition block and
|
|
// references DummyReturnBB.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!UnreachableBlocks.empty()) {
|
|
BasicBlock *UnreachableBlock = nullptr;
|
|
|
|
if (UnreachableBlocks.size() == 1) {
|
|
UnreachableBlock = UnreachableBlocks.front();
|
|
} else {
|
|
UnreachableBlock = BasicBlock::Create(F.getContext(),
|
|
"UnifiedUnreachableBlock", &F);
|
|
new UnreachableInst(F.getContext(), UnreachableBlock);
|
|
|
|
for (BasicBlock *BB : UnreachableBlocks) {
|
|
// Remove and delete the unreachable inst.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(UnreachableBlock, BB);
|
|
}
|
|
}
|
|
|
|
if (!ReturningBlocks.empty()) {
|
|
// Don't create a new unreachable inst if we have a return. The
|
|
// structurizer/annotator can't handle the multiple exits
|
|
|
|
Type *RetTy = F.getReturnType();
|
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
|
// Remove and delete the unreachable inst.
|
|
UnreachableBlock->getTerminator()->eraseFromParent();
|
|
|
|
Function *UnreachableIntrin =
|
|
Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
|
|
|
|
// Insert a call to an intrinsic tracking that this is an unreachable
|
|
// point, in case we want to kill the active lanes or something later.
|
|
CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
|
|
|
|
// Don't create a scalar trap. We would only want to trap if this code was
|
|
// really reached, but a scalar trap would happen even if no lanes
|
|
// actually reached here.
|
|
ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
|
|
ReturningBlocks.push_back(UnreachableBlock);
|
|
}
|
|
}
|
|
|
|
// Now handle return blocks.
|
|
if (ReturningBlocks.empty())
|
|
return false; // No blocks return
|
|
|
|
if (ReturningBlocks.size() == 1)
|
|
return false; // Already has a single return block
|
|
|
|
const TargetTransformInfo &TTI
|
|
= getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
unifyReturnBlockSet(F, ReturningBlocks, TTI, "UnifiedReturnBlock");
|
|
return true;
|
|
}
|