llvm-project/lldb/source/Core/ValueObjectVariable.cpp

445 lines
15 KiB
C++

//===-- ValueObjectVariable.cpp ---------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Core/ValueObjectVariable.h"
// C Includes
// C++ Includes
// Other libraries and framework includes
// Project includes
#include "lldb/Core/Module.h"
#include "lldb/Core/RegisterValue.h"
#include "lldb/Core/ValueObjectList.h"
#include "lldb/Core/Value.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/SymbolContext.h"
#include "lldb/Symbol/SymbolContextScope.h"
#include "lldb/Symbol/Type.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
using namespace lldb_private;
lldb::ValueObjectSP
ValueObjectVariable::Create (ExecutionContextScope *exe_scope, const lldb::VariableSP &var_sp)
{
return (new ValueObjectVariable (exe_scope, var_sp))->GetSP();
}
ValueObjectVariable::ValueObjectVariable (ExecutionContextScope *exe_scope, const lldb::VariableSP &var_sp) :
ValueObject(exe_scope),
m_variable_sp(var_sp)
{
// Do not attempt to construct one of these objects with no variable!
assert (m_variable_sp.get() != NULL);
m_name = var_sp->GetName();
}
ValueObjectVariable::~ValueObjectVariable()
{
}
ClangASTType
ValueObjectVariable::GetClangTypeImpl ()
{
Type *var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetClangForwardType();
return ClangASTType();
}
ConstString
ValueObjectVariable::GetTypeName()
{
Type * var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetName();
return ConstString();
}
ConstString
ValueObjectVariable::GetDisplayTypeName()
{
Type * var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetClangForwardType().GetDisplayTypeName();
return ConstString();
}
ConstString
ValueObjectVariable::GetQualifiedTypeName()
{
Type * var_type = m_variable_sp->GetType();
if (var_type)
return var_type->GetQualifiedName();
return ConstString();
}
size_t
ValueObjectVariable::CalculateNumChildren()
{
ClangASTType type(GetClangType());
if (!type.IsValid())
return 0;
const bool omit_empty_base_classes = true;
return type.GetNumChildren(omit_empty_base_classes);
}
uint64_t
ValueObjectVariable::GetByteSize()
{
ExecutionContext exe_ctx(GetExecutionContextRef());
ClangASTType type(GetClangType());
if (!type.IsValid())
return 0;
return type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
}
lldb::ValueType
ValueObjectVariable::GetValueType() const
{
if (m_variable_sp)
return m_variable_sp->GetScope();
return lldb::eValueTypeInvalid;
}
bool
ValueObjectVariable::UpdateValue ()
{
SetValueIsValid (false);
m_error.Clear();
Variable *variable = m_variable_sp.get();
DWARFExpression &expr = variable->LocationExpression();
if (variable->GetLocationIsConstantValueData())
{
// expr doesn't contain DWARF bytes, it contains the constant variable
// value bytes themselves...
if (expr.GetExpressionData(m_data))
m_value.SetContext(Value::eContextTypeVariable, variable);
else
m_error.SetErrorString ("empty constant data");
// constant bytes can't be edited - sorry
m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL);
}
else
{
lldb::addr_t loclist_base_load_addr = LLDB_INVALID_ADDRESS;
ExecutionContext exe_ctx (GetExecutionContextRef());
Target *target = exe_ctx.GetTargetPtr();
if (target)
{
m_data.SetByteOrder(target->GetArchitecture().GetByteOrder());
m_data.SetAddressByteSize(target->GetArchitecture().GetAddressByteSize());
}
if (expr.IsLocationList())
{
SymbolContext sc;
variable->CalculateSymbolContext (&sc);
if (sc.function)
loclist_base_load_addr = sc.function->GetAddressRange().GetBaseAddress().GetLoadAddress (target);
}
Value old_value(m_value);
if (expr.Evaluate (&exe_ctx, NULL, NULL, NULL, loclist_base_load_addr, NULL, m_value, &m_error))
{
m_resolved_value = m_value;
m_value.SetContext(Value::eContextTypeVariable, variable);
ClangASTType clang_type = GetClangType();
if (clang_type.IsValid())
m_value.SetClangType(clang_type);
Value::ValueType value_type = m_value.GetValueType();
Process *process = exe_ctx.GetProcessPtr();
const bool process_is_alive = process && process->IsAlive();
const uint32_t type_info = clang_type.GetTypeInfo();
const bool is_pointer_or_ref = (type_info & (lldb::eTypeIsPointer | lldb::eTypeIsReference)) != 0;
switch (value_type)
{
case Value::eValueTypeFileAddress:
// If this type is a pointer, then its children will be considered load addresses
// if the pointer or reference is dereferenced, but only if the process is alive.
//
// There could be global variables like in the following code:
// struct LinkedListNode { Foo* foo; LinkedListNode* next; };
// Foo g_foo1;
// Foo g_foo2;
// LinkedListNode g_second_node = { &g_foo2, NULL };
// LinkedListNode g_first_node = { &g_foo1, &g_second_node };
//
// When we aren't running, we should be able to look at these variables using
// the "target variable" command. Children of the "g_first_node" always will
// be of the same address type as the parent. But children of the "next" member of
// LinkedListNode will become load addresses if we have a live process, or remain
// what a file address if it what a file address.
if (process_is_alive && is_pointer_or_ref)
SetAddressTypeOfChildren(eAddressTypeLoad);
else
SetAddressTypeOfChildren(eAddressTypeFile);
break;
case Value::eValueTypeHostAddress:
// Same as above for load addresses, except children of pointer or refs are always
// load addresses. Host addresses are used to store freeze dried variables. If this
// type is a struct, the entire struct contents will be copied into the heap of the
// LLDB process, but we do not currrently follow any pointers.
if (is_pointer_or_ref)
SetAddressTypeOfChildren(eAddressTypeLoad);
else
SetAddressTypeOfChildren(eAddressTypeHost);
break;
case Value::eValueTypeLoadAddress:
case Value::eValueTypeScalar:
case Value::eValueTypeVector:
SetAddressTypeOfChildren(eAddressTypeLoad);
break;
}
switch (value_type)
{
case Value::eValueTypeVector:
// fall through
case Value::eValueTypeScalar:
// The variable value is in the Scalar value inside the m_value.
// We can point our m_data right to it.
m_error = m_value.GetValueAsData (&exe_ctx, m_data, 0, GetModule().get());
break;
case Value::eValueTypeFileAddress:
case Value::eValueTypeLoadAddress:
case Value::eValueTypeHostAddress:
// The DWARF expression result was an address in the inferior
// process. If this variable is an aggregate type, we just need
// the address as the main value as all child variable objects
// will rely upon this location and add an offset and then read
// their own values as needed. If this variable is a simple
// type, we read all data for it into m_data.
// Make sure this type has a value before we try and read it
// If we have a file address, convert it to a load address if we can.
if (value_type == Value::eValueTypeFileAddress && process_is_alive)
{
lldb::addr_t file_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
if (file_addr != LLDB_INVALID_ADDRESS)
{
SymbolContext var_sc;
variable->CalculateSymbolContext(&var_sc);
if (var_sc.module_sp)
{
ObjectFile *objfile = var_sc.module_sp->GetObjectFile();
if (objfile)
{
Address so_addr(file_addr, objfile->GetSectionList());
lldb::addr_t load_addr = so_addr.GetLoadAddress (target);
if (load_addr != LLDB_INVALID_ADDRESS)
{
m_value.SetValueType(Value::eValueTypeLoadAddress);
m_value.GetScalar() = load_addr;
}
}
}
}
}
if (!CanProvideValue())
{
// this value object represents an aggregate type whose
// children have values, but this object does not. So we
// say we are changed if our location has changed.
SetValueDidChange (value_type != old_value.GetValueType() || m_value.GetScalar() != old_value.GetScalar());
}
else
{
// Copy the Value and set the context to use our Variable
// so it can extract read its value into m_data appropriately
Value value(m_value);
value.SetContext(Value::eContextTypeVariable, variable);
m_error = value.GetValueAsData(&exe_ctx, m_data, 0, GetModule().get());
SetValueDidChange (value_type != old_value.GetValueType() || m_value.GetScalar() != old_value.GetScalar());
}
break;
}
SetValueIsValid (m_error.Success());
}
else
{
// could not find location, won't allow editing
m_resolved_value.SetContext(Value::eContextTypeInvalid, NULL);
}
}
return m_error.Success();
}
bool
ValueObjectVariable::IsInScope ()
{
const ExecutionContextRef &exe_ctx_ref = GetExecutionContextRef();
if (exe_ctx_ref.HasFrameRef())
{
ExecutionContext exe_ctx (exe_ctx_ref);
StackFrame *frame = exe_ctx.GetFramePtr();
if (frame)
{
return m_variable_sp->IsInScope (frame);
}
else
{
// This ValueObject had a frame at one time, but now we
// can't locate it, so return false since we probably aren't
// in scope.
return false;
}
}
// We have a variable that wasn't tied to a frame, which
// means it is a global and is always in scope.
return true;
}
lldb::ModuleSP
ValueObjectVariable::GetModule()
{
if (m_variable_sp)
{
SymbolContextScope *sc_scope = m_variable_sp->GetSymbolContextScope();
if (sc_scope)
{
return sc_scope->CalculateSymbolContextModule();
}
}
return lldb::ModuleSP();
}
SymbolContextScope *
ValueObjectVariable::GetSymbolContextScope()
{
if (m_variable_sp)
return m_variable_sp->GetSymbolContextScope();
return NULL;
}
bool
ValueObjectVariable::GetDeclaration (Declaration &decl)
{
if (m_variable_sp)
{
decl = m_variable_sp->GetDeclaration();
return true;
}
return false;
}
const char *
ValueObjectVariable::GetLocationAsCString ()
{
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo)
return GetLocationAsCStringImpl(m_resolved_value,
m_data);
else
return ValueObject::GetLocationAsCString();
}
bool
ValueObjectVariable::SetValueFromCString (const char *value_str, Error& error)
{
if (!UpdateValueIfNeeded())
{
error.SetErrorString("unable to update value before writing");
return false;
}
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo)
{
RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo();
ExecutionContext exe_ctx(GetExecutionContextRef());
RegisterContext *reg_ctx = exe_ctx.GetRegisterContext();
RegisterValue reg_value;
if (!reg_info || !reg_ctx)
{
error.SetErrorString("unable to retrieve register info");
return false;
}
error = reg_value.SetValueFromCString(reg_info, value_str);
if (error.Fail())
return false;
if (reg_ctx->WriteRegister (reg_info, reg_value))
{
SetNeedsUpdate();
return true;
}
else
{
error.SetErrorString("unable to write back to register");
return false;
}
}
else
return ValueObject::SetValueFromCString(value_str, error);
}
bool
ValueObjectVariable::SetData (DataExtractor &data, Error &error)
{
if (!UpdateValueIfNeeded())
{
error.SetErrorString("unable to update value before writing");
return false;
}
if (m_resolved_value.GetContextType() == Value::eContextTypeRegisterInfo)
{
RegisterInfo *reg_info = m_resolved_value.GetRegisterInfo();
ExecutionContext exe_ctx(GetExecutionContextRef());
RegisterContext *reg_ctx = exe_ctx.GetRegisterContext();
RegisterValue reg_value;
if (!reg_info || !reg_ctx)
{
error.SetErrorString("unable to retrieve register info");
return false;
}
error = reg_value.SetValueFromData(reg_info, data, 0, true);
if (error.Fail())
return false;
if (reg_ctx->WriteRegister (reg_info, reg_value))
{
SetNeedsUpdate();
return true;
}
else
{
error.SetErrorString("unable to write back to register");
return false;
}
}
else
return ValueObject::SetData(data, error);
}