forked from OSchip/llvm-project
896 lines
36 KiB
C++
896 lines
36 KiB
C++
//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
|
|
using namespace mlir;
|
|
|
|
/// Return true if the given operation is unknown and may potentially define a
|
|
/// symbol table.
|
|
static bool isPotentiallyUnknownSymbolTable(Operation *op) {
|
|
return !op->getDialect() && op->getNumRegions() == 1;
|
|
}
|
|
|
|
/// Returns the string name of the given symbol, or None if this is not a
|
|
/// symbol.
|
|
static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
|
|
auto nameAttr =
|
|
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
|
|
return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
|
|
}
|
|
|
|
/// Computes the nested symbol reference attribute for the symbol 'symbolName'
|
|
/// that are usable within the symbol table operations from 'symbol' as far up
|
|
/// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
|
|
/// Returns success if all references up to 'within' could be computed.
|
|
static LogicalResult
|
|
collectValidReferencesFor(Operation *symbol, StringRef symbolName,
|
|
Operation *within,
|
|
SmallVectorImpl<SymbolRefAttr> &results) {
|
|
assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
|
|
MLIRContext *ctx = symbol->getContext();
|
|
|
|
auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
|
|
results.push_back(leafRef);
|
|
|
|
// Early exit for when 'within' is the parent of 'symbol'.
|
|
Operation *symbolTableOp = symbol->getParentOp();
|
|
if (within == symbolTableOp)
|
|
return success();
|
|
|
|
// Collect references until 'symbolTableOp' reaches 'within'.
|
|
SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
|
|
do {
|
|
// Each parent of 'symbol' should define a symbol table.
|
|
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
|
|
return failure();
|
|
// Each parent of 'symbol' should also be a symbol.
|
|
Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
|
|
if (!symbolTableName)
|
|
return failure();
|
|
results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
|
|
|
|
symbolTableOp = symbolTableOp->getParentOp();
|
|
if (symbolTableOp == within)
|
|
break;
|
|
nestedRefs.insert(nestedRefs.begin(),
|
|
FlatSymbolRefAttr::get(*symbolTableName, ctx));
|
|
} while (true);
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Build a symbol table with the symbols within the given operation.
|
|
SymbolTable::SymbolTable(Operation *symbolTableOp)
|
|
: symbolTableOp(symbolTableOp) {
|
|
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
|
|
"expected operation to have SymbolTable trait");
|
|
assert(symbolTableOp->getNumRegions() == 1 &&
|
|
"expected operation to have a single region");
|
|
assert(llvm::hasSingleElement(symbolTableOp->getRegion(0)) &&
|
|
"expected operation to have a single block");
|
|
|
|
for (auto &op : symbolTableOp->getRegion(0).front()) {
|
|
Optional<StringRef> name = getNameIfSymbol(&op);
|
|
if (!name)
|
|
continue;
|
|
|
|
auto inserted = symbolTable.insert({*name, &op});
|
|
(void)inserted;
|
|
assert(inserted.second &&
|
|
"expected region to contain uniquely named symbol operations");
|
|
}
|
|
}
|
|
|
|
/// Look up a symbol with the specified name, returning null if no such name
|
|
/// exists. Names never include the @ on them.
|
|
Operation *SymbolTable::lookup(StringRef name) const {
|
|
return symbolTable.lookup(name);
|
|
}
|
|
|
|
/// Erase the given symbol from the table.
|
|
void SymbolTable::erase(Operation *symbol) {
|
|
Optional<StringRef> name = getNameIfSymbol(symbol);
|
|
assert(name && "expected valid 'name' attribute");
|
|
assert(symbol->getParentOp() == symbolTableOp &&
|
|
"expected this operation to be inside of the operation with this "
|
|
"SymbolTable");
|
|
|
|
auto it = symbolTable.find(*name);
|
|
if (it != symbolTable.end() && it->second == symbol) {
|
|
symbolTable.erase(it);
|
|
symbol->erase();
|
|
}
|
|
}
|
|
|
|
/// Insert a new symbol into the table and associated operation, and rename it
|
|
/// as necessary to avoid collisions.
|
|
void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
|
|
auto &body = symbolTableOp->getRegion(0).front();
|
|
if (insertPt == Block::iterator() || insertPt == body.end())
|
|
insertPt = Block::iterator(body.getTerminator());
|
|
|
|
assert(insertPt->getParentOp() == symbolTableOp &&
|
|
"expected insertPt to be in the associated module operation");
|
|
|
|
body.getOperations().insert(insertPt, symbol);
|
|
|
|
// Add this symbol to the symbol table, uniquing the name if a conflict is
|
|
// detected.
|
|
StringRef name = getSymbolName(symbol);
|
|
if (symbolTable.insert({name, symbol}).second)
|
|
return;
|
|
// If a conflict was detected, then the symbol will not have been added to
|
|
// the symbol table. Try suffixes until we get to a unique name that works.
|
|
SmallString<128> nameBuffer(name);
|
|
unsigned originalLength = nameBuffer.size();
|
|
|
|
// Iteratively try suffixes until we find one that isn't used.
|
|
do {
|
|
nameBuffer.resize(originalLength);
|
|
nameBuffer += '_';
|
|
nameBuffer += std::to_string(uniquingCounter++);
|
|
} while (!symbolTable.insert({nameBuffer, symbol}).second);
|
|
setSymbolName(symbol, nameBuffer);
|
|
}
|
|
|
|
/// Returns the name of the given symbol operation.
|
|
StringRef SymbolTable::getSymbolName(Operation *symbol) {
|
|
Optional<StringRef> name = getNameIfSymbol(symbol);
|
|
assert(name && "expected valid symbol name");
|
|
return *name;
|
|
}
|
|
/// Sets the name of the given symbol operation.
|
|
void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
|
|
symbol->setAttr(getSymbolAttrName(),
|
|
StringAttr::get(name, symbol->getContext()));
|
|
}
|
|
|
|
/// Returns the visibility of the given symbol operation.
|
|
SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
|
|
// If the attribute doesn't exist, assume public.
|
|
StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
|
|
if (!vis)
|
|
return Visibility::Public;
|
|
|
|
// Otherwise, switch on the string value.
|
|
return llvm::StringSwitch<Visibility>(vis.getValue())
|
|
.Case("private", Visibility::Private)
|
|
.Case("nested", Visibility::Nested)
|
|
.Case("public", Visibility::Public);
|
|
}
|
|
/// Sets the visibility of the given symbol operation.
|
|
void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
|
|
MLIRContext *ctx = symbol->getContext();
|
|
|
|
// If the visibility is public, just drop the attribute as this is the
|
|
// default.
|
|
if (vis == Visibility::Public) {
|
|
symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
|
|
return;
|
|
}
|
|
|
|
// Otherwise, update the attribute.
|
|
assert((vis == Visibility::Private || vis == Visibility::Nested) &&
|
|
"unknown symbol visibility kind");
|
|
|
|
StringRef visName = vis == Visibility::Private ? "private" : "nested";
|
|
symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
|
|
}
|
|
|
|
/// Returns the nearest symbol table from a given operation `from`. Returns
|
|
/// nullptr if no valid parent symbol table could be found.
|
|
Operation *SymbolTable::getNearestSymbolTable(Operation *from) {
|
|
assert(from && "expected valid operation");
|
|
if (isPotentiallyUnknownSymbolTable(from))
|
|
return nullptr;
|
|
|
|
while (!from->hasTrait<OpTrait::SymbolTable>()) {
|
|
from = from->getParentOp();
|
|
|
|
// Check that this is a valid op and isn't an unknown symbol table.
|
|
if (!from || isPotentiallyUnknownSymbolTable(from))
|
|
return nullptr;
|
|
}
|
|
return from;
|
|
}
|
|
|
|
/// Walks all symbol table operations nested within, and including, `op`. For
|
|
/// each symbol table operation, the provided callback is invoked with the op
|
|
/// and a boolean signifying if the symbols within that symbol table can be
|
|
/// treated as if all uses are visible. `allSymUsesVisible` identifies whether
|
|
/// all of the symbol uses of symbols within `op` are visible.
|
|
void SymbolTable::walkSymbolTables(
|
|
Operation *op, bool allSymUsesVisible,
|
|
function_ref<void(Operation *, bool)> callback) {
|
|
bool isSymbolTable = op->hasTrait<OpTrait::SymbolTable>();
|
|
if (isSymbolTable) {
|
|
SymbolOpInterface symbol = dyn_cast<SymbolOpInterface>(op);
|
|
allSymUsesVisible |= !symbol || symbol.isPrivate();
|
|
} else {
|
|
// Otherwise if 'op' is not a symbol table, any nested symbols are
|
|
// guaranteed to be hidden.
|
|
allSymUsesVisible = true;
|
|
}
|
|
|
|
for (Region ®ion : op->getRegions())
|
|
for (Block &block : region)
|
|
for (Operation &nestedOp : block)
|
|
walkSymbolTables(&nestedOp, allSymUsesVisible, callback);
|
|
|
|
// If 'op' had the symbol table trait, visit it after any nested symbol
|
|
// tables.
|
|
if (isSymbolTable)
|
|
callback(op, allSymUsesVisible);
|
|
}
|
|
|
|
/// Returns the operation registered with the given symbol name with the
|
|
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
|
|
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
|
|
/// was found.
|
|
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
|
|
StringRef symbol) {
|
|
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
|
|
|
|
// Look for a symbol with the given name.
|
|
for (auto &op : symbolTableOp->getRegion(0).front().without_terminator())
|
|
if (getNameIfSymbol(&op) == symbol)
|
|
return &op;
|
|
return nullptr;
|
|
}
|
|
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
|
|
SymbolRefAttr symbol) {
|
|
SmallVector<Operation *, 4> resolvedSymbols;
|
|
if (failed(lookupSymbolIn(symbolTableOp, symbol, resolvedSymbols)))
|
|
return nullptr;
|
|
return resolvedSymbols.back();
|
|
}
|
|
|
|
LogicalResult
|
|
SymbolTable::lookupSymbolIn(Operation *symbolTableOp, SymbolRefAttr symbol,
|
|
SmallVectorImpl<Operation *> &symbols) {
|
|
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
|
|
|
|
// Lookup the root reference for this symbol.
|
|
symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference());
|
|
if (!symbolTableOp)
|
|
return failure();
|
|
symbols.push_back(symbolTableOp);
|
|
|
|
// If there are no nested references, just return the root symbol directly.
|
|
ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
|
|
if (nestedRefs.empty())
|
|
return success();
|
|
|
|
// Verify that the root is also a symbol table.
|
|
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
|
|
return failure();
|
|
|
|
// Otherwise, lookup each of the nested non-leaf references and ensure that
|
|
// each corresponds to a valid symbol table.
|
|
for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
|
|
symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue());
|
|
if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
|
|
return failure();
|
|
symbols.push_back(symbolTableOp);
|
|
}
|
|
symbols.push_back(lookupSymbolIn(symbolTableOp, symbol.getLeafReference()));
|
|
return success(symbols.back());
|
|
}
|
|
|
|
/// Returns the operation registered with the given symbol name within the
|
|
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
|
|
/// nullptr if no valid symbol was found.
|
|
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
|
|
StringRef symbol) {
|
|
Operation *symbolTableOp = getNearestSymbolTable(from);
|
|
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
|
|
}
|
|
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
|
|
SymbolRefAttr symbol) {
|
|
Operation *symbolTableOp = getNearestSymbolTable(from);
|
|
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable Trait Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
LogicalResult detail::verifySymbolTable(Operation *op) {
|
|
if (op->getNumRegions() != 1)
|
|
return op->emitOpError()
|
|
<< "Operations with a 'SymbolTable' must have exactly one region";
|
|
if (!llvm::hasSingleElement(op->getRegion(0)))
|
|
return op->emitOpError()
|
|
<< "Operations with a 'SymbolTable' must have exactly one block";
|
|
|
|
// Check that all symbols are uniquely named within child regions.
|
|
DenseMap<Attribute, Location> nameToOrigLoc;
|
|
for (auto &block : op->getRegion(0)) {
|
|
for (auto &op : block) {
|
|
// Check for a symbol name attribute.
|
|
auto nameAttr =
|
|
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
|
|
if (!nameAttr)
|
|
continue;
|
|
|
|
// Try to insert this symbol into the table.
|
|
auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
|
|
if (!it.second)
|
|
return op.emitError()
|
|
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
|
|
.attachNote(it.first->second)
|
|
.append("see existing symbol definition here");
|
|
}
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult detail::verifySymbol(Operation *op) {
|
|
// Verify the name attribute.
|
|
if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
|
|
return op->emitOpError() << "requires string attribute '"
|
|
<< mlir::SymbolTable::getSymbolAttrName() << "'";
|
|
|
|
// Verify the visibility attribute.
|
|
if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
|
|
StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
|
|
if (!visStrAttr)
|
|
return op->emitOpError() << "requires visibility attribute '"
|
|
<< mlir::SymbolTable::getVisibilityAttrName()
|
|
<< "' to be a string attribute, but got " << vis;
|
|
|
|
if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
|
|
visStrAttr.getValue()))
|
|
return op->emitOpError()
|
|
<< "visibility expected to be one of [\"public\", \"private\", "
|
|
"\"nested\"], but got "
|
|
<< visStrAttr;
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbol Use Lists
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Walk all of the symbol references within the given operation, invoking the
|
|
/// provided callback for each found use. The callbacks takes as arguments: the
|
|
/// use of the symbol, and the nested access chain to the attribute within the
|
|
/// operation dictionary. An access chain is a set of indices into nested
|
|
/// container attributes. For example, a symbol use in an attribute dictionary
|
|
/// that looks like the following:
|
|
///
|
|
/// {use = [{other_attr, @symbol}]}
|
|
///
|
|
/// May have the following access chain:
|
|
///
|
|
/// [0, 0, 1]
|
|
///
|
|
static WalkResult walkSymbolRefs(
|
|
Operation *op,
|
|
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
|
|
// Check to see if the operation has any attributes.
|
|
if (op->getMutableAttrDict().empty())
|
|
return WalkResult::advance();
|
|
DictionaryAttr attrDict = op->getAttrDictionary();
|
|
|
|
// A worklist of a container attribute and the current index into the held
|
|
// attribute list.
|
|
SmallVector<Attribute, 1> attrWorklist(1, attrDict);
|
|
SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
|
|
|
|
// Process the symbol references within the given nested attribute range.
|
|
auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
|
|
for (Attribute attr : llvm::drop_begin(attrRange, index)) {
|
|
/// Check for a nested container attribute, these will also need to be
|
|
/// walked.
|
|
if (attr.isa<ArrayAttr, DictionaryAttr>()) {
|
|
attrWorklist.push_back(attr);
|
|
curAccessChain.push_back(-1);
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
// Invoke the provided callback if we find a symbol use and check for a
|
|
// requested interrupt.
|
|
if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
|
|
if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
|
|
return WalkResult::interrupt();
|
|
|
|
// Make sure to keep the index counter in sync.
|
|
++index;
|
|
}
|
|
|
|
// Pop this container attribute from the worklist.
|
|
attrWorklist.pop_back();
|
|
curAccessChain.pop_back();
|
|
return WalkResult::advance();
|
|
};
|
|
|
|
WalkResult result = WalkResult::advance();
|
|
do {
|
|
Attribute attr = attrWorklist.back();
|
|
int &index = curAccessChain.back();
|
|
++index;
|
|
|
|
// Process the given attribute, which is guaranteed to be a container.
|
|
if (auto dict = attr.dyn_cast<DictionaryAttr>())
|
|
result = processAttrs(index, make_second_range(dict.getValue()));
|
|
else
|
|
result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
|
|
} while (!attrWorklist.empty() && !result.wasInterrupted());
|
|
return result;
|
|
}
|
|
|
|
/// Walk all of the uses, for any symbol, that are nested within the given
|
|
/// regions, invoking the provided callback for each. This does not traverse
|
|
/// into any nested symbol tables.
|
|
static Optional<WalkResult> walkSymbolUses(
|
|
MutableArrayRef<Region> regions,
|
|
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
|
|
SmallVector<Region *, 1> worklist(llvm::make_pointer_range(regions));
|
|
while (!worklist.empty()) {
|
|
for (Operation &op : worklist.pop_back_val()->getOps()) {
|
|
if (walkSymbolRefs(&op, callback).wasInterrupted())
|
|
return WalkResult::interrupt();
|
|
|
|
// Check that this isn't a potentially unknown symbol table.
|
|
if (isPotentiallyUnknownSymbolTable(&op))
|
|
return llvm::None;
|
|
|
|
// If this op defines a new symbol table scope, we can't traverse. Any
|
|
// symbol references nested within 'op' are different semantically.
|
|
if (!op.hasTrait<OpTrait::SymbolTable>()) {
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
}
|
|
}
|
|
}
|
|
return WalkResult::advance();
|
|
}
|
|
/// Walk all of the uses, for any symbol, that are nested within the given
|
|
/// operation 'from', invoking the provided callback for each. This does not
|
|
/// traverse into any nested symbol tables.
|
|
static Optional<WalkResult> walkSymbolUses(
|
|
Operation *from,
|
|
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
|
|
// If this operation has regions, and it, as well as its dialect, isn't
|
|
// registered then conservatively fail. The operation may define a
|
|
// symbol table, so we can't opaquely know if we should traverse to find
|
|
// nested uses.
|
|
if (isPotentiallyUnknownSymbolTable(from))
|
|
return llvm::None;
|
|
|
|
// Walk the uses on this operation.
|
|
if (walkSymbolRefs(from, callback).wasInterrupted())
|
|
return WalkResult::interrupt();
|
|
|
|
// Only recurse if this operation is not a symbol table. A symbol table
|
|
// defines a new scope, so we can't walk the attributes from within the symbol
|
|
// table op.
|
|
if (!from->hasTrait<OpTrait::SymbolTable>())
|
|
return walkSymbolUses(from->getRegions(), callback);
|
|
return WalkResult::advance();
|
|
}
|
|
|
|
namespace {
|
|
/// This class represents a single symbol scope. A symbol scope represents the
|
|
/// set of operations nested within a symbol table that may reference symbols
|
|
/// within that table. A symbol scope does not contain the symbol table
|
|
/// operation itself, just its contained operations. A scope ends at leaf
|
|
/// operations or another symbol table operation.
|
|
struct SymbolScope {
|
|
/// Walk the symbol uses within this scope, invoking the given callback.
|
|
/// This variant is used when the callback type matches that expected by
|
|
/// 'walkSymbolUses'.
|
|
template <typename CallbackT,
|
|
typename std::enable_if_t<!std::is_same<
|
|
typename llvm::function_traits<CallbackT>::result_t,
|
|
void>::value> * = nullptr>
|
|
Optional<WalkResult> walk(CallbackT cback) {
|
|
if (Region *region = limit.dyn_cast<Region *>())
|
|
return walkSymbolUses(*region, cback);
|
|
return walkSymbolUses(limit.get<Operation *>(), cback);
|
|
}
|
|
/// This variant is used when the callback type matches a stripped down type:
|
|
/// void(SymbolTable::SymbolUse use)
|
|
template <typename CallbackT,
|
|
typename std::enable_if_t<std::is_same<
|
|
typename llvm::function_traits<CallbackT>::result_t,
|
|
void>::value> * = nullptr>
|
|
Optional<WalkResult> walk(CallbackT cback) {
|
|
return walk([=](SymbolTable::SymbolUse use, ArrayRef<int>) {
|
|
return cback(use), WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
/// The representation of the symbol within this scope.
|
|
SymbolRefAttr symbol;
|
|
|
|
/// The IR unit representing this scope.
|
|
llvm::PointerUnion<Operation *, Region *> limit;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Collect all of the symbol scopes from 'symbol' to (inclusive) 'limit'.
|
|
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
|
|
Operation *limit) {
|
|
StringRef symName = SymbolTable::getSymbolName(symbol);
|
|
assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
|
|
|
|
// Compute the ancestors of 'limit'.
|
|
llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
|
|
SmallPtrSet<Operation *, 4>>
|
|
limitAncestors;
|
|
Operation *limitAncestor = limit;
|
|
do {
|
|
// Check to see if 'symbol' is an ancestor of 'limit'.
|
|
if (limitAncestor == symbol) {
|
|
// Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
|
|
// doesn't support parent references.
|
|
if (SymbolTable::getNearestSymbolTable(limit->getParentOp()) ==
|
|
symbol->getParentOp())
|
|
return {{SymbolRefAttr::get(symName, symbol->getContext()), limit}};
|
|
return {};
|
|
}
|
|
|
|
limitAncestors.insert(limitAncestor);
|
|
} while ((limitAncestor = limitAncestor->getParentOp()));
|
|
|
|
// Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
|
|
Operation *commonAncestor = symbol->getParentOp();
|
|
do {
|
|
if (limitAncestors.count(commonAncestor))
|
|
break;
|
|
} while ((commonAncestor = commonAncestor->getParentOp()));
|
|
assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
|
|
|
|
// Compute the set of valid nested references for 'symbol' as far up to the
|
|
// common ancestor as possible.
|
|
SmallVector<SymbolRefAttr, 2> references;
|
|
bool collectedAllReferences = succeeded(
|
|
collectValidReferencesFor(symbol, symName, commonAncestor, references));
|
|
|
|
// Handle the case where the common ancestor is 'limit'.
|
|
if (commonAncestor == limit) {
|
|
SmallVector<SymbolScope, 2> scopes;
|
|
|
|
// Walk each of the ancestors of 'symbol', calling the compute function for
|
|
// each one.
|
|
Operation *limitIt = symbol->getParentOp();
|
|
for (size_t i = 0, e = references.size(); i != e;
|
|
++i, limitIt = limitIt->getParentOp()) {
|
|
assert(limitIt->hasTrait<OpTrait::SymbolTable>());
|
|
scopes.push_back({references[i], &limitIt->getRegion(0)});
|
|
}
|
|
return scopes;
|
|
}
|
|
|
|
// Otherwise, we just need the symbol reference for 'symbol' that will be
|
|
// used within 'limit'. This is the last reference in the list we computed
|
|
// above if we were able to collect all references.
|
|
if (!collectedAllReferences)
|
|
return {};
|
|
return {{references.back(), limit}};
|
|
}
|
|
static SmallVector<SymbolScope, 2> collectSymbolScopes(Operation *symbol,
|
|
Region *limit) {
|
|
auto scopes = collectSymbolScopes(symbol, limit->getParentOp());
|
|
|
|
// If we collected some scopes to walk, make sure to constrain the one for
|
|
// limit to the specific region requested.
|
|
if (!scopes.empty())
|
|
scopes.back().limit = limit;
|
|
return scopes;
|
|
}
|
|
template <typename IRUnit>
|
|
static SmallVector<SymbolScope, 1> collectSymbolScopes(StringRef symbol,
|
|
IRUnit *limit) {
|
|
return {{SymbolRefAttr::get(symbol, limit->getContext()), limit}};
|
|
}
|
|
|
|
/// Returns true if the given reference 'SubRef' is a sub reference of the
|
|
/// reference 'ref', i.e. 'ref' is a further qualified reference.
|
|
static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
|
|
if (ref == subRef)
|
|
return true;
|
|
|
|
// If the references are not pointer equal, check to see if `subRef` is a
|
|
// prefix of `ref`.
|
|
if (ref.isa<FlatSymbolRefAttr>() ||
|
|
ref.getRootReference() != subRef.getRootReference())
|
|
return false;
|
|
|
|
auto refLeafs = ref.getNestedReferences();
|
|
auto subRefLeafs = subRef.getNestedReferences();
|
|
return subRefLeafs.size() < refLeafs.size() &&
|
|
subRefLeafs == refLeafs.take_front(subRefLeafs.size());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable::getSymbolUses
|
|
|
|
/// The implementation of SymbolTable::getSymbolUses below.
|
|
template <typename FromT>
|
|
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(FromT from) {
|
|
std::vector<SymbolTable::SymbolUse> uses;
|
|
auto walkFn = [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
|
|
uses.push_back(symbolUse);
|
|
return WalkResult::advance();
|
|
};
|
|
auto result = walkSymbolUses(from, walkFn);
|
|
return result ? Optional<SymbolTable::UseRange>(std::move(uses)) : llvm::None;
|
|
}
|
|
|
|
/// Get an iterator range for all of the uses, for any symbol, that are nested
|
|
/// within the given operation 'from'. This does not traverse into any nested
|
|
/// symbol tables, and will also only return uses on 'from' if it does not
|
|
/// also define a symbol table. This is because we treat the region as the
|
|
/// boundary of the symbol table, and not the op itself. This function returns
|
|
/// None if there are any unknown operations that may potentially be symbol
|
|
/// tables.
|
|
auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
|
|
return getSymbolUsesImpl(from);
|
|
}
|
|
auto SymbolTable::getSymbolUses(Region *from) -> Optional<UseRange> {
|
|
return getSymbolUsesImpl(MutableArrayRef<Region>(*from));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable::getSymbolUses
|
|
|
|
/// The implementation of SymbolTable::getSymbolUses below.
|
|
template <typename SymbolT, typename IRUnitT>
|
|
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
|
|
IRUnitT *limit) {
|
|
std::vector<SymbolTable::SymbolUse> uses;
|
|
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
|
|
if (!scope.walk([&](SymbolTable::SymbolUse symbolUse) {
|
|
if (isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef()))
|
|
uses.push_back(symbolUse);
|
|
}))
|
|
return llvm::None;
|
|
}
|
|
return SymbolTable::UseRange(std::move(uses));
|
|
}
|
|
|
|
/// Get all of the uses of the given symbol that are nested within the given
|
|
/// operation 'from', invoking the provided callback for each. This does not
|
|
/// traverse into any nested symbol tables. This function returns None if there
|
|
/// are any unknown operations that may potentially be symbol tables.
|
|
auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
|
|
-> Optional<UseRange> {
|
|
return getSymbolUsesImpl(symbol, from);
|
|
}
|
|
auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
|
|
-> Optional<UseRange> {
|
|
return getSymbolUsesImpl(symbol, from);
|
|
}
|
|
auto SymbolTable::getSymbolUses(StringRef symbol, Region *from)
|
|
-> Optional<UseRange> {
|
|
return getSymbolUsesImpl(symbol, from);
|
|
}
|
|
auto SymbolTable::getSymbolUses(Operation *symbol, Region *from)
|
|
-> Optional<UseRange> {
|
|
return getSymbolUsesImpl(symbol, from);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable::symbolKnownUseEmpty
|
|
|
|
/// The implementation of SymbolTable::symbolKnownUseEmpty below.
|
|
template <typename SymbolT, typename IRUnitT>
|
|
static bool symbolKnownUseEmptyImpl(SymbolT symbol, IRUnitT *limit) {
|
|
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
|
|
// Walk all of the symbol uses looking for a reference to 'symbol'.
|
|
if (scope.walk([&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
|
|
return isReferencePrefixOf(scope.symbol, symbolUse.getSymbolRef())
|
|
? WalkResult::interrupt()
|
|
: WalkResult::advance();
|
|
}) != WalkResult::advance())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return if the given symbol is known to have no uses that are nested within
|
|
/// the given operation 'from'. This does not traverse into any nested symbol
|
|
/// tables. This function will also return false if there are any unknown
|
|
/// operations that may potentially be symbol tables.
|
|
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
|
|
return symbolKnownUseEmptyImpl(symbol, from);
|
|
}
|
|
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
|
|
return symbolKnownUseEmptyImpl(symbol, from);
|
|
}
|
|
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Region *from) {
|
|
return symbolKnownUseEmptyImpl(symbol, from);
|
|
}
|
|
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Region *from) {
|
|
return symbolKnownUseEmptyImpl(symbol, from);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SymbolTable::replaceAllSymbolUses
|
|
|
|
/// Rebuild the given attribute container after replacing all references to a
|
|
/// symbol with the updated attribute in 'accesses'.
|
|
static Attribute rebuildAttrAfterRAUW(
|
|
Attribute container,
|
|
ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
|
|
unsigned depth) {
|
|
// Given a range of Attributes, update the ones referred to by the given
|
|
// access chains to point to the new symbol attribute.
|
|
auto updateAttrs = [&](auto &&attrRange) {
|
|
auto attrBegin = std::begin(attrRange);
|
|
for (unsigned i = 0, e = accesses.size(); i != e;) {
|
|
ArrayRef<int> access = accesses[i].first;
|
|
Attribute &attr = *std::next(attrBegin, access[depth]);
|
|
|
|
// Check to see if this is a leaf access, i.e. a SymbolRef.
|
|
if (access.size() == depth + 1) {
|
|
attr = accesses[i].second;
|
|
++i;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, this is a container. Collect all of the accesses for this
|
|
// index and recurse. The recursion here is bounded by the size of the
|
|
// largest access array.
|
|
auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
|
|
ArrayRef<int> nextAccess = it.first;
|
|
return nextAccess.size() > depth + 1 &&
|
|
nextAccess[depth] == access[depth];
|
|
});
|
|
attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
|
|
|
|
// Skip over all of the accesses that refer to the nested container.
|
|
i += nestedAccesses.size();
|
|
}
|
|
};
|
|
|
|
if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
|
|
auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
|
|
updateAttrs(make_second_range(newAttrs));
|
|
return DictionaryAttr::get(newAttrs, dictAttr.getContext());
|
|
}
|
|
auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
|
|
updateAttrs(newAttrs);
|
|
return ArrayAttr::get(newAttrs, container.getContext());
|
|
}
|
|
|
|
/// Generates a new symbol reference attribute with a new leaf reference.
|
|
static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
|
|
FlatSymbolRefAttr newLeafAttr) {
|
|
if (oldAttr.isa<FlatSymbolRefAttr>())
|
|
return newLeafAttr;
|
|
auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
|
|
nestedRefs.back() = newLeafAttr;
|
|
return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
|
|
oldAttr.getContext());
|
|
}
|
|
|
|
/// The implementation of SymbolTable::replaceAllSymbolUses below.
|
|
template <typename SymbolT, typename IRUnitT>
|
|
static LogicalResult
|
|
replaceAllSymbolUsesImpl(SymbolT symbol, StringRef newSymbol, IRUnitT *limit) {
|
|
// A collection of operations along with their new attribute dictionary.
|
|
std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
|
|
|
|
// The current operation being processed.
|
|
Operation *curOp = nullptr;
|
|
|
|
// The set of access chains into the attribute dictionary of the current
|
|
// operation, as well as the replacement attribute to use.
|
|
SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
|
|
|
|
// Generate a new attribute dictionary for the current operation by replacing
|
|
// references to the old symbol.
|
|
auto generateNewAttrDict = [&] {
|
|
auto oldDict = curOp->getAttrDictionary();
|
|
auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
|
|
return newDict.cast<DictionaryAttr>();
|
|
};
|
|
|
|
// Generate a new attribute to replace the given attribute.
|
|
MLIRContext *ctx = limit->getContext();
|
|
FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
|
|
for (SymbolScope &scope : collectSymbolScopes(symbol, limit)) {
|
|
SymbolRefAttr newAttr = generateNewRefAttr(scope.symbol, newLeafAttr);
|
|
auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
|
|
ArrayRef<int> accessChain) {
|
|
SymbolRefAttr useRef = symbolUse.getSymbolRef();
|
|
if (!isReferencePrefixOf(scope.symbol, useRef))
|
|
return WalkResult::advance();
|
|
|
|
// If we have a valid match, check to see if this is a proper
|
|
// subreference. If it is, then we will need to generate a different new
|
|
// attribute specifically for this use.
|
|
SymbolRefAttr replacementRef = newAttr;
|
|
if (useRef != scope.symbol) {
|
|
if (scope.symbol.isa<FlatSymbolRefAttr>()) {
|
|
replacementRef =
|
|
SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
|
|
} else {
|
|
auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
|
|
nestedRefs[scope.symbol.getNestedReferences().size() - 1] =
|
|
newLeafAttr;
|
|
replacementRef =
|
|
SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
|
|
}
|
|
}
|
|
|
|
// If there was a previous operation, generate a new attribute dict
|
|
// for it. This means that we've finished processing the current
|
|
// operation, so generate a new dictionary for it.
|
|
if (curOp && symbolUse.getUser() != curOp) {
|
|
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
|
|
accessChains.clear();
|
|
}
|
|
|
|
// Record this access.
|
|
curOp = symbolUse.getUser();
|
|
accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
|
|
return WalkResult::advance();
|
|
};
|
|
if (!scope.walk(walkFn))
|
|
return failure();
|
|
|
|
// Check to see if we have a dangling op that needs to be processed.
|
|
if (curOp) {
|
|
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
|
|
curOp = nullptr;
|
|
}
|
|
}
|
|
|
|
// Update the attribute dictionaries as necessary.
|
|
for (auto &it : updatedAttrDicts)
|
|
it.first->setAttrs(it.second);
|
|
return success();
|
|
}
|
|
|
|
/// Attempt to replace all uses of the given symbol 'oldSymbol' with the
|
|
/// provided symbol 'newSymbol' that are nested within the given operation
|
|
/// 'from'. This does not traverse into any nested symbol tables. If there are
|
|
/// any unknown operations that may potentially be symbol tables, no uses are
|
|
/// replaced and failure is returned.
|
|
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
|
|
StringRef newSymbol,
|
|
Operation *from) {
|
|
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
|
|
}
|
|
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
|
|
StringRef newSymbol,
|
|
Operation *from) {
|
|
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
|
|
}
|
|
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
|
|
StringRef newSymbol,
|
|
Region *from) {
|
|
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
|
|
}
|
|
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
|
|
StringRef newSymbol,
|
|
Region *from) {
|
|
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Symbol Interfaces
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Include the generated symbol interfaces.
|
|
#include "mlir/IR/SymbolInterfaces.cpp.inc"
|