llvm-project/mlir/lib/IR/Attributes.cpp

1462 lines
58 KiB
C++

//===- Attributes.cpp - MLIR Affine Expr Classes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/Attributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Types.h"
#include "mlir/Interfaces/DecodeAttributesInterfaces.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Endian.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// AttributeStorage
//===----------------------------------------------------------------------===//
AttributeStorage::AttributeStorage(Type type)
: type(type.getAsOpaquePointer()) {}
AttributeStorage::AttributeStorage() : type(nullptr) {}
Type AttributeStorage::getType() const {
return Type::getFromOpaquePointer(type);
}
void AttributeStorage::setType(Type newType) {
type = newType.getAsOpaquePointer();
}
//===----------------------------------------------------------------------===//
// Attribute
//===----------------------------------------------------------------------===//
/// Return the type of this attribute.
Type Attribute::getType() const { return impl->getType(); }
/// Return the context this attribute belongs to.
MLIRContext *Attribute::getContext() const { return getType().getContext(); }
/// Get the dialect this attribute is registered to.
Dialect &Attribute::getDialect() const {
return impl->getAbstractAttribute().getDialect();
}
//===----------------------------------------------------------------------===//
// AffineMapAttr
//===----------------------------------------------------------------------===//
AffineMapAttr AffineMapAttr::get(AffineMap value) {
return Base::get(value.getContext(), value);
}
AffineMap AffineMapAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ArrayAttr
//===----------------------------------------------------------------------===//
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
return Base::get(context, value);
}
ArrayRef<Attribute> ArrayAttr::getValue() const { return getImpl()->value; }
Attribute ArrayAttr::operator[](unsigned idx) const {
assert(idx < size() && "index out of bounds");
return getValue()[idx];
}
//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//
/// Helper function that does either an in place sort or sorts from source array
/// into destination. If inPlace then storage is both the source and the
/// destination, else value is the source and storage destination. Returns
/// whether source was sorted.
template <bool inPlace>
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
// Specialize for the common case.
switch (value.size()) {
case 0:
// Zero already sorted.
break;
case 1:
// One already sorted but may need to be copied.
if (!inPlace)
storage.assign({value[0]});
break;
case 2: {
assert(value[0].first != value[1].first &&
"DictionaryAttr element names must be unique");
bool isSorted = value[0] < value[1];
if (inPlace) {
if (!isSorted)
std::swap(storage[0], storage[1]);
} else if (isSorted) {
storage.assign({value[0], value[1]});
} else {
storage.assign({value[1], value[0]});
}
return !isSorted;
}
default:
if (!inPlace)
storage.assign(value.begin(), value.end());
// Check to see they are sorted already.
bool isSorted = llvm::is_sorted(value);
if (!isSorted) {
// If not, do a general sort.
llvm::array_pod_sort(storage.begin(), storage.end());
value = storage;
}
// Ensure that the attribute elements are unique.
assert(std::adjacent_find(value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) {
return l.first == r.first;
}) == value.end() &&
"DictionaryAttr element names must be unique");
return !isSorted;
}
return false;
}
bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
SmallVectorImpl<NamedAttribute> &storage) {
return dictionaryAttrSort</*inPlace=*/false>(value, storage);
}
bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
return dictionaryAttrSort</*inPlace=*/true>(array, array);
}
DictionaryAttr DictionaryAttr::get(ArrayRef<NamedAttribute> value,
MLIRContext *context) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
assert(llvm::all_of(value,
[](const NamedAttribute &attr) { return attr.second; }) &&
"value cannot have null entries");
// We need to sort the element list to canonicalize it.
SmallVector<NamedAttribute, 8> storage;
if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
value = storage;
return Base::get(context, value);
}
/// Construct a dictionary with an array of values that is known to already be
/// sorted by name and uniqued.
DictionaryAttr DictionaryAttr::getWithSorted(ArrayRef<NamedAttribute> value,
MLIRContext *context) {
if (value.empty())
return DictionaryAttr::getEmpty(context);
// Ensure that the attribute elements are unique and sorted.
assert(llvm::is_sorted(value,
[](NamedAttribute l, NamedAttribute r) {
return l.first.strref() < r.first.strref();
}) &&
"expected attribute values to be sorted");
assert(std::adjacent_find(value.begin(), value.end(),
[](NamedAttribute l, NamedAttribute r) {
return l.first == r.first;
}) == value.end() &&
"DictionaryAttr element names must be unique");
return Base::get(context, value);
}
ArrayRef<NamedAttribute> DictionaryAttr::getValue() const {
return getImpl()->getElements();
}
/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
Optional<NamedAttribute> attr = getNamed(name);
return attr ? attr->second : nullptr;
}
Attribute DictionaryAttr::get(Identifier name) const {
Optional<NamedAttribute> attr = getNamed(name);
return attr ? attr->second : nullptr;
}
/// Return the specified named attribute if present, None otherwise.
Optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
ArrayRef<NamedAttribute> values = getValue();
const auto *it = llvm::lower_bound(values, name);
return it != values.end() && it->first == name ? *it
: Optional<NamedAttribute>();
}
Optional<NamedAttribute> DictionaryAttr::getNamed(Identifier name) const {
for (auto elt : getValue())
if (elt.first == name)
return elt;
return llvm::None;
}
DictionaryAttr::iterator DictionaryAttr::begin() const {
return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }
//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//
FloatAttr FloatAttr::get(Type type, double value) {
return Base::get(type.getContext(), type, value);
}
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
return Base::getChecked(loc, type, value);
}
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
return Base::get(type.getContext(), type, value);
}
FloatAttr FloatAttr::getChecked(Type type, const APFloat &value, Location loc) {
return Base::getChecked(loc, type, value);
}
APFloat FloatAttr::getValue() const { return getImpl()->getValue(); }
double FloatAttr::getValueAsDouble() const {
return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
if (&value.getSemantics() != &APFloat::IEEEdouble()) {
bool losesInfo = false;
value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&losesInfo);
}
return value.convertToDouble();
}
/// Verify construction invariants.
static LogicalResult verifyFloatTypeInvariants(Location loc, Type type) {
if (!type.isa<FloatType>())
return emitError(loc, "expected floating point type");
return success();
}
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
double value) {
return verifyFloatTypeInvariants(loc, type);
}
LogicalResult FloatAttr::verifyConstructionInvariants(Location loc, Type type,
const APFloat &value) {
// Verify that the type is correct.
if (failed(verifyFloatTypeInvariants(loc, type)))
return failure();
// Verify that the type semantics match that of the value.
if (&type.cast<FloatType>().getFloatSemantics() != &value.getSemantics()) {
return emitError(
loc, "FloatAttr type doesn't match the type implied by its value");
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//
FlatSymbolRefAttr SymbolRefAttr::get(StringRef value, MLIRContext *ctx) {
return Base::get(ctx, value, llvm::None).cast<FlatSymbolRefAttr>();
}
SymbolRefAttr SymbolRefAttr::get(StringRef value,
ArrayRef<FlatSymbolRefAttr> nestedReferences,
MLIRContext *ctx) {
return Base::get(ctx, value, nestedReferences);
}
StringRef SymbolRefAttr::getRootReference() const { return getImpl()->value; }
StringRef SymbolRefAttr::getLeafReference() const {
ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getValue();
}
ArrayRef<FlatSymbolRefAttr> SymbolRefAttr::getNestedReferences() const {
return getImpl()->getNestedRefs();
}
//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
if (type.isSignlessInteger(1))
return BoolAttr::get(value.getBoolValue(), type.getContext());
return Base::get(type.getContext(), type, value);
}
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
// This uses 64 bit APInts by default for index type.
if (type.isIndex())
return get(type, APInt(IndexType::kInternalStorageBitWidth, value));
auto intType = type.cast<IntegerType>();
return get(type, APInt(intType.getWidth(), value, intType.isSignedInteger()));
}
APInt IntegerAttr::getValue() const { return getImpl()->getValue(); }
int64_t IntegerAttr::getInt() const {
assert((getImpl()->getType().isIndex() ||
getImpl()->getType().isSignlessInteger()) &&
"must be signless integer");
return getValue().getSExtValue();
}
int64_t IntegerAttr::getSInt() const {
assert(getImpl()->getType().isSignedInteger() && "must be signed integer");
return getValue().getSExtValue();
}
uint64_t IntegerAttr::getUInt() const {
assert(getImpl()->getType().isUnsignedInteger() &&
"must be unsigned integer");
return getValue().getZExtValue();
}
static LogicalResult verifyIntegerTypeInvariants(Location loc, Type type) {
if (type.isa<IntegerType, IndexType>())
return success();
return emitError(loc, "expected integer or index type");
}
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
int64_t value) {
return verifyIntegerTypeInvariants(loc, type);
}
LogicalResult IntegerAttr::verifyConstructionInvariants(Location loc, Type type,
const APInt &value) {
if (failed(verifyIntegerTypeInvariants(loc, type)))
return failure();
if (auto integerType = type.dyn_cast<IntegerType>())
if (integerType.getWidth() != value.getBitWidth())
return emitError(loc, "integer type bit width (")
<< integerType.getWidth() << ") doesn't match value bit width ("
<< value.getBitWidth() << ")";
return success();
}
//===----------------------------------------------------------------------===//
// BoolAttr
bool BoolAttr::getValue() const {
auto *storage = reinterpret_cast<IntegerAttributeStorage *>(impl);
return storage->getValue().getBoolValue();
}
bool BoolAttr::classof(Attribute attr) {
IntegerAttr intAttr = attr.dyn_cast<IntegerAttr>();
return intAttr && intAttr.getType().isSignlessInteger(1);
}
//===----------------------------------------------------------------------===//
// IntegerSetAttr
//===----------------------------------------------------------------------===//
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
return Base::get(value.getConstraint(0).getContext(), value);
}
IntegerSet IntegerSetAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//
OpaqueAttr OpaqueAttr::get(Identifier dialect, StringRef attrData, Type type,
MLIRContext *context) {
return Base::get(context, dialect, attrData, type);
}
OpaqueAttr OpaqueAttr::getChecked(Identifier dialect, StringRef attrData,
Type type, Location location) {
return Base::getChecked(location, dialect, attrData, type);
}
/// Returns the dialect namespace of the opaque attribute.
Identifier OpaqueAttr::getDialectNamespace() const {
return getImpl()->dialectNamespace;
}
/// Returns the raw attribute data of the opaque attribute.
StringRef OpaqueAttr::getAttrData() const { return getImpl()->attrData; }
/// Verify the construction of an opaque attribute.
LogicalResult OpaqueAttr::verifyConstructionInvariants(Location loc,
Identifier dialect,
StringRef attrData,
Type type) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitError(loc, "invalid dialect namespace '") << dialect << "'";
return success();
}
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
return get(bytes, NoneType::get(context));
}
/// Get an instance of a StringAttr with the given string and Type.
StringAttr StringAttr::get(StringRef bytes, Type type) {
return Base::get(type.getContext(), bytes, type);
}
StringRef StringAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// TypeAttr
//===----------------------------------------------------------------------===//
TypeAttr TypeAttr::get(Type value) {
return Base::get(value.getContext(), value);
}
Type TypeAttr::getValue() const { return getImpl()->value; }
//===----------------------------------------------------------------------===//
// ElementsAttr
//===----------------------------------------------------------------------===//
ShapedType ElementsAttr::getType() const {
return Attribute::getType().cast<ShapedType>();
}
/// Returns the number of elements held by this attribute.
int64_t ElementsAttr::getNumElements() const {
return getType().getNumElements();
}
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute ElementsAttr::getValue(ArrayRef<uint64_t> index) const {
if (auto denseAttr = dyn_cast<DenseElementsAttr>())
return denseAttr.getValue(index);
if (auto opaqueAttr = dyn_cast<OpaqueElementsAttr>())
return opaqueAttr.getValue(index);
return cast<SparseElementsAttr>().getValue(index);
}
/// Return if the given 'index' refers to a valid element in this attribute.
bool ElementsAttr::isValidIndex(ArrayRef<uint64_t> index) const {
auto type = getType();
// Verify that the rank of the indices matches the held type.
auto rank = type.getRank();
if (rank != static_cast<int64_t>(index.size()))
return false;
// Verify that all of the indices are within the shape dimensions.
auto shape = type.getShape();
return llvm::all_of(llvm::seq<int>(0, rank), [&](int i) {
return static_cast<int64_t>(index[i]) < shape[i];
});
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>())
return intOrFpAttr.mapValues(newElementType, mapping);
llvm_unreachable("unsupported ElementsAttr subtype");
}
ElementsAttr
ElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APFloat &)> mapping) const {
if (auto intOrFpAttr = dyn_cast<DenseElementsAttr>())
return intOrFpAttr.mapValues(newElementType, mapping);
llvm_unreachable("unsupported ElementsAttr subtype");
}
/// Method for support type inquiry through isa, cast and dyn_cast.
bool ElementsAttr::classof(Attribute attr) {
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr,
OpaqueElementsAttr, SparseElementsAttr>();
}
/// Returns the 1 dimensional flattened row-major index from the given
/// multi-dimensional index.
uint64_t ElementsAttr::getFlattenedIndex(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// Reduce the provided multidimensional index into a flattended 1D row-major
// index.
auto rank = type.getRank();
auto shape = type.getShape();
uint64_t valueIndex = 0;
uint64_t dimMultiplier = 1;
for (int i = rank - 1; i >= 0; --i) {
valueIndex += index[i] * dimMultiplier;
dimMultiplier *= shape[i];
}
return valueIndex;
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Utilities
//===----------------------------------------------------------------------===//
/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
static size_t getDenseElementStorageWidth(Type elementType) {
return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
}
/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
if (value)
rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
else
rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}
/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}
/// Get start position of actual data in `value`. Actual data is
/// stored in last `bitWidth`/CHAR_BIT bytes in big endian.
static char *getAPIntDataPos(APInt &value, size_t bitWidth) {
char *dataPos =
const_cast<char *>(reinterpret_cast<const char *>(value.getRawData()));
if (llvm::support::endian::system_endianness() ==
llvm::support::endianness::big)
dataPos = dataPos + 8 - llvm::divideCeil(bitWidth, CHAR_BIT);
return dataPos;
}
/// Read APInt `value` from appropriate position.
static void readAPInt(APInt &value, size_t bitWidth, char *outData) {
char *dataPos = getAPIntDataPos(value, bitWidth);
std::copy_n(dataPos, llvm::divideCeil(bitWidth, CHAR_BIT), outData);
}
/// Write `inData` to appropriate position of APInt `value`.
static void writeAPInt(const char *inData, size_t bitWidth, APInt &value) {
char *dataPos = getAPIntDataPos(value, bitWidth);
std::copy_n(inData, llvm::divideCeil(bitWidth, CHAR_BIT), dataPos);
}
/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
size_t bitWidth = value.getBitWidth();
// If the bitwidth is 1 we just toggle the specific bit.
if (bitWidth == 1)
return setBit(rawData, bitPos, value.isOneValue());
// Otherwise, the bit position is guaranteed to be byte aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
readAPInt(value, bitWidth, rawData + (bitPos / CHAR_BIT));
}
/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
// Handle a boolean bit position.
if (bitWidth == 1)
return APInt(1, getBit(rawData, bitPos) ? 1 : 0);
// Otherwise, the bit position must be 8-bit aligned.
assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
APInt result(bitWidth, 0);
writeAPInt(rawData + (bitPos / CHAR_BIT), bitWidth, result);
return result;
}
/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
/// the same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
return (values.size() == 1) ||
(type.getNumElements() == static_cast<int64_t>(values.size()));
}
//===----------------------------------------------------------------------===//
// DenseElementAttr Iterators
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AttributeElementIterator
DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
DenseElementsAttr attr, size_t index)
: llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
Attribute, Attribute, Attribute>(
attr.getAsOpaquePointer(), index) {}
Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
auto owner = getFromOpaquePointer(base).cast<DenseElementsAttr>();
Type eltTy = owner.getType().getElementType();
if (auto intEltTy = eltTy.dyn_cast<IntegerType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (eltTy.isa<IndexType>())
return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
if (auto floatEltTy = eltTy.dyn_cast<FloatType>()) {
IntElementIterator intIt(owner, index);
FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
return FloatAttr::get(eltTy, *floatIt);
}
if (owner.isa<DenseStringElementsAttr>()) {
ArrayRef<StringRef> vals = owner.getRawStringData();
return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
}
llvm_unreachable("unexpected element type");
}
//===----------------------------------------------------------------------===//
// BoolElementIterator
DenseElementsAttr::BoolElementIterator::BoolElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {}
bool DenseElementsAttr::BoolElementIterator::operator*() const {
return getBit(getData(), getDataIndex());
}
//===----------------------------------------------------------------------===//
// IntElementIterator
DenseElementsAttr::IntElementIterator::IntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
attr.getRawData().data(), attr.isSplat(), dataIndex),
bitWidth(getDenseElementBitWidth(attr.getType().getElementType())) {}
APInt DenseElementsAttr::IntElementIterator::operator*() const {
return readBits(getData(),
getDataIndex() * getDenseElementStorageWidth(bitWidth),
bitWidth);
}
//===----------------------------------------------------------------------===//
// ComplexIntElementIterator
DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
DenseElementsAttr attr, size_t dataIndex)
: DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
std::complex<APInt>, std::complex<APInt>,
std::complex<APInt>>(
attr.getRawData().data(), attr.isSplat(), dataIndex) {
auto complexType = attr.getType().getElementType().cast<ComplexType>();
bitWidth = getDenseElementBitWidth(complexType.getElementType());
}
std::complex<APInt>
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
size_t storageWidth = getDenseElementStorageWidth(bitWidth);
size_t offset = getDataIndex() * storageWidth * 2;
return {readBits(getData(), offset, bitWidth),
readBits(getData(), offset + storageWidth, bitWidth)};
}
//===----------------------------------------------------------------------===//
// FloatElementIterator
DenseElementsAttr::FloatElementIterator::FloatElementIterator(
const llvm::fltSemantics &smt, IntElementIterator it)
: llvm::mapped_iterator<IntElementIterator,
std::function<APFloat(const APInt &)>>(
it, [&](const APInt &val) { return APFloat(smt, val); }) {}
//===----------------------------------------------------------------------===//
// ComplexFloatElementIterator
DenseElementsAttr::ComplexFloatElementIterator::ComplexFloatElementIterator(
const llvm::fltSemantics &smt, ComplexIntElementIterator it)
: llvm::mapped_iterator<
ComplexIntElementIterator,
std::function<std::complex<APFloat>(const std::complex<APInt> &)>>(
it, [&](const std::complex<APInt> &val) -> std::complex<APFloat> {
return {APFloat(smt, val.real()), APFloat(smt, val.imag())};
}) {}
//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//
/// Method for support type inquiry through isa, cast and dyn_cast.
bool DenseElementsAttr::classof(Attribute attr) {
return attr.isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>();
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<Attribute> values) {
assert(hasSameElementsOrSplat(type, values));
// If the element type is not based on int/float/index, assume it is a string
// type.
auto eltType = type.getElementType();
if (!type.getElementType().isIntOrIndexOrFloat()) {
SmallVector<StringRef, 8> stringValues;
stringValues.reserve(values.size());
for (Attribute attr : values) {
assert(attr.isa<StringAttr>() &&
"expected string value for non integer/index/float element");
stringValues.push_back(attr.cast<StringAttr>().getValue());
}
return get(type, stringValues);
}
// Otherwise, get the raw storage width to use for the allocation.
size_t bitWidth = getDenseElementBitWidth(eltType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
// Compress the attribute values into a character buffer.
SmallVector<char, 8> data(llvm::divideCeil(storageBitWidth, CHAR_BIT) *
values.size());
APInt intVal;
for (unsigned i = 0, e = values.size(); i < e; ++i) {
assert(eltType == values[i].getType() &&
"expected attribute value to have element type");
if (eltType.isa<FloatType>())
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
else if (eltType.isa<IntegerType>())
intVal = values[i].cast<IntegerAttr>().getValue();
else
llvm_unreachable("unexpected element type");
assert(intVal.getBitWidth() == bitWidth &&
"expected value to have same bitwidth as element type");
writeBits(data.data(), i * storageBitWidth, intVal);
}
return DenseIntOrFPElementsAttr::getRaw(type, data,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<bool> values) {
assert(hasSameElementsOrSplat(type, values));
assert(type.getElementType().isInteger(1));
std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));
for (int i = 0, e = values.size(); i != e; ++i)
setBit(buff.data(), i, values[i]);
return DenseIntOrFPElementsAttr::getRaw(type, buff,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<StringRef> values) {
assert(!type.getElementType().isIntOrFloat());
return DenseStringElementsAttr::get(type, values);
}
/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APInt> values) {
assert(type.getElementType().isIntOrIndex());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APInt>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<IntegerType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
values.size() * 2);
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals,
/*isSplat=*/(values.size() == 1));
}
// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
ArrayRef<APFloat> values) {
assert(type.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values,
/*isSplat=*/(values.size() == 1));
}
DenseElementsAttr
DenseElementsAttr::get(ShapedType type,
ArrayRef<std::complex<APFloat>> values) {
ComplexType complex = type.getElementType().cast<ComplexType>();
assert(complex.getElementType().isa<FloatType>());
assert(hasSameElementsOrSplat(type, values));
ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
values.size() * 2);
size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals,
/*isSplat=*/(values.size() == 1));
}
/// Construct a dense elements attribute from a raw buffer representing the
/// data for this attribute. Users should generally not use this methods as
/// the expected buffer format may not be a form the user expects.
DenseElementsAttr DenseElementsAttr::getFromRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool isSplatBuffer) {
return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer, isSplatBuffer);
}
/// Returns true if the given buffer is a valid raw buffer for the given type.
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
ArrayRef<char> rawBuffer,
bool &detectedSplat) {
size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
// Storage width of 1 is special as it is packed by the bit.
if (storageWidth == 1) {
// Check for a splat, or a buffer equal to the number of elements.
if ((detectedSplat = rawBuffer.size() == 1))
return true;
return rawBufferWidth == llvm::alignTo<8>(type.getNumElements());
}
// All other types are 8-bit aligned.
if ((detectedSplat = rawBufferWidth == storageWidth))
return true;
return rawBufferWidth == (storageWidth * type.getNumElements());
}
/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
bool isSigned) {
// Make sure that the data element size is the same as the type element width.
if (getDenseElementBitWidth(type) !=
static_cast<size_t>(dataEltSize * CHAR_BIT))
return false;
// Check that the element type is either float or integer or index.
if (!isInt)
return type.isa<FloatType>();
if (type.isIndex())
return true;
auto intType = type.dyn_cast<IntegerType>();
if (!intType)
return false;
// Make sure signedness semantics is consistent.
if (intType.isSignless())
return true;
return intType.isSigned() ? isSigned : !isSigned;
}
/// Defaults down the subclass implementation.
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt, bool isSigned) {
return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
isSigned);
}
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
isInt, isSigned);
}
/// A method used to verify specific type invariants that the templatized 'get'
/// method cannot.
bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(getType().getElementType(), dataEltSize, isInt,
isSigned);
}
/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute.
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
bool isSigned) const {
return ::isValidIntOrFloat(
getType().getElementType().cast<ComplexType>().getElementType(),
dataEltSize / 2, isInt, isSigned);
}
/// Returns true if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const {
return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
}
/// Return the held element values as a range of Attributes.
auto DenseElementsAttr::getAttributeValues() const
-> llvm::iterator_range<AttributeElementIterator> {
return {attr_value_begin(), attr_value_end()};
}
auto DenseElementsAttr::attr_value_begin() const -> AttributeElementIterator {
return AttributeElementIterator(*this, 0);
}
auto DenseElementsAttr::attr_value_end() const -> AttributeElementIterator {
return AttributeElementIterator(*this, getNumElements());
}
/// Return the held element values as a range of bool. The element type of
/// this attribute must be of integer type of bitwidth 1.
auto DenseElementsAttr::getBoolValues() const
-> llvm::iterator_range<BoolElementIterator> {
auto eltType = getType().getElementType().dyn_cast<IntegerType>();
assert(eltType && eltType.getWidth() == 1 && "expected i1 integer type");
(void)eltType;
return {BoolElementIterator(*this, 0),
BoolElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APInts. The element type of
/// this attribute must be of integer type.
auto DenseElementsAttr::getIntValues() const
-> llvm::iterator_range<IntElementIterator> {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return {raw_int_begin(), raw_int_end()};
}
auto DenseElementsAttr::int_value_begin() const -> IntElementIterator {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return raw_int_begin();
}
auto DenseElementsAttr::int_value_end() const -> IntElementIterator {
assert(getType().getElementType().isIntOrIndex() && "expected integral type");
return raw_int_end();
}
auto DenseElementsAttr::getComplexIntValues() const
-> llvm::iterator_range<ComplexIntElementIterator> {
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
(void)eltTy;
assert(eltTy.isa<IntegerType>() && "expected complex integral type");
return {ComplexIntElementIterator(*this, 0),
ComplexIntElementIterator(*this, getNumElements())};
}
/// Return the held element values as a range of APFloat. The element type of
/// this attribute must be of float type.
auto DenseElementsAttr::getFloatValues() const
-> llvm::iterator_range<FloatElementIterator> {
auto elementType = getType().getElementType().cast<FloatType>();
const auto &elementSemantics = elementType.getFloatSemantics();
return {FloatElementIterator(elementSemantics, raw_int_begin()),
FloatElementIterator(elementSemantics, raw_int_end())};
}
auto DenseElementsAttr::float_value_begin() const -> FloatElementIterator {
return getFloatValues().begin();
}
auto DenseElementsAttr::float_value_end() const -> FloatElementIterator {
return getFloatValues().end();
}
auto DenseElementsAttr::getComplexFloatValues() const
-> llvm::iterator_range<ComplexFloatElementIterator> {
Type eltTy = getType().getElementType().cast<ComplexType>().getElementType();
assert(eltTy.isa<FloatType>() && "expected complex float type");
const auto &semantics = eltTy.cast<FloatType>().getFloatSemantics();
return {{semantics, {*this, 0}},
{semantics, {*this, static_cast<size_t>(getNumElements())}}};
}
/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
return static_cast<DenseIntOrFPElementsAttributeStorage *>(impl)->data;
}
ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
return static_cast<DenseStringElementsAttributeStorage *>(impl)->data;
}
/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
ShapedType curType = getType();
if (curType == newType)
return *this;
(void)curType;
assert(newType.getElementType() == curType.getElementType() &&
"expected the same element type");
assert(newType.getNumElements() == curType.getNumElements() &&
"expected the same number of elements");
return DenseIntOrFPElementsAttr::getRaw(newType, getRawData(), isSplat());
}
DenseElementsAttr
DenseElementsAttr::mapValues(Type newElementType,
function_ref<APInt(const APInt &)> mapping) const {
return cast<DenseIntElementsAttr>().mapValues(newElementType, mapping);
}
DenseElementsAttr DenseElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
return cast<DenseFPElementsAttr>().mapValues(newElementType, mapping);
}
//===----------------------------------------------------------------------===//
// DenseStringElementsAttr
//===----------------------------------------------------------------------===//
DenseStringElementsAttr
DenseStringElementsAttr::get(ShapedType type, ArrayRef<StringRef> values) {
return Base::get(type.getContext(), type, values, (values.size() == 1));
}
//===----------------------------------------------------------------------===//
// DenseIntOrFPElementsAttr
//===----------------------------------------------------------------------===//
/// Utility method to write a range of APInt values to a buffer.
template <typename APRangeT>
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
APRangeT &&values) {
data.resize(llvm::divideCeil(storageWidth, CHAR_BIT) * llvm::size(values));
size_t offset = 0;
for (auto it = values.begin(), e = values.end(); it != e;
++it, offset += storageWidth) {
assert((*it).getBitWidth() <= storageWidth);
writeBits(data.data(), offset, *it);
}
}
/// Constructs a dense elements attribute from an array of raw APFloat values.
/// Each APFloat value is expected to have the same bitwidth as the element
/// type of 'type'. 'type' must be a vector or tensor with static shape.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APFloat> values,
bool isSplat) {
std::vector<char> data;
auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
/// Constructs a dense elements attribute from an array of raw APInt values.
/// Each APInt value is expected to have the same bitwidth as the element type
/// of 'type'.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
size_t storageWidth,
ArrayRef<APInt> values,
bool isSplat) {
std::vector<char> data;
writeAPIntsToBuffer(storageWidth, data, values);
return DenseIntOrFPElementsAttr::getRaw(type, data, isSplat);
}
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
ArrayRef<char> data,
bool isSplat) {
assert((type.isa<RankedTensorType, VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), type, data, isSplat);
}
/// Overload of the raw 'get' method that asserts that the given type is of
/// complex type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
ArrayRef<char> data,
int64_t dataEltSize,
bool isInt,
bool isSigned) {
assert(::isValidIntOrFloat(
type.getElementType().cast<ComplexType>().getElementType(),
dataEltSize / 2, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
int64_t dataEltSize, bool isInt,
bool isSigned) {
assert(
::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));
int64_t numElements = data.size() / dataEltSize;
assert(numElements == 1 || numElements == type.getNumElements());
return getRaw(type, data, /*isSplat=*/numElements == 1);
}
//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//
template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
Type newElementType,
llvm::SmallVectorImpl<char> &data) {
size_t bitWidth = getDenseElementBitWidth(newElementType);
size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);
ShapedType newArrayType;
if (inType.isa<RankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<UnrankedTensorType>())
newArrayType = RankedTensorType::get(inType.getShape(), newElementType);
else if (inType.isa<VectorType>())
newArrayType = VectorType::get(inType.getShape(), newElementType);
else
assert(newArrayType && "Unhandled tensor type");
size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
data.resize(llvm::divideCeil(storageBitWidth, CHAR_BIT) * numRawElements);
// Functor used to process a single element value of the attribute.
auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
auto newInt = mapping(value);
assert(newInt.getBitWidth() == bitWidth);
writeBits(data.data(), index * storageBitWidth, newInt);
};
// Check for the splat case.
if (attr.isSplat()) {
processElt(*attr.begin(), /*index=*/0);
return newArrayType;
}
// Otherwise, process all of the element values.
uint64_t elementIdx = 0;
for (auto value : attr)
processElt(value, elementIdx++);
return newArrayType;
}
DenseElementsAttr DenseFPElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//
DenseElementsAttr DenseIntElementsAttr::mapValues(
Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
llvm::SmallVector<char, 8> elementData;
auto newArrayType =
mappingHelper(mapping, *this, getType(), newElementType, elementData);
return getRaw(newArrayType, elementData, isSplat());
}
/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
return attr.isa<DenseElementsAttr>() &&
attr.getType().cast<ShapedType>().getElementType().isIntOrIndex();
}
//===----------------------------------------------------------------------===//
// OpaqueElementsAttr
//===----------------------------------------------------------------------===//
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect, ShapedType type,
StringRef bytes) {
assert(TensorType::isValidElementType(type.getElementType()) &&
"Input element type should be a valid tensor element type");
return Base::get(type.getContext(), type, dialect, bytes);
}
StringRef OpaqueElementsAttr::getValue() const { return getImpl()->bytes; }
/// Return the value at the given index. If index does not refer to a valid
/// element, then a null attribute is returned.
Attribute OpaqueElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
return Attribute();
}
Dialect *OpaqueElementsAttr::getDialect() const { return getImpl()->dialect; }
bool OpaqueElementsAttr::decode(ElementsAttr &result) {
auto *d = getDialect();
if (!d)
return true;
auto *interface =
d->getRegisteredInterface<DialectDecodeAttributesInterface>();
if (!interface)
return true;
return failed(interface->decode(*this, result));
}
//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//
SparseElementsAttr SparseElementsAttr::get(ShapedType type,
DenseElementsAttr indices,
DenseElementsAttr values) {
assert(indices.getType().getElementType().isInteger(64) &&
"expected sparse indices to be 64-bit integer values");
assert((type.isa<RankedTensorType, VectorType>()) &&
"type must be ranked tensor or vector");
assert(type.hasStaticShape() && "type must have static shape");
return Base::get(type.getContext(), type,
indices.cast<DenseIntElementsAttr>(), values);
}
DenseIntElementsAttr SparseElementsAttr::getIndices() const {
return getImpl()->indices;
}
DenseElementsAttr SparseElementsAttr::getValues() const {
return getImpl()->values;
}
/// Return the value of the element at the given index.
Attribute SparseElementsAttr::getValue(ArrayRef<uint64_t> index) const {
assert(isValidIndex(index) && "expected valid multi-dimensional index");
auto type = getType();
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
// Check to see if the indices are a splat.
if (sparseIndices.isSplat()) {
// If the index is also not a splat of the index value, we know that the
// value is zero.
auto splatIndex = *sparseIndexValues.begin();
if (llvm::any_of(index, [=](uint64_t i) { return i != splatIndex; }))
return getZeroAttr();
// If the indices are a splat, we also expect the values to be a splat.
assert(getValues().isSplat() && "expected splat values");
return getValues().getSplatValue();
}
// Build a mapping between known indices and the offset of the stored element.
llvm::SmallDenseMap<llvm::ArrayRef<uint64_t>, size_t> mappedIndices;
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = type.getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
mappedIndices.try_emplace(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}, i);
// Look for the provided index key within the mapped indices. If the provided
// index is not found, then return a zero attribute.
auto it = mappedIndices.find(index);
if (it == mappedIndices.end())
return getZeroAttr();
// Otherwise, return the held sparse value element.
return getValues().getValue(it->second);
}
/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
auto eltType = getType().getElementType().cast<FloatType>();
return APFloat(eltType.getFloatSemantics());
}
/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
auto eltType = getType().getElementType().cast<IntegerType>();
return APInt::getNullValue(eltType.getWidth());
}
/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
auto eltType = getType().getElementType();
// Handle floating point elements.
if (eltType.isa<FloatType>())
return FloatAttr::get(eltType, 0);
// Otherwise, this is an integer.
// TODO: Handle StringAttr here.
return IntegerAttr::get(eltType, 0);
}
/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
std::vector<ptrdiff_t> flatSparseIndices;
// The sparse indices are 64-bit integers, so we can reinterpret the raw data
// as a 1-D index array.
auto sparseIndices = getIndices();
auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
if (sparseIndices.isSplat()) {
SmallVector<uint64_t, 8> indices(getType().getRank(),
*sparseIndexValues.begin());
flatSparseIndices.push_back(getFlattenedIndex(indices));
return flatSparseIndices;
}
// Otherwise, reinterpret each index as an ArrayRef when flattening.
auto numSparseIndices = sparseIndices.getType().getDimSize(0);
size_t rank = getType().getRank();
for (size_t i = 0, e = numSparseIndices; i != e; ++i)
flatSparseIndices.push_back(getFlattenedIndex(
{&*std::next(sparseIndexValues.begin(), i * rank), rank}));
return flatSparseIndices;
}
//===----------------------------------------------------------------------===//
// MutableDictionaryAttr
//===----------------------------------------------------------------------===//
MutableDictionaryAttr::MutableDictionaryAttr(
ArrayRef<NamedAttribute> attributes) {
setAttrs(attributes);
}
/// Return the underlying dictionary attribute.
DictionaryAttr
MutableDictionaryAttr::getDictionary(MLIRContext *context) const {
// Construct empty DictionaryAttr if needed.
if (!attrs)
return DictionaryAttr::get({}, context);
return attrs;
}
ArrayRef<NamedAttribute> MutableDictionaryAttr::getAttrs() const {
return attrs ? attrs.getValue() : llvm::None;
}
/// Replace the held attributes with ones provided in 'newAttrs'.
void MutableDictionaryAttr::setAttrs(ArrayRef<NamedAttribute> attributes) {
// Don't create an attribute list if there are no attributes.
if (attributes.empty())
attrs = nullptr;
else
attrs = DictionaryAttr::get(attributes, attributes[0].second.getContext());
}
/// Return the specified attribute if present, null otherwise.
Attribute MutableDictionaryAttr::get(StringRef name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// Return the specified attribute if present, null otherwise.
Attribute MutableDictionaryAttr::get(Identifier name) const {
return attrs ? attrs.get(name) : nullptr;
}
/// Return the specified named attribute if present, None otherwise.
Optional<NamedAttribute> MutableDictionaryAttr::getNamed(StringRef name) const {
return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
}
Optional<NamedAttribute>
MutableDictionaryAttr::getNamed(Identifier name) const {
return attrs ? attrs.getNamed(name) : Optional<NamedAttribute>();
}
/// If the an attribute exists with the specified name, change it to the new
/// value. Otherwise, add a new attribute with the specified name/value.
void MutableDictionaryAttr::set(Identifier name, Attribute value) {
assert(value && "attributes may never be null");
// Look for an existing value for the given name, and set it in-place.
ArrayRef<NamedAttribute> values = getAttrs();
const auto *it = llvm::find_if(
values, [name](NamedAttribute attr) { return attr.first == name; });
if (it != values.end()) {
// Bail out early if the value is the same as what we already have.
if (it->second == value)
return;
SmallVector<NamedAttribute, 8> newAttrs(values.begin(), values.end());
newAttrs[it - values.begin()].second = value;
attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
return;
}
// Otherwise, insert the new attribute into its sorted position.
it = llvm::lower_bound(values, name);
SmallVector<NamedAttribute, 8> newAttrs;
newAttrs.reserve(values.size() + 1);
newAttrs.append(values.begin(), it);
newAttrs.push_back({name, value});
newAttrs.append(it, values.end());
attrs = DictionaryAttr::getWithSorted(newAttrs, value.getContext());
}
/// Remove the attribute with the specified name if it exists. The return
/// value indicates whether the attribute was present or not.
auto MutableDictionaryAttr::remove(Identifier name) -> RemoveResult {
auto origAttrs = getAttrs();
for (unsigned i = 0, e = origAttrs.size(); i != e; ++i) {
if (origAttrs[i].first == name) {
// Handle the simple case of removing the only attribute in the list.
if (e == 1) {
attrs = nullptr;
return RemoveResult::Removed;
}
SmallVector<NamedAttribute, 8> newAttrs;
newAttrs.reserve(origAttrs.size() - 1);
newAttrs.append(origAttrs.begin(), origAttrs.begin() + i);
newAttrs.append(origAttrs.begin() + i + 1, origAttrs.end());
attrs = DictionaryAttr::getWithSorted(newAttrs,
newAttrs[0].second.getContext());
return RemoveResult::Removed;
}
}
return RemoveResult::NotFound;
}
bool mlir::operator<(const NamedAttribute &lhs, const NamedAttribute &rhs) {
return strcmp(lhs.first.data(), rhs.first.data()) < 0;
}
bool mlir::operator<(const NamedAttribute &lhs, StringRef rhs) {
// This is correct even when attr.first.data()[name.size()] is not a zero
// string terminator, because we only care about a less than comparison.
// This can't use memcmp, because it doesn't guarantee that it will stop
// reading both buffers if one is shorter than the other, even if there is
// a difference.
return strncmp(lhs.first.data(), rhs.data(), rhs.size()) < 0;
}