forked from OSchip/llvm-project
8849 lines
354 KiB
C++
8849 lines
354 KiB
C++
//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for C++ templates.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "TreeTransform.h"
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclFriend.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/TypeVisitor.h"
|
|
#include "clang/Basic/Builtins.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/DeclSpec.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/ParsedTemplate.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateDeduction.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
#include <iterator>
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
// Exported for use by Parser.
|
|
SourceRange
|
|
clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
|
|
unsigned N) {
|
|
if (!N) return SourceRange();
|
|
return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
|
|
}
|
|
|
|
/// \brief Determine whether the declaration found is acceptable as the name
|
|
/// of a template and, if so, return that template declaration. Otherwise,
|
|
/// returns NULL.
|
|
static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
|
|
NamedDecl *Orig,
|
|
bool AllowFunctionTemplates) {
|
|
NamedDecl *D = Orig->getUnderlyingDecl();
|
|
|
|
if (isa<TemplateDecl>(D)) {
|
|
if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
|
|
return nullptr;
|
|
|
|
return Orig;
|
|
}
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
|
|
// C++ [temp.local]p1:
|
|
// Like normal (non-template) classes, class templates have an
|
|
// injected-class-name (Clause 9). The injected-class-name
|
|
// can be used with or without a template-argument-list. When
|
|
// it is used without a template-argument-list, it is
|
|
// equivalent to the injected-class-name followed by the
|
|
// template-parameters of the class template enclosed in
|
|
// <>. When it is used with a template-argument-list, it
|
|
// refers to the specified class template specialization,
|
|
// which could be the current specialization or another
|
|
// specialization.
|
|
if (Record->isInjectedClassName()) {
|
|
Record = cast<CXXRecordDecl>(Record->getDeclContext());
|
|
if (Record->getDescribedClassTemplate())
|
|
return Record->getDescribedClassTemplate();
|
|
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record))
|
|
return Spec->getSpecializedTemplate();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void Sema::FilterAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates) {
|
|
// The set of class templates we've already seen.
|
|
llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
|
|
LookupResult::Filter filter = R.makeFilter();
|
|
while (filter.hasNext()) {
|
|
NamedDecl *Orig = filter.next();
|
|
NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
|
|
AllowFunctionTemplates);
|
|
if (!Repl)
|
|
filter.erase();
|
|
else if (Repl != Orig) {
|
|
|
|
// C++ [temp.local]p3:
|
|
// A lookup that finds an injected-class-name (10.2) can result in an
|
|
// ambiguity in certain cases (for example, if it is found in more than
|
|
// one base class). If all of the injected-class-names that are found
|
|
// refer to specializations of the same class template, and if the name
|
|
// is used as a template-name, the reference refers to the class
|
|
// template itself and not a specialization thereof, and is not
|
|
// ambiguous.
|
|
if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
|
|
if (!ClassTemplates.insert(ClassTmpl).second) {
|
|
filter.erase();
|
|
continue;
|
|
}
|
|
|
|
// FIXME: we promote access to public here as a workaround to
|
|
// the fact that LookupResult doesn't let us remember that we
|
|
// found this template through a particular injected class name,
|
|
// which means we end up doing nasty things to the invariants.
|
|
// Pretending that access is public is *much* safer.
|
|
filter.replace(Repl, AS_public);
|
|
}
|
|
}
|
|
filter.done();
|
|
}
|
|
|
|
bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
|
|
bool AllowFunctionTemplates) {
|
|
for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
|
|
if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
TemplateNameKind Sema::isTemplateName(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
bool hasTemplateKeyword,
|
|
UnqualifiedId &Name,
|
|
ParsedType ObjectTypePtr,
|
|
bool EnteringContext,
|
|
TemplateTy &TemplateResult,
|
|
bool &MemberOfUnknownSpecialization) {
|
|
assert(getLangOpts().CPlusPlus && "No template names in C!");
|
|
|
|
DeclarationName TName;
|
|
MemberOfUnknownSpecialization = false;
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedId::IK_Identifier:
|
|
TName = DeclarationName(Name.Identifier);
|
|
break;
|
|
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
TName = Context.DeclarationNames.getCXXOperatorName(
|
|
Name.OperatorFunctionId.Operator);
|
|
break;
|
|
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
|
|
break;
|
|
|
|
default:
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
QualType ObjectType = ObjectTypePtr.get();
|
|
|
|
LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
|
|
LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
|
|
MemberOfUnknownSpecialization);
|
|
if (R.empty()) return TNK_Non_template;
|
|
if (R.isAmbiguous()) {
|
|
// Suppress diagnostics; we'll redo this lookup later.
|
|
R.suppressDiagnostics();
|
|
|
|
// FIXME: we might have ambiguous templates, in which case we
|
|
// should at least parse them properly!
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
TemplateName Template;
|
|
TemplateNameKind TemplateKind;
|
|
|
|
unsigned ResultCount = R.end() - R.begin();
|
|
if (ResultCount > 1) {
|
|
// We assume that we'll preserve the qualifier from a function
|
|
// template name in other ways.
|
|
Template = Context.getOverloadedTemplateName(R.begin(), R.end());
|
|
TemplateKind = TNK_Function_template;
|
|
|
|
// We'll do this lookup again later.
|
|
R.suppressDiagnostics();
|
|
} else {
|
|
TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
|
|
|
|
if (SS.isSet() && !SS.isInvalid()) {
|
|
NestedNameSpecifier *Qualifier = SS.getScopeRep();
|
|
Template = Context.getQualifiedTemplateName(Qualifier,
|
|
hasTemplateKeyword, TD);
|
|
} else {
|
|
Template = TemplateName(TD);
|
|
}
|
|
|
|
if (isa<FunctionTemplateDecl>(TD)) {
|
|
TemplateKind = TNK_Function_template;
|
|
|
|
// We'll do this lookup again later.
|
|
R.suppressDiagnostics();
|
|
} else {
|
|
assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
|
|
isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
|
|
isa<BuiltinTemplateDecl>(TD));
|
|
TemplateKind =
|
|
isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
|
|
}
|
|
}
|
|
|
|
TemplateResult = TemplateTy::make(Template);
|
|
return TemplateKind;
|
|
}
|
|
|
|
bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
|
|
SourceLocation IILoc,
|
|
Scope *S,
|
|
const CXXScopeSpec *SS,
|
|
TemplateTy &SuggestedTemplate,
|
|
TemplateNameKind &SuggestedKind) {
|
|
// We can't recover unless there's a dependent scope specifier preceding the
|
|
// template name.
|
|
// FIXME: Typo correction?
|
|
if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
|
|
computeDeclContext(*SS))
|
|
return false;
|
|
|
|
// The code is missing a 'template' keyword prior to the dependent template
|
|
// name.
|
|
NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
|
|
Diag(IILoc, diag::err_template_kw_missing)
|
|
<< Qualifier << II.getName()
|
|
<< FixItHint::CreateInsertion(IILoc, "template ");
|
|
SuggestedTemplate
|
|
= TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
|
|
SuggestedKind = TNK_Dependent_template_name;
|
|
return true;
|
|
}
|
|
|
|
void Sema::LookupTemplateName(LookupResult &Found,
|
|
Scope *S, CXXScopeSpec &SS,
|
|
QualType ObjectType,
|
|
bool EnteringContext,
|
|
bool &MemberOfUnknownSpecialization) {
|
|
// Determine where to perform name lookup
|
|
MemberOfUnknownSpecialization = false;
|
|
DeclContext *LookupCtx = nullptr;
|
|
bool isDependent = false;
|
|
if (!ObjectType.isNull()) {
|
|
// This nested-name-specifier occurs in a member access expression, e.g.,
|
|
// x->B::f, and we are looking into the type of the object.
|
|
assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
|
|
LookupCtx = computeDeclContext(ObjectType);
|
|
isDependent = ObjectType->isDependentType();
|
|
assert((isDependent || !ObjectType->isIncompleteType() ||
|
|
ObjectType->castAs<TagType>()->isBeingDefined()) &&
|
|
"Caller should have completed object type");
|
|
|
|
// Template names cannot appear inside an Objective-C class or object type.
|
|
if (ObjectType->isObjCObjectOrInterfaceType()) {
|
|
Found.clear();
|
|
return;
|
|
}
|
|
} else if (SS.isSet()) {
|
|
// This nested-name-specifier occurs after another nested-name-specifier,
|
|
// so long into the context associated with the prior nested-name-specifier.
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
isDependent = isDependentScopeSpecifier(SS);
|
|
|
|
// The declaration context must be complete.
|
|
if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
|
|
return;
|
|
}
|
|
|
|
bool ObjectTypeSearchedInScope = false;
|
|
bool AllowFunctionTemplatesInLookup = true;
|
|
if (LookupCtx) {
|
|
// Perform "qualified" name lookup into the declaration context we
|
|
// computed, which is either the type of the base of a member access
|
|
// expression or the declaration context associated with a prior
|
|
// nested-name-specifier.
|
|
LookupQualifiedName(Found, LookupCtx);
|
|
if (!ObjectType.isNull() && Found.empty()) {
|
|
// C++ [basic.lookup.classref]p1:
|
|
// In a class member access expression (5.2.5), if the . or -> token is
|
|
// immediately followed by an identifier followed by a <, the
|
|
// identifier must be looked up to determine whether the < is the
|
|
// beginning of a template argument list (14.2) or a less-than operator.
|
|
// The identifier is first looked up in the class of the object
|
|
// expression. If the identifier is not found, it is then looked up in
|
|
// the context of the entire postfix-expression and shall name a class
|
|
// or function template.
|
|
if (S) LookupName(Found, S);
|
|
ObjectTypeSearchedInScope = true;
|
|
AllowFunctionTemplatesInLookup = false;
|
|
}
|
|
} else if (isDependent && (!S || ObjectType.isNull())) {
|
|
// We cannot look into a dependent object type or nested nme
|
|
// specifier.
|
|
MemberOfUnknownSpecialization = true;
|
|
return;
|
|
} else {
|
|
// Perform unqualified name lookup in the current scope.
|
|
LookupName(Found, S);
|
|
|
|
if (!ObjectType.isNull())
|
|
AllowFunctionTemplatesInLookup = false;
|
|
}
|
|
|
|
if (Found.empty() && !isDependent) {
|
|
// If we did not find any names, attempt to correct any typos.
|
|
DeclarationName Name = Found.getLookupName();
|
|
Found.clear();
|
|
// Simple filter callback that, for keywords, only accepts the C++ *_cast
|
|
auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
|
|
FilterCCC->WantTypeSpecifiers = false;
|
|
FilterCCC->WantExpressionKeywords = false;
|
|
FilterCCC->WantRemainingKeywords = false;
|
|
FilterCCC->WantCXXNamedCasts = true;
|
|
if (TypoCorrection Corrected = CorrectTypo(
|
|
Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
|
|
std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
|
|
Found.setLookupName(Corrected.getCorrection());
|
|
if (auto *ND = Corrected.getFoundDecl())
|
|
Found.addDecl(ND);
|
|
FilterAcceptableTemplateNames(Found);
|
|
if (!Found.empty()) {
|
|
if (LookupCtx) {
|
|
std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
|
|
bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
|
|
Name.getAsString() == CorrectedStr;
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
|
|
<< Name << LookupCtx << DroppedSpecifier
|
|
<< SS.getRange());
|
|
} else {
|
|
diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
|
|
}
|
|
}
|
|
} else {
|
|
Found.setLookupName(Name);
|
|
}
|
|
}
|
|
|
|
FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
|
|
if (Found.empty()) {
|
|
if (isDependent)
|
|
MemberOfUnknownSpecialization = true;
|
|
return;
|
|
}
|
|
|
|
if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
|
|
!getLangOpts().CPlusPlus11) {
|
|
// C++03 [basic.lookup.classref]p1:
|
|
// [...] If the lookup in the class of the object expression finds a
|
|
// template, the name is also looked up in the context of the entire
|
|
// postfix-expression and [...]
|
|
//
|
|
// Note: C++11 does not perform this second lookup.
|
|
LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
|
|
LookupOrdinaryName);
|
|
LookupName(FoundOuter, S);
|
|
FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
|
|
|
|
if (FoundOuter.empty()) {
|
|
// - if the name is not found, the name found in the class of the
|
|
// object expression is used, otherwise
|
|
} else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
|
|
FoundOuter.isAmbiguous()) {
|
|
// - if the name is found in the context of the entire
|
|
// postfix-expression and does not name a class template, the name
|
|
// found in the class of the object expression is used, otherwise
|
|
FoundOuter.clear();
|
|
} else if (!Found.isSuppressingDiagnostics()) {
|
|
// - if the name found is a class template, it must refer to the same
|
|
// entity as the one found in the class of the object expression,
|
|
// otherwise the program is ill-formed.
|
|
if (!Found.isSingleResult() ||
|
|
Found.getFoundDecl()->getCanonicalDecl()
|
|
!= FoundOuter.getFoundDecl()->getCanonicalDecl()) {
|
|
Diag(Found.getNameLoc(),
|
|
diag::ext_nested_name_member_ref_lookup_ambiguous)
|
|
<< Found.getLookupName()
|
|
<< ObjectType;
|
|
Diag(Found.getRepresentativeDecl()->getLocation(),
|
|
diag::note_ambig_member_ref_object_type)
|
|
<< ObjectType;
|
|
Diag(FoundOuter.getFoundDecl()->getLocation(),
|
|
diag::note_ambig_member_ref_scope);
|
|
|
|
// Recover by taking the template that we found in the object
|
|
// expression's type.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// ActOnDependentIdExpression - Handle a dependent id-expression that
|
|
/// was just parsed. This is only possible with an explicit scope
|
|
/// specifier naming a dependent type.
|
|
ExprResult
|
|
Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
bool isAddressOfOperand,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
DeclContext *DC = getFunctionLevelDeclContext();
|
|
|
|
// C++11 [expr.prim.general]p12:
|
|
// An id-expression that denotes a non-static data member or non-static
|
|
// member function of a class can only be used:
|
|
// (...)
|
|
// - if that id-expression denotes a non-static data member and it
|
|
// appears in an unevaluated operand.
|
|
//
|
|
// If this might be the case, form a DependentScopeDeclRefExpr instead of a
|
|
// CXXDependentScopeMemberExpr. The former can instantiate to either
|
|
// DeclRefExpr or MemberExpr depending on lookup results, while the latter is
|
|
// always a MemberExpr.
|
|
bool MightBeCxx11UnevalField =
|
|
getLangOpts().CPlusPlus11 && isUnevaluatedContext();
|
|
|
|
if (!MightBeCxx11UnevalField && !isAddressOfOperand &&
|
|
isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
|
|
QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
|
|
|
|
// Since the 'this' expression is synthesized, we don't need to
|
|
// perform the double-lookup check.
|
|
NamedDecl *FirstQualifierInScope = nullptr;
|
|
|
|
return CXXDependentScopeMemberExpr::Create(
|
|
Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
|
|
/*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
|
|
FirstQualifierInScope, NameInfo, TemplateArgs);
|
|
}
|
|
|
|
return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
|
|
}
|
|
|
|
ExprResult
|
|
Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
return DependentScopeDeclRefExpr::Create(
|
|
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
|
|
TemplateArgs);
|
|
}
|
|
|
|
|
|
/// Determine whether we would be unable to instantiate this template (because
|
|
/// it either has no definition, or is in the process of being instantiated).
|
|
bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
|
|
NamedDecl *Instantiation,
|
|
bool InstantiatedFromMember,
|
|
const NamedDecl *Pattern,
|
|
const NamedDecl *PatternDef,
|
|
TemplateSpecializationKind TSK,
|
|
bool Complain /*= true*/) {
|
|
assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation));
|
|
|
|
if (PatternDef && (isa<FunctionDecl>(PatternDef)
|
|
|| !cast<TagDecl>(PatternDef)->isBeingDefined())) {
|
|
NamedDecl *SuggestedDef = nullptr;
|
|
if (!hasVisibleDefinition(const_cast<NamedDecl*>(PatternDef), &SuggestedDef,
|
|
/*OnlyNeedComplete*/false)) {
|
|
// If we're allowed to diagnose this and recover, do so.
|
|
bool Recover = Complain && !isSFINAEContext();
|
|
if (Complain)
|
|
diagnoseMissingImport(PointOfInstantiation, SuggestedDef,
|
|
Sema::MissingImportKind::Definition, Recover);
|
|
return !Recover;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
|
|
return true;
|
|
|
|
QualType InstantiationTy;
|
|
if (TagDecl *TD = dyn_cast<TagDecl>(Instantiation))
|
|
InstantiationTy = Context.getTypeDeclType(TD);
|
|
if (PatternDef) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_template_instantiate_within_definition)
|
|
<< (TSK != TSK_ImplicitInstantiation)
|
|
<< InstantiationTy;
|
|
// Not much point in noting the template declaration here, since
|
|
// we're lexically inside it.
|
|
Instantiation->setInvalidDecl();
|
|
} else if (InstantiatedFromMember) {
|
|
if (isa<FunctionDecl>(Instantiation)) {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_member)
|
|
<< 1 << Instantiation->getDeclName() << Instantiation->getDeclContext();
|
|
} else {
|
|
Diag(PointOfInstantiation,
|
|
diag::err_implicit_instantiate_member_undefined)
|
|
<< InstantiationTy;
|
|
}
|
|
Diag(Pattern->getLocation(), isa<FunctionDecl>(Instantiation)
|
|
? diag::note_explicit_instantiation_here
|
|
: diag::note_member_declared_at);
|
|
} else {
|
|
if (isa<FunctionDecl>(Instantiation))
|
|
Diag(PointOfInstantiation,
|
|
diag::err_explicit_instantiation_undefined_func_template)
|
|
<< Pattern;
|
|
else
|
|
Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
|
|
<< (TSK != TSK_ImplicitInstantiation)
|
|
<< InstantiationTy;
|
|
Diag(Pattern->getLocation(), isa<FunctionDecl>(Instantiation)
|
|
? diag::note_explicit_instantiation_here
|
|
: diag::note_template_decl_here);
|
|
}
|
|
|
|
// In general, Instantiation isn't marked invalid to get more than one
|
|
// error for multiple undefined instantiations. But the code that does
|
|
// explicit declaration -> explicit definition conversion can't handle
|
|
// invalid declarations, so mark as invalid in that case.
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration)
|
|
Instantiation->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
|
|
/// that the template parameter 'PrevDecl' is being shadowed by a new
|
|
/// declaration at location Loc. Returns true to indicate that this is
|
|
/// an error, and false otherwise.
|
|
void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
|
|
assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
|
|
|
|
// Microsoft Visual C++ permits template parameters to be shadowed.
|
|
if (getLangOpts().MicrosoftExt)
|
|
return;
|
|
|
|
// C++ [temp.local]p4:
|
|
// A template-parameter shall not be redeclared within its
|
|
// scope (including nested scopes).
|
|
Diag(Loc, diag::err_template_param_shadow)
|
|
<< cast<NamedDecl>(PrevDecl)->getDeclName();
|
|
Diag(PrevDecl->getLocation(), diag::note_template_param_here);
|
|
}
|
|
|
|
/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
|
|
/// the parameter D to reference the templated declaration and return a pointer
|
|
/// to the template declaration. Otherwise, do nothing to D and return null.
|
|
TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
|
|
if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
|
|
D = Temp->getTemplatedDecl();
|
|
return Temp;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
|
|
SourceLocation EllipsisLoc) const {
|
|
assert(Kind == Template &&
|
|
"Only template template arguments can be pack expansions here");
|
|
assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
|
|
"Template template argument pack expansion without packs");
|
|
ParsedTemplateArgument Result(*this);
|
|
Result.EllipsisLoc = EllipsisLoc;
|
|
return Result;
|
|
}
|
|
|
|
static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
|
|
const ParsedTemplateArgument &Arg) {
|
|
|
|
switch (Arg.getKind()) {
|
|
case ParsedTemplateArgument::Type: {
|
|
TypeSourceInfo *DI;
|
|
QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
|
|
if (!DI)
|
|
DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
|
|
return TemplateArgumentLoc(TemplateArgument(T), DI);
|
|
}
|
|
|
|
case ParsedTemplateArgument::NonType: {
|
|
Expr *E = static_cast<Expr *>(Arg.getAsExpr());
|
|
return TemplateArgumentLoc(TemplateArgument(E), E);
|
|
}
|
|
|
|
case ParsedTemplateArgument::Template: {
|
|
TemplateName Template = Arg.getAsTemplate().get();
|
|
TemplateArgument TArg;
|
|
if (Arg.getEllipsisLoc().isValid())
|
|
TArg = TemplateArgument(Template, Optional<unsigned int>());
|
|
else
|
|
TArg = Template;
|
|
return TemplateArgumentLoc(TArg,
|
|
Arg.getScopeSpec().getWithLocInContext(
|
|
SemaRef.Context),
|
|
Arg.getLocation(),
|
|
Arg.getEllipsisLoc());
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Unhandled parsed template argument");
|
|
}
|
|
|
|
/// \brief Translates template arguments as provided by the parser
|
|
/// into template arguments used by semantic analysis.
|
|
void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
|
|
TemplateArgs.addArgument(translateTemplateArgument(*this,
|
|
TemplateArgsIn[I]));
|
|
}
|
|
|
|
static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
|
|
SourceLocation Loc,
|
|
IdentifierInfo *Name) {
|
|
NamedDecl *PrevDecl = SemaRef.LookupSingleName(
|
|
S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
|
|
if (PrevDecl && PrevDecl->isTemplateParameter())
|
|
SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
|
|
}
|
|
|
|
/// ActOnTypeParameter - Called when a C++ template type parameter
|
|
/// (e.g., "typename T") has been parsed. Typename specifies whether
|
|
/// the keyword "typename" was used to declare the type parameter
|
|
/// (otherwise, "class" was used), and KeyLoc is the location of the
|
|
/// "class" or "typename" keyword. ParamName is the name of the
|
|
/// parameter (NULL indicates an unnamed template parameter) and
|
|
/// ParamNameLoc is the location of the parameter name (if any).
|
|
/// If the type parameter has a default argument, it will be added
|
|
/// later via ActOnTypeParameterDefault.
|
|
Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
|
|
SourceLocation EllipsisLoc,
|
|
SourceLocation KeyLoc,
|
|
IdentifierInfo *ParamName,
|
|
SourceLocation ParamNameLoc,
|
|
unsigned Depth, unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
ParsedType DefaultArg) {
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template type parameter not in template parameter scope!");
|
|
|
|
SourceLocation Loc = ParamNameLoc;
|
|
if (!ParamName)
|
|
Loc = KeyLoc;
|
|
|
|
bool IsParameterPack = EllipsisLoc.isValid();
|
|
TemplateTypeParmDecl *Param
|
|
= TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
|
|
KeyLoc, Loc, Depth, Position, ParamName,
|
|
Typename, IsParameterPack);
|
|
Param->setAccess(AS_public);
|
|
|
|
if (ParamName) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
|
|
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (DefaultArg && IsParameterPack) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
DefaultArg = nullptr;
|
|
}
|
|
|
|
// Handle the default argument, if provided.
|
|
if (DefaultArg) {
|
|
TypeSourceInfo *DefaultTInfo;
|
|
GetTypeFromParser(DefaultArg, &DefaultTInfo);
|
|
|
|
assert(DefaultTInfo && "expected source information for type");
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
|
|
UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
// Check the template argument itself.
|
|
if (CheckTemplateArgument(Param, DefaultTInfo)) {
|
|
Param->setInvalidDecl();
|
|
return Param;
|
|
}
|
|
|
|
Param->setDefaultArgument(DefaultTInfo);
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
/// \brief Check that the type of a non-type template parameter is
|
|
/// well-formed.
|
|
///
|
|
/// \returns the (possibly-promoted) parameter type if valid;
|
|
/// otherwise, produces a diagnostic and returns a NULL type.
|
|
QualType
|
|
Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
|
|
// We don't allow variably-modified types as the type of non-type template
|
|
// parameters.
|
|
if (T->isVariablyModifiedType()) {
|
|
Diag(Loc, diag::err_variably_modified_nontype_template_param)
|
|
<< T;
|
|
return QualType();
|
|
}
|
|
|
|
// C++ [temp.param]p4:
|
|
//
|
|
// A non-type template-parameter shall have one of the following
|
|
// (optionally cv-qualified) types:
|
|
//
|
|
// -- integral or enumeration type,
|
|
if (T->isIntegralOrEnumerationType() ||
|
|
// -- pointer to object or pointer to function,
|
|
T->isPointerType() ||
|
|
// -- reference to object or reference to function,
|
|
T->isReferenceType() ||
|
|
// -- pointer to member,
|
|
T->isMemberPointerType() ||
|
|
// -- std::nullptr_t.
|
|
T->isNullPtrType() ||
|
|
// If T is a dependent type, we can't do the check now, so we
|
|
// assume that it is well-formed.
|
|
T->isDependentType() ||
|
|
// Allow use of auto in template parameter declarations.
|
|
T->isUndeducedType()) {
|
|
if (T->isUndeducedType()) {
|
|
Diag(Loc, diag::warn_cxx14_compat_template_nontype_parm_auto_type)
|
|
<< QualType(T->getContainedAutoType(), 0);
|
|
}
|
|
// C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
|
|
// are ignored when determining its type.
|
|
return T.getUnqualifiedType();
|
|
}
|
|
|
|
// C++ [temp.param]p8:
|
|
//
|
|
// A non-type template-parameter of type "array of T" or
|
|
// "function returning T" is adjusted to be of type "pointer to
|
|
// T" or "pointer to function returning T", respectively.
|
|
else if (T->isArrayType() || T->isFunctionType())
|
|
return Context.getDecayedType(T);
|
|
|
|
Diag(Loc, diag::err_template_nontype_parm_bad_type)
|
|
<< T;
|
|
|
|
return QualType();
|
|
}
|
|
|
|
Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
|
|
unsigned Depth,
|
|
unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
Expr *Default) {
|
|
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
|
|
QualType T = TInfo->getType();
|
|
|
|
assert(S->isTemplateParamScope() &&
|
|
"Non-type template parameter not in template parameter scope!");
|
|
bool Invalid = false;
|
|
|
|
T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
|
|
if (T.isNull()) {
|
|
T = Context.IntTy; // Recover with an 'int' type.
|
|
Invalid = true;
|
|
}
|
|
|
|
IdentifierInfo *ParamName = D.getIdentifier();
|
|
bool IsParameterPack = D.hasEllipsis();
|
|
NonTypeTemplateParmDecl *Param
|
|
= NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
|
|
D.getLocStart(),
|
|
D.getIdentifierLoc(),
|
|
Depth, Position, ParamName, T,
|
|
IsParameterPack, TInfo);
|
|
Param->setAccess(AS_public);
|
|
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
if (ParamName) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
|
|
ParamName);
|
|
|
|
// Add the template parameter into the current scope.
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (Default && IsParameterPack) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
Default = nullptr;
|
|
}
|
|
|
|
// Check the well-formedness of the default template argument, if provided.
|
|
if (Default) {
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
TemplateArgument Converted;
|
|
ExprResult DefaultRes =
|
|
CheckTemplateArgument(Param, Param->getType(), Default, Converted);
|
|
if (DefaultRes.isInvalid()) {
|
|
Param->setInvalidDecl();
|
|
return Param;
|
|
}
|
|
Default = DefaultRes.get();
|
|
|
|
Param->setDefaultArgument(Default);
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
/// ActOnTemplateTemplateParameter - Called when a C++ template template
|
|
/// parameter (e.g. T in template <template \<typename> class T> class array)
|
|
/// has been parsed. S is the current scope.
|
|
Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
|
|
SourceLocation TmpLoc,
|
|
TemplateParameterList *Params,
|
|
SourceLocation EllipsisLoc,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
unsigned Depth,
|
|
unsigned Position,
|
|
SourceLocation EqualLoc,
|
|
ParsedTemplateArgument Default) {
|
|
assert(S->isTemplateParamScope() &&
|
|
"Template template parameter not in template parameter scope!");
|
|
|
|
// Construct the parameter object.
|
|
bool IsParameterPack = EllipsisLoc.isValid();
|
|
TemplateTemplateParmDecl *Param =
|
|
TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
|
|
NameLoc.isInvalid()? TmpLoc : NameLoc,
|
|
Depth, Position, IsParameterPack,
|
|
Name, Params);
|
|
Param->setAccess(AS_public);
|
|
|
|
// If the template template parameter has a name, then link the identifier
|
|
// into the scope and lookup mechanisms.
|
|
if (Name) {
|
|
maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
|
|
|
|
S->AddDecl(Param);
|
|
IdResolver.AddDecl(Param);
|
|
}
|
|
|
|
if (Params->size() == 0) {
|
|
Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
|
|
<< SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
|
|
Param->setInvalidDecl();
|
|
}
|
|
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument may be specified for any kind of
|
|
// template-parameter that is not a template parameter pack.
|
|
if (IsParameterPack && !Default.isInvalid()) {
|
|
Diag(EqualLoc, diag::err_template_param_pack_default_arg);
|
|
Default = ParsedTemplateArgument();
|
|
}
|
|
|
|
if (!Default.isInvalid()) {
|
|
// Check only that we have a template template argument. We don't want to
|
|
// try to check well-formedness now, because our template template parameter
|
|
// might have dependent types in its template parameters, which we wouldn't
|
|
// be able to match now.
|
|
//
|
|
// If none of the template template parameter's template arguments mention
|
|
// other template parameters, we could actually perform more checking here.
|
|
// However, it isn't worth doing.
|
|
TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
|
|
if (DefaultArg.getArgument().getAsTemplate().isNull()) {
|
|
Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
|
|
<< DefaultArg.getSourceRange();
|
|
return Param;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs.
|
|
if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
|
|
DefaultArg.getArgument().getAsTemplate(),
|
|
UPPC_DefaultArgument))
|
|
return Param;
|
|
|
|
Param->setDefaultArgument(Context, DefaultArg);
|
|
}
|
|
|
|
return Param;
|
|
}
|
|
|
|
/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
|
|
/// constrained by RequiresClause, that contains the template parameters in
|
|
/// Params.
|
|
TemplateParameterList *
|
|
Sema::ActOnTemplateParameterList(unsigned Depth,
|
|
SourceLocation ExportLoc,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ArrayRef<Decl *> Params,
|
|
SourceLocation RAngleLoc,
|
|
Expr *RequiresClause) {
|
|
if (ExportLoc.isValid())
|
|
Diag(ExportLoc, diag::warn_template_export_unsupported);
|
|
|
|
return TemplateParameterList::Create(
|
|
Context, TemplateLoc, LAngleLoc,
|
|
llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
|
|
RAngleLoc, RequiresClause);
|
|
}
|
|
|
|
static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
|
|
if (SS.isSet())
|
|
T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
|
|
}
|
|
|
|
DeclResult
|
|
Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
SourceLocation KWLoc, CXXScopeSpec &SS,
|
|
IdentifierInfo *Name, SourceLocation NameLoc,
|
|
AttributeList *Attr,
|
|
TemplateParameterList *TemplateParams,
|
|
AccessSpecifier AS, SourceLocation ModulePrivateLoc,
|
|
SourceLocation FriendLoc,
|
|
unsigned NumOuterTemplateParamLists,
|
|
TemplateParameterList** OuterTemplateParamLists,
|
|
SkipBodyInfo *SkipBody) {
|
|
assert(TemplateParams && TemplateParams->size() > 0 &&
|
|
"No template parameters");
|
|
assert(TUK != TUK_Reference && "Can only declare or define class templates");
|
|
bool Invalid = false;
|
|
|
|
// Check that we can declare a template here.
|
|
if (CheckTemplateDeclScope(S, TemplateParams))
|
|
return true;
|
|
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TTK_Enum && "can't build template of enumerated type");
|
|
|
|
// There is no such thing as an unnamed class template.
|
|
if (!Name) {
|
|
Diag(KWLoc, diag::err_template_unnamed_class);
|
|
return true;
|
|
}
|
|
|
|
// Find any previous declaration with this name. For a friend with no
|
|
// scope explicitly specified, we only look for tag declarations (per
|
|
// C++11 [basic.lookup.elab]p2).
|
|
DeclContext *SemanticContext;
|
|
LookupResult Previous(*this, Name, NameLoc,
|
|
(SS.isEmpty() && TUK == TUK_Friend)
|
|
? LookupTagName : LookupOrdinaryName,
|
|
ForRedeclaration);
|
|
if (SS.isNotEmpty() && !SS.isInvalid()) {
|
|
SemanticContext = computeDeclContext(SS, true);
|
|
if (!SemanticContext) {
|
|
// FIXME: Horrible, horrible hack! We can't currently represent this
|
|
// in the AST, and historically we have just ignored such friend
|
|
// class templates, so don't complain here.
|
|
Diag(NameLoc, TUK == TUK_Friend
|
|
? diag::warn_template_qualified_friend_ignored
|
|
: diag::err_template_qualified_declarator_no_match)
|
|
<< SS.getScopeRep() << SS.getRange();
|
|
return TUK != TUK_Friend;
|
|
}
|
|
|
|
if (RequireCompleteDeclContext(SS, SemanticContext))
|
|
return true;
|
|
|
|
// If we're adding a template to a dependent context, we may need to
|
|
// rebuilding some of the types used within the template parameter list,
|
|
// now that we know what the current instantiation is.
|
|
if (SemanticContext->isDependentContext()) {
|
|
ContextRAII SavedContext(*this, SemanticContext);
|
|
if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
|
|
Invalid = true;
|
|
} else if (TUK != TUK_Friend && TUK != TUK_Reference)
|
|
diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
|
|
|
|
LookupQualifiedName(Previous, SemanticContext);
|
|
} else {
|
|
SemanticContext = CurContext;
|
|
|
|
// C++14 [class.mem]p14:
|
|
// If T is the name of a class, then each of the following shall have a
|
|
// name different from T:
|
|
// -- every member template of class T
|
|
if (TUK != TUK_Friend &&
|
|
DiagnoseClassNameShadow(SemanticContext,
|
|
DeclarationNameInfo(Name, NameLoc)))
|
|
return true;
|
|
|
|
LookupName(Previous, S);
|
|
}
|
|
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
NamedDecl *PrevDecl = nullptr;
|
|
if (Previous.begin() != Previous.end())
|
|
PrevDecl = (*Previous.begin())->getUnderlyingDecl();
|
|
|
|
if (PrevDecl && PrevDecl->isTemplateParameter()) {
|
|
// Maybe we will complain about the shadowed template parameter.
|
|
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
|
|
// Just pretend that we didn't see the previous declaration.
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
// If there is a previous declaration with the same name, check
|
|
// whether this is a valid redeclaration.
|
|
ClassTemplateDecl *PrevClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
|
|
|
|
// We may have found the injected-class-name of a class template,
|
|
// class template partial specialization, or class template specialization.
|
|
// In these cases, grab the template that is being defined or specialized.
|
|
if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
|
|
cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
|
|
PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
|
|
PrevClassTemplate
|
|
= cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
|
|
if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
|
|
PrevClassTemplate
|
|
= cast<ClassTemplateSpecializationDecl>(PrevDecl)
|
|
->getSpecializedTemplate();
|
|
}
|
|
}
|
|
|
|
if (TUK == TUK_Friend) {
|
|
// C++ [namespace.memdef]p3:
|
|
// [...] When looking for a prior declaration of a class or a function
|
|
// declared as a friend, and when the name of the friend class or
|
|
// function is neither a qualified name nor a template-id, scopes outside
|
|
// the innermost enclosing namespace scope are not considered.
|
|
if (!SS.isSet()) {
|
|
DeclContext *OutermostContext = CurContext;
|
|
while (!OutermostContext->isFileContext())
|
|
OutermostContext = OutermostContext->getLookupParent();
|
|
|
|
if (PrevDecl &&
|
|
(OutermostContext->Equals(PrevDecl->getDeclContext()) ||
|
|
OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
|
|
SemanticContext = PrevDecl->getDeclContext();
|
|
} else {
|
|
// Declarations in outer scopes don't matter. However, the outermost
|
|
// context we computed is the semantic context for our new
|
|
// declaration.
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
SemanticContext = OutermostContext;
|
|
|
|
// Check that the chosen semantic context doesn't already contain a
|
|
// declaration of this name as a non-tag type.
|
|
Previous.clear(LookupOrdinaryName);
|
|
DeclContext *LookupContext = SemanticContext;
|
|
while (LookupContext->isTransparentContext())
|
|
LookupContext = LookupContext->getLookupParent();
|
|
LookupQualifiedName(Previous, LookupContext);
|
|
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
if (Previous.begin() != Previous.end())
|
|
PrevDecl = (*Previous.begin())->getUnderlyingDecl();
|
|
}
|
|
}
|
|
} else if (PrevDecl &&
|
|
!isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
|
|
S, SS.isValid()))
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
|
|
if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
|
|
PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
|
|
if (SS.isEmpty() &&
|
|
!(PrevClassTemplate &&
|
|
PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
|
|
SemanticContext->getRedeclContext()))) {
|
|
Diag(KWLoc, diag::err_using_decl_conflict_reverse);
|
|
Diag(Shadow->getTargetDecl()->getLocation(),
|
|
diag::note_using_decl_target);
|
|
Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
|
|
// Recover by ignoring the old declaration.
|
|
PrevDecl = PrevClassTemplate = nullptr;
|
|
}
|
|
}
|
|
|
|
if (PrevClassTemplate) {
|
|
// Ensure that the template parameter lists are compatible. Skip this check
|
|
// for a friend in a dependent context: the template parameter list itself
|
|
// could be dependent.
|
|
if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
|
|
!TemplateParameterListsAreEqual(TemplateParams,
|
|
PrevClassTemplate->getTemplateParameters(),
|
|
/*Complain=*/true,
|
|
TPL_TemplateMatch))
|
|
return true;
|
|
|
|
// C++ [temp.class]p4:
|
|
// In a redeclaration, partial specialization, explicit
|
|
// specialization or explicit instantiation of a class template,
|
|
// the class-key shall agree in kind with the original class
|
|
// template declaration (7.1.5.3).
|
|
RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
|
|
if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
|
|
TUK == TUK_Definition, KWLoc, Name)) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< Name
|
|
<< FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
|
|
Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
|
|
Kind = PrevRecordDecl->getTagKind();
|
|
}
|
|
|
|
// Check for redefinition of this class template.
|
|
if (TUK == TUK_Definition) {
|
|
if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
|
|
// If we have a prior definition that is not visible, treat this as
|
|
// simply making that previous definition visible.
|
|
NamedDecl *Hidden = nullptr;
|
|
if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
|
|
SkipBody->ShouldSkip = true;
|
|
auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
|
|
assert(Tmpl && "original definition of a class template is not a "
|
|
"class template?");
|
|
makeMergedDefinitionVisible(Hidden, KWLoc);
|
|
makeMergedDefinitionVisible(Tmpl, KWLoc);
|
|
return Def;
|
|
}
|
|
|
|
Diag(NameLoc, diag::err_redefinition) << Name;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
// FIXME: Would it make sense to try to "forget" the previous
|
|
// definition, as part of error recovery?
|
|
return true;
|
|
}
|
|
}
|
|
} else if (PrevDecl) {
|
|
// C++ [temp]p5:
|
|
// A class template shall not have the same name as any other
|
|
// template, class, function, object, enumeration, enumerator,
|
|
// namespace, or type in the same scope (3.3), except as specified
|
|
// in (14.5.4).
|
|
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
|
|
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
|
return true;
|
|
}
|
|
|
|
// Check the template parameter list of this declaration, possibly
|
|
// merging in the template parameter list from the previous class
|
|
// template declaration. Skip this check for a friend in a dependent
|
|
// context, because the template parameter list might be dependent.
|
|
if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
|
|
CheckTemplateParameterList(
|
|
TemplateParams,
|
|
PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
|
|
: nullptr,
|
|
(SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
|
|
SemanticContext->isDependentContext())
|
|
? TPC_ClassTemplateMember
|
|
: TUK == TUK_Friend ? TPC_FriendClassTemplate
|
|
: TPC_ClassTemplate))
|
|
Invalid = true;
|
|
|
|
if (SS.isSet()) {
|
|
// If the name of the template was qualified, we must be defining the
|
|
// template out-of-line.
|
|
if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
|
|
Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
|
|
: diag::err_member_decl_does_not_match)
|
|
<< Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
CXXRecordDecl *NewClass =
|
|
CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
|
|
PrevClassTemplate?
|
|
PrevClassTemplate->getTemplatedDecl() : nullptr,
|
|
/*DelayTypeCreation=*/true);
|
|
SetNestedNameSpecifier(NewClass, SS);
|
|
if (NumOuterTemplateParamLists > 0)
|
|
NewClass->setTemplateParameterListsInfo(
|
|
Context, llvm::makeArrayRef(OuterTemplateParamLists,
|
|
NumOuterTemplateParamLists));
|
|
|
|
// Add alignment attributes if necessary; these attributes are checked when
|
|
// the ASTContext lays out the structure.
|
|
if (TUK == TUK_Definition) {
|
|
AddAlignmentAttributesForRecord(NewClass);
|
|
AddMsStructLayoutForRecord(NewClass);
|
|
}
|
|
|
|
ClassTemplateDecl *NewTemplate
|
|
= ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
|
|
DeclarationName(Name), TemplateParams,
|
|
NewClass, PrevClassTemplate);
|
|
NewClass->setDescribedClassTemplate(NewTemplate);
|
|
|
|
if (ModulePrivateLoc.isValid())
|
|
NewTemplate->setModulePrivate();
|
|
|
|
// Build the type for the class template declaration now.
|
|
QualType T = NewTemplate->getInjectedClassNameSpecialization();
|
|
T = Context.getInjectedClassNameType(NewClass, T);
|
|
assert(T->isDependentType() && "Class template type is not dependent?");
|
|
(void)T;
|
|
|
|
// If we are providing an explicit specialization of a member that is a
|
|
// class template, make a note of that.
|
|
if (PrevClassTemplate &&
|
|
PrevClassTemplate->getInstantiatedFromMemberTemplate())
|
|
PrevClassTemplate->setMemberSpecialization();
|
|
|
|
// Set the access specifier.
|
|
if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
|
|
SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
|
|
|
|
// Set the lexical context of these templates
|
|
NewClass->setLexicalDeclContext(CurContext);
|
|
NewTemplate->setLexicalDeclContext(CurContext);
|
|
|
|
if (TUK == TUK_Definition)
|
|
NewClass->startDefinition();
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(S, NewClass, Attr);
|
|
|
|
if (PrevClassTemplate)
|
|
mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
|
|
|
|
AddPushedVisibilityAttribute(NewClass);
|
|
|
|
if (TUK != TUK_Friend) {
|
|
// Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
|
|
Scope *Outer = S;
|
|
while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
|
|
Outer = Outer->getParent();
|
|
PushOnScopeChains(NewTemplate, Outer);
|
|
} else {
|
|
if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
|
|
NewTemplate->setAccess(PrevClassTemplate->getAccess());
|
|
NewClass->setAccess(PrevClassTemplate->getAccess());
|
|
}
|
|
|
|
NewTemplate->setObjectOfFriendDecl();
|
|
|
|
// Friend templates are visible in fairly strange ways.
|
|
if (!CurContext->isDependentContext()) {
|
|
DeclContext *DC = SemanticContext->getRedeclContext();
|
|
DC->makeDeclVisibleInContext(NewTemplate);
|
|
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
|
PushOnScopeChains(NewTemplate, EnclosingScope,
|
|
/* AddToContext = */ false);
|
|
}
|
|
|
|
FriendDecl *Friend = FriendDecl::Create(
|
|
Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
}
|
|
|
|
if (Invalid) {
|
|
NewTemplate->setInvalidDecl();
|
|
NewClass->setInvalidDecl();
|
|
}
|
|
|
|
ActOnDocumentableDecl(NewTemplate);
|
|
|
|
return NewTemplate;
|
|
}
|
|
|
|
/// \brief Diagnose the presence of a default template argument on a
|
|
/// template parameter, which is ill-formed in certain contexts.
|
|
///
|
|
/// \returns true if the default template argument should be dropped.
|
|
static bool DiagnoseDefaultTemplateArgument(Sema &S,
|
|
Sema::TemplateParamListContext TPC,
|
|
SourceLocation ParamLoc,
|
|
SourceRange DefArgRange) {
|
|
switch (TPC) {
|
|
case Sema::TPC_ClassTemplate:
|
|
case Sema::TPC_VarTemplate:
|
|
case Sema::TPC_TypeAliasTemplate:
|
|
return false;
|
|
|
|
case Sema::TPC_FunctionTemplate:
|
|
case Sema::TPC_FriendFunctionTemplateDefinition:
|
|
// C++ [temp.param]p9:
|
|
// A default template-argument shall not be specified in a
|
|
// function template declaration or a function template
|
|
// definition [...]
|
|
// If a friend function template declaration specifies a default
|
|
// template-argument, that declaration shall be a definition and shall be
|
|
// the only declaration of the function template in the translation unit.
|
|
// (C++98/03 doesn't have this wording; see DR226).
|
|
S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_parameter_default_in_function_template
|
|
: diag::ext_template_parameter_default_in_function_template)
|
|
<< DefArgRange;
|
|
return false;
|
|
|
|
case Sema::TPC_ClassTemplateMember:
|
|
// C++0x [temp.param]p9:
|
|
// A default template-argument shall not be specified in the
|
|
// template-parameter-lists of the definition of a member of a
|
|
// class template that appears outside of the member's class.
|
|
S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
|
|
<< DefArgRange;
|
|
return true;
|
|
|
|
case Sema::TPC_FriendClassTemplate:
|
|
case Sema::TPC_FriendFunctionTemplate:
|
|
// C++ [temp.param]p9:
|
|
// A default template-argument shall not be specified in a
|
|
// friend template declaration.
|
|
S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
|
|
<< DefArgRange;
|
|
return true;
|
|
|
|
// FIXME: C++0x [temp.param]p9 allows default template-arguments
|
|
// for friend function templates if there is only a single
|
|
// declaration (and it is a definition). Strange!
|
|
}
|
|
|
|
llvm_unreachable("Invalid TemplateParamListContext!");
|
|
}
|
|
|
|
/// \brief Check for unexpanded parameter packs within the template parameters
|
|
/// of a template template parameter, recursively.
|
|
static bool DiagnoseUnexpandedParameterPacks(Sema &S,
|
|
TemplateTemplateParmDecl *TTP) {
|
|
// A template template parameter which is a parameter pack is also a pack
|
|
// expansion.
|
|
if (TTP->isParameterPack())
|
|
return false;
|
|
|
|
TemplateParameterList *Params = TTP->getTemplateParameters();
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
NamedDecl *P = Params->getParam(I);
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
|
|
if (!NTTP->isParameterPack() &&
|
|
S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
|
|
NTTP->getTypeSourceInfo(),
|
|
Sema::UPPC_NonTypeTemplateParameterType))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (TemplateTemplateParmDecl *InnerTTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(P))
|
|
if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks the validity of a template parameter list, possibly
|
|
/// considering the template parameter list from a previous
|
|
/// declaration.
|
|
///
|
|
/// If an "old" template parameter list is provided, it must be
|
|
/// equivalent (per TemplateParameterListsAreEqual) to the "new"
|
|
/// template parameter list.
|
|
///
|
|
/// \param NewParams Template parameter list for a new template
|
|
/// declaration. This template parameter list will be updated with any
|
|
/// default arguments that are carried through from the previous
|
|
/// template parameter list.
|
|
///
|
|
/// \param OldParams If provided, template parameter list from a
|
|
/// previous declaration of the same template. Default template
|
|
/// arguments will be merged from the old template parameter list to
|
|
/// the new template parameter list.
|
|
///
|
|
/// \param TPC Describes the context in which we are checking the given
|
|
/// template parameter list.
|
|
///
|
|
/// \returns true if an error occurred, false otherwise.
|
|
bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
|
|
TemplateParameterList *OldParams,
|
|
TemplateParamListContext TPC) {
|
|
bool Invalid = false;
|
|
|
|
// C++ [temp.param]p10:
|
|
// The set of default template-arguments available for use with a
|
|
// template declaration or definition is obtained by merging the
|
|
// default arguments from the definition (if in scope) and all
|
|
// declarations in scope in the same way default function
|
|
// arguments are (8.3.6).
|
|
bool SawDefaultArgument = false;
|
|
SourceLocation PreviousDefaultArgLoc;
|
|
|
|
// Dummy initialization to avoid warnings.
|
|
TemplateParameterList::iterator OldParam = NewParams->end();
|
|
if (OldParams)
|
|
OldParam = OldParams->begin();
|
|
|
|
bool RemoveDefaultArguments = false;
|
|
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
|
|
NewParamEnd = NewParams->end();
|
|
NewParam != NewParamEnd; ++NewParam) {
|
|
// Variables used to diagnose redundant default arguments
|
|
bool RedundantDefaultArg = false;
|
|
SourceLocation OldDefaultLoc;
|
|
SourceLocation NewDefaultLoc;
|
|
|
|
// Variable used to diagnose missing default arguments
|
|
bool MissingDefaultArg = false;
|
|
|
|
// Variable used to diagnose non-final parameter packs
|
|
bool SawParameterPack = false;
|
|
|
|
if (TemplateTypeParmDecl *NewTypeParm
|
|
= dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
|
|
// Check the presence of a default argument here.
|
|
if (NewTypeParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(*this, TPC,
|
|
NewTypeParm->getLocation(),
|
|
NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
|
|
.getSourceRange()))
|
|
NewTypeParm->removeDefaultArgument();
|
|
|
|
// Merge default arguments for template type parameters.
|
|
TemplateTypeParmDecl *OldTypeParm
|
|
= OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
|
|
if (NewTypeParm->isParameterPack()) {
|
|
assert(!NewTypeParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
SawParameterPack = true;
|
|
} else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
|
|
NewTypeParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
|
|
PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
} else if (NonTypeTemplateParmDecl *NewNonTypeParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
|
|
// Check for unexpanded parameter packs.
|
|
if (!NewNonTypeParm->isParameterPack() &&
|
|
DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
|
|
NewNonTypeParm->getTypeSourceInfo(),
|
|
UPPC_NonTypeTemplateParameterType)) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check the presence of a default argument here.
|
|
if (NewNonTypeParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(*this, TPC,
|
|
NewNonTypeParm->getLocation(),
|
|
NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
|
|
NewNonTypeParm->removeDefaultArgument();
|
|
}
|
|
|
|
// Merge default arguments for non-type template parameters
|
|
NonTypeTemplateParmDecl *OldNonTypeParm
|
|
= OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
|
|
if (NewNonTypeParm->isParameterPack()) {
|
|
assert(!NewNonTypeParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
if (!NewNonTypeParm->isPackExpansion())
|
|
SawParameterPack = true;
|
|
} else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
|
|
NewNonTypeParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
|
|
PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (NewNonTypeParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
} else {
|
|
TemplateTemplateParmDecl *NewTemplateParm
|
|
= cast<TemplateTemplateParmDecl>(*NewParam);
|
|
|
|
// Check for unexpanded parameter packs, recursively.
|
|
if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
|
|
// Check the presence of a default argument here.
|
|
if (NewTemplateParm->hasDefaultArgument() &&
|
|
DiagnoseDefaultTemplateArgument(*this, TPC,
|
|
NewTemplateParm->getLocation(),
|
|
NewTemplateParm->getDefaultArgument().getSourceRange()))
|
|
NewTemplateParm->removeDefaultArgument();
|
|
|
|
// Merge default arguments for template template parameters
|
|
TemplateTemplateParmDecl *OldTemplateParm
|
|
= OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
|
|
if (NewTemplateParm->isParameterPack()) {
|
|
assert(!NewTemplateParm->hasDefaultArgument() &&
|
|
"Parameter packs can't have a default argument!");
|
|
if (!NewTemplateParm->isPackExpansion())
|
|
SawParameterPack = true;
|
|
} else if (OldTemplateParm &&
|
|
hasVisibleDefaultArgument(OldTemplateParm) &&
|
|
NewTemplateParm->hasDefaultArgument()) {
|
|
OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
|
|
NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
|
|
SawDefaultArgument = true;
|
|
RedundantDefaultArg = true;
|
|
PreviousDefaultArgLoc = NewDefaultLoc;
|
|
} else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
|
|
// Merge the default argument from the old declaration to the
|
|
// new declaration.
|
|
NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
|
|
PreviousDefaultArgLoc
|
|
= OldTemplateParm->getDefaultArgument().getLocation();
|
|
} else if (NewTemplateParm->hasDefaultArgument()) {
|
|
SawDefaultArgument = true;
|
|
PreviousDefaultArgLoc
|
|
= NewTemplateParm->getDefaultArgument().getLocation();
|
|
} else if (SawDefaultArgument)
|
|
MissingDefaultArg = true;
|
|
}
|
|
|
|
// C++11 [temp.param]p11:
|
|
// If a template parameter of a primary class template or alias template
|
|
// is a template parameter pack, it shall be the last template parameter.
|
|
if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
|
|
(TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
|
|
TPC == TPC_TypeAliasTemplate)) {
|
|
Diag((*NewParam)->getLocation(),
|
|
diag::err_template_param_pack_must_be_last_template_parameter);
|
|
Invalid = true;
|
|
}
|
|
|
|
if (RedundantDefaultArg) {
|
|
// C++ [temp.param]p12:
|
|
// A template-parameter shall not be given default arguments
|
|
// by two different declarations in the same scope.
|
|
Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
|
|
Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
} else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
|
|
// C++ [temp.param]p11:
|
|
// If a template-parameter of a class template has a default
|
|
// template-argument, each subsequent template-parameter shall either
|
|
// have a default template-argument supplied or be a template parameter
|
|
// pack.
|
|
Diag((*NewParam)->getLocation(),
|
|
diag::err_template_param_default_arg_missing);
|
|
Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
|
|
Invalid = true;
|
|
RemoveDefaultArguments = true;
|
|
}
|
|
|
|
// If we have an old template parameter list that we're merging
|
|
// in, move on to the next parameter.
|
|
if (OldParams)
|
|
++OldParam;
|
|
}
|
|
|
|
// We were missing some default arguments at the end of the list, so remove
|
|
// all of the default arguments.
|
|
if (RemoveDefaultArguments) {
|
|
for (TemplateParameterList::iterator NewParam = NewParams->begin(),
|
|
NewParamEnd = NewParams->end();
|
|
NewParam != NewParamEnd; ++NewParam) {
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
|
|
TTP->removeDefaultArgument();
|
|
else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
|
|
NTTP->removeDefaultArgument();
|
|
else
|
|
cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
|
|
}
|
|
}
|
|
|
|
return Invalid;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A class which looks for a use of a certain level of template
|
|
/// parameter.
|
|
struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
|
|
typedef RecursiveASTVisitor<DependencyChecker> super;
|
|
|
|
unsigned Depth;
|
|
bool Match;
|
|
SourceLocation MatchLoc;
|
|
|
|
DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
|
|
|
|
DependencyChecker(TemplateParameterList *Params) : Match(false) {
|
|
NamedDecl *ND = Params->getParam(0);
|
|
if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
|
|
Depth = PD->getDepth();
|
|
} else if (NonTypeTemplateParmDecl *PD =
|
|
dyn_cast<NonTypeTemplateParmDecl>(ND)) {
|
|
Depth = PD->getDepth();
|
|
} else {
|
|
Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
|
|
}
|
|
}
|
|
|
|
bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
|
|
if (ParmDepth >= Depth) {
|
|
Match = true;
|
|
MatchLoc = Loc;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
|
|
return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
|
|
}
|
|
|
|
bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
|
|
return !Matches(T->getDepth());
|
|
}
|
|
|
|
bool TraverseTemplateName(TemplateName N) {
|
|
if (TemplateTemplateParmDecl *PD =
|
|
dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
|
|
if (Matches(PD->getDepth()))
|
|
return false;
|
|
return super::TraverseTemplateName(N);
|
|
}
|
|
|
|
bool VisitDeclRefExpr(DeclRefExpr *E) {
|
|
if (NonTypeTemplateParmDecl *PD =
|
|
dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
|
|
if (Matches(PD->getDepth(), E->getExprLoc()))
|
|
return false;
|
|
return super::VisitDeclRefExpr(E);
|
|
}
|
|
|
|
bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
|
|
return TraverseType(T->getReplacementType());
|
|
}
|
|
|
|
bool
|
|
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
|
|
return TraverseTemplateArgument(T->getArgumentPack());
|
|
}
|
|
|
|
bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
|
|
return TraverseType(T->getInjectedSpecializationType());
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// Determines whether a given type depends on the given parameter
|
|
/// list.
|
|
static bool
|
|
DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
|
|
DependencyChecker Checker(Params);
|
|
Checker.TraverseType(T);
|
|
return Checker.Match;
|
|
}
|
|
|
|
// Find the source range corresponding to the named type in the given
|
|
// nested-name-specifier, if any.
|
|
static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
|
|
QualType T,
|
|
const CXXScopeSpec &SS) {
|
|
NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
|
|
while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
|
|
if (const Type *CurType = NNS->getAsType()) {
|
|
if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
|
|
return NNSLoc.getTypeLoc().getSourceRange();
|
|
} else
|
|
break;
|
|
|
|
NNSLoc = NNSLoc.getPrefix();
|
|
}
|
|
|
|
return SourceRange();
|
|
}
|
|
|
|
/// \brief Match the given template parameter lists to the given scope
|
|
/// specifier, returning the template parameter list that applies to the
|
|
/// name.
|
|
///
|
|
/// \param DeclStartLoc the start of the declaration that has a scope
|
|
/// specifier or a template parameter list.
|
|
///
|
|
/// \param DeclLoc The location of the declaration itself.
|
|
///
|
|
/// \param SS the scope specifier that will be matched to the given template
|
|
/// parameter lists. This scope specifier precedes a qualified name that is
|
|
/// being declared.
|
|
///
|
|
/// \param TemplateId The template-id following the scope specifier, if there
|
|
/// is one. Used to check for a missing 'template<>'.
|
|
///
|
|
/// \param ParamLists the template parameter lists, from the outermost to the
|
|
/// innermost template parameter lists.
|
|
///
|
|
/// \param IsFriend Whether to apply the slightly different rules for
|
|
/// matching template parameters to scope specifiers in friend
|
|
/// declarations.
|
|
///
|
|
/// \param IsExplicitSpecialization will be set true if the entity being
|
|
/// declared is an explicit specialization, false otherwise.
|
|
///
|
|
/// \returns the template parameter list, if any, that corresponds to the
|
|
/// name that is preceded by the scope specifier @p SS. This template
|
|
/// parameter list may have template parameters (if we're declaring a
|
|
/// template) or may have no template parameters (if we're declaring a
|
|
/// template specialization), or may be NULL (if what we're declaring isn't
|
|
/// itself a template).
|
|
TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
|
|
SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
|
|
TemplateIdAnnotation *TemplateId,
|
|
ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
|
|
bool &IsExplicitSpecialization, bool &Invalid) {
|
|
IsExplicitSpecialization = false;
|
|
Invalid = false;
|
|
|
|
// The sequence of nested types to which we will match up the template
|
|
// parameter lists. We first build this list by starting with the type named
|
|
// by the nested-name-specifier and walking out until we run out of types.
|
|
SmallVector<QualType, 4> NestedTypes;
|
|
QualType T;
|
|
if (SS.getScopeRep()) {
|
|
if (CXXRecordDecl *Record
|
|
= dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
|
|
T = Context.getTypeDeclType(Record);
|
|
else
|
|
T = QualType(SS.getScopeRep()->getAsType(), 0);
|
|
}
|
|
|
|
// If we found an explicit specialization that prevents us from needing
|
|
// 'template<>' headers, this will be set to the location of that
|
|
// explicit specialization.
|
|
SourceLocation ExplicitSpecLoc;
|
|
|
|
while (!T.isNull()) {
|
|
NestedTypes.push_back(T);
|
|
|
|
// Retrieve the parent of a record type.
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
|
|
// If this type is an explicit specialization, we're done.
|
|
if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
|
|
if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
|
|
Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
|
|
ExplicitSpecLoc = Spec->getLocation();
|
|
break;
|
|
}
|
|
} else if (Record->getTemplateSpecializationKind()
|
|
== TSK_ExplicitSpecialization) {
|
|
ExplicitSpecLoc = Record->getLocation();
|
|
break;
|
|
}
|
|
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
if (const TemplateSpecializationType *TST
|
|
= T->getAs<TemplateSpecializationType>()) {
|
|
if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Look one step prior in a dependent template specialization type.
|
|
if (const DependentTemplateSpecializationType *DependentTST
|
|
= T->getAs<DependentTemplateSpecializationType>()) {
|
|
if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
|
|
T = QualType(NNS->getAsType(), 0);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
// Look one step prior in a dependent name type.
|
|
if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
|
|
if (NestedNameSpecifier *NNS = DependentName->getQualifier())
|
|
T = QualType(NNS->getAsType(), 0);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
// Retrieve the parent of an enumeration type.
|
|
if (const EnumType *EnumT = T->getAs<EnumType>()) {
|
|
// FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
|
|
// check here.
|
|
EnumDecl *Enum = EnumT->getDecl();
|
|
|
|
// Get to the parent type.
|
|
if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
|
|
T = Context.getTypeDeclType(Parent);
|
|
else
|
|
T = QualType();
|
|
continue;
|
|
}
|
|
|
|
T = QualType();
|
|
}
|
|
// Reverse the nested types list, since we want to traverse from the outermost
|
|
// to the innermost while checking template-parameter-lists.
|
|
std::reverse(NestedTypes.begin(), NestedTypes.end());
|
|
|
|
// C++0x [temp.expl.spec]p17:
|
|
// A member or a member template may be nested within many
|
|
// enclosing class templates. In an explicit specialization for
|
|
// such a member, the member declaration shall be preceded by a
|
|
// template<> for each enclosing class template that is
|
|
// explicitly specialized.
|
|
bool SawNonEmptyTemplateParameterList = false;
|
|
|
|
auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
|
|
if (SawNonEmptyTemplateParameterList) {
|
|
Diag(DeclLoc, diag::err_specialize_member_of_template)
|
|
<< !Recovery << Range;
|
|
Invalid = true;
|
|
IsExplicitSpecialization = false;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
|
|
// Check that we can have an explicit specialization here.
|
|
if (CheckExplicitSpecialization(Range, true))
|
|
return true;
|
|
|
|
// We don't have a template header, but we should.
|
|
SourceLocation ExpectedTemplateLoc;
|
|
if (!ParamLists.empty())
|
|
ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
|
|
else
|
|
ExpectedTemplateLoc = DeclStartLoc;
|
|
|
|
Diag(DeclLoc, diag::err_template_spec_needs_header)
|
|
<< Range
|
|
<< FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
|
|
return false;
|
|
};
|
|
|
|
unsigned ParamIdx = 0;
|
|
for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
|
|
++TypeIdx) {
|
|
T = NestedTypes[TypeIdx];
|
|
|
|
// Whether we expect a 'template<>' header.
|
|
bool NeedEmptyTemplateHeader = false;
|
|
|
|
// Whether we expect a template header with parameters.
|
|
bool NeedNonemptyTemplateHeader = false;
|
|
|
|
// For a dependent type, the set of template parameters that we
|
|
// expect to see.
|
|
TemplateParameterList *ExpectedTemplateParams = nullptr;
|
|
|
|
// C++0x [temp.expl.spec]p15:
|
|
// A member or a member template may be nested within many enclosing
|
|
// class templates. In an explicit specialization for such a member, the
|
|
// member declaration shall be preceded by a template<> for each
|
|
// enclosing class template that is explicitly specialized.
|
|
if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
|
|
if (ClassTemplatePartialSpecializationDecl *Partial
|
|
= dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
|
|
ExpectedTemplateParams = Partial->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
} else if (Record->isDependentType()) {
|
|
if (Record->getDescribedClassTemplate()) {
|
|
ExpectedTemplateParams = Record->getDescribedClassTemplate()
|
|
->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
}
|
|
} else if (ClassTemplateSpecializationDecl *Spec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
|
|
// C++0x [temp.expl.spec]p4:
|
|
// Members of an explicitly specialized class template are defined
|
|
// in the same manner as members of normal classes, and not using
|
|
// the template<> syntax.
|
|
if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
|
|
NeedEmptyTemplateHeader = true;
|
|
else
|
|
continue;
|
|
} else if (Record->getTemplateSpecializationKind()) {
|
|
if (Record->getTemplateSpecializationKind()
|
|
!= TSK_ExplicitSpecialization &&
|
|
TypeIdx == NumTypes - 1)
|
|
IsExplicitSpecialization = true;
|
|
|
|
continue;
|
|
}
|
|
} else if (const TemplateSpecializationType *TST
|
|
= T->getAs<TemplateSpecializationType>()) {
|
|
if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
|
|
ExpectedTemplateParams = Template->getTemplateParameters();
|
|
NeedNonemptyTemplateHeader = true;
|
|
}
|
|
} else if (T->getAs<DependentTemplateSpecializationType>()) {
|
|
// FIXME: We actually could/should check the template arguments here
|
|
// against the corresponding template parameter list.
|
|
NeedNonemptyTemplateHeader = false;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p16:
|
|
// In an explicit specialization declaration for a member of a class
|
|
// template or a member template that ap- pears in namespace scope, the
|
|
// member template and some of its enclosing class templates may remain
|
|
// unspecialized, except that the declaration shall not explicitly
|
|
// specialize a class member template if its en- closing class templates
|
|
// are not explicitly specialized as well.
|
|
if (ParamIdx < ParamLists.size()) {
|
|
if (ParamLists[ParamIdx]->size() == 0) {
|
|
if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
|
|
false))
|
|
return nullptr;
|
|
} else
|
|
SawNonEmptyTemplateParameterList = true;
|
|
}
|
|
|
|
if (NeedEmptyTemplateHeader) {
|
|
// If we're on the last of the types, and we need a 'template<>' header
|
|
// here, then it's an explicit specialization.
|
|
if (TypeIdx == NumTypes - 1)
|
|
IsExplicitSpecialization = true;
|
|
|
|
if (ParamIdx < ParamLists.size()) {
|
|
if (ParamLists[ParamIdx]->size() > 0) {
|
|
// The header has template parameters when it shouldn't. Complain.
|
|
Diag(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
diag::err_template_param_list_matches_nontemplate)
|
|
<< T
|
|
<< SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
|
|
ParamLists[ParamIdx]->getRAngleLoc())
|
|
<< getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
|
|
Invalid = true;
|
|
return nullptr;
|
|
}
|
|
|
|
// Consume this template header.
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
|
|
if (!IsFriend)
|
|
if (DiagnoseMissingExplicitSpecialization(
|
|
getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
|
|
return nullptr;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (NeedNonemptyTemplateHeader) {
|
|
// In friend declarations we can have template-ids which don't
|
|
// depend on the corresponding template parameter lists. But
|
|
// assume that empty parameter lists are supposed to match this
|
|
// template-id.
|
|
if (IsFriend && T->isDependentType()) {
|
|
if (ParamIdx < ParamLists.size() &&
|
|
DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
|
|
ExpectedTemplateParams = nullptr;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
if (ParamIdx < ParamLists.size()) {
|
|
// Check the template parameter list, if we can.
|
|
if (ExpectedTemplateParams &&
|
|
!TemplateParameterListsAreEqual(ParamLists[ParamIdx],
|
|
ExpectedTemplateParams,
|
|
true, TPL_TemplateMatch))
|
|
Invalid = true;
|
|
|
|
if (!Invalid &&
|
|
CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
|
|
TPC_ClassTemplateMember))
|
|
Invalid = true;
|
|
|
|
++ParamIdx;
|
|
continue;
|
|
}
|
|
|
|
Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
|
|
<< T
|
|
<< getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
|
|
Invalid = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If there were at least as many template-ids as there were template
|
|
// parameter lists, then there are no template parameter lists remaining for
|
|
// the declaration itself.
|
|
if (ParamIdx >= ParamLists.size()) {
|
|
if (TemplateId && !IsFriend) {
|
|
// We don't have a template header for the declaration itself, but we
|
|
// should.
|
|
IsExplicitSpecialization = true;
|
|
DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
|
|
TemplateId->RAngleLoc));
|
|
|
|
// Fabricate an empty template parameter list for the invented header.
|
|
return TemplateParameterList::Create(Context, SourceLocation(),
|
|
SourceLocation(), None,
|
|
SourceLocation(), nullptr);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If there were too many template parameter lists, complain about that now.
|
|
if (ParamIdx < ParamLists.size() - 1) {
|
|
bool HasAnyExplicitSpecHeader = false;
|
|
bool AllExplicitSpecHeaders = true;
|
|
for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
|
|
if (ParamLists[I]->size() == 0)
|
|
HasAnyExplicitSpecHeader = true;
|
|
else
|
|
AllExplicitSpecHeaders = false;
|
|
}
|
|
|
|
Diag(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
|
|
: diag::err_template_spec_extra_headers)
|
|
<< SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
|
|
ParamLists[ParamLists.size() - 2]->getRAngleLoc());
|
|
|
|
// If there was a specialization somewhere, such that 'template<>' is
|
|
// not required, and there were any 'template<>' headers, note where the
|
|
// specialization occurred.
|
|
if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
|
|
Diag(ExplicitSpecLoc,
|
|
diag::note_explicit_template_spec_does_not_need_header)
|
|
<< NestedTypes.back();
|
|
|
|
// We have a template parameter list with no corresponding scope, which
|
|
// means that the resulting template declaration can't be instantiated
|
|
// properly (we'll end up with dependent nodes when we shouldn't).
|
|
if (!AllExplicitSpecHeaders)
|
|
Invalid = true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p16:
|
|
// In an explicit specialization declaration for a member of a class
|
|
// template or a member template that ap- pears in namespace scope, the
|
|
// member template and some of its enclosing class templates may remain
|
|
// unspecialized, except that the declaration shall not explicitly
|
|
// specialize a class member template if its en- closing class templates
|
|
// are not explicitly specialized as well.
|
|
if (ParamLists.back()->size() == 0 &&
|
|
CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
|
|
false))
|
|
return nullptr;
|
|
|
|
// Return the last template parameter list, which corresponds to the
|
|
// entity being declared.
|
|
return ParamLists.back();
|
|
}
|
|
|
|
void Sema::NoteAllFoundTemplates(TemplateName Name) {
|
|
if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
|
|
Diag(Template->getLocation(), diag::note_template_declared_here)
|
|
<< (isa<FunctionTemplateDecl>(Template)
|
|
? 0
|
|
: isa<ClassTemplateDecl>(Template)
|
|
? 1
|
|
: isa<VarTemplateDecl>(Template)
|
|
? 2
|
|
: isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
|
|
<< Template->getDeclName();
|
|
return;
|
|
}
|
|
|
|
if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
|
|
for (OverloadedTemplateStorage::iterator I = OST->begin(),
|
|
IEnd = OST->end();
|
|
I != IEnd; ++I)
|
|
Diag((*I)->getLocation(), diag::note_template_declared_here)
|
|
<< 0 << (*I)->getDeclName();
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
static QualType
|
|
checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
|
|
const SmallVectorImpl<TemplateArgument> &Converted,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
ASTContext &Context = SemaRef.getASTContext();
|
|
switch (BTD->getBuiltinTemplateKind()) {
|
|
case BTK__make_integer_seq: {
|
|
// Specializations of __make_integer_seq<S, T, N> are treated like
|
|
// S<T, 0, ..., N-1>.
|
|
|
|
// C++14 [inteseq.intseq]p1:
|
|
// T shall be an integer type.
|
|
if (!Converted[1].getAsType()->isIntegralType(Context)) {
|
|
SemaRef.Diag(TemplateArgs[1].getLocation(),
|
|
diag::err_integer_sequence_integral_element_type);
|
|
return QualType();
|
|
}
|
|
|
|
// C++14 [inteseq.make]p1:
|
|
// If N is negative the program is ill-formed.
|
|
TemplateArgument NumArgsArg = Converted[2];
|
|
llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
|
|
if (NumArgs < 0) {
|
|
SemaRef.Diag(TemplateArgs[2].getLocation(),
|
|
diag::err_integer_sequence_negative_length);
|
|
return QualType();
|
|
}
|
|
|
|
QualType ArgTy = NumArgsArg.getIntegralType();
|
|
TemplateArgumentListInfo SyntheticTemplateArgs;
|
|
// The type argument gets reused as the first template argument in the
|
|
// synthetic template argument list.
|
|
SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
|
|
// Expand N into 0 ... N-1.
|
|
for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
|
|
I < NumArgs; ++I) {
|
|
TemplateArgument TA(Context, I, ArgTy);
|
|
SyntheticTemplateArgs.addArgument(SemaRef.getTrivialTemplateArgumentLoc(
|
|
TA, ArgTy, TemplateArgs[2].getLocation()));
|
|
}
|
|
// The first template argument will be reused as the template decl that
|
|
// our synthetic template arguments will be applied to.
|
|
return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
|
|
TemplateLoc, SyntheticTemplateArgs);
|
|
}
|
|
|
|
case BTK__type_pack_element:
|
|
// Specializations of
|
|
// __type_pack_element<Index, T_1, ..., T_N>
|
|
// are treated like T_Index.
|
|
assert(Converted.size() == 2 &&
|
|
"__type_pack_element should be given an index and a parameter pack");
|
|
|
|
// If the Index is out of bounds, the program is ill-formed.
|
|
TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
|
|
llvm::APSInt Index = IndexArg.getAsIntegral();
|
|
assert(Index >= 0 && "the index used with __type_pack_element should be of "
|
|
"type std::size_t, and hence be non-negative");
|
|
if (Index >= Ts.pack_size()) {
|
|
SemaRef.Diag(TemplateArgs[0].getLocation(),
|
|
diag::err_type_pack_element_out_of_bounds);
|
|
return QualType();
|
|
}
|
|
|
|
// We simply return the type at index `Index`.
|
|
auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
|
|
return Nth->getAsType();
|
|
}
|
|
llvm_unreachable("unexpected BuiltinTemplateDecl!");
|
|
}
|
|
|
|
QualType Sema::CheckTemplateIdType(TemplateName Name,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
DependentTemplateName *DTN
|
|
= Name.getUnderlying().getAsDependentTemplateName();
|
|
if (DTN && DTN->isIdentifier())
|
|
// When building a template-id where the template-name is dependent,
|
|
// assume the template is a type template. Either our assumption is
|
|
// correct, or the code is ill-formed and will be diagnosed when the
|
|
// dependent name is substituted.
|
|
return Context.getDependentTemplateSpecializationType(ETK_None,
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
TemplateArgs);
|
|
|
|
TemplateDecl *Template = Name.getAsTemplateDecl();
|
|
if (!Template || isa<FunctionTemplateDecl>(Template) ||
|
|
isa<VarTemplateDecl>(Template)) {
|
|
// We might have a substituted template template parameter pack. If so,
|
|
// build a template specialization type for it.
|
|
if (Name.getAsSubstTemplateTemplateParmPack())
|
|
return Context.getTemplateSpecializationType(Name, TemplateArgs);
|
|
|
|
Diag(TemplateLoc, diag::err_template_id_not_a_type)
|
|
<< Name;
|
|
NoteAllFoundTemplates(Name);
|
|
return QualType();
|
|
}
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
|
|
false, Converted))
|
|
return QualType();
|
|
|
|
QualType CanonType;
|
|
|
|
bool InstantiationDependent = false;
|
|
if (TypeAliasTemplateDecl *AliasTemplate =
|
|
dyn_cast<TypeAliasTemplateDecl>(Template)) {
|
|
// Find the canonical type for this type alias template specialization.
|
|
TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
|
|
if (Pattern->isInvalidDecl())
|
|
return QualType();
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
|
|
Converted);
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
|
|
unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
|
|
for (unsigned I = 0; I < Depth; ++I)
|
|
TemplateArgLists.addOuterTemplateArguments(None);
|
|
|
|
LocalInstantiationScope Scope(*this);
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Template);
|
|
if (Inst.isInvalid())
|
|
return QualType();
|
|
|
|
CanonType = SubstType(Pattern->getUnderlyingType(),
|
|
TemplateArgLists, AliasTemplate->getLocation(),
|
|
AliasTemplate->getDeclName());
|
|
if (CanonType.isNull())
|
|
return QualType();
|
|
} else if (Name.isDependent() ||
|
|
TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, InstantiationDependent)) {
|
|
// This class template specialization is a dependent
|
|
// type. Therefore, its canonical type is another class template
|
|
// specialization type that contains all of the converted
|
|
// arguments in canonical form. This ensures that, e.g., A<T> and
|
|
// A<T, T> have identical types when A is declared as:
|
|
//
|
|
// template<typename T, typename U = T> struct A;
|
|
TemplateName CanonName = Context.getCanonicalTemplateName(Name);
|
|
CanonType = Context.getTemplateSpecializationType(CanonName,
|
|
Converted);
|
|
|
|
// FIXME: CanonType is not actually the canonical type, and unfortunately
|
|
// it is a TemplateSpecializationType that we will never use again.
|
|
// In the future, we need to teach getTemplateSpecializationType to only
|
|
// build the canonical type and return that to us.
|
|
CanonType = Context.getCanonicalType(CanonType);
|
|
|
|
// This might work out to be a current instantiation, in which
|
|
// case the canonical type needs to be the InjectedClassNameType.
|
|
//
|
|
// TODO: in theory this could be a simple hashtable lookup; most
|
|
// changes to CurContext don't change the set of current
|
|
// instantiations.
|
|
if (isa<ClassTemplateDecl>(Template)) {
|
|
for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
|
|
// If we get out to a namespace, we're done.
|
|
if (Ctx->isFileContext()) break;
|
|
|
|
// If this isn't a record, keep looking.
|
|
CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
|
|
if (!Record) continue;
|
|
|
|
// Look for one of the two cases with InjectedClassNameTypes
|
|
// and check whether it's the same template.
|
|
if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
|
|
!Record->getDescribedClassTemplate())
|
|
continue;
|
|
|
|
// Fetch the injected class name type and check whether its
|
|
// injected type is equal to the type we just built.
|
|
QualType ICNT = Context.getTypeDeclType(Record);
|
|
QualType Injected = cast<InjectedClassNameType>(ICNT)
|
|
->getInjectedSpecializationType();
|
|
|
|
if (CanonType != Injected->getCanonicalTypeInternal())
|
|
continue;
|
|
|
|
// If so, the canonical type of this TST is the injected
|
|
// class name type of the record we just found.
|
|
assert(ICNT.isCanonical());
|
|
CanonType = ICNT;
|
|
break;
|
|
}
|
|
}
|
|
} else if (ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast<ClassTemplateDecl>(Template)) {
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *Decl
|
|
= ClassTemplate->findSpecialization(Converted, InsertPos);
|
|
if (!Decl) {
|
|
// This is the first time we have referenced this class template
|
|
// specialization. Create the canonical declaration and add it to
|
|
// the set of specializations.
|
|
Decl = ClassTemplateSpecializationDecl::Create(Context,
|
|
ClassTemplate->getTemplatedDecl()->getTagKind(),
|
|
ClassTemplate->getDeclContext(),
|
|
ClassTemplate->getTemplatedDecl()->getLocStart(),
|
|
ClassTemplate->getLocation(),
|
|
ClassTemplate,
|
|
Converted, nullptr);
|
|
ClassTemplate->AddSpecialization(Decl, InsertPos);
|
|
if (ClassTemplate->isOutOfLine())
|
|
Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
|
|
}
|
|
|
|
// Diagnose uses of this specialization.
|
|
(void)DiagnoseUseOfDecl(Decl, TemplateLoc);
|
|
|
|
CanonType = Context.getTypeDeclType(Decl);
|
|
assert(isa<RecordType>(CanonType) &&
|
|
"type of non-dependent specialization is not a RecordType");
|
|
} else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
|
|
CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
|
|
TemplateArgs);
|
|
}
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization, which refers back to the class template
|
|
// specialization we created or found.
|
|
return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
|
|
}
|
|
|
|
TypeResult
|
|
Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateD, SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc,
|
|
bool IsCtorOrDtorName) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
TemplateName Template = TemplateD.get();
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
QualType T
|
|
= Context.getDependentTemplateSpecializationType(ETK_None,
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
TemplateArgs);
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(SourceLocation());
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
|
|
|
|
if (Result.isNull())
|
|
return true;
|
|
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
|
|
SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
|
|
|
|
// NOTE: avoid constructing an ElaboratedTypeLoc if this is a
|
|
// constructor or destructor name (in such a case, the scope specifier
|
|
// will be attached to the enclosing Decl or Expr node).
|
|
if (SS.isNotEmpty() && !IsCtorOrDtorName) {
|
|
// Create an elaborated-type-specifier containing the nested-name-specifier.
|
|
Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
|
|
ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
ElabTL.setElaboratedKeywordLoc(SourceLocation());
|
|
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
}
|
|
|
|
return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
|
|
}
|
|
|
|
TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
|
|
TypeSpecifierType TagSpec,
|
|
SourceLocation TagLoc,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc) {
|
|
TemplateName Template = TemplateD.get();
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
// Determine the tag kind
|
|
TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
ElaboratedTypeKeyword Keyword
|
|
= TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
|
|
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
QualType T = Context.getDependentTemplateSpecializationType(Keyword,
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
TemplateArgs);
|
|
|
|
// Build type-source information.
|
|
TypeLocBuilder TLB;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(TagLoc);
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
if (TypeAliasTemplateDecl *TAT =
|
|
dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
|
|
// C++0x [dcl.type.elab]p2:
|
|
// If the identifier resolves to a typedef-name or the simple-template-id
|
|
// resolves to an alias template specialization, the
|
|
// elaborated-type-specifier is ill-formed.
|
|
Diag(TemplateLoc, diag::err_tag_reference_non_tag) << NTK_TypeAliasTemplate;
|
|
Diag(TAT->getLocation(), diag::note_declared_at);
|
|
}
|
|
|
|
QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
|
|
if (Result.isNull())
|
|
return TypeResult(true);
|
|
|
|
// Check the tag kind
|
|
if (const RecordType *RT = Result->getAs<RecordType>()) {
|
|
RecordDecl *D = RT->getDecl();
|
|
|
|
IdentifierInfo *Id = D->getIdentifier();
|
|
assert(Id && "templated class must have an identifier");
|
|
|
|
if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
|
|
TagLoc, Id)) {
|
|
Diag(TagLoc, diag::err_use_with_wrong_tag)
|
|
<< Result
|
|
<< FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
|
|
Diag(D->getLocation(), diag::note_previous_use);
|
|
}
|
|
}
|
|
|
|
// Provide source-location information for the template specialization.
|
|
TypeLocBuilder TLB;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= TLB.push<TemplateSpecializationTypeLoc>(Result);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
|
|
SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
|
|
|
|
// Construct an elaborated type containing the nested-name-specifier (if any)
|
|
// and tag keyword.
|
|
Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
|
|
ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
|
|
ElabTL.setElaboratedKeywordLoc(TagLoc);
|
|
ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
|
|
}
|
|
|
|
static bool CheckTemplatePartialSpecializationArgs(
|
|
Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
|
|
unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
|
|
|
|
static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
|
|
NamedDecl *PrevDecl,
|
|
SourceLocation Loc,
|
|
bool IsPartialSpecialization);
|
|
|
|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
|
|
|
|
static bool isTemplateArgumentTemplateParameter(
|
|
const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
|
|
switch (Arg.getKind()) {
|
|
case TemplateArgument::Null:
|
|
case TemplateArgument::NullPtr:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Pack:
|
|
case TemplateArgument::TemplateExpansion:
|
|
return false;
|
|
|
|
case TemplateArgument::Type: {
|
|
QualType Type = Arg.getAsType();
|
|
const TemplateTypeParmType *TPT =
|
|
Arg.getAsType()->getAs<TemplateTypeParmType>();
|
|
return TPT && !Type.hasQualifiers() &&
|
|
TPT->getDepth() == Depth && TPT->getIndex() == Index;
|
|
}
|
|
|
|
case TemplateArgument::Expression: {
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
|
|
if (!DRE || !DRE->getDecl())
|
|
return false;
|
|
const NonTypeTemplateParmDecl *NTTP =
|
|
dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
|
|
return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
|
|
}
|
|
|
|
case TemplateArgument::Template:
|
|
const TemplateTemplateParmDecl *TTP =
|
|
dyn_cast_or_null<TemplateTemplateParmDecl>(
|
|
Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
|
|
return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
|
|
}
|
|
llvm_unreachable("unexpected kind of template argument");
|
|
}
|
|
|
|
static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
|
|
ArrayRef<TemplateArgument> Args) {
|
|
if (Params->size() != Args.size())
|
|
return false;
|
|
|
|
unsigned Depth = Params->getDepth();
|
|
|
|
for (unsigned I = 0, N = Args.size(); I != N; ++I) {
|
|
TemplateArgument Arg = Args[I];
|
|
|
|
// If the parameter is a pack expansion, the argument must be a pack
|
|
// whose only element is a pack expansion.
|
|
if (Params->getParam(I)->isParameterPack()) {
|
|
if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
|
|
!Arg.pack_begin()->isPackExpansion())
|
|
return false;
|
|
Arg = Arg.pack_begin()->getPackExpansionPattern();
|
|
}
|
|
|
|
if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Convert the parser's template argument list representation into our form.
|
|
static TemplateArgumentListInfo
|
|
makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
|
|
TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
|
|
TemplateId.RAngleLoc);
|
|
ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
|
|
TemplateId.NumArgs);
|
|
S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
|
|
return TemplateArgs;
|
|
}
|
|
|
|
DeclResult Sema::ActOnVarTemplateSpecialization(
|
|
Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
|
|
TemplateParameterList *TemplateParams, StorageClass SC,
|
|
bool IsPartialSpecialization) {
|
|
// D must be variable template id.
|
|
assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
|
|
"Variable template specialization is declared with a template it.");
|
|
|
|
TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, *TemplateId);
|
|
SourceLocation TemplateNameLoc = D.getIdentifierLoc();
|
|
SourceLocation LAngleLoc = TemplateId->LAngleLoc;
|
|
SourceLocation RAngleLoc = TemplateId->RAngleLoc;
|
|
|
|
TemplateName Name = TemplateId->Template.get();
|
|
|
|
// The template-id must name a variable template.
|
|
VarTemplateDecl *VarTemplate =
|
|
dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
|
|
if (!VarTemplate) {
|
|
NamedDecl *FnTemplate;
|
|
if (auto *OTS = Name.getAsOverloadedTemplate())
|
|
FnTemplate = *OTS->begin();
|
|
else
|
|
FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
|
|
if (FnTemplate)
|
|
return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
|
|
<< FnTemplate->getDeclName();
|
|
return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
|
|
<< IsPartialSpecialization;
|
|
}
|
|
|
|
// Check for unexpanded parameter packs in any of the template arguments.
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
|
|
UPPC_PartialSpecialization))
|
|
return true;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
|
|
false, Converted))
|
|
return true;
|
|
|
|
// Find the variable template (partial) specialization declaration that
|
|
// corresponds to these arguments.
|
|
if (IsPartialSpecialization) {
|
|
if (CheckTemplatePartialSpecializationArgs(
|
|
*this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
|
|
TemplateArgs.size(), Converted))
|
|
return true;
|
|
|
|
bool InstantiationDependent;
|
|
if (!Name.isDependent() &&
|
|
!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs.arguments(),
|
|
InstantiationDependent)) {
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
|
|
<< VarTemplate->getDeclName();
|
|
IsPartialSpecialization = false;
|
|
}
|
|
|
|
if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
|
|
Converted)) {
|
|
// C++ [temp.class.spec]p9b3:
|
|
//
|
|
// -- The argument list of the specialization shall not be identical
|
|
// to the implicit argument list of the primary template.
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
|
|
<< /*variable template*/ 1
|
|
<< /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
|
|
<< FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
|
|
// FIXME: Recover from this by treating the declaration as a redeclaration
|
|
// of the primary template.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void *InsertPos = nullptr;
|
|
VarTemplateSpecializationDecl *PrevDecl = nullptr;
|
|
|
|
if (IsPartialSpecialization)
|
|
// FIXME: Template parameter list matters too
|
|
PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
|
|
else
|
|
PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
|
|
|
|
VarTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
// Check whether we can declare a variable template specialization in
|
|
// the current scope.
|
|
if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
|
|
TemplateNameLoc,
|
|
IsPartialSpecialization))
|
|
return true;
|
|
|
|
if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
|
|
// Since the only prior variable template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating its source location and
|
|
// the list of outer template parameters to reflect our new declaration.
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = nullptr;
|
|
} else if (IsPartialSpecialization) {
|
|
// Create a new class template partial specialization declaration node.
|
|
VarTemplatePartialSpecializationDecl *PrevPartial =
|
|
cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
|
|
VarTemplatePartialSpecializationDecl *Partial =
|
|
VarTemplatePartialSpecializationDecl::Create(
|
|
Context, VarTemplate->getDeclContext(), TemplateKWLoc,
|
|
TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
|
|
Converted, TemplateArgs);
|
|
|
|
if (!PrevPartial)
|
|
VarTemplate->AddPartialSpecialization(Partial, InsertPos);
|
|
Specialization = Partial;
|
|
|
|
// If we are providing an explicit specialization of a member variable
|
|
// template specialization, make a note of that.
|
|
if (PrevPartial && PrevPartial->getInstantiatedFromMember())
|
|
PrevPartial->setMemberSpecialization();
|
|
|
|
// Check that all of the template parameters of the variable template
|
|
// partial specialization are deducible from the template
|
|
// arguments. If not, this variable template partial specialization
|
|
// will never be used.
|
|
llvm::SmallBitVector DeducibleParams(TemplateParams->size());
|
|
MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
|
|
TemplateParams->getDepth(), DeducibleParams);
|
|
|
|
if (!DeducibleParams.all()) {
|
|
unsigned NumNonDeducible =
|
|
DeducibleParams.size() - DeducibleParams.count();
|
|
Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
|
|
<< /*variable template*/ 1 << (NumNonDeducible > 1)
|
|
<< SourceRange(TemplateNameLoc, RAngleLoc);
|
|
for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
|
|
if (!DeducibleParams[I]) {
|
|
NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
|
|
if (Param->getDeclName())
|
|
Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
|
|
<< Param->getDeclName();
|
|
else
|
|
Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
|
|
<< "(anonymous)";
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization or friend declaration.
|
|
Specialization = VarTemplateSpecializationDecl::Create(
|
|
Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
|
|
VarTemplate, DI->getType(), DI, SC, Converted);
|
|
Specialization->setTemplateArgsInfo(TemplateArgs);
|
|
|
|
if (!PrevDecl)
|
|
VarTemplate->AddSpecialization(Specialization, InsertPos);
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
|
|
bool Okay = false;
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
Okay = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Okay) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
|
|
<< Name << Range;
|
|
|
|
Diag(PrevDecl->getPointOfInstantiation(),
|
|
diag::note_instantiation_required_here)
|
|
<< (PrevDecl->getTemplateSpecializationKind() !=
|
|
TSK_ImplicitInstantiation);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Specialization->setTemplateKeywordLoc(TemplateKWLoc);
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
|
|
// Add the specialization into its lexical context, so that it can
|
|
// be seen when iterating through the list of declarations in that
|
|
// context. However, specializations are not found by name lookup.
|
|
CurContext->addDecl(Specialization);
|
|
|
|
// Note that this is an explicit specialization.
|
|
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
|
|
|
|
if (PrevDecl) {
|
|
// Check that this isn't a redefinition of this specialization,
|
|
// merging with previous declarations.
|
|
LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
|
|
ForRedeclaration);
|
|
PrevSpec.addDecl(PrevDecl);
|
|
D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
|
|
} else if (Specialization->isStaticDataMember() &&
|
|
Specialization->isOutOfLine()) {
|
|
Specialization->setAccess(VarTemplate->getAccess());
|
|
}
|
|
|
|
// Link instantiations of static data members back to the template from
|
|
// which they were instantiated.
|
|
if (Specialization->isStaticDataMember())
|
|
Specialization->setInstantiationOfStaticDataMember(
|
|
VarTemplate->getTemplatedDecl(),
|
|
Specialization->getSpecializationKind());
|
|
|
|
return Specialization;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief A partial specialization whose template arguments have matched
|
|
/// a given template-id.
|
|
struct PartialSpecMatchResult {
|
|
VarTemplatePartialSpecializationDecl *Partial;
|
|
TemplateArgumentList *Args;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
DeclResult
|
|
Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
|
|
SourceLocation TemplateNameLoc,
|
|
const TemplateArgumentListInfo &TemplateArgs) {
|
|
assert(Template && "A variable template id without template?");
|
|
|
|
// Check that the template argument list is well-formed for this template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (CheckTemplateArgumentList(
|
|
Template, TemplateNameLoc,
|
|
const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
|
|
Converted))
|
|
return true;
|
|
|
|
// Find the variable template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
|
|
Converted, InsertPos)) {
|
|
checkSpecializationVisibility(TemplateNameLoc, Spec);
|
|
// If we already have a variable template specialization, return it.
|
|
return Spec;
|
|
}
|
|
|
|
// This is the first time we have referenced this variable template
|
|
// specialization. Create the canonical declaration and add it to
|
|
// the set of specializations, based on the closest partial specialization
|
|
// that it represents. That is,
|
|
VarDecl *InstantiationPattern = Template->getTemplatedDecl();
|
|
TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
|
|
Converted);
|
|
TemplateArgumentList *InstantiationArgs = &TemplateArgList;
|
|
bool AmbiguousPartialSpec = false;
|
|
typedef PartialSpecMatchResult MatchResult;
|
|
SmallVector<MatchResult, 4> Matched;
|
|
SourceLocation PointOfInstantiation = TemplateNameLoc;
|
|
TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
|
|
/*ForTakingAddress=*/false);
|
|
|
|
// 1. Attempt to find the closest partial specialization that this
|
|
// specializes, if any.
|
|
// If any of the template arguments is dependent, then this is probably
|
|
// a placeholder for an incomplete declarative context; which must be
|
|
// complete by instantiation time. Thus, do not search through the partial
|
|
// specializations yet.
|
|
// TODO: Unify with InstantiateClassTemplateSpecialization()?
|
|
// Perhaps better after unification of DeduceTemplateArguments() and
|
|
// getMoreSpecializedPartialSpecialization().
|
|
bool InstantiationDependent = false;
|
|
if (!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs, InstantiationDependent)) {
|
|
|
|
SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
|
|
Template->getPartialSpecializations(PartialSpecs);
|
|
|
|
for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
|
|
VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
|
|
if (TemplateDeductionResult Result =
|
|
DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
|
|
// Store the failed-deduction information for use in diagnostics, later.
|
|
// TODO: Actually use the failed-deduction info?
|
|
FailedCandidates.addCandidate().set(
|
|
DeclAccessPair::make(Template, AS_public), Partial,
|
|
MakeDeductionFailureInfo(Context, Result, Info));
|
|
(void)Result;
|
|
} else {
|
|
Matched.push_back(PartialSpecMatchResult());
|
|
Matched.back().Partial = Partial;
|
|
Matched.back().Args = Info.take();
|
|
}
|
|
}
|
|
|
|
if (Matched.size() >= 1) {
|
|
SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
|
|
if (Matched.size() == 1) {
|
|
// -- If exactly one matching specialization is found, the
|
|
// instantiation is generated from that specialization.
|
|
// We don't need to do anything for this.
|
|
} else {
|
|
// -- If more than one matching specialization is found, the
|
|
// partial order rules (14.5.4.2) are used to determine
|
|
// whether one of the specializations is more specialized
|
|
// than the others. If none of the specializations is more
|
|
// specialized than all of the other matching
|
|
// specializations, then the use of the variable template is
|
|
// ambiguous and the program is ill-formed.
|
|
for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
|
|
PEnd = Matched.end();
|
|
P != PEnd; ++P) {
|
|
if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
|
|
PointOfInstantiation) ==
|
|
P->Partial)
|
|
Best = P;
|
|
}
|
|
|
|
// Determine if the best partial specialization is more specialized than
|
|
// the others.
|
|
for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
|
|
PEnd = Matched.end();
|
|
P != PEnd; ++P) {
|
|
if (P != Best && getMoreSpecializedPartialSpecialization(
|
|
P->Partial, Best->Partial,
|
|
PointOfInstantiation) != Best->Partial) {
|
|
AmbiguousPartialSpec = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Instantiate using the best variable template partial specialization.
|
|
InstantiationPattern = Best->Partial;
|
|
InstantiationArgs = Best->Args;
|
|
} else {
|
|
// -- If no match is found, the instantiation is generated
|
|
// from the primary template.
|
|
// InstantiationPattern = Template->getTemplatedDecl();
|
|
}
|
|
}
|
|
|
|
// 2. Create the canonical declaration.
|
|
// Note that we do not instantiate a definition until we see an odr-use
|
|
// in DoMarkVarDeclReferenced().
|
|
// FIXME: LateAttrs et al.?
|
|
VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
|
|
Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
|
|
Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
|
|
if (!Decl)
|
|
return true;
|
|
|
|
if (AmbiguousPartialSpec) {
|
|
// Partial ordering did not produce a clear winner. Complain.
|
|
Decl->setInvalidDecl();
|
|
Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
|
|
<< Decl;
|
|
|
|
// Print the matching partial specializations.
|
|
for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
|
|
PEnd = Matched.end();
|
|
P != PEnd; ++P)
|
|
Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
|
|
<< getTemplateArgumentBindingsText(
|
|
P->Partial->getTemplateParameters(), *P->Args);
|
|
return true;
|
|
}
|
|
|
|
if (VarTemplatePartialSpecializationDecl *D =
|
|
dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
|
|
Decl->setInstantiationOf(D, InstantiationArgs);
|
|
|
|
checkSpecializationVisibility(TemplateNameLoc, Decl);
|
|
|
|
assert(Decl && "No variable template specialization?");
|
|
return Decl;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
|
|
const DeclarationNameInfo &NameInfo,
|
|
VarTemplateDecl *Template, SourceLocation TemplateLoc,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
|
|
DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
|
|
*TemplateArgs);
|
|
if (Decl.isInvalid())
|
|
return ExprError();
|
|
|
|
VarDecl *Var = cast<VarDecl>(Decl.get());
|
|
if (!Var->getTemplateSpecializationKind())
|
|
Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
|
|
NameInfo.getLoc());
|
|
|
|
// Build an ordinary singleton decl ref.
|
|
return BuildDeclarationNameExpr(SS, NameInfo, Var,
|
|
/*FoundD=*/nullptr, TemplateArgs);
|
|
}
|
|
|
|
ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
LookupResult &R,
|
|
bool RequiresADL,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
// FIXME: Can we do any checking at this point? I guess we could check the
|
|
// template arguments that we have against the template name, if the template
|
|
// name refers to a single template. That's not a terribly common case,
|
|
// though.
|
|
// foo<int> could identify a single function unambiguously
|
|
// This approach does NOT work, since f<int>(1);
|
|
// gets resolved prior to resorting to overload resolution
|
|
// i.e., template<class T> void f(double);
|
|
// vs template<class T, class U> void f(U);
|
|
|
|
// These should be filtered out by our callers.
|
|
assert(!R.empty() && "empty lookup results when building templateid");
|
|
assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
|
|
|
|
// In C++1y, check variable template ids.
|
|
bool InstantiationDependent;
|
|
if (R.getAsSingle<VarTemplateDecl>() &&
|
|
!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
*TemplateArgs, InstantiationDependent)) {
|
|
return CheckVarTemplateId(SS, R.getLookupNameInfo(),
|
|
R.getAsSingle<VarTemplateDecl>(),
|
|
TemplateKWLoc, TemplateArgs);
|
|
}
|
|
|
|
// We don't want lookup warnings at this point.
|
|
R.suppressDiagnostics();
|
|
|
|
UnresolvedLookupExpr *ULE
|
|
= UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
|
|
SS.getWithLocInContext(Context),
|
|
TemplateKWLoc,
|
|
R.getLookupNameInfo(),
|
|
RequiresADL, TemplateArgs,
|
|
R.begin(), R.end());
|
|
|
|
return ULE;
|
|
}
|
|
|
|
// We actually only call this from template instantiation.
|
|
ExprResult
|
|
Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
const DeclarationNameInfo &NameInfo,
|
|
const TemplateArgumentListInfo *TemplateArgs) {
|
|
|
|
assert(TemplateArgs || TemplateKWLoc.isValid());
|
|
DeclContext *DC;
|
|
if (!(DC = computeDeclContext(SS, false)) ||
|
|
DC->isDependentContext() ||
|
|
RequireCompleteDeclContext(SS, DC))
|
|
return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
|
|
|
|
bool MemberOfUnknownSpecialization;
|
|
LookupResult R(*this, NameInfo, LookupOrdinaryName);
|
|
LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
|
|
MemberOfUnknownSpecialization);
|
|
|
|
if (R.isAmbiguous())
|
|
return ExprError();
|
|
|
|
if (R.empty()) {
|
|
Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
|
|
<< NameInfo.getName() << SS.getRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
|
|
Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
|
|
<< SS.getScopeRep()
|
|
<< NameInfo.getName().getAsString() << SS.getRange();
|
|
Diag(Temp->getLocation(), diag::note_referenced_class_template);
|
|
return ExprError();
|
|
}
|
|
|
|
return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
|
|
}
|
|
|
|
/// \brief Form a dependent template name.
|
|
///
|
|
/// This action forms a dependent template name given the template
|
|
/// name and its (presumably dependent) scope specifier. For
|
|
/// example, given "MetaFun::template apply", the scope specifier \p
|
|
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
|
|
/// of the "template" keyword, and "apply" is the \p Name.
|
|
TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
|
|
CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
UnqualifiedId &Name,
|
|
ParsedType ObjectType,
|
|
bool EnteringContext,
|
|
TemplateTy &Result) {
|
|
if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
|
|
Diag(TemplateKWLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_outside_of_template :
|
|
diag::ext_template_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TemplateKWLoc);
|
|
|
|
DeclContext *LookupCtx = nullptr;
|
|
if (SS.isSet())
|
|
LookupCtx = computeDeclContext(SS, EnteringContext);
|
|
if (!LookupCtx && ObjectType)
|
|
LookupCtx = computeDeclContext(ObjectType.get());
|
|
if (LookupCtx) {
|
|
// C++0x [temp.names]p5:
|
|
// If a name prefixed by the keyword template is not the name of
|
|
// a template, the program is ill-formed. [Note: the keyword
|
|
// template may not be applied to non-template members of class
|
|
// templates. -end note ] [ Note: as is the case with the
|
|
// typename prefix, the template prefix is allowed in cases
|
|
// where it is not strictly necessary; i.e., when the
|
|
// nested-name-specifier or the expression on the left of the ->
|
|
// or . is not dependent on a template-parameter, or the use
|
|
// does not appear in the scope of a template. -end note]
|
|
//
|
|
// Note: C++03 was more strict here, because it banned the use of
|
|
// the "template" keyword prior to a template-name that was not a
|
|
// dependent name. C++ DR468 relaxed this requirement (the
|
|
// "template" keyword is now permitted). We follow the C++0x
|
|
// rules, even in C++03 mode with a warning, retroactively applying the DR.
|
|
bool MemberOfUnknownSpecialization;
|
|
TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
|
|
ObjectType, EnteringContext, Result,
|
|
MemberOfUnknownSpecialization);
|
|
if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
|
|
isa<CXXRecordDecl>(LookupCtx) &&
|
|
(!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
|
|
cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
|
|
// This is a dependent template. Handle it below.
|
|
} else if (TNK == TNK_Non_template) {
|
|
Diag(Name.getLocStart(),
|
|
diag::err_template_kw_refers_to_non_template)
|
|
<< GetNameFromUnqualifiedId(Name).getName()
|
|
<< Name.getSourceRange()
|
|
<< TemplateKWLoc;
|
|
return TNK_Non_template;
|
|
} else {
|
|
// We found something; return it.
|
|
return TNK;
|
|
}
|
|
}
|
|
|
|
NestedNameSpecifier *Qualifier = SS.getScopeRep();
|
|
|
|
switch (Name.getKind()) {
|
|
case UnqualifiedId::IK_Identifier:
|
|
Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
|
|
Name.Identifier));
|
|
return TNK_Dependent_template_name;
|
|
|
|
case UnqualifiedId::IK_OperatorFunctionId:
|
|
Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
|
|
Name.OperatorFunctionId.Operator));
|
|
return TNK_Function_template;
|
|
|
|
case UnqualifiedId::IK_LiteralOperatorId:
|
|
llvm_unreachable("literal operator id cannot have a dependent scope");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Diag(Name.getLocStart(),
|
|
diag::err_template_kw_refers_to_non_template)
|
|
<< GetNameFromUnqualifiedId(Name).getName()
|
|
<< Name.getSourceRange()
|
|
<< TemplateKWLoc;
|
|
return TNK_Non_template;
|
|
}
|
|
|
|
bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
|
|
TemplateArgumentLoc &AL,
|
|
SmallVectorImpl<TemplateArgument> &Converted) {
|
|
const TemplateArgument &Arg = AL.getArgument();
|
|
QualType ArgType;
|
|
TypeSourceInfo *TSI = nullptr;
|
|
|
|
// Check template type parameter.
|
|
switch(Arg.getKind()) {
|
|
case TemplateArgument::Type:
|
|
// C++ [temp.arg.type]p1:
|
|
// A template-argument for a template-parameter which is a
|
|
// type shall be a type-id.
|
|
ArgType = Arg.getAsType();
|
|
TSI = AL.getTypeSourceInfo();
|
|
break;
|
|
case TemplateArgument::Template: {
|
|
// We have a template type parameter but the template argument
|
|
// is a template without any arguments.
|
|
SourceRange SR = AL.getSourceRange();
|
|
TemplateName Name = Arg.getAsTemplate();
|
|
Diag(SR.getBegin(), diag::err_template_missing_args)
|
|
<< Name << SR;
|
|
if (TemplateDecl *Decl = Name.getAsTemplateDecl())
|
|
Diag(Decl->getLocation(), diag::note_template_decl_here);
|
|
|
|
return true;
|
|
}
|
|
case TemplateArgument::Expression: {
|
|
// We have a template type parameter but the template argument is an
|
|
// expression; see if maybe it is missing the "typename" keyword.
|
|
CXXScopeSpec SS;
|
|
DeclarationNameInfo NameInfo;
|
|
|
|
if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
|
|
SS.Adopt(ArgExpr->getQualifierLoc());
|
|
NameInfo = ArgExpr->getNameInfo();
|
|
} else if (DependentScopeDeclRefExpr *ArgExpr =
|
|
dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
|
|
SS.Adopt(ArgExpr->getQualifierLoc());
|
|
NameInfo = ArgExpr->getNameInfo();
|
|
} else if (CXXDependentScopeMemberExpr *ArgExpr =
|
|
dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
|
|
if (ArgExpr->isImplicitAccess()) {
|
|
SS.Adopt(ArgExpr->getQualifierLoc());
|
|
NameInfo = ArgExpr->getMemberNameInfo();
|
|
}
|
|
}
|
|
|
|
if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
|
|
LookupResult Result(*this, NameInfo, LookupOrdinaryName);
|
|
LookupParsedName(Result, CurScope, &SS);
|
|
|
|
if (Result.getAsSingle<TypeDecl>() ||
|
|
Result.getResultKind() ==
|
|
LookupResult::NotFoundInCurrentInstantiation) {
|
|
// Suggest that the user add 'typename' before the NNS.
|
|
SourceLocation Loc = AL.getSourceRange().getBegin();
|
|
Diag(Loc, getLangOpts().MSVCCompat
|
|
? diag::ext_ms_template_type_arg_missing_typename
|
|
: diag::err_template_arg_must_be_type_suggest)
|
|
<< FixItHint::CreateInsertion(Loc, "typename ");
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
|
|
// Recover by synthesizing a type using the location information that we
|
|
// already have.
|
|
ArgType =
|
|
Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
|
|
TypeLocBuilder TLB;
|
|
DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
|
|
TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameInfo.getLoc());
|
|
TSI = TLB.getTypeSourceInfo(Context, ArgType);
|
|
|
|
// Overwrite our input TemplateArgumentLoc so that we can recover
|
|
// properly.
|
|
AL = TemplateArgumentLoc(TemplateArgument(ArgType),
|
|
TemplateArgumentLocInfo(TSI));
|
|
|
|
break;
|
|
}
|
|
}
|
|
// fallthrough
|
|
}
|
|
default: {
|
|
// We have a template type parameter but the template argument
|
|
// is not a type.
|
|
SourceRange SR = AL.getSourceRange();
|
|
Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (CheckTemplateArgument(Param, TSI))
|
|
return true;
|
|
|
|
// Add the converted template type argument.
|
|
ArgType = Context.getCanonicalType(ArgType);
|
|
|
|
// Objective-C ARC:
|
|
// If an explicitly-specified template argument type is a lifetime type
|
|
// with no lifetime qualifier, the __strong lifetime qualifier is inferred.
|
|
if (getLangOpts().ObjCAutoRefCount &&
|
|
ArgType->isObjCLifetimeType() &&
|
|
!ArgType.getObjCLifetime()) {
|
|
Qualifiers Qs;
|
|
Qs.setObjCLifetime(Qualifiers::OCL_Strong);
|
|
ArgType = Context.getQualifiedType(ArgType, Qs);
|
|
}
|
|
|
|
Converted.push_back(TemplateArgument(ArgType));
|
|
return false;
|
|
}
|
|
|
|
/// \brief Substitute template arguments into the default template argument for
|
|
/// the given template type parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the template template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
/// \returns the substituted template argument, or NULL if an error occurred.
|
|
static TypeSourceInfo *
|
|
SubstDefaultTemplateArgument(Sema &SemaRef,
|
|
TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
TemplateTypeParmDecl *Param,
|
|
SmallVectorImpl<TemplateArgument> &Converted) {
|
|
TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
|
|
|
|
// If the argument type is dependent, instantiate it now based
|
|
// on the previously-computed template arguments.
|
|
if (ArgType->getType()->isDependentType()) {
|
|
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
|
|
Param, Template, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return nullptr;
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(None);
|
|
|
|
Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
|
|
ArgType =
|
|
SemaRef.SubstType(ArgType, TemplateArgLists,
|
|
Param->getDefaultArgumentLoc(), Param->getDeclName());
|
|
}
|
|
|
|
return ArgType;
|
|
}
|
|
|
|
/// \brief Substitute template arguments into the default template argument for
|
|
/// the given non-type template parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the non-type template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
///
|
|
/// \returns the substituted template argument, or NULL if an error occurred.
|
|
static ExprResult
|
|
SubstDefaultTemplateArgument(Sema &SemaRef,
|
|
TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
NonTypeTemplateParmDecl *Param,
|
|
SmallVectorImpl<TemplateArgument> &Converted) {
|
|
Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
|
|
Param, Template, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return ExprError();
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(None);
|
|
|
|
EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
|
|
Sema::ConstantEvaluated);
|
|
return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
|
|
}
|
|
|
|
/// \brief Substitute template arguments into the default template argument for
|
|
/// the given template template parameter.
|
|
///
|
|
/// \param SemaRef the semantic analysis object for which we are performing
|
|
/// the substitution.
|
|
///
|
|
/// \param Template the template that we are synthesizing template arguments
|
|
/// for.
|
|
///
|
|
/// \param TemplateLoc the location of the template name that started the
|
|
/// template-id we are checking.
|
|
///
|
|
/// \param RAngleLoc the location of the right angle bracket ('>') that
|
|
/// terminates the template-id.
|
|
///
|
|
/// \param Param the template template parameter whose default we are
|
|
/// substituting into.
|
|
///
|
|
/// \param Converted the list of template arguments provided for template
|
|
/// parameters that precede \p Param in the template parameter list.
|
|
///
|
|
/// \param QualifierLoc Will be set to the nested-name-specifier (with
|
|
/// source-location information) that precedes the template name.
|
|
///
|
|
/// \returns the substituted template argument, or NULL if an error occurred.
|
|
static TemplateName
|
|
SubstDefaultTemplateArgument(Sema &SemaRef,
|
|
TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
TemplateTemplateParmDecl *Param,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
NestedNameSpecifierLoc &QualifierLoc) {
|
|
Sema::InstantiatingTemplate Inst(
|
|
SemaRef, TemplateLoc, TemplateParameter(Param), Template, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return TemplateName();
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
|
|
|
|
// Only substitute for the innermost template argument list.
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
|
|
for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
|
|
TemplateArgLists.addOuterTemplateArguments(None);
|
|
|
|
Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
|
|
// Substitute into the nested-name-specifier first,
|
|
QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc =
|
|
SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
|
|
if (!QualifierLoc)
|
|
return TemplateName();
|
|
}
|
|
|
|
return SemaRef.SubstTemplateName(
|
|
QualifierLoc,
|
|
Param->getDefaultArgument().getArgument().getAsTemplate(),
|
|
Param->getDefaultArgument().getTemplateNameLoc(),
|
|
TemplateArgLists);
|
|
}
|
|
|
|
/// \brief If the given template parameter has a default template
|
|
/// argument, substitute into that default template argument and
|
|
/// return the corresponding template argument.
|
|
TemplateArgumentLoc
|
|
Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
Decl *Param,
|
|
SmallVectorImpl<TemplateArgument>
|
|
&Converted,
|
|
bool &HasDefaultArg) {
|
|
HasDefaultArg = false;
|
|
|
|
if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
|
|
if (!hasVisibleDefaultArgument(TypeParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
TypeParm,
|
|
Converted);
|
|
if (DI)
|
|
return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
|
|
|
|
return TemplateArgumentLoc();
|
|
}
|
|
|
|
if (NonTypeTemplateParmDecl *NonTypeParm
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
if (!hasVisibleDefaultArgument(NonTypeParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
NonTypeParm,
|
|
Converted);
|
|
if (Arg.isInvalid())
|
|
return TemplateArgumentLoc();
|
|
|
|
Expr *ArgE = Arg.getAs<Expr>();
|
|
return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
|
|
}
|
|
|
|
TemplateTemplateParmDecl *TempTempParm
|
|
= cast<TemplateTemplateParmDecl>(Param);
|
|
if (!hasVisibleDefaultArgument(TempTempParm))
|
|
return TemplateArgumentLoc();
|
|
|
|
HasDefaultArg = true;
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
TempTempParm,
|
|
Converted,
|
|
QualifierLoc);
|
|
if (TName.isNull())
|
|
return TemplateArgumentLoc();
|
|
|
|
return TemplateArgumentLoc(TemplateArgument(TName),
|
|
TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
|
|
TempTempParm->getDefaultArgument().getTemplateNameLoc());
|
|
}
|
|
|
|
/// \brief Check that the given template argument corresponds to the given
|
|
/// template parameter.
|
|
///
|
|
/// \param Param The template parameter against which the argument will be
|
|
/// checked.
|
|
///
|
|
/// \param Arg The template argument, which may be updated due to conversions.
|
|
///
|
|
/// \param Template The template in which the template argument resides.
|
|
///
|
|
/// \param TemplateLoc The location of the template name for the template
|
|
/// whose argument list we're matching.
|
|
///
|
|
/// \param RAngleLoc The location of the right angle bracket ('>') that closes
|
|
/// the template argument list.
|
|
///
|
|
/// \param ArgumentPackIndex The index into the argument pack where this
|
|
/// argument will be placed. Only valid if the parameter is a parameter pack.
|
|
///
|
|
/// \param Converted The checked, converted argument will be added to the
|
|
/// end of this small vector.
|
|
///
|
|
/// \param CTAK Describes how we arrived at this particular template argument:
|
|
/// explicitly written, deduced, etc.
|
|
///
|
|
/// \returns true on error, false otherwise.
|
|
bool Sema::CheckTemplateArgument(NamedDecl *Param,
|
|
TemplateArgumentLoc &Arg,
|
|
NamedDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
SourceLocation RAngleLoc,
|
|
unsigned ArgumentPackIndex,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
CheckTemplateArgumentKind CTAK) {
|
|
// Check template type parameters.
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
|
|
return CheckTemplateTypeArgument(TTP, Arg, Converted);
|
|
|
|
// Check non-type template parameters.
|
|
if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
// Do substitution on the type of the non-type template parameter
|
|
// with the template arguments we've seen thus far. But if the
|
|
// template has a dependent context then we cannot substitute yet.
|
|
QualType NTTPType = NTTP->getType();
|
|
if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
|
|
NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
|
|
|
|
if (NTTPType->isDependentType() &&
|
|
!isa<TemplateTemplateParmDecl>(Template) &&
|
|
!Template->getDeclContext()->isDependentContext()) {
|
|
// Do substitution on the type of the non-type template parameter.
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Template,
|
|
NTTP, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
|
|
Converted);
|
|
NTTPType = SubstType(NTTPType,
|
|
MultiLevelTemplateArgumentList(TemplateArgs),
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
// If that worked, check the non-type template parameter type
|
|
// for validity.
|
|
if (!NTTPType.isNull())
|
|
NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
|
|
NTTP->getLocation());
|
|
if (NTTPType.isNull())
|
|
return true;
|
|
}
|
|
|
|
switch (Arg.getArgument().getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Should never see a NULL template argument here");
|
|
|
|
case TemplateArgument::Expression: {
|
|
TemplateArgument Result;
|
|
ExprResult Res =
|
|
CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
|
|
Result, CTAK);
|
|
if (Res.isInvalid())
|
|
return true;
|
|
|
|
// If the resulting expression is new, then use it in place of the
|
|
// old expression in the template argument.
|
|
if (Res.get() != Arg.getArgument().getAsExpr()) {
|
|
TemplateArgument TA(Res.get());
|
|
Arg = TemplateArgumentLoc(TA, Res.get());
|
|
}
|
|
|
|
Converted.push_back(Result);
|
|
break;
|
|
}
|
|
|
|
case TemplateArgument::Declaration:
|
|
case TemplateArgument::Integral:
|
|
case TemplateArgument::NullPtr:
|
|
// We've already checked this template argument, so just copy
|
|
// it to the list of converted arguments.
|
|
Converted.push_back(Arg.getArgument());
|
|
break;
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
// We were given a template template argument. It may not be ill-formed;
|
|
// see below.
|
|
if (DependentTemplateName *DTN
|
|
= Arg.getArgument().getAsTemplateOrTemplatePattern()
|
|
.getAsDependentTemplateName()) {
|
|
// We have a template argument such as \c T::template X, which we
|
|
// parsed as a template template argument. However, since we now
|
|
// know that we need a non-type template argument, convert this
|
|
// template name into an expression.
|
|
|
|
DeclarationNameInfo NameInfo(DTN->getIdentifier(),
|
|
Arg.getTemplateNameLoc());
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(Arg.getTemplateQualifierLoc());
|
|
// FIXME: the template-template arg was a DependentTemplateName,
|
|
// so it was provided with a template keyword. However, its source
|
|
// location is not stored in the template argument structure.
|
|
SourceLocation TemplateKWLoc;
|
|
ExprResult E = DependentScopeDeclRefExpr::Create(
|
|
Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
|
|
nullptr);
|
|
|
|
// If we parsed the template argument as a pack expansion, create a
|
|
// pack expansion expression.
|
|
if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
|
|
E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
|
|
if (E.isInvalid())
|
|
return true;
|
|
}
|
|
|
|
TemplateArgument Result;
|
|
E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
Converted.push_back(Result);
|
|
break;
|
|
}
|
|
|
|
// We have a template argument that actually does refer to a class
|
|
// template, alias template, or template template parameter, and
|
|
// therefore cannot be a non-type template argument.
|
|
Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
|
|
<< Arg.getSourceRange();
|
|
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
|
|
case TemplateArgument::Type: {
|
|
// We have a non-type template parameter but the template
|
|
// argument is a type.
|
|
|
|
// C++ [temp.arg]p2:
|
|
// In a template-argument, an ambiguity between a type-id and
|
|
// an expression is resolved to a type-id, regardless of the
|
|
// form of the corresponding template-parameter.
|
|
//
|
|
// We warn specifically about this case, since it can be rather
|
|
// confusing for users.
|
|
QualType T = Arg.getArgument().getAsType();
|
|
SourceRange SR = Arg.getSourceRange();
|
|
if (T->isFunctionType())
|
|
Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
|
|
else
|
|
Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Caller must expand template argument packs");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Check template template parameters.
|
|
TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
|
|
|
|
// Substitute into the template parameter list of the template
|
|
// template parameter, since previously-supplied template arguments
|
|
// may appear within the template template parameter.
|
|
{
|
|
// Set up a template instantiation context.
|
|
LocalInstantiationScope Scope(*this);
|
|
InstantiatingTemplate Inst(*this, TemplateLoc, Template,
|
|
TempParm, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
|
|
TempParm = cast_or_null<TemplateTemplateParmDecl>(
|
|
SubstDecl(TempParm, CurContext,
|
|
MultiLevelTemplateArgumentList(TemplateArgs)));
|
|
if (!TempParm)
|
|
return true;
|
|
}
|
|
|
|
switch (Arg.getArgument().getKind()) {
|
|
case TemplateArgument::Null:
|
|
llvm_unreachable("Should never see a NULL template argument here");
|
|
|
|
case TemplateArgument::Template:
|
|
case TemplateArgument::TemplateExpansion:
|
|
if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
|
|
return true;
|
|
|
|
Converted.push_back(Arg.getArgument());
|
|
break;
|
|
|
|
case TemplateArgument::Expression:
|
|
case TemplateArgument::Type:
|
|
// We have a template template parameter but the template
|
|
// argument does not refer to a template.
|
|
Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
|
|
<< getLangOpts().CPlusPlus11;
|
|
return true;
|
|
|
|
case TemplateArgument::Declaration:
|
|
llvm_unreachable("Declaration argument with template template parameter");
|
|
case TemplateArgument::Integral:
|
|
llvm_unreachable("Integral argument with template template parameter");
|
|
case TemplateArgument::NullPtr:
|
|
llvm_unreachable("Null pointer argument with template template parameter");
|
|
|
|
case TemplateArgument::Pack:
|
|
llvm_unreachable("Caller must expand template argument packs");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Diagnose an arity mismatch in the
|
|
static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs) {
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
unsigned NumParams = Params->size();
|
|
unsigned NumArgs = TemplateArgs.size();
|
|
|
|
SourceRange Range;
|
|
if (NumArgs > NumParams)
|
|
Range = SourceRange(TemplateArgs[NumParams].getLocation(),
|
|
TemplateArgs.getRAngleLoc());
|
|
S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
|
|
<< (NumArgs > NumParams)
|
|
<< (isa<ClassTemplateDecl>(Template)? 0 :
|
|
isa<FunctionTemplateDecl>(Template)? 1 :
|
|
isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
|
|
<< Template << Range;
|
|
S.Diag(Template->getLocation(), diag::note_template_decl_here)
|
|
<< Params->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check whether the template parameter is a pack expansion, and if so,
|
|
/// determine the number of parameters produced by that expansion. For instance:
|
|
///
|
|
/// \code
|
|
/// template<typename ...Ts> struct A {
|
|
/// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
|
|
/// is not a pack expansion, so returns an empty Optional.
|
|
static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
|
|
if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
if (NTTP->isExpandedParameterPack())
|
|
return NTTP->getNumExpansionTypes();
|
|
}
|
|
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
|
if (TTP->isExpandedParameterPack())
|
|
return TTP->getNumExpansionTemplateParameters();
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
/// Diagnose a missing template argument.
|
|
template<typename TemplateParmDecl>
|
|
static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
|
|
TemplateDecl *TD,
|
|
const TemplateParmDecl *D,
|
|
TemplateArgumentListInfo &Args) {
|
|
// Dig out the most recent declaration of the template parameter; there may be
|
|
// declarations of the template that are more recent than TD.
|
|
D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
|
|
->getTemplateParameters()
|
|
->getParam(D->getIndex()));
|
|
|
|
// If there's a default argument that's not visible, diagnose that we're
|
|
// missing a module import.
|
|
llvm::SmallVector<Module*, 8> Modules;
|
|
if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
|
|
S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
|
|
D->getDefaultArgumentLoc(), Modules,
|
|
Sema::MissingImportKind::DefaultArgument,
|
|
/*Recover*/true);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: If there's a more recent default argument that *is* visible,
|
|
// diagnose that it was declared too late.
|
|
|
|
return diagnoseArityMismatch(S, TD, Loc, Args);
|
|
}
|
|
|
|
/// \brief Check that the given template argument list is well-formed
|
|
/// for specializing the given template.
|
|
bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
|
|
SourceLocation TemplateLoc,
|
|
TemplateArgumentListInfo &TemplateArgs,
|
|
bool PartialTemplateArgs,
|
|
SmallVectorImpl<TemplateArgument> &Converted) {
|
|
// Make a copy of the template arguments for processing. Only make the
|
|
// changes at the end when successful in matching the arguments to the
|
|
// template.
|
|
TemplateArgumentListInfo NewArgs = TemplateArgs;
|
|
|
|
TemplateParameterList *Params = Template->getTemplateParameters();
|
|
|
|
SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
|
|
|
|
// C++ [temp.arg]p1:
|
|
// [...] The type and form of each template-argument specified in
|
|
// a template-id shall match the type and form specified for the
|
|
// corresponding parameter declared by the template in its
|
|
// template-parameter-list.
|
|
bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
|
|
SmallVector<TemplateArgument, 2> ArgumentPack;
|
|
unsigned ArgIdx = 0, NumArgs = NewArgs.size();
|
|
LocalInstantiationScope InstScope(*this, true);
|
|
for (TemplateParameterList::iterator Param = Params->begin(),
|
|
ParamEnd = Params->end();
|
|
Param != ParamEnd; /* increment in loop */) {
|
|
// If we have an expanded parameter pack, make sure we don't have too
|
|
// many arguments.
|
|
if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
|
|
if (*Expansions == ArgumentPack.size()) {
|
|
// We're done with this parameter pack. Pack up its arguments and add
|
|
// them to the list.
|
|
Converted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, ArgumentPack));
|
|
ArgumentPack.clear();
|
|
|
|
// This argument is assigned to the next parameter.
|
|
++Param;
|
|
continue;
|
|
} else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
|
|
// Not enough arguments for this parameter pack.
|
|
Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
|
|
<< false
|
|
<< (isa<ClassTemplateDecl>(Template)? 0 :
|
|
isa<FunctionTemplateDecl>(Template)? 1 :
|
|
isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
|
|
<< Template;
|
|
Diag(Template->getLocation(), diag::note_template_decl_here)
|
|
<< Params->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (ArgIdx < NumArgs) {
|
|
// Check the template argument we were given.
|
|
if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
|
|
TemplateLoc, RAngleLoc,
|
|
ArgumentPack.size(), Converted))
|
|
return true;
|
|
|
|
bool PackExpansionIntoNonPack =
|
|
NewArgs[ArgIdx].getArgument().isPackExpansion() &&
|
|
(!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
|
|
if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
|
|
// Core issue 1430: we have a pack expansion as an argument to an
|
|
// alias template, and it's not part of a parameter pack. This
|
|
// can't be canonicalized, so reject it now.
|
|
Diag(NewArgs[ArgIdx].getLocation(),
|
|
diag::err_alias_template_expansion_into_fixed_list)
|
|
<< NewArgs[ArgIdx].getSourceRange();
|
|
Diag((*Param)->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// We're now done with this argument.
|
|
++ArgIdx;
|
|
|
|
if ((*Param)->isTemplateParameterPack()) {
|
|
// The template parameter was a template parameter pack, so take the
|
|
// deduced argument and place it on the argument pack. Note that we
|
|
// stay on the same template parameter so that we can deduce more
|
|
// arguments.
|
|
ArgumentPack.push_back(Converted.pop_back_val());
|
|
} else {
|
|
// Move to the next template parameter.
|
|
++Param;
|
|
}
|
|
|
|
// If we just saw a pack expansion into a non-pack, then directly convert
|
|
// the remaining arguments, because we don't know what parameters they'll
|
|
// match up with.
|
|
if (PackExpansionIntoNonPack) {
|
|
if (!ArgumentPack.empty()) {
|
|
// If we were part way through filling in an expanded parameter pack,
|
|
// fall back to just producing individual arguments.
|
|
Converted.insert(Converted.end(),
|
|
ArgumentPack.begin(), ArgumentPack.end());
|
|
ArgumentPack.clear();
|
|
}
|
|
|
|
while (ArgIdx < NumArgs) {
|
|
Converted.push_back(NewArgs[ArgIdx].getArgument());
|
|
++ArgIdx;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we're checking a partial template argument list, we're done.
|
|
if (PartialTemplateArgs) {
|
|
if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
|
|
Converted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, ArgumentPack));
|
|
|
|
return false;
|
|
}
|
|
|
|
// If we have a template parameter pack with no more corresponding
|
|
// arguments, just break out now and we'll fill in the argument pack below.
|
|
if ((*Param)->isTemplateParameterPack()) {
|
|
assert(!getExpandedPackSize(*Param) &&
|
|
"Should have dealt with this already");
|
|
|
|
// A non-expanded parameter pack before the end of the parameter list
|
|
// only occurs for an ill-formed template parameter list, unless we've
|
|
// got a partial argument list for a function template, so just bail out.
|
|
if (Param + 1 != ParamEnd)
|
|
return true;
|
|
|
|
Converted.push_back(
|
|
TemplateArgument::CreatePackCopy(Context, ArgumentPack));
|
|
ArgumentPack.clear();
|
|
|
|
++Param;
|
|
continue;
|
|
}
|
|
|
|
// Check whether we have a default argument.
|
|
TemplateArgumentLoc Arg;
|
|
|
|
// Retrieve the default template argument from the template
|
|
// parameter. For each kind of template parameter, we substitute the
|
|
// template arguments provided thus far and any "outer" template arguments
|
|
// (when the template parameter was part of a nested template) into
|
|
// the default argument.
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
|
|
if (!hasVisibleDefaultArgument(TTP))
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
|
|
NewArgs);
|
|
|
|
TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
|
|
Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
TTP,
|
|
Converted);
|
|
if (!ArgType)
|
|
return true;
|
|
|
|
Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
|
|
ArgType);
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
|
|
if (!hasVisibleDefaultArgument(NTTP))
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
|
|
NewArgs);
|
|
|
|
ExprResult E = SubstDefaultTemplateArgument(*this, Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
NTTP,
|
|
Converted);
|
|
if (E.isInvalid())
|
|
return true;
|
|
|
|
Expr *Ex = E.getAs<Expr>();
|
|
Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
|
|
} else {
|
|
TemplateTemplateParmDecl *TempParm
|
|
= cast<TemplateTemplateParmDecl>(*Param);
|
|
|
|
if (!hasVisibleDefaultArgument(TempParm))
|
|
return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
|
|
NewArgs);
|
|
|
|
NestedNameSpecifierLoc QualifierLoc;
|
|
TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
|
|
TemplateLoc,
|
|
RAngleLoc,
|
|
TempParm,
|
|
Converted,
|
|
QualifierLoc);
|
|
if (Name.isNull())
|
|
return true;
|
|
|
|
Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
|
|
TempParm->getDefaultArgument().getTemplateNameLoc());
|
|
}
|
|
|
|
// Introduce an instantiation record that describes where we are using
|
|
// the default template argument. We're not actually instantiating a
|
|
// template here, we just create this object to put a note into the
|
|
// context stack.
|
|
InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
|
|
SourceRange(TemplateLoc, RAngleLoc));
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
|
|
// Check the default template argument.
|
|
if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
|
|
RAngleLoc, 0, Converted))
|
|
return true;
|
|
|
|
// Core issue 150 (assumed resolution): if this is a template template
|
|
// parameter, keep track of the default template arguments from the
|
|
// template definition.
|
|
if (isTemplateTemplateParameter)
|
|
NewArgs.addArgument(Arg);
|
|
|
|
// Move to the next template parameter and argument.
|
|
++Param;
|
|
++ArgIdx;
|
|
}
|
|
|
|
// If we're performing a partial argument substitution, allow any trailing
|
|
// pack expansions; they might be empty. This can happen even if
|
|
// PartialTemplateArgs is false (the list of arguments is complete but
|
|
// still dependent).
|
|
if (ArgIdx < NumArgs && CurrentInstantiationScope &&
|
|
CurrentInstantiationScope->getPartiallySubstitutedPack()) {
|
|
while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
|
|
Converted.push_back(NewArgs[ArgIdx++].getArgument());
|
|
}
|
|
|
|
// If we have any leftover arguments, then there were too many arguments.
|
|
// Complain and fail.
|
|
if (ArgIdx < NumArgs)
|
|
return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
|
|
|
|
// No problems found with the new argument list, propagate changes back
|
|
// to caller.
|
|
TemplateArgs = std::move(NewArgs);
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
class UnnamedLocalNoLinkageFinder
|
|
: public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
|
|
{
|
|
Sema &S;
|
|
SourceRange SR;
|
|
|
|
typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
|
|
|
|
public:
|
|
UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
|
|
|
|
bool Visit(QualType T) {
|
|
return inherited::Visit(T.getTypePtr());
|
|
}
|
|
|
|
#define TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *);
|
|
#define ABSTRACT_TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *) { return false; }
|
|
#define NON_CANONICAL_TYPE(Class, Parent) \
|
|
bool Visit##Class##Type(const Class##Type *) { return false; }
|
|
#include "clang/AST/TypeNodes.def"
|
|
|
|
bool VisitTagDecl(const TagDecl *Tag);
|
|
bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
|
|
const BlockPointerType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
|
|
const LValueReferenceType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
|
|
const RValueReferenceType* T) {
|
|
return Visit(T->getPointeeType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
|
|
const MemberPointerType* T) {
|
|
return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
|
|
const ConstantArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
|
|
const IncompleteArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
|
|
const VariableArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
|
|
const DependentSizedArrayType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
|
|
const DependentSizedExtVectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
|
|
return Visit(T->getElementType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
|
|
const FunctionProtoType* T) {
|
|
for (const auto &A : T->param_types()) {
|
|
if (Visit(A))
|
|
return true;
|
|
}
|
|
|
|
return Visit(T->getReturnType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
|
|
const FunctionNoProtoType* T) {
|
|
return Visit(T->getReturnType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
|
|
const UnresolvedUsingType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
|
|
return Visit(T->getUnderlyingType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
|
|
const UnaryTransformType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
|
|
return Visit(T->getDeducedType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
|
|
const TemplateTypeParmType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
|
|
const SubstTemplateTypeParmPackType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
|
|
const TemplateSpecializationType*) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
|
|
const InjectedClassNameType* T) {
|
|
return VisitTagDecl(T->getDecl());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
|
|
const DependentNameType* T) {
|
|
return VisitNestedNameSpecifier(T->getQualifier());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
|
|
const DependentTemplateSpecializationType* T) {
|
|
return VisitNestedNameSpecifier(T->getQualifier());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
|
|
const PackExpansionType* T) {
|
|
return Visit(T->getPattern());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
|
|
const ObjCInterfaceType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
|
|
const ObjCObjectPointerType *) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
|
|
return Visit(T->getValueType());
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
|
|
if (Tag->getDeclContext()->isFunctionOrMethod()) {
|
|
S.Diag(SR.getBegin(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_local_type :
|
|
diag::ext_template_arg_local_type)
|
|
<< S.Context.getTypeDeclType(Tag) << SR;
|
|
return true;
|
|
}
|
|
|
|
if (!Tag->hasNameForLinkage()) {
|
|
S.Diag(SR.getBegin(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_unnamed_type :
|
|
diag::ext_template_arg_unnamed_type) << SR;
|
|
S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
|
|
NestedNameSpecifier *NNS) {
|
|
if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
|
|
return true;
|
|
|
|
switch (NNS->getKind()) {
|
|
case NestedNameSpecifier::Identifier:
|
|
case NestedNameSpecifier::Namespace:
|
|
case NestedNameSpecifier::NamespaceAlias:
|
|
case NestedNameSpecifier::Global:
|
|
case NestedNameSpecifier::Super:
|
|
return false;
|
|
|
|
case NestedNameSpecifier::TypeSpec:
|
|
case NestedNameSpecifier::TypeSpecWithTemplate:
|
|
return Visit(QualType(NNS->getAsType(), 0));
|
|
}
|
|
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// template type parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.type]. It
|
|
/// returns true if an error occurred, and false otherwise.
|
|
bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
|
|
TypeSourceInfo *ArgInfo) {
|
|
assert(ArgInfo && "invalid TypeSourceInfo");
|
|
QualType Arg = ArgInfo->getType();
|
|
SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
|
|
|
|
if (Arg->isVariablyModifiedType()) {
|
|
return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
|
|
} else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
|
|
return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
|
|
}
|
|
|
|
// C++03 [temp.arg.type]p2:
|
|
// A local type, a type with no linkage, an unnamed type or a type
|
|
// compounded from any of these types shall not be used as a
|
|
// template-argument for a template type-parameter.
|
|
//
|
|
// C++11 allows these, and even in C++03 we allow them as an extension with
|
|
// a warning.
|
|
bool NeedsCheck;
|
|
if (LangOpts.CPlusPlus11)
|
|
NeedsCheck =
|
|
!Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
|
|
SR.getBegin()) ||
|
|
!Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
|
|
SR.getBegin());
|
|
else
|
|
NeedsCheck = Arg->hasUnnamedOrLocalType();
|
|
|
|
if (NeedsCheck) {
|
|
UnnamedLocalNoLinkageFinder Finder(*this, SR);
|
|
(void)Finder.Visit(Context.getCanonicalType(Arg));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
enum NullPointerValueKind {
|
|
NPV_NotNullPointer,
|
|
NPV_NullPointer,
|
|
NPV_Error
|
|
};
|
|
|
|
/// \brief Determine whether the given template argument is a null pointer
|
|
/// value of the appropriate type.
|
|
static NullPointerValueKind
|
|
isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType, Expr *Arg) {
|
|
if (Arg->isValueDependent() || Arg->isTypeDependent())
|
|
return NPV_NotNullPointer;
|
|
|
|
if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
|
|
llvm_unreachable(
|
|
"Incomplete parameter type in isNullPointerValueTemplateArgument!");
|
|
|
|
if (!S.getLangOpts().CPlusPlus11)
|
|
return NPV_NotNullPointer;
|
|
|
|
// Determine whether we have a constant expression.
|
|
ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
|
|
if (ArgRV.isInvalid())
|
|
return NPV_Error;
|
|
Arg = ArgRV.get();
|
|
|
|
Expr::EvalResult EvalResult;
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
EvalResult.Diag = &Notes;
|
|
if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
|
|
EvalResult.HasSideEffects) {
|
|
SourceLocation DiagLoc = Arg->getExprLoc();
|
|
|
|
// If our only note is the usual "invalid subexpression" note, just point
|
|
// the caret at its location rather than producing an essentially
|
|
// redundant note.
|
|
if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
|
|
diag::note_invalid_subexpr_in_const_expr) {
|
|
DiagLoc = Notes[0].first;
|
|
Notes.clear();
|
|
}
|
|
|
|
S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
|
|
<< Arg->getType() << Arg->getSourceRange();
|
|
for (unsigned I = 0, N = Notes.size(); I != N; ++I)
|
|
S.Diag(Notes[I].first, Notes[I].second);
|
|
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return NPV_Error;
|
|
}
|
|
|
|
// C++11 [temp.arg.nontype]p1:
|
|
// - an address constant expression of type std::nullptr_t
|
|
if (Arg->getType()->isNullPtrType())
|
|
return NPV_NullPointer;
|
|
|
|
// - a constant expression that evaluates to a null pointer value (4.10); or
|
|
// - a constant expression that evaluates to a null member pointer value
|
|
// (4.11); or
|
|
if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
|
|
(EvalResult.Val.isMemberPointer() &&
|
|
!EvalResult.Val.getMemberPointerDecl())) {
|
|
// If our expression has an appropriate type, we've succeeded.
|
|
bool ObjCLifetimeConversion;
|
|
if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
|
|
S.IsQualificationConversion(Arg->getType(), ParamType, false,
|
|
ObjCLifetimeConversion))
|
|
return NPV_NullPointer;
|
|
|
|
// The types didn't match, but we know we got a null pointer; complain,
|
|
// then recover as if the types were correct.
|
|
S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
|
|
<< Arg->getType() << ParamType << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return NPV_NullPointer;
|
|
}
|
|
|
|
// If we don't have a null pointer value, but we do have a NULL pointer
|
|
// constant, suggest a cast to the appropriate type.
|
|
if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
|
|
std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
|
|
S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
|
|
<< ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
|
|
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
|
|
")");
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return NPV_NullPointer;
|
|
}
|
|
|
|
// FIXME: If we ever want to support general, address-constant expressions
|
|
// as non-type template arguments, we should return the ExprResult here to
|
|
// be interpreted by the caller.
|
|
return NPV_NotNullPointer;
|
|
}
|
|
|
|
/// \brief Checks whether the given template argument is compatible with its
|
|
/// template parameter.
|
|
static bool CheckTemplateArgumentIsCompatibleWithParameter(
|
|
Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
|
|
Expr *Arg, QualType ArgType) {
|
|
bool ObjCLifetimeConversion;
|
|
if (ParamType->isPointerType() &&
|
|
!ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
|
|
S.IsQualificationConversion(ArgType, ParamType, false,
|
|
ObjCLifetimeConversion)) {
|
|
// For pointer-to-object types, qualification conversions are
|
|
// permitted.
|
|
} else {
|
|
if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
|
|
if (!ParamRef->getPointeeType()->isFunctionType()) {
|
|
// C++ [temp.arg.nontype]p5b3:
|
|
// For a non-type template-parameter of type reference to
|
|
// object, no conversions apply. The type referred to by the
|
|
// reference may be more cv-qualified than the (otherwise
|
|
// identical) type of the template- argument. The
|
|
// template-parameter is bound directly to the
|
|
// template-argument, which shall be an lvalue.
|
|
|
|
// FIXME: Other qualifiers?
|
|
unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
|
|
unsigned ArgQuals = ArgType.getCVRQualifiers();
|
|
|
|
if ((ParamQuals | ArgQuals) != ParamQuals) {
|
|
S.Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_ref_bind_ignores_quals)
|
|
<< ParamType << Arg->getType() << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At this point, the template argument refers to an object or
|
|
// function with external linkage. We now need to check whether the
|
|
// argument and parameter types are compatible.
|
|
if (!S.Context.hasSameUnqualifiedType(ArgType,
|
|
ParamType.getNonReferenceType())) {
|
|
// We can't perform this conversion or binding.
|
|
if (ParamType->isReferenceType())
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
|
|
<< ParamType << ArgIn->getType() << Arg->getSourceRange();
|
|
else
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
|
|
<< ArgIn->getType() << ParamType << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks whether the given template argument is the address
|
|
/// of an object or function according to C++ [temp.arg.nontype]p1.
|
|
static bool
|
|
CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
|
|
NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType,
|
|
Expr *ArgIn,
|
|
TemplateArgument &Converted) {
|
|
bool Invalid = false;
|
|
Expr *Arg = ArgIn;
|
|
QualType ArgType = Arg->getType();
|
|
|
|
bool AddressTaken = false;
|
|
SourceLocation AddrOpLoc;
|
|
if (S.getLangOpts().MicrosoftExt) {
|
|
// Microsoft Visual C++ strips all casts, allows an arbitrary number of
|
|
// dereference and address-of operators.
|
|
Arg = Arg->IgnoreParenCasts();
|
|
|
|
bool ExtWarnMSTemplateArg = false;
|
|
UnaryOperatorKind FirstOpKind;
|
|
SourceLocation FirstOpLoc;
|
|
while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
UnaryOperatorKind UnOpKind = UnOp->getOpcode();
|
|
if (UnOpKind == UO_Deref)
|
|
ExtWarnMSTemplateArg = true;
|
|
if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
|
|
Arg = UnOp->getSubExpr()->IgnoreParenCasts();
|
|
if (!AddrOpLoc.isValid()) {
|
|
FirstOpKind = UnOpKind;
|
|
FirstOpLoc = UnOp->getOperatorLoc();
|
|
}
|
|
} else
|
|
break;
|
|
}
|
|
if (FirstOpLoc.isValid()) {
|
|
if (ExtWarnMSTemplateArg)
|
|
S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
|
|
<< ArgIn->getSourceRange();
|
|
|
|
if (FirstOpKind == UO_AddrOf)
|
|
AddressTaken = true;
|
|
else if (Arg->getType()->isPointerType()) {
|
|
// We cannot let pointers get dereferenced here, that is obviously not a
|
|
// constant expression.
|
|
assert(FirstOpKind == UO_Deref);
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
}
|
|
} else {
|
|
// See through any implicit casts we added to fix the type.
|
|
Arg = Arg->IgnoreImpCasts();
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- the address of an object or function with external
|
|
// linkage, including function templates and function
|
|
// template-ids but excluding non-static class members,
|
|
// expressed as & id-expression where the & is optional if
|
|
// the name refers to a function or array, or if the
|
|
// corresponding template-parameter is a reference; or
|
|
|
|
// In C++98/03 mode, give an extension warning on any extra parentheses.
|
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
|
|
bool ExtraParens = false;
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid && !ExtraParens) {
|
|
S.Diag(Arg->getLocStart(),
|
|
S.getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_template_arg_extra_parens
|
|
: diag::ext_template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
ExtraParens = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
if (UnOp->getOpcode() == UO_AddrOf) {
|
|
Arg = UnOp->getSubExpr();
|
|
AddressTaken = true;
|
|
AddrOpLoc = UnOp->getOperatorLoc();
|
|
}
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
}
|
|
|
|
DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
|
|
ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
|
|
|
|
// If our parameter has pointer type, check for a null template value.
|
|
if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
|
|
NullPointerValueKind NPV;
|
|
// dllimport'd entities aren't constant but are available inside of template
|
|
// arguments.
|
|
if (Entity && Entity->hasAttr<DLLImportAttr>())
|
|
NPV = NPV_NotNullPointer;
|
|
else
|
|
NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
|
|
switch (NPV) {
|
|
case NPV_NullPointer:
|
|
S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
|
|
/*isNullPtr=*/true);
|
|
return false;
|
|
|
|
case NPV_Error:
|
|
return true;
|
|
|
|
case NPV_NotNullPointer:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Stop checking the precise nature of the argument if it is value dependent,
|
|
// it should be checked when instantiated.
|
|
if (Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(ArgIn);
|
|
return false;
|
|
}
|
|
|
|
if (isa<CXXUuidofExpr>(Arg)) {
|
|
if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
|
|
ArgIn, Arg, ArgType))
|
|
return true;
|
|
|
|
Converted = TemplateArgument(ArgIn);
|
|
return false;
|
|
}
|
|
|
|
if (!DRE) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// Cannot refer to non-static data members
|
|
if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
|
|
<< Entity << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// Cannot refer to non-static member functions
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
|
|
if (!Method->isStatic()) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
|
|
<< Method << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
|
|
VarDecl *Var = dyn_cast<VarDecl>(Entity);
|
|
|
|
// A non-type template argument must refer to an object or function.
|
|
if (!Func && !Var) {
|
|
// We found something, but we don't know specifically what it is.
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
// Address / reference template args must have external linkage in C++98.
|
|
if (Entity->getFormalLinkage() == InternalLinkage) {
|
|
S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_object_internal :
|
|
diag::ext_template_arg_object_internal)
|
|
<< !Func << Entity << Arg->getSourceRange();
|
|
S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
|
|
<< !Func;
|
|
} else if (!Entity->hasLinkage()) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
|
|
<< !Func << Entity << Arg->getSourceRange();
|
|
S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
|
|
<< !Func;
|
|
return true;
|
|
}
|
|
|
|
if (Func) {
|
|
// If the template parameter has pointer type, the function decays.
|
|
if (ParamType->isPointerType() && !AddressTaken)
|
|
ArgType = S.Context.getPointerType(Func->getType());
|
|
else if (AddressTaken && ParamType->isReferenceType()) {
|
|
// If we originally had an address-of operator, but the
|
|
// parameter has reference type, complain and (if things look
|
|
// like they will work) drop the address-of operator.
|
|
if (!S.Context.hasSameUnqualifiedType(Func->getType(),
|
|
ParamType.getNonReferenceType())) {
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType;
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType
|
|
<< FixItHint::CreateRemoval(AddrOpLoc);
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
|
|
ArgType = Func->getType();
|
|
}
|
|
} else {
|
|
// A value of reference type is not an object.
|
|
if (Var->getType()->isReferenceType()) {
|
|
S.Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_reference_var)
|
|
<< Var->getType() << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// A template argument must have static storage duration.
|
|
if (Var->getTLSKind()) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
// If the template parameter has pointer type, we must have taken
|
|
// the address of this object.
|
|
if (ParamType->isReferenceType()) {
|
|
if (AddressTaken) {
|
|
// If we originally had an address-of operator, but the
|
|
// parameter has reference type, complain and (if things look
|
|
// like they will work) drop the address-of operator.
|
|
if (!S.Context.hasSameUnqualifiedType(Var->getType(),
|
|
ParamType.getNonReferenceType())) {
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType;
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
|
|
<< ParamType
|
|
<< FixItHint::CreateRemoval(AddrOpLoc);
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
|
|
ArgType = Var->getType();
|
|
}
|
|
} else if (!AddressTaken && ParamType->isPointerType()) {
|
|
if (Var->getType()->isArrayType()) {
|
|
// Array-to-pointer decay.
|
|
ArgType = S.Context.getArrayDecayedType(Var->getType());
|
|
} else {
|
|
// If the template parameter has pointer type but the address of
|
|
// this object was not taken, complain and (possibly) recover by
|
|
// taking the address of the entity.
|
|
ArgType = S.Context.getPointerType(Var->getType());
|
|
if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
|
|
<< ParamType;
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
|
|
<< ParamType
|
|
<< FixItHint::CreateInsertion(Arg->getLocStart(), "&");
|
|
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
|
|
Arg, ArgType))
|
|
return true;
|
|
|
|
// Create the template argument.
|
|
Converted =
|
|
TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
|
|
S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Checks whether the given template argument is a pointer to
|
|
/// member constant according to C++ [temp.arg.nontype]p1.
|
|
static bool CheckTemplateArgumentPointerToMember(Sema &S,
|
|
NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType,
|
|
Expr *&ResultArg,
|
|
TemplateArgument &Converted) {
|
|
bool Invalid = false;
|
|
|
|
// Check for a null pointer value.
|
|
Expr *Arg = ResultArg;
|
|
switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
|
|
case NPV_Error:
|
|
return true;
|
|
case NPV_NullPointer:
|
|
S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
|
|
/*isNullPtr*/true);
|
|
return false;
|
|
case NPV_NotNullPointer:
|
|
break;
|
|
}
|
|
|
|
bool ObjCLifetimeConversion;
|
|
if (S.IsQualificationConversion(Arg->getType(),
|
|
ParamType.getNonReferenceType(),
|
|
false, ObjCLifetimeConversion)) {
|
|
Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
|
|
Arg->getValueKind()).get();
|
|
ResultArg = Arg;
|
|
} else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
|
|
ParamType.getNonReferenceType())) {
|
|
// We can't perform this conversion.
|
|
S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << ParamType << Arg->getSourceRange();
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return true;
|
|
}
|
|
|
|
// See through any implicit casts we added to fix the type.
|
|
while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
|
|
Arg = Cast->getSubExpr();
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
//
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of: [...]
|
|
//
|
|
// -- a pointer to member expressed as described in 5.3.1.
|
|
DeclRefExpr *DRE = nullptr;
|
|
|
|
// In C++98/03 mode, give an extension warning on any extra parentheses.
|
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
|
|
bool ExtraParens = false;
|
|
while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
|
|
if (!Invalid && !ExtraParens) {
|
|
S.Diag(Arg->getLocStart(),
|
|
S.getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_template_arg_extra_parens :
|
|
diag::ext_template_arg_extra_parens)
|
|
<< Arg->getSourceRange();
|
|
ExtraParens = true;
|
|
}
|
|
|
|
Arg = Parens->getSubExpr();
|
|
}
|
|
|
|
while (SubstNonTypeTemplateParmExpr *subst =
|
|
dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
|
|
Arg = subst->getReplacement()->IgnoreImpCasts();
|
|
|
|
// A pointer-to-member constant written &Class::member.
|
|
if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
|
|
if (UnOp->getOpcode() == UO_AddrOf) {
|
|
DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
|
|
if (DRE && !DRE->getQualifier())
|
|
DRE = nullptr;
|
|
}
|
|
}
|
|
// A constant of pointer-to-member type.
|
|
else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
|
|
if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
|
|
if (VD->getType()->isMemberPointerType()) {
|
|
if (isa<NonTypeTemplateParmDecl>(VD)) {
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(Arg);
|
|
} else {
|
|
VD = cast<ValueDecl>(VD->getCanonicalDecl());
|
|
Converted = TemplateArgument(VD, ParamType);
|
|
}
|
|
return Invalid;
|
|
}
|
|
}
|
|
}
|
|
|
|
DRE = nullptr;
|
|
}
|
|
|
|
if (!DRE)
|
|
return S.Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (isa<FieldDecl>(DRE->getDecl()) ||
|
|
isa<IndirectFieldDecl>(DRE->getDecl()) ||
|
|
isa<CXXMethodDecl>(DRE->getDecl())) {
|
|
assert((isa<FieldDecl>(DRE->getDecl()) ||
|
|
isa<IndirectFieldDecl>(DRE->getDecl()) ||
|
|
!cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
|
|
"Only non-static member pointers can make it here");
|
|
|
|
// Okay: this is the address of a non-static member, and therefore
|
|
// a member pointer constant.
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(Arg);
|
|
} else {
|
|
ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
|
|
Converted = TemplateArgument(D, ParamType);
|
|
}
|
|
return Invalid;
|
|
}
|
|
|
|
// We found something else, but we don't know specifically what it is.
|
|
S.Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_not_pointer_to_member_form)
|
|
<< Arg->getSourceRange();
|
|
S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// non-type template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.nontype].
|
|
/// If an error occurred, it returns ExprError(); otherwise, it
|
|
/// returns the converted template argument. \p ParamType is the
|
|
/// type of the non-type template parameter after it has been instantiated.
|
|
ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
|
|
QualType ParamType, Expr *Arg,
|
|
TemplateArgument &Converted,
|
|
CheckTemplateArgumentKind CTAK) {
|
|
SourceLocation StartLoc = Arg->getLocStart();
|
|
|
|
// If the parameter type somehow involves auto, deduce the type now.
|
|
if (getLangOpts().CPlusPlus1z && ParamType->isUndeducedType()) {
|
|
if (DeduceAutoType(
|
|
Context.getTrivialTypeSourceInfo(ParamType, Param->getLocation()),
|
|
Arg, ParamType) == DAR_Failed) {
|
|
Diag(Arg->getExprLoc(),
|
|
diag::err_non_type_template_parm_type_deduction_failure)
|
|
<< Param->getDeclName() << Param->getType() << Arg->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
}
|
|
// CheckNonTypeTemplateParameterType will produce a diagnostic if there's
|
|
// an error. The error message normally references the parameter
|
|
// declaration, but here we'll pass the argument location because that's
|
|
// where the parameter type is deduced.
|
|
ParamType = CheckNonTypeTemplateParameterType(ParamType, Arg->getExprLoc());
|
|
if (ParamType.isNull()) {
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
// If either the parameter has a dependent type or the argument is
|
|
// type-dependent, there's nothing we can check now.
|
|
if (ParamType->isDependentType() || Arg->isTypeDependent()) {
|
|
// FIXME: Produce a cloned, canonical expression?
|
|
Converted = TemplateArgument(Arg);
|
|
return Arg;
|
|
}
|
|
|
|
// We should have already dropped all cv-qualifiers by now.
|
|
assert(!ParamType.hasQualifiers() &&
|
|
"non-type template parameter type cannot be qualified");
|
|
|
|
if (CTAK == CTAK_Deduced &&
|
|
!Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
|
|
// C++ [temp.deduct.type]p17:
|
|
// If, in the declaration of a function template with a non-type
|
|
// template-parameter, the non-type template-parameter is used
|
|
// in an expression in the function parameter-list and, if the
|
|
// corresponding template-argument is deduced, the
|
|
// template-argument type shall match the type of the
|
|
// template-parameter exactly, except that a template-argument
|
|
// deduced from an array bound may be of any integral type.
|
|
Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
|
|
<< Arg->getType().getUnqualifiedType()
|
|
<< ParamType.getUnqualifiedType();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
}
|
|
|
|
if (getLangOpts().CPlusPlus1z) {
|
|
// FIXME: We can do some limited checking for a value-dependent but not
|
|
// type-dependent argument.
|
|
if (Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(Arg);
|
|
return Arg;
|
|
}
|
|
|
|
// C++1z [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type template parameter shall be
|
|
// a converted constant expression of the type of the template-parameter.
|
|
APValue Value;
|
|
ExprResult ArgResult = CheckConvertedConstantExpression(
|
|
Arg, ParamType, Value, CCEK_TemplateArg);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType CanonParamType = Context.getCanonicalType(ParamType);
|
|
|
|
// Convert the APValue to a TemplateArgument.
|
|
switch (Value.getKind()) {
|
|
case APValue::Uninitialized:
|
|
assert(ParamType->isNullPtrType());
|
|
Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
|
|
break;
|
|
case APValue::Int:
|
|
assert(ParamType->isIntegralOrEnumerationType());
|
|
Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
|
|
break;
|
|
case APValue::MemberPointer: {
|
|
assert(ParamType->isMemberPointerType());
|
|
|
|
// FIXME: We need TemplateArgument representation and mangling for these.
|
|
if (!Value.getMemberPointerPath().empty()) {
|
|
Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_member_ptr_base_derived_not_supported)
|
|
<< Value.getMemberPointerDecl() << ParamType
|
|
<< Arg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
|
|
Converted = VD ? TemplateArgument(VD, CanonParamType)
|
|
: TemplateArgument(CanonParamType, /*isNullPtr*/true);
|
|
break;
|
|
}
|
|
case APValue::LValue: {
|
|
// For a non-type template-parameter of pointer or reference type,
|
|
// the value of the constant expression shall not refer to
|
|
assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
|
|
ParamType->isNullPtrType());
|
|
// -- a temporary object
|
|
// -- a string literal
|
|
// -- the result of a typeid expression, or
|
|
// -- a predefind __func__ variable
|
|
if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
|
|
if (isa<CXXUuidofExpr>(E)) {
|
|
Converted = TemplateArgument(const_cast<Expr*>(E));
|
|
break;
|
|
}
|
|
Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
|
|
<< Arg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
auto *VD = const_cast<ValueDecl *>(
|
|
Value.getLValueBase().dyn_cast<const ValueDecl *>());
|
|
// -- a subobject
|
|
if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
|
|
VD && VD->getType()->isArrayType() &&
|
|
Value.getLValuePath()[0].ArrayIndex == 0 &&
|
|
!Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
|
|
// Per defect report (no number yet):
|
|
// ... other than a pointer to the first element of a complete array
|
|
// object.
|
|
} else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
|
|
Value.isLValueOnePastTheEnd()) {
|
|
Diag(StartLoc, diag::err_non_type_template_arg_subobject)
|
|
<< Value.getAsString(Context, ParamType);
|
|
return ExprError();
|
|
}
|
|
assert((VD || !ParamType->isReferenceType()) &&
|
|
"null reference should not be a constant expression");
|
|
assert((!VD || !ParamType->isNullPtrType()) &&
|
|
"non-null value of type nullptr_t?");
|
|
Converted = VD ? TemplateArgument(VD, CanonParamType)
|
|
: TemplateArgument(CanonParamType, /*isNullPtr*/true);
|
|
break;
|
|
}
|
|
case APValue::AddrLabelDiff:
|
|
return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
|
|
case APValue::Float:
|
|
case APValue::ComplexInt:
|
|
case APValue::ComplexFloat:
|
|
case APValue::Vector:
|
|
case APValue::Array:
|
|
case APValue::Struct:
|
|
case APValue::Union:
|
|
llvm_unreachable("invalid kind for template argument");
|
|
}
|
|
|
|
return ArgResult.get();
|
|
}
|
|
|
|
// C++ [temp.arg.nontype]p5:
|
|
// The following conversions are performed on each expression used
|
|
// as a non-type template-argument. If a non-type
|
|
// template-argument cannot be converted to the type of the
|
|
// corresponding template-parameter then the program is
|
|
// ill-formed.
|
|
if (ParamType->isIntegralOrEnumerationType()) {
|
|
// C++11:
|
|
// -- for a non-type template-parameter of integral or
|
|
// enumeration type, conversions permitted in a converted
|
|
// constant expression are applied.
|
|
//
|
|
// C++98:
|
|
// -- for a non-type template-parameter of integral or
|
|
// enumeration type, integral promotions (4.5) and integral
|
|
// conversions (4.7) are applied.
|
|
|
|
if (getLangOpts().CPlusPlus11) {
|
|
// We can't check arbitrary value-dependent arguments.
|
|
// FIXME: If there's no viable conversion to the template parameter type,
|
|
// we should be able to diagnose that prior to instantiation.
|
|
if (Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(Arg);
|
|
return Arg;
|
|
}
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type, non-template template-parameter
|
|
// shall be one of:
|
|
//
|
|
// -- for a non-type template-parameter of integral or enumeration
|
|
// type, a converted constant expression of the type of the
|
|
// template-parameter; or
|
|
llvm::APSInt Value;
|
|
ExprResult ArgResult =
|
|
CheckConvertedConstantExpression(Arg, ParamType, Value,
|
|
CCEK_TemplateArg);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
|
|
// Widen the argument value to sizeof(parameter type). This is almost
|
|
// always a no-op, except when the parameter type is bool. In
|
|
// that case, this may extend the argument from 1 bit to 8 bits.
|
|
QualType IntegerType = ParamType;
|
|
if (const EnumType *Enum = IntegerType->getAs<EnumType>())
|
|
IntegerType = Enum->getDecl()->getIntegerType();
|
|
Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
|
|
|
|
Converted = TemplateArgument(Context, Value,
|
|
Context.getCanonicalType(ParamType));
|
|
return ArgResult;
|
|
}
|
|
|
|
ExprResult ArgResult = DefaultLvalueConversion(Arg);
|
|
if (ArgResult.isInvalid())
|
|
return ExprError();
|
|
Arg = ArgResult.get();
|
|
|
|
QualType ArgType = Arg->getType();
|
|
|
|
// C++ [temp.arg.nontype]p1:
|
|
// A template-argument for a non-type, non-template
|
|
// template-parameter shall be one of:
|
|
//
|
|
// -- an integral constant-expression of integral or enumeration
|
|
// type; or
|
|
// -- the name of a non-type template-parameter; or
|
|
SourceLocation NonConstantLoc;
|
|
llvm::APSInt Value;
|
|
if (!ArgType->isIntegralOrEnumerationType()) {
|
|
Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_not_integral_or_enumeral)
|
|
<< ArgType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
} else if (!Arg->isValueDependent()) {
|
|
class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
|
|
QualType T;
|
|
|
|
public:
|
|
TmplArgICEDiagnoser(QualType T) : T(T) { }
|
|
|
|
void diagnoseNotICE(Sema &S, SourceLocation Loc,
|
|
SourceRange SR) override {
|
|
S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
|
|
}
|
|
} Diagnoser(ArgType);
|
|
|
|
Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
|
|
false).get();
|
|
if (!Arg)
|
|
return ExprError();
|
|
}
|
|
|
|
// From here on out, all we care about is the unqualified form
|
|
// of the argument type.
|
|
ArgType = ArgType.getUnqualifiedType();
|
|
|
|
// Try to convert the argument to the parameter's type.
|
|
if (Context.hasSameType(ParamType, ArgType)) {
|
|
// Okay: no conversion necessary
|
|
} else if (ParamType->isBooleanType()) {
|
|
// This is an integral-to-boolean conversion.
|
|
Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
|
|
} else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
|
|
!ParamType->isEnumeralType()) {
|
|
// This is an integral promotion or conversion.
|
|
Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
|
|
} else {
|
|
// We can't perform this conversion.
|
|
Diag(Arg->getLocStart(),
|
|
diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << ParamType << Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
}
|
|
|
|
// Add the value of this argument to the list of converted
|
|
// arguments. We use the bitwidth and signedness of the template
|
|
// parameter.
|
|
if (Arg->isValueDependent()) {
|
|
// The argument is value-dependent. Create a new
|
|
// TemplateArgument with the converted expression.
|
|
Converted = TemplateArgument(Arg);
|
|
return Arg;
|
|
}
|
|
|
|
QualType IntegerType = Context.getCanonicalType(ParamType);
|
|
if (const EnumType *Enum = IntegerType->getAs<EnumType>())
|
|
IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
|
|
|
|
if (ParamType->isBooleanType()) {
|
|
// Value must be zero or one.
|
|
Value = Value != 0;
|
|
unsigned AllowedBits = Context.getTypeSize(IntegerType);
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value = Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
|
|
} else {
|
|
llvm::APSInt OldValue = Value;
|
|
|
|
// Coerce the template argument's value to the value it will have
|
|
// based on the template parameter's type.
|
|
unsigned AllowedBits = Context.getTypeSize(IntegerType);
|
|
if (Value.getBitWidth() != AllowedBits)
|
|
Value = Value.extOrTrunc(AllowedBits);
|
|
Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
|
|
|
|
// Complain if an unsigned parameter received a negative value.
|
|
if (IntegerType->isUnsignedIntegerOrEnumerationType()
|
|
&& (OldValue.isSigned() && OldValue.isNegative())) {
|
|
Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
|
|
<< OldValue.toString(10) << Value.toString(10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
}
|
|
|
|
// Complain if we overflowed the template parameter's type.
|
|
unsigned RequiredBits;
|
|
if (IntegerType->isUnsignedIntegerOrEnumerationType())
|
|
RequiredBits = OldValue.getActiveBits();
|
|
else if (OldValue.isUnsigned())
|
|
RequiredBits = OldValue.getActiveBits() + 1;
|
|
else
|
|
RequiredBits = OldValue.getMinSignedBits();
|
|
if (RequiredBits > AllowedBits) {
|
|
Diag(Arg->getLocStart(),
|
|
diag::warn_template_arg_too_large)
|
|
<< OldValue.toString(10) << Value.toString(10) << Param->getType()
|
|
<< Arg->getSourceRange();
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
}
|
|
}
|
|
|
|
Converted = TemplateArgument(Context, Value,
|
|
ParamType->isEnumeralType()
|
|
? Context.getCanonicalType(ParamType)
|
|
: IntegerType);
|
|
return Arg;
|
|
}
|
|
|
|
QualType ArgType = Arg->getType();
|
|
DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
|
|
|
|
// Handle pointer-to-function, reference-to-function, and
|
|
// pointer-to-member-function all in (roughly) the same way.
|
|
if (// -- For a non-type template-parameter of type pointer to
|
|
// function, only the function-to-pointer conversion (4.3) is
|
|
// applied. If the template-argument represents a set of
|
|
// overloaded functions (or a pointer to such), the matching
|
|
// function is selected from the set (13.4).
|
|
(ParamType->isPointerType() &&
|
|
ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type reference to
|
|
// function, no conversions apply. If the template-argument
|
|
// represents a set of overloaded functions, the matching
|
|
// function is selected from the set (13.4).
|
|
(ParamType->isReferenceType() &&
|
|
ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
|
|
// -- For a non-type template-parameter of type pointer to
|
|
// member function, no conversions apply. If the
|
|
// template-argument represents a set of overloaded member
|
|
// functions, the matching member function is selected from
|
|
// the set (13.4).
|
|
(ParamType->isMemberPointerType() &&
|
|
ParamType->getAs<MemberPointerType>()->getPointeeType()
|
|
->isFunctionType())) {
|
|
|
|
if (Arg->getType() == Context.OverloadTy) {
|
|
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
|
|
true,
|
|
FoundResult)) {
|
|
if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
|
|
return ExprError();
|
|
|
|
Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
|
|
ArgType = Arg->getType();
|
|
} else
|
|
return ExprError();
|
|
}
|
|
|
|
if (!ParamType->isMemberPointerType()) {
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
|
|
ParamType,
|
|
Arg, Converted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
|
|
Converted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
if (ParamType->isPointerType()) {
|
|
// -- for a non-type template-parameter of type pointer to
|
|
// object, qualification conversions (4.4) and the
|
|
// array-to-pointer conversion (4.2) are applied.
|
|
// C++0x also allows a value of std::nullptr_t.
|
|
assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
|
|
"Only object pointers allowed here");
|
|
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
|
|
ParamType,
|
|
Arg, Converted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
|
|
// -- For a non-type template-parameter of type reference to
|
|
// object, no conversions apply. The type referred to by the
|
|
// reference may be more cv-qualified than the (otherwise
|
|
// identical) type of the template-argument. The
|
|
// template-parameter is bound directly to the
|
|
// template-argument, which must be an lvalue.
|
|
assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
|
|
"Only object references allowed here");
|
|
|
|
if (Arg->getType() == Context.OverloadTy) {
|
|
if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
|
|
ParamRefType->getPointeeType(),
|
|
true,
|
|
FoundResult)) {
|
|
if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
|
|
return ExprError();
|
|
|
|
Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
|
|
ArgType = Arg->getType();
|
|
} else
|
|
return ExprError();
|
|
}
|
|
|
|
if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
|
|
ParamType,
|
|
Arg, Converted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
// Deal with parameters of type std::nullptr_t.
|
|
if (ParamType->isNullPtrType()) {
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) {
|
|
Converted = TemplateArgument(Arg);
|
|
return Arg;
|
|
}
|
|
|
|
switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
|
|
case NPV_NotNullPointer:
|
|
Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
|
|
<< Arg->getType() << ParamType;
|
|
Diag(Param->getLocation(), diag::note_template_param_here);
|
|
return ExprError();
|
|
|
|
case NPV_Error:
|
|
return ExprError();
|
|
|
|
case NPV_NullPointer:
|
|
Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
|
|
Converted = TemplateArgument(Context.getCanonicalType(ParamType),
|
|
/*isNullPtr*/true);
|
|
return Arg;
|
|
}
|
|
}
|
|
|
|
// -- For a non-type template-parameter of type pointer to data
|
|
// member, qualification conversions (4.4) are applied.
|
|
assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
|
|
|
|
if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
|
|
Converted))
|
|
return ExprError();
|
|
return Arg;
|
|
}
|
|
|
|
/// \brief Check a template argument against its corresponding
|
|
/// template template parameter.
|
|
///
|
|
/// This routine implements the semantics of C++ [temp.arg.template].
|
|
/// It returns true if an error occurred, and false otherwise.
|
|
bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
|
|
TemplateArgumentLoc &Arg,
|
|
unsigned ArgumentPackIndex) {
|
|
TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
|
|
TemplateDecl *Template = Name.getAsTemplateDecl();
|
|
if (!Template) {
|
|
// Any dependent template name is fine.
|
|
assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
|
|
return false;
|
|
}
|
|
|
|
// C++0x [temp.arg.template]p1:
|
|
// A template-argument for a template template-parameter shall be
|
|
// the name of a class template or an alias template, expressed as an
|
|
// id-expression. When the template-argument names a class template, only
|
|
// primary class templates are considered when matching the
|
|
// template template argument with the corresponding parameter;
|
|
// partial specializations are not considered even if their
|
|
// parameter lists match that of the template template parameter.
|
|
//
|
|
// Note that we also allow template template parameters here, which
|
|
// will happen when we are dealing with, e.g., class template
|
|
// partial specializations.
|
|
if (!isa<ClassTemplateDecl>(Template) &&
|
|
!isa<TemplateTemplateParmDecl>(Template) &&
|
|
!isa<TypeAliasTemplateDecl>(Template) &&
|
|
!isa<BuiltinTemplateDecl>(Template)) {
|
|
assert(isa<FunctionTemplateDecl>(Template) &&
|
|
"Only function templates are possible here");
|
|
Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
|
|
Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
|
|
<< Template;
|
|
}
|
|
|
|
TemplateParameterList *Params = Param->getTemplateParameters();
|
|
if (Param->isExpandedParameterPack())
|
|
Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
|
|
|
|
return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
|
|
Params,
|
|
true,
|
|
TPL_TemplateTemplateArgumentMatch,
|
|
Arg.getLocation());
|
|
}
|
|
|
|
/// \brief Given a non-type template argument that refers to a
|
|
/// declaration and the type of its corresponding non-type template
|
|
/// parameter, produce an expression that properly refers to that
|
|
/// declaration.
|
|
ExprResult
|
|
Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
|
|
QualType ParamType,
|
|
SourceLocation Loc) {
|
|
// C++ [temp.param]p8:
|
|
//
|
|
// A non-type template-parameter of type "array of T" or
|
|
// "function returning T" is adjusted to be of type "pointer to
|
|
// T" or "pointer to function returning T", respectively.
|
|
if (ParamType->isArrayType())
|
|
ParamType = Context.getArrayDecayedType(ParamType);
|
|
else if (ParamType->isFunctionType())
|
|
ParamType = Context.getPointerType(ParamType);
|
|
|
|
// For a NULL non-type template argument, return nullptr casted to the
|
|
// parameter's type.
|
|
if (Arg.getKind() == TemplateArgument::NullPtr) {
|
|
return ImpCastExprToType(
|
|
new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
|
|
ParamType,
|
|
ParamType->getAs<MemberPointerType>()
|
|
? CK_NullToMemberPointer
|
|
: CK_NullToPointer);
|
|
}
|
|
assert(Arg.getKind() == TemplateArgument::Declaration &&
|
|
"Only declaration template arguments permitted here");
|
|
|
|
ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
|
|
|
|
if (VD->getDeclContext()->isRecord() &&
|
|
(isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
|
|
isa<IndirectFieldDecl>(VD))) {
|
|
// If the value is a class member, we might have a pointer-to-member.
|
|
// Determine whether the non-type template template parameter is of
|
|
// pointer-to-member type. If so, we need to build an appropriate
|
|
// expression for a pointer-to-member, since a "normal" DeclRefExpr
|
|
// would refer to the member itself.
|
|
if (ParamType->isMemberPointerType()) {
|
|
QualType ClassType
|
|
= Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
|
|
NestedNameSpecifier *Qualifier
|
|
= NestedNameSpecifier::Create(Context, nullptr, false,
|
|
ClassType.getTypePtr());
|
|
CXXScopeSpec SS;
|
|
SS.MakeTrivial(Context, Qualifier, Loc);
|
|
|
|
// The actual value-ness of this is unimportant, but for
|
|
// internal consistency's sake, references to instance methods
|
|
// are r-values.
|
|
ExprValueKind VK = VK_LValue;
|
|
if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
|
|
VK = VK_RValue;
|
|
|
|
ExprResult RefExpr = BuildDeclRefExpr(VD,
|
|
VD->getType().getNonReferenceType(),
|
|
VK,
|
|
Loc,
|
|
&SS);
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
|
|
|
|
// We might need to perform a trailing qualification conversion, since
|
|
// the element type on the parameter could be more qualified than the
|
|
// element type in the expression we constructed.
|
|
bool ObjCLifetimeConversion;
|
|
if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
|
|
ParamType.getUnqualifiedType(), false,
|
|
ObjCLifetimeConversion))
|
|
RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
|
|
|
|
assert(!RefExpr.isInvalid() &&
|
|
Context.hasSameType(((Expr*) RefExpr.get())->getType(),
|
|
ParamType.getUnqualifiedType()));
|
|
return RefExpr;
|
|
}
|
|
}
|
|
|
|
QualType T = VD->getType().getNonReferenceType();
|
|
|
|
if (ParamType->isPointerType()) {
|
|
// When the non-type template parameter is a pointer, take the
|
|
// address of the declaration.
|
|
ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
if (T->isFunctionType() || T->isArrayType()) {
|
|
// Decay functions and arrays.
|
|
RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
|
|
if (RefExpr.isInvalid())
|
|
return ExprError();
|
|
|
|
return RefExpr;
|
|
}
|
|
|
|
// Take the address of everything else
|
|
return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
|
|
}
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
|
|
// If the non-type template parameter has reference type, qualify the
|
|
// resulting declaration reference with the extra qualifiers on the
|
|
// type that the reference refers to.
|
|
if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
|
|
VK = VK_LValue;
|
|
T = Context.getQualifiedType(T,
|
|
TargetRef->getPointeeType().getQualifiers());
|
|
} else if (isa<FunctionDecl>(VD)) {
|
|
// References to functions are always lvalues.
|
|
VK = VK_LValue;
|
|
}
|
|
|
|
return BuildDeclRefExpr(VD, T, VK, Loc);
|
|
}
|
|
|
|
/// \brief Construct a new expression that refers to the given
|
|
/// integral template argument with the given source-location
|
|
/// information.
|
|
///
|
|
/// This routine takes care of the mapping from an integral template
|
|
/// argument (which may have any integral type) to the appropriate
|
|
/// literal value.
|
|
ExprResult
|
|
Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
|
|
SourceLocation Loc) {
|
|
assert(Arg.getKind() == TemplateArgument::Integral &&
|
|
"Operation is only valid for integral template arguments");
|
|
QualType OrigT = Arg.getIntegralType();
|
|
|
|
// If this is an enum type that we're instantiating, we need to use an integer
|
|
// type the same size as the enumerator. We don't want to build an
|
|
// IntegerLiteral with enum type. The integer type of an enum type can be of
|
|
// any integral type with C++11 enum classes, make sure we create the right
|
|
// type of literal for it.
|
|
QualType T = OrigT;
|
|
if (const EnumType *ET = OrigT->getAs<EnumType>())
|
|
T = ET->getDecl()->getIntegerType();
|
|
|
|
Expr *E;
|
|
if (T->isAnyCharacterType()) {
|
|
// This does not need to handle u8 character literals because those are
|
|
// of type char, and so can also be covered by an ASCII character literal.
|
|
CharacterLiteral::CharacterKind Kind;
|
|
if (T->isWideCharType())
|
|
Kind = CharacterLiteral::Wide;
|
|
else if (T->isChar16Type())
|
|
Kind = CharacterLiteral::UTF16;
|
|
else if (T->isChar32Type())
|
|
Kind = CharacterLiteral::UTF32;
|
|
else
|
|
Kind = CharacterLiteral::Ascii;
|
|
|
|
E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
|
|
Kind, T, Loc);
|
|
} else if (T->isBooleanType()) {
|
|
E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
|
|
T, Loc);
|
|
} else if (T->isNullPtrType()) {
|
|
E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
|
|
} else {
|
|
E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
|
|
}
|
|
|
|
if (OrigT->isEnumeralType()) {
|
|
// FIXME: This is a hack. We need a better way to handle substituted
|
|
// non-type template parameters.
|
|
E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
|
|
nullptr,
|
|
Context.getTrivialTypeSourceInfo(OrigT, Loc),
|
|
Loc, Loc);
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
/// \brief Match two template parameters within template parameter lists.
|
|
static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
|
|
bool Complain,
|
|
Sema::TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc) {
|
|
// Check the actual kind (type, non-type, template).
|
|
if (Old->getKind() != New->getKind()) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_param_different_kind;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_different_kind;
|
|
}
|
|
S.Diag(New->getLocation(), NextDiag)
|
|
<< (Kind != Sema::TPL_TemplateMatch);
|
|
S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
|
|
<< (Kind != Sema::TPL_TemplateMatch);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check that both are parameter packs are neither are parameter packs.
|
|
// However, if we are matching a template template argument to a
|
|
// template template parameter, the template template parameter can have
|
|
// a parameter pack where the template template argument does not.
|
|
if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
|
|
!(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
|
|
Old->isTemplateParameterPack())) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc,
|
|
diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_parameter_pack_non_pack;
|
|
}
|
|
|
|
unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
|
|
: isa<NonTypeTemplateParmDecl>(New)? 1
|
|
: 2;
|
|
S.Diag(New->getLocation(), NextDiag)
|
|
<< ParamKind << New->isParameterPack();
|
|
S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
|
|
<< ParamKind << Old->isParameterPack();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// For non-type template parameters, check the type of the parameter.
|
|
if (NonTypeTemplateParmDecl *OldNTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Old)) {
|
|
NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
|
|
|
|
// If we are matching a template template argument to a template
|
|
// template parameter and one of the non-type template parameter types
|
|
// is dependent, then we must wait until template instantiation time
|
|
// to actually compare the arguments.
|
|
if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
|
|
(OldNTTP->getType()->isDependentType() ||
|
|
NewNTTP->getType()->isDependentType()))
|
|
return true;
|
|
|
|
if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
|
|
if (Complain) {
|
|
unsigned NextDiag = diag::err_template_nontype_parm_different_type;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc,
|
|
diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_nontype_parm_different_type;
|
|
}
|
|
S.Diag(NewNTTP->getLocation(), NextDiag)
|
|
<< NewNTTP->getType()
|
|
<< (Kind != Sema::TPL_TemplateMatch);
|
|
S.Diag(OldNTTP->getLocation(),
|
|
diag::note_template_nontype_parm_prev_declaration)
|
|
<< OldNTTP->getType();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// For template template parameters, check the template parameter types.
|
|
// The template parameter lists of template template
|
|
// parameters must agree.
|
|
if (TemplateTemplateParmDecl *OldTTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Old)) {
|
|
TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
|
|
return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
|
|
OldTTP->getTemplateParameters(),
|
|
Complain,
|
|
(Kind == Sema::TPL_TemplateMatch
|
|
? Sema::TPL_TemplateTemplateParmMatch
|
|
: Kind),
|
|
TemplateArgLoc);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Diagnose a known arity mismatch when comparing template argument
|
|
/// lists.
|
|
static
|
|
void DiagnoseTemplateParameterListArityMismatch(Sema &S,
|
|
TemplateParameterList *New,
|
|
TemplateParameterList *Old,
|
|
Sema::TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc) {
|
|
unsigned NextDiag = diag::err_template_param_list_different_arity;
|
|
if (TemplateArgLoc.isValid()) {
|
|
S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
|
|
NextDiag = diag::note_template_param_list_different_arity;
|
|
}
|
|
S.Diag(New->getTemplateLoc(), NextDiag)
|
|
<< (New->size() > Old->size())
|
|
<< (Kind != Sema::TPL_TemplateMatch)
|
|
<< SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
|
|
S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
|
|
<< (Kind != Sema::TPL_TemplateMatch)
|
|
<< SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
|
|
}
|
|
|
|
/// \brief Determine whether the given template parameter lists are
|
|
/// equivalent.
|
|
///
|
|
/// \param New The new template parameter list, typically written in the
|
|
/// source code as part of a new template declaration.
|
|
///
|
|
/// \param Old The old template parameter list, typically found via
|
|
/// name lookup of the template declared with this template parameter
|
|
/// list.
|
|
///
|
|
/// \param Complain If true, this routine will produce a diagnostic if
|
|
/// the template parameter lists are not equivalent.
|
|
///
|
|
/// \param Kind describes how we are to match the template parameter lists.
|
|
///
|
|
/// \param TemplateArgLoc If this source location is valid, then we
|
|
/// are actually checking the template parameter list of a template
|
|
/// argument (New) against the template parameter list of its
|
|
/// corresponding template template parameter (Old). We produce
|
|
/// slightly different diagnostics in this scenario.
|
|
///
|
|
/// \returns True if the template parameter lists are equal, false
|
|
/// otherwise.
|
|
bool
|
|
Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
|
|
TemplateParameterList *Old,
|
|
bool Complain,
|
|
TemplateParameterListEqualKind Kind,
|
|
SourceLocation TemplateArgLoc) {
|
|
if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
// C++0x [temp.arg.template]p3:
|
|
// A template-argument matches a template template-parameter (call it P)
|
|
// when each of the template parameters in the template-parameter-list of
|
|
// the template-argument's corresponding class template or alias template
|
|
// (call it A) matches the corresponding template parameter in the
|
|
// template-parameter-list of P. [...]
|
|
TemplateParameterList::iterator NewParm = New->begin();
|
|
TemplateParameterList::iterator NewParmEnd = New->end();
|
|
for (TemplateParameterList::iterator OldParm = Old->begin(),
|
|
OldParmEnd = Old->end();
|
|
OldParm != OldParmEnd; ++OldParm) {
|
|
if (Kind != TPL_TemplateTemplateArgumentMatch ||
|
|
!(*OldParm)->isTemplateParameterPack()) {
|
|
if (NewParm == NewParmEnd) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
|
|
Kind, TemplateArgLoc))
|
|
return false;
|
|
|
|
++NewParm;
|
|
continue;
|
|
}
|
|
|
|
// C++0x [temp.arg.template]p3:
|
|
// [...] When P's template- parameter-list contains a template parameter
|
|
// pack (14.5.3), the template parameter pack will match zero or more
|
|
// template parameters or template parameter packs in the
|
|
// template-parameter-list of A with the same type and form as the
|
|
// template parameter pack in P (ignoring whether those template
|
|
// parameters are template parameter packs).
|
|
for (; NewParm != NewParmEnd; ++NewParm) {
|
|
if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
|
|
Kind, TemplateArgLoc))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Make sure we exhausted all of the arguments.
|
|
if (NewParm != NewParmEnd) {
|
|
if (Complain)
|
|
DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
|
|
TemplateArgLoc);
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \brief Check whether a template can be declared within this scope.
|
|
///
|
|
/// If the template declaration is valid in this scope, returns
|
|
/// false. Otherwise, issues a diagnostic and returns true.
|
|
bool
|
|
Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
|
|
if (!S)
|
|
return false;
|
|
|
|
// Find the nearest enclosing declaration scope.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0 ||
|
|
(S->getFlags() & Scope::TemplateParamScope) != 0)
|
|
S = S->getParent();
|
|
|
|
// C++ [temp]p4:
|
|
// A template [...] shall not have C linkage.
|
|
DeclContext *Ctx = S->getEntity();
|
|
if (Ctx && Ctx->isExternCContext())
|
|
return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
|
|
<< TemplateParams->getSourceRange();
|
|
Ctx = Ctx->getRedeclContext();
|
|
|
|
// C++ [temp]p2:
|
|
// A template-declaration can appear only as a namespace scope or
|
|
// class scope declaration.
|
|
if (Ctx) {
|
|
if (Ctx->isFileContext())
|
|
return false;
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
|
|
// C++ [temp.mem]p2:
|
|
// A local class shall not have member templates.
|
|
if (RD->isLocalClass())
|
|
return Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_inside_local_class)
|
|
<< TemplateParams->getSourceRange();
|
|
else
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return Diag(TemplateParams->getTemplateLoc(),
|
|
diag::err_template_outside_namespace_or_class_scope)
|
|
<< TemplateParams->getSourceRange();
|
|
}
|
|
|
|
/// \brief Determine what kind of template specialization the given declaration
|
|
/// is.
|
|
static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
|
|
if (!D)
|
|
return TSK_Undeclared;
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
|
|
return Record->getTemplateSpecializationKind();
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
|
|
return Function->getTemplateSpecializationKind();
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(D))
|
|
return Var->getTemplateSpecializationKind();
|
|
|
|
return TSK_Undeclared;
|
|
}
|
|
|
|
/// \brief Check whether a specialization is well-formed in the current
|
|
/// context.
|
|
///
|
|
/// This routine determines whether a template specialization can be declared
|
|
/// in the current context (C++ [temp.expl.spec]p2).
|
|
///
|
|
/// \param S the semantic analysis object for which this check is being
|
|
/// performed.
|
|
///
|
|
/// \param Specialized the entity being specialized or instantiated, which
|
|
/// may be a kind of template (class template, function template, etc.) or
|
|
/// a member of a class template (member function, static data member,
|
|
/// member class).
|
|
///
|
|
/// \param PrevDecl the previous declaration of this entity, if any.
|
|
///
|
|
/// \param Loc the location of the explicit specialization or instantiation of
|
|
/// this entity.
|
|
///
|
|
/// \param IsPartialSpecialization whether this is a partial specialization of
|
|
/// a class template.
|
|
///
|
|
/// \returns true if there was an error that we cannot recover from, false
|
|
/// otherwise.
|
|
static bool CheckTemplateSpecializationScope(Sema &S,
|
|
NamedDecl *Specialized,
|
|
NamedDecl *PrevDecl,
|
|
SourceLocation Loc,
|
|
bool IsPartialSpecialization) {
|
|
// Keep these "kind" numbers in sync with the %select statements in the
|
|
// various diagnostics emitted by this routine.
|
|
int EntityKind = 0;
|
|
if (isa<ClassTemplateDecl>(Specialized))
|
|
EntityKind = IsPartialSpecialization? 1 : 0;
|
|
else if (isa<VarTemplateDecl>(Specialized))
|
|
EntityKind = IsPartialSpecialization ? 3 : 2;
|
|
else if (isa<FunctionTemplateDecl>(Specialized))
|
|
EntityKind = 4;
|
|
else if (isa<CXXMethodDecl>(Specialized))
|
|
EntityKind = 5;
|
|
else if (isa<VarDecl>(Specialized))
|
|
EntityKind = 6;
|
|
else if (isa<RecordDecl>(Specialized))
|
|
EntityKind = 7;
|
|
else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
|
|
EntityKind = 8;
|
|
else {
|
|
S.Diag(Loc, diag::err_template_spec_unknown_kind)
|
|
<< S.getLangOpts().CPlusPlus11;
|
|
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p2:
|
|
// An explicit specialization shall be declared in the namespace
|
|
// of which the template is a member, or, for member templates, in
|
|
// the namespace of which the enclosing class or enclosing class
|
|
// template is a member. An explicit specialization of a member
|
|
// function, member class or static data member of a class
|
|
// template shall be declared in the namespace of which the class
|
|
// template is a member. Such a declaration may also be a
|
|
// definition. If the declaration is not a definition, the
|
|
// specialization may be defined later in the name- space in which
|
|
// the explicit specialization was declared, or in a namespace
|
|
// that encloses the one in which the explicit specialization was
|
|
// declared.
|
|
if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
|
|
S.Diag(Loc, diag::err_template_spec_decl_function_scope)
|
|
<< Specialized;
|
|
return true;
|
|
}
|
|
|
|
if (S.CurContext->isRecord() && !IsPartialSpecialization) {
|
|
if (S.getLangOpts().MicrosoftExt) {
|
|
// Do not warn for class scope explicit specialization during
|
|
// instantiation, warning was already emitted during pattern
|
|
// semantic analysis.
|
|
if (!S.ActiveTemplateInstantiations.size())
|
|
S.Diag(Loc, diag::ext_function_specialization_in_class)
|
|
<< Specialized;
|
|
} else {
|
|
S.Diag(Loc, diag::err_template_spec_decl_class_scope)
|
|
<< Specialized;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (S.CurContext->isRecord() &&
|
|
!S.CurContext->Equals(Specialized->getDeclContext())) {
|
|
// Make sure that we're specializing in the right record context.
|
|
// Otherwise, things can go horribly wrong.
|
|
S.Diag(Loc, diag::err_template_spec_decl_class_scope)
|
|
<< Specialized;
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.class.spec]p6:
|
|
// A class template partial specialization may be declared or redeclared
|
|
// in any namespace scope in which its definition may be defined (14.5.1
|
|
// and 14.5.2).
|
|
DeclContext *SpecializedContext
|
|
= Specialized->getDeclContext()->getEnclosingNamespaceContext();
|
|
DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
|
|
|
|
// Make sure that this redeclaration (or definition) occurs in an enclosing
|
|
// namespace.
|
|
// Note that HandleDeclarator() performs this check for explicit
|
|
// specializations of function templates, static data members, and member
|
|
// functions, so we skip the check here for those kinds of entities.
|
|
// FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
|
|
// Should we refactor that check, so that it occurs later?
|
|
if (!DC->Encloses(SpecializedContext) &&
|
|
!(isa<FunctionTemplateDecl>(Specialized) ||
|
|
isa<FunctionDecl>(Specialized) ||
|
|
isa<VarTemplateDecl>(Specialized) ||
|
|
isa<VarDecl>(Specialized))) {
|
|
if (isa<TranslationUnitDecl>(SpecializedContext))
|
|
S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
|
|
<< EntityKind << Specialized;
|
|
else if (isa<NamespaceDecl>(SpecializedContext)) {
|
|
int Diag = diag::err_template_spec_redecl_out_of_scope;
|
|
if (S.getLangOpts().MicrosoftExt)
|
|
Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
|
|
S.Diag(Loc, Diag) << EntityKind << Specialized
|
|
<< cast<NamedDecl>(SpecializedContext);
|
|
} else
|
|
llvm_unreachable("unexpected namespace context for specialization");
|
|
|
|
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
|
|
} else if ((!PrevDecl ||
|
|
getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
|
|
getTemplateSpecializationKind(PrevDecl) ==
|
|
TSK_ImplicitInstantiation)) {
|
|
// C++ [temp.exp.spec]p2:
|
|
// An explicit specialization shall be declared in the namespace of which
|
|
// the template is a member, or, for member templates, in the namespace
|
|
// of which the enclosing class or enclosing class template is a member.
|
|
// An explicit specialization of a member function, member class or
|
|
// static data member of a class template shall be declared in the
|
|
// namespace of which the class template is a member.
|
|
//
|
|
// C++11 [temp.expl.spec]p2:
|
|
// An explicit specialization shall be declared in a namespace enclosing
|
|
// the specialized template.
|
|
// C++11 [temp.explicit]p3:
|
|
// An explicit instantiation shall appear in an enclosing namespace of its
|
|
// template.
|
|
if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
|
|
bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
|
|
if (isa<TranslationUnitDecl>(SpecializedContext)) {
|
|
assert(!IsCPlusPlus11Extension &&
|
|
"DC encloses TU but isn't in enclosing namespace set");
|
|
S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
|
|
<< EntityKind << Specialized;
|
|
} else if (isa<NamespaceDecl>(SpecializedContext)) {
|
|
int Diag;
|
|
if (!IsCPlusPlus11Extension)
|
|
Diag = diag::err_template_spec_decl_out_of_scope;
|
|
else if (!S.getLangOpts().CPlusPlus11)
|
|
Diag = diag::ext_template_spec_decl_out_of_scope;
|
|
else
|
|
Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
|
|
S.Diag(Loc, Diag)
|
|
<< EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
|
|
}
|
|
|
|
S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
|
|
if (!E->isInstantiationDependent())
|
|
return SourceLocation();
|
|
DependencyChecker Checker(Depth);
|
|
Checker.TraverseStmt(E);
|
|
if (Checker.Match && Checker.MatchLoc.isInvalid())
|
|
return E->getSourceRange();
|
|
return Checker.MatchLoc;
|
|
}
|
|
|
|
static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
|
|
if (!TL.getType()->isDependentType())
|
|
return SourceLocation();
|
|
DependencyChecker Checker(Depth);
|
|
Checker.TraverseTypeLoc(TL);
|
|
if (Checker.Match && Checker.MatchLoc.isInvalid())
|
|
return TL.getSourceRange();
|
|
return Checker.MatchLoc;
|
|
}
|
|
|
|
/// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
|
|
/// that checks non-type template partial specialization arguments.
|
|
static bool CheckNonTypeTemplatePartialSpecializationArgs(
|
|
Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
|
|
const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
|
|
for (unsigned I = 0; I != NumArgs; ++I) {
|
|
if (Args[I].getKind() == TemplateArgument::Pack) {
|
|
if (CheckNonTypeTemplatePartialSpecializationArgs(
|
|
S, TemplateNameLoc, Param, Args[I].pack_begin(),
|
|
Args[I].pack_size(), IsDefaultArgument))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (Args[I].getKind() != TemplateArgument::Expression)
|
|
continue;
|
|
|
|
Expr *ArgExpr = Args[I].getAsExpr();
|
|
|
|
// We can have a pack expansion of any of the bullets below.
|
|
if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
|
|
ArgExpr = Expansion->getPattern();
|
|
|
|
// Strip off any implicit casts we added as part of type checking.
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
|
|
ArgExpr = ICE->getSubExpr();
|
|
|
|
// C++ [temp.class.spec]p8:
|
|
// A non-type argument is non-specialized if it is the name of a
|
|
// non-type parameter. All other non-type arguments are
|
|
// specialized.
|
|
//
|
|
// Below, we check the two conditions that only apply to
|
|
// specialized non-type arguments, so skip any non-specialized
|
|
// arguments.
|
|
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
|
|
if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
|
|
continue;
|
|
|
|
// C++ [temp.class.spec]p9:
|
|
// Within the argument list of a class template partial
|
|
// specialization, the following restrictions apply:
|
|
// -- A partially specialized non-type argument expression
|
|
// shall not involve a template parameter of the partial
|
|
// specialization except when the argument expression is a
|
|
// simple identifier.
|
|
SourceRange ParamUseRange =
|
|
findTemplateParameter(Param->getDepth(), ArgExpr);
|
|
if (ParamUseRange.isValid()) {
|
|
if (IsDefaultArgument) {
|
|
S.Diag(TemplateNameLoc,
|
|
diag::err_dependent_non_type_arg_in_partial_spec);
|
|
S.Diag(ParamUseRange.getBegin(),
|
|
diag::note_dependent_non_type_default_arg_in_partial_spec)
|
|
<< ParamUseRange;
|
|
} else {
|
|
S.Diag(ParamUseRange.getBegin(),
|
|
diag::err_dependent_non_type_arg_in_partial_spec)
|
|
<< ParamUseRange;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// -- The type of a template parameter corresponding to a
|
|
// specialized non-type argument shall not be dependent on a
|
|
// parameter of the specialization.
|
|
//
|
|
// FIXME: We need to delay this check until instantiation in some cases:
|
|
//
|
|
// template<template<typename> class X> struct A {
|
|
// template<typename T, X<T> N> struct B;
|
|
// template<typename T> struct B<T, 0>;
|
|
// };
|
|
// template<typename> using X = int;
|
|
// A<X>::B<int, 0> b;
|
|
ParamUseRange = findTemplateParameter(
|
|
Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
|
|
if (ParamUseRange.isValid()) {
|
|
S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
|
|
diag::err_dependent_typed_non_type_arg_in_partial_spec)
|
|
<< Param->getType() << ParamUseRange;
|
|
S.Diag(Param->getLocation(), diag::note_template_param_here)
|
|
<< (IsDefaultArgument ? ParamUseRange : SourceRange());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the non-type template arguments of a class template
|
|
/// partial specialization according to C++ [temp.class.spec]p9.
|
|
///
|
|
/// \param TemplateNameLoc the location of the template name.
|
|
/// \param TemplateParams the template parameters of the primary class
|
|
/// template.
|
|
/// \param NumExplicit the number of explicitly-specified template arguments.
|
|
/// \param TemplateArgs the template arguments of the class template
|
|
/// partial specialization.
|
|
///
|
|
/// \returns \c true if there was an error, \c false otherwise.
|
|
static bool CheckTemplatePartialSpecializationArgs(
|
|
Sema &S, SourceLocation TemplateNameLoc,
|
|
TemplateParameterList *TemplateParams, unsigned NumExplicit,
|
|
SmallVectorImpl<TemplateArgument> &TemplateArgs) {
|
|
const TemplateArgument *ArgList = TemplateArgs.data();
|
|
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
NonTypeTemplateParmDecl *Param
|
|
= dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
|
|
if (!Param)
|
|
continue;
|
|
|
|
if (CheckNonTypeTemplatePartialSpecializationArgs(
|
|
S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
DeclResult
|
|
Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
|
|
TagUseKind TUK,
|
|
SourceLocation KWLoc,
|
|
SourceLocation ModulePrivateLoc,
|
|
TemplateIdAnnotation &TemplateId,
|
|
AttributeList *Attr,
|
|
MultiTemplateParamsArg
|
|
TemplateParameterLists,
|
|
SkipBodyInfo *SkipBody) {
|
|
assert(TUK != TUK_Reference && "References are not specializations");
|
|
|
|
CXXScopeSpec &SS = TemplateId.SS;
|
|
|
|
// NOTE: KWLoc is the location of the tag keyword. This will instead
|
|
// store the location of the outermost template keyword in the declaration.
|
|
SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
|
|
? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
|
|
SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
|
|
SourceLocation LAngleLoc = TemplateId.LAngleLoc;
|
|
SourceLocation RAngleLoc = TemplateId.RAngleLoc;
|
|
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateId.Template.get();
|
|
ClassTemplateDecl *ClassTemplate
|
|
= dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
|
|
|
|
if (!ClassTemplate) {
|
|
Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
|
|
<< (Name.getAsTemplateDecl() &&
|
|
isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
|
|
return true;
|
|
}
|
|
|
|
bool isExplicitSpecialization = false;
|
|
bool isPartialSpecialization = false;
|
|
|
|
// Check the validity of the template headers that introduce this
|
|
// template.
|
|
// FIXME: We probably shouldn't complain about these headers for
|
|
// friend declarations.
|
|
bool Invalid = false;
|
|
TemplateParameterList *TemplateParams =
|
|
MatchTemplateParametersToScopeSpecifier(
|
|
KWLoc, TemplateNameLoc, SS, &TemplateId,
|
|
TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
|
|
Invalid);
|
|
if (Invalid)
|
|
return true;
|
|
|
|
if (TemplateParams && TemplateParams->size() > 0) {
|
|
isPartialSpecialization = true;
|
|
|
|
if (TUK == TUK_Friend) {
|
|
Diag(KWLoc, diag::err_partial_specialization_friend)
|
|
<< SourceRange(LAngleLoc, RAngleLoc);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.class.spec]p10:
|
|
// The template parameter list of a specialization shall not
|
|
// contain default template argument values.
|
|
for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
|
|
Decl *Param = TemplateParams->getParam(I);
|
|
if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
|
|
if (TTP->hasDefaultArgument()) {
|
|
Diag(TTP->getDefaultArgumentLoc(),
|
|
diag::err_default_arg_in_partial_spec);
|
|
TTP->removeDefaultArgument();
|
|
}
|
|
} else if (NonTypeTemplateParmDecl *NTTP
|
|
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
|
|
if (Expr *DefArg = NTTP->getDefaultArgument()) {
|
|
Diag(NTTP->getDefaultArgumentLoc(),
|
|
diag::err_default_arg_in_partial_spec)
|
|
<< DefArg->getSourceRange();
|
|
NTTP->removeDefaultArgument();
|
|
}
|
|
} else {
|
|
TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
|
|
if (TTP->hasDefaultArgument()) {
|
|
Diag(TTP->getDefaultArgument().getLocation(),
|
|
diag::err_default_arg_in_partial_spec)
|
|
<< TTP->getDefaultArgument().getSourceRange();
|
|
TTP->removeDefaultArgument();
|
|
}
|
|
}
|
|
}
|
|
} else if (TemplateParams) {
|
|
if (TUK == TUK_Friend)
|
|
Diag(KWLoc, diag::err_template_spec_friend)
|
|
<< FixItHint::CreateRemoval(
|
|
SourceRange(TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getRAngleLoc()))
|
|
<< SourceRange(LAngleLoc, RAngleLoc);
|
|
else
|
|
isExplicitSpecialization = true;
|
|
} else {
|
|
assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
|
|
}
|
|
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
|
|
Kind, TUK == TUK_Definition, KWLoc,
|
|
ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< FixItHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, TemplateId);
|
|
|
|
// Check for unexpanded parameter packs in any of the template arguments.
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
|
|
UPPC_PartialSpecialization))
|
|
return true;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
|
|
TemplateArgs, false, Converted))
|
|
return true;
|
|
|
|
// Find the class template (partial) specialization declaration that
|
|
// corresponds to these arguments.
|
|
if (isPartialSpecialization) {
|
|
if (CheckTemplatePartialSpecializationArgs(
|
|
*this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
|
|
TemplateArgs.size(), Converted))
|
|
return true;
|
|
|
|
bool InstantiationDependent;
|
|
if (!Name.isDependent() &&
|
|
!TemplateSpecializationType::anyDependentTemplateArguments(
|
|
TemplateArgs.arguments(), InstantiationDependent)) {
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
|
|
<< ClassTemplate->getDeclName();
|
|
isPartialSpecialization = false;
|
|
}
|
|
}
|
|
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl = nullptr;
|
|
|
|
if (isPartialSpecialization)
|
|
// FIXME: Template parameter list matters, too
|
|
PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
|
|
else
|
|
PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
// Check whether we can declare a class template specialization in
|
|
// the current scope.
|
|
if (TUK != TUK_Friend &&
|
|
CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
|
|
TemplateNameLoc,
|
|
isPartialSpecialization))
|
|
return true;
|
|
|
|
// The canonical type
|
|
QualType CanonType;
|
|
if (isPartialSpecialization) {
|
|
// Build the canonical type that describes the converted template
|
|
// arguments of the class template partial specialization.
|
|
TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
|
|
CanonType = Context.getTemplateSpecializationType(CanonTemplate,
|
|
Converted);
|
|
|
|
if (Context.hasSameType(CanonType,
|
|
ClassTemplate->getInjectedClassNameSpecialization())) {
|
|
// C++ [temp.class.spec]p9b3:
|
|
//
|
|
// -- The argument list of the specialization shall not be identical
|
|
// to the implicit argument list of the primary template.
|
|
Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
|
|
<< /*class template*/0 << (TUK == TUK_Definition)
|
|
<< FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
|
|
return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
|
|
ClassTemplate->getIdentifier(),
|
|
TemplateNameLoc,
|
|
Attr,
|
|
TemplateParams,
|
|
AS_none, /*ModulePrivateLoc=*/SourceLocation(),
|
|
/*FriendLoc*/SourceLocation(),
|
|
TemplateParameterLists.size() - 1,
|
|
TemplateParameterLists.data());
|
|
}
|
|
|
|
// Create a new class template partial specialization declaration node.
|
|
ClassTemplatePartialSpecializationDecl *PrevPartial
|
|
= cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
|
|
ClassTemplatePartialSpecializationDecl *Partial
|
|
= ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
|
|
ClassTemplate->getDeclContext(),
|
|
KWLoc, TemplateNameLoc,
|
|
TemplateParams,
|
|
ClassTemplate,
|
|
Converted,
|
|
TemplateArgs,
|
|
CanonType,
|
|
PrevPartial);
|
|
SetNestedNameSpecifier(Partial, SS);
|
|
if (TemplateParameterLists.size() > 1 && SS.isSet()) {
|
|
Partial->setTemplateParameterListsInfo(
|
|
Context, TemplateParameterLists.drop_back(1));
|
|
}
|
|
|
|
if (!PrevPartial)
|
|
ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
|
|
Specialization = Partial;
|
|
|
|
// If we are providing an explicit specialization of a member class
|
|
// template specialization, make a note of that.
|
|
if (PrevPartial && PrevPartial->getInstantiatedFromMember())
|
|
PrevPartial->setMemberSpecialization();
|
|
|
|
// Check that all of the template parameters of the class template
|
|
// partial specialization are deducible from the template
|
|
// arguments. If not, this class template partial specialization
|
|
// will never be used.
|
|
llvm::SmallBitVector DeducibleParams(TemplateParams->size());
|
|
MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
|
|
TemplateParams->getDepth(),
|
|
DeducibleParams);
|
|
|
|
if (!DeducibleParams.all()) {
|
|
unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
|
|
Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
|
|
<< /*class template*/0 << (NumNonDeducible > 1)
|
|
<< SourceRange(TemplateNameLoc, RAngleLoc);
|
|
for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
|
|
if (!DeducibleParams[I]) {
|
|
NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
|
|
if (Param->getDeclName())
|
|
Diag(Param->getLocation(),
|
|
diag::note_partial_spec_unused_parameter)
|
|
<< Param->getDeclName();
|
|
else
|
|
Diag(Param->getLocation(),
|
|
diag::note_partial_spec_unused_parameter)
|
|
<< "(anonymous)";
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization or friend declaration.
|
|
Specialization
|
|
= ClassTemplateSpecializationDecl::Create(Context, Kind,
|
|
ClassTemplate->getDeclContext(),
|
|
KWLoc, TemplateNameLoc,
|
|
ClassTemplate,
|
|
Converted,
|
|
PrevDecl);
|
|
SetNestedNameSpecifier(Specialization, SS);
|
|
if (TemplateParameterLists.size() > 0) {
|
|
Specialization->setTemplateParameterListsInfo(Context,
|
|
TemplateParameterLists);
|
|
}
|
|
|
|
if (!PrevDecl)
|
|
ClassTemplate->AddSpecialization(Specialization, InsertPos);
|
|
|
|
if (CurContext->isDependentContext()) {
|
|
// -fms-extensions permits specialization of nested classes without
|
|
// fully specializing the outer class(es).
|
|
assert(getLangOpts().MicrosoftExt &&
|
|
"Only possible with -fms-extensions!");
|
|
TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
|
|
CanonType = Context.getTemplateSpecializationType(
|
|
CanonTemplate, Converted);
|
|
} else {
|
|
CanonType = Context.getTypeDeclType(Specialization);
|
|
}
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
|
|
bool Okay = false;
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
Okay = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Okay) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
|
|
<< Context.getTypeDeclType(Specialization) << Range;
|
|
|
|
Diag(PrevDecl->getPointOfInstantiation(),
|
|
diag::note_instantiation_required_here)
|
|
<< (PrevDecl->getTemplateSpecializationKind()
|
|
!= TSK_ImplicitInstantiation);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If this is not a friend, note that this is an explicit specialization.
|
|
if (TUK != TUK_Friend)
|
|
Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
|
|
|
|
// Check that this isn't a redefinition of this specialization.
|
|
if (TUK == TUK_Definition) {
|
|
RecordDecl *Def = Specialization->getDefinition();
|
|
NamedDecl *Hidden = nullptr;
|
|
if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
|
|
SkipBody->ShouldSkip = true;
|
|
makeMergedDefinitionVisible(Hidden, KWLoc);
|
|
// From here on out, treat this as just a redeclaration.
|
|
TUK = TUK_Declaration;
|
|
} else if (Def) {
|
|
SourceRange Range(TemplateNameLoc, RAngleLoc);
|
|
Diag(TemplateNameLoc, diag::err_redefinition)
|
|
<< Context.getTypeDeclType(Specialization) << Range;
|
|
Diag(Def->getLocation(), diag::note_previous_definition);
|
|
Specialization->setInvalidDecl();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(S, Specialization, Attr);
|
|
|
|
// Add alignment attributes if necessary; these attributes are checked when
|
|
// the ASTContext lays out the structure.
|
|
if (TUK == TUK_Definition) {
|
|
AddAlignmentAttributesForRecord(Specialization);
|
|
AddMsStructLayoutForRecord(Specialization);
|
|
}
|
|
|
|
if (ModulePrivateLoc.isValid())
|
|
Diag(Specialization->getLocation(), diag::err_module_private_specialization)
|
|
<< (isPartialSpecialization? 1 : 0)
|
|
<< FixItHint::CreateRemoval(ModulePrivateLoc);
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
TypeSourceInfo *WrittenTy
|
|
= Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
|
|
TemplateArgs, CanonType);
|
|
if (TUK != TUK_Friend) {
|
|
Specialization->setTypeAsWritten(WrittenTy);
|
|
Specialization->setTemplateKeywordLoc(TemplateKWLoc);
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p9:
|
|
// A template explicit specialization is in the scope of the
|
|
// namespace in which the template was defined.
|
|
//
|
|
// We actually implement this paragraph where we set the semantic
|
|
// context (in the creation of the ClassTemplateSpecializationDecl),
|
|
// but we also maintain the lexical context where the actual
|
|
// definition occurs.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
|
|
// We may be starting the definition of this specialization.
|
|
if (TUK == TUK_Definition)
|
|
Specialization->startDefinition();
|
|
|
|
if (TUK == TUK_Friend) {
|
|
FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
|
|
TemplateNameLoc,
|
|
WrittenTy,
|
|
/*FIXME:*/KWLoc);
|
|
Friend->setAccess(AS_public);
|
|
CurContext->addDecl(Friend);
|
|
} else {
|
|
// Add the specialization into its lexical context, so that it can
|
|
// be seen when iterating through the list of declarations in that
|
|
// context. However, specializations are not found by name lookup.
|
|
CurContext->addDecl(Specialization);
|
|
}
|
|
return Specialization;
|
|
}
|
|
|
|
Decl *Sema::ActOnTemplateDeclarator(Scope *S,
|
|
MultiTemplateParamsArg TemplateParameterLists,
|
|
Declarator &D) {
|
|
Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
|
|
ActOnDocumentableDecl(NewDecl);
|
|
return NewDecl;
|
|
}
|
|
|
|
/// \brief Strips various properties off an implicit instantiation
|
|
/// that has just been explicitly specialized.
|
|
static void StripImplicitInstantiation(NamedDecl *D) {
|
|
D->dropAttr<DLLImportAttr>();
|
|
D->dropAttr<DLLExportAttr>();
|
|
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
|
FD->setInlineSpecified(false);
|
|
}
|
|
|
|
/// \brief Compute the diagnostic location for an explicit instantiation
|
|
// declaration or definition.
|
|
static SourceLocation DiagLocForExplicitInstantiation(
|
|
NamedDecl* D, SourceLocation PointOfInstantiation) {
|
|
// Explicit instantiations following a specialization have no effect and
|
|
// hence no PointOfInstantiation. In that case, walk decl backwards
|
|
// until a valid name loc is found.
|
|
SourceLocation PrevDiagLoc = PointOfInstantiation;
|
|
for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
|
|
Prev = Prev->getPreviousDecl()) {
|
|
PrevDiagLoc = Prev->getLocation();
|
|
}
|
|
assert(PrevDiagLoc.isValid() &&
|
|
"Explicit instantiation without point of instantiation?");
|
|
return PrevDiagLoc;
|
|
}
|
|
|
|
/// \brief Diagnose cases where we have an explicit template specialization
|
|
/// before/after an explicit template instantiation, producing diagnostics
|
|
/// for those cases where they are required and determining whether the
|
|
/// new specialization/instantiation will have any effect.
|
|
///
|
|
/// \param NewLoc the location of the new explicit specialization or
|
|
/// instantiation.
|
|
///
|
|
/// \param NewTSK the kind of the new explicit specialization or instantiation.
|
|
///
|
|
/// \param PrevDecl the previous declaration of the entity.
|
|
///
|
|
/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
|
|
///
|
|
/// \param PrevPointOfInstantiation if valid, indicates where the previus
|
|
/// declaration was instantiated (either implicitly or explicitly).
|
|
///
|
|
/// \param HasNoEffect will be set to true to indicate that the new
|
|
/// specialization or instantiation has no effect and should be ignored.
|
|
///
|
|
/// \returns true if there was an error that should prevent the introduction of
|
|
/// the new declaration into the AST, false otherwise.
|
|
bool
|
|
Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
|
|
TemplateSpecializationKind NewTSK,
|
|
NamedDecl *PrevDecl,
|
|
TemplateSpecializationKind PrevTSK,
|
|
SourceLocation PrevPointOfInstantiation,
|
|
bool &HasNoEffect) {
|
|
HasNoEffect = false;
|
|
|
|
switch (NewTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
assert(
|
|
(PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
|
|
"previous declaration must be implicit!");
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
switch (PrevTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ExplicitSpecialization:
|
|
// Okay, we're just specializing something that is either already
|
|
// explicitly specialized or has merely been mentioned without any
|
|
// instantiation.
|
|
return false;
|
|
|
|
case TSK_ImplicitInstantiation:
|
|
if (PrevPointOfInstantiation.isInvalid()) {
|
|
// The declaration itself has not actually been instantiated, so it is
|
|
// still okay to specialize it.
|
|
StripImplicitInstantiation(PrevDecl);
|
|
return false;
|
|
}
|
|
// Fall through
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
assert((PrevTSK == TSK_ImplicitInstantiation ||
|
|
PrevPointOfInstantiation.isValid()) &&
|
|
"Explicit instantiation without point of instantiation?");
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template
|
|
// is explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an
|
|
// implicit instantiation to take place, in every translation unit in
|
|
// which such a use occurs; no diagnostic is required.
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
|
|
return false;
|
|
}
|
|
|
|
Diag(NewLoc, diag::err_specialization_after_instantiation)
|
|
<< PrevDecl;
|
|
Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
|
|
<< (PrevTSK != TSK_ImplicitInstantiation);
|
|
|
|
return true;
|
|
}
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
switch (PrevTSK) {
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// This explicit instantiation declaration is redundant (that's okay).
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
// We're explicitly instantiating something that may have already been
|
|
// implicitly instantiated; that's fine.
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
// C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit instantiation
|
|
// of a template appears after a declaration of an explicit
|
|
// specialization for that template, the explicit instantiation has no
|
|
// effect.
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// C++0x [temp.explicit]p10:
|
|
// If an entity is the subject of both an explicit instantiation
|
|
// declaration and an explicit instantiation definition in the same
|
|
// translation unit, the definition shall follow the declaration.
|
|
Diag(NewLoc,
|
|
diag::err_explicit_instantiation_declaration_after_definition);
|
|
|
|
// Explicit instantiations following a specialization have no effect and
|
|
// hence no PrevPointOfInstantiation. In that case, walk decl backwards
|
|
// until a valid name loc is found.
|
|
Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
|
|
diag::note_explicit_instantiation_definition_here);
|
|
HasNoEffect = true;
|
|
return false;
|
|
}
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
switch (PrevTSK) {
|
|
case TSK_Undeclared:
|
|
case TSK_ImplicitInstantiation:
|
|
// We're explicitly instantiating something that may have already been
|
|
// implicitly instantiated; that's fine.
|
|
return false;
|
|
|
|
case TSK_ExplicitSpecialization:
|
|
// C++ DR 259, C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit
|
|
// instantiation of a template appears after a declaration of
|
|
// an explicit specialization for that template, the explicit
|
|
// instantiation has no effect.
|
|
Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
|
|
<< PrevDecl;
|
|
Diag(PrevDecl->getLocation(),
|
|
diag::note_previous_template_specialization);
|
|
HasNoEffect = true;
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
// We're explicity instantiating a definition for something for which we
|
|
// were previously asked to suppress instantiations. That's fine.
|
|
|
|
// C++0x [temp.explicit]p4:
|
|
// For a given set of template parameters, if an explicit instantiation
|
|
// of a template appears after a declaration of an explicit
|
|
// specialization for that template, the explicit instantiation has no
|
|
// effect.
|
|
for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
|
|
// Is there any previous explicit specialization declaration?
|
|
if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
|
|
HasNoEffect = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// C++0x [temp.spec]p5:
|
|
// For a given template and a given set of template-arguments,
|
|
// - an explicit instantiation definition shall appear at most once
|
|
// in a program,
|
|
|
|
// MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
|
|
Diag(NewLoc, (getLangOpts().MSVCCompat)
|
|
? diag::ext_explicit_instantiation_duplicate
|
|
: diag::err_explicit_instantiation_duplicate)
|
|
<< PrevDecl;
|
|
Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
|
|
diag::note_previous_explicit_instantiation);
|
|
HasNoEffect = true;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Missing specialization/instantiation case?");
|
|
}
|
|
|
|
/// \brief Perform semantic analysis for the given dependent function
|
|
/// template specialization.
|
|
///
|
|
/// The only possible way to get a dependent function template specialization
|
|
/// is with a friend declaration, like so:
|
|
///
|
|
/// \code
|
|
/// template \<class T> void foo(T);
|
|
/// template \<class T> class A {
|
|
/// friend void foo<>(T);
|
|
/// };
|
|
/// \endcode
|
|
///
|
|
/// There really isn't any useful analysis we can do here, so we
|
|
/// just store the information.
|
|
bool
|
|
Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
|
|
const TemplateArgumentListInfo &ExplicitTemplateArgs,
|
|
LookupResult &Previous) {
|
|
// Remove anything from Previous that isn't a function template in
|
|
// the correct context.
|
|
DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
|
|
LookupResult::Filter F = Previous.makeFilter();
|
|
while (F.hasNext()) {
|
|
NamedDecl *D = F.next()->getUnderlyingDecl();
|
|
if (!isa<FunctionTemplateDecl>(D) ||
|
|
!FDLookupContext->InEnclosingNamespaceSetOf(
|
|
D->getDeclContext()->getRedeclContext()))
|
|
F.erase();
|
|
}
|
|
F.done();
|
|
|
|
// Should this be diagnosed here?
|
|
if (Previous.empty()) return true;
|
|
|
|
FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
|
|
ExplicitTemplateArgs);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis for the given function template
|
|
/// specialization.
|
|
///
|
|
/// This routine performs all of the semantic analysis required for an
|
|
/// explicit function template specialization. On successful completion,
|
|
/// the function declaration \p FD will become a function template
|
|
/// specialization.
|
|
///
|
|
/// \param FD the function declaration, which will be updated to become a
|
|
/// function template specialization.
|
|
///
|
|
/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
|
|
/// if any. Note that this may be valid info even when 0 arguments are
|
|
/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
|
|
/// as it anyway contains info on the angle brackets locations.
|
|
///
|
|
/// \param Previous the set of declarations that may be specialized by
|
|
/// this function specialization.
|
|
bool Sema::CheckFunctionTemplateSpecialization(
|
|
FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
|
|
LookupResult &Previous) {
|
|
// The set of function template specializations that could match this
|
|
// explicit function template specialization.
|
|
UnresolvedSet<8> Candidates;
|
|
TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
|
|
/*ForTakingAddress=*/false);
|
|
|
|
llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
|
|
ConvertedTemplateArgs;
|
|
|
|
DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
NamedDecl *Ovl = (*I)->getUnderlyingDecl();
|
|
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
|
|
// Only consider templates found within the same semantic lookup scope as
|
|
// FD.
|
|
if (!FDLookupContext->InEnclosingNamespaceSetOf(
|
|
Ovl->getDeclContext()->getRedeclContext()))
|
|
continue;
|
|
|
|
// When matching a constexpr member function template specialization
|
|
// against the primary template, we don't yet know whether the
|
|
// specialization has an implicit 'const' (because we don't know whether
|
|
// it will be a static member function until we know which template it
|
|
// specializes), so adjust it now assuming it specializes this template.
|
|
QualType FT = FD->getType();
|
|
if (FD->isConstexpr()) {
|
|
CXXMethodDecl *OldMD =
|
|
dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
|
|
if (OldMD && OldMD->isConst()) {
|
|
const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
|
|
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
|
|
EPI.TypeQuals |= Qualifiers::Const;
|
|
FT = Context.getFunctionType(FPT->getReturnType(),
|
|
FPT->getParamTypes(), EPI);
|
|
}
|
|
}
|
|
|
|
TemplateArgumentListInfo Args;
|
|
if (ExplicitTemplateArgs)
|
|
Args = *ExplicitTemplateArgs;
|
|
|
|
// C++ [temp.expl.spec]p11:
|
|
// A trailing template-argument can be left unspecified in the
|
|
// template-id naming an explicit function template specialization
|
|
// provided it can be deduced from the function argument type.
|
|
// Perform template argument deduction to determine whether we may be
|
|
// specializing this template.
|
|
// FIXME: It is somewhat wasteful to build
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
if (TemplateDeductionResult TDK = DeduceTemplateArguments(
|
|
cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
|
|
ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
|
|
Info)) {
|
|
// Template argument deduction failed; record why it failed, so
|
|
// that we can provide nifty diagnostics.
|
|
FailedCandidates.addCandidate().set(
|
|
I.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, TDK, Info));
|
|
(void)TDK;
|
|
continue;
|
|
}
|
|
|
|
// Record this candidate.
|
|
if (ExplicitTemplateArgs)
|
|
ConvertedTemplateArgs[Specialization] = std::move(Args);
|
|
Candidates.addDecl(Specialization, I.getAccess());
|
|
}
|
|
}
|
|
|
|
// Find the most specialized function template.
|
|
UnresolvedSetIterator Result = getMostSpecialized(
|
|
Candidates.begin(), Candidates.end(), FailedCandidates,
|
|
FD->getLocation(),
|
|
PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
|
|
PDiag(diag::err_function_template_spec_ambiguous)
|
|
<< FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
|
|
PDiag(diag::note_function_template_spec_matched));
|
|
|
|
if (Result == Candidates.end())
|
|
return true;
|
|
|
|
// Ignore access information; it doesn't figure into redeclaration checking.
|
|
FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
|
|
|
|
// C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare [...]
|
|
// an explicit specialization (14.8.3) [...] of a concept definition.
|
|
if (Specialization->getPrimaryTemplate()->isConcept()) {
|
|
Diag(FD->getLocation(), diag::err_concept_specialized)
|
|
<< 0 /*function*/ << 1 /*explicitly specialized*/;
|
|
Diag(Specialization->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
FunctionTemplateSpecializationInfo *SpecInfo
|
|
= Specialization->getTemplateSpecializationInfo();
|
|
assert(SpecInfo && "Function template specialization info missing?");
|
|
|
|
// Note: do not overwrite location info if previous template
|
|
// specialization kind was explicit.
|
|
TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
|
|
if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
|
|
Specialization->setLocation(FD->getLocation());
|
|
// C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
|
|
// function can differ from the template declaration with respect to
|
|
// the constexpr specifier.
|
|
Specialization->setConstexpr(FD->isConstexpr());
|
|
}
|
|
|
|
// FIXME: Check if the prior specialization has a point of instantiation.
|
|
// If so, we have run afoul of .
|
|
|
|
// If this is a friend declaration, then we're not really declaring
|
|
// an explicit specialization.
|
|
bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
// Check the scope of this explicit specialization.
|
|
if (!isFriend &&
|
|
CheckTemplateSpecializationScope(*this,
|
|
Specialization->getPrimaryTemplate(),
|
|
Specialization, FD->getLocation(),
|
|
false))
|
|
return true;
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
bool HasNoEffect = false;
|
|
if (!isFriend &&
|
|
CheckSpecializationInstantiationRedecl(FD->getLocation(),
|
|
TSK_ExplicitSpecialization,
|
|
Specialization,
|
|
SpecInfo->getTemplateSpecializationKind(),
|
|
SpecInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// Mark the prior declaration as an explicit specialization, so that later
|
|
// clients know that this is an explicit specialization.
|
|
if (!isFriend) {
|
|
// Since explicit specializations do not inherit '=delete' from their
|
|
// primary function template - check if the 'specialization' that was
|
|
// implicitly generated (during template argument deduction for partial
|
|
// ordering) from the most specialized of all the function templates that
|
|
// 'FD' could have been specializing, has a 'deleted' definition. If so,
|
|
// first check that it was implicitly generated during template argument
|
|
// deduction by making sure it wasn't referenced, and then reset the deleted
|
|
// flag to not-deleted, so that we can inherit that information from 'FD'.
|
|
if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
|
|
!Specialization->getCanonicalDecl()->isReferenced()) {
|
|
assert(
|
|
Specialization->getCanonicalDecl() == Specialization &&
|
|
"This must be the only existing declaration of this specialization");
|
|
Specialization->setDeletedAsWritten(false);
|
|
}
|
|
SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
|
|
MarkUnusedFileScopedDecl(Specialization);
|
|
}
|
|
|
|
// Turn the given function declaration into a function template
|
|
// specialization, with the template arguments from the previous
|
|
// specialization.
|
|
// Take copies of (semantic and syntactic) template argument lists.
|
|
const TemplateArgumentList* TemplArgs = new (Context)
|
|
TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
|
|
FD->setFunctionTemplateSpecialization(
|
|
Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
|
|
SpecInfo->getTemplateSpecializationKind(),
|
|
ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
|
|
|
|
// The "previous declaration" for this function template specialization is
|
|
// the prior function template specialization.
|
|
Previous.clear();
|
|
Previous.addDecl(Specialization);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Perform semantic analysis for the given non-template member
|
|
/// specialization.
|
|
///
|
|
/// This routine performs all of the semantic analysis required for an
|
|
/// explicit member function specialization. On successful completion,
|
|
/// the function declaration \p FD will become a member function
|
|
/// specialization.
|
|
///
|
|
/// \param Member the member declaration, which will be updated to become a
|
|
/// specialization.
|
|
///
|
|
/// \param Previous the set of declarations, one of which may be specialized
|
|
/// by this function specialization; the set will be modified to contain the
|
|
/// redeclared member.
|
|
bool
|
|
Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
|
|
assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
|
|
|
|
// Try to find the member we are instantiating.
|
|
NamedDecl *FoundInstantiation = nullptr;
|
|
NamedDecl *Instantiation = nullptr;
|
|
NamedDecl *InstantiatedFrom = nullptr;
|
|
MemberSpecializationInfo *MSInfo = nullptr;
|
|
|
|
if (Previous.empty()) {
|
|
// Nowhere to look anyway.
|
|
} else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
|
|
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
|
I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
QualType Adjusted = Function->getType();
|
|
if (!hasExplicitCallingConv(Adjusted))
|
|
Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
|
|
if (Context.hasSameType(Adjusted, Method->getType())) {
|
|
FoundInstantiation = *I;
|
|
Instantiation = Method;
|
|
InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
|
|
MSInfo = Method->getMemberSpecializationInfo();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (isa<VarDecl>(Member)) {
|
|
VarDecl *PrevVar;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
|
|
if (PrevVar->isStaticDataMember()) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevVar;
|
|
InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
|
|
MSInfo = PrevVar->getMemberSpecializationInfo();
|
|
}
|
|
} else if (isa<RecordDecl>(Member)) {
|
|
CXXRecordDecl *PrevRecord;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevRecord;
|
|
InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
|
|
MSInfo = PrevRecord->getMemberSpecializationInfo();
|
|
}
|
|
} else if (isa<EnumDecl>(Member)) {
|
|
EnumDecl *PrevEnum;
|
|
if (Previous.isSingleResult() &&
|
|
(PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
|
|
FoundInstantiation = Previous.getRepresentativeDecl();
|
|
Instantiation = PrevEnum;
|
|
InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
|
|
MSInfo = PrevEnum->getMemberSpecializationInfo();
|
|
}
|
|
}
|
|
|
|
if (!Instantiation) {
|
|
// There is no previous declaration that matches. Since member
|
|
// specializations are always out-of-line, the caller will complain about
|
|
// this mismatch later.
|
|
return false;
|
|
}
|
|
|
|
// If this is a friend, just bail out here before we start turning
|
|
// things into explicit specializations.
|
|
if (Member->getFriendObjectKind() != Decl::FOK_None) {
|
|
// Preserve instantiation information.
|
|
if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
|
|
cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
|
|
cast<CXXMethodDecl>(InstantiatedFrom),
|
|
cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
|
|
} else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
|
|
cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
|
|
cast<CXXRecordDecl>(InstantiatedFrom),
|
|
cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
|
|
}
|
|
|
|
Previous.clear();
|
|
Previous.addDecl(FoundInstantiation);
|
|
return false;
|
|
}
|
|
|
|
// Make sure that this is a specialization of a member.
|
|
if (!InstantiatedFrom) {
|
|
Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
|
|
<< Member;
|
|
Diag(Instantiation->getLocation(), diag::note_specialized_decl);
|
|
return true;
|
|
}
|
|
|
|
// C++ [temp.expl.spec]p6:
|
|
// If a template, a member template or the member of a class template is
|
|
// explicitly specialized then that specialization shall be declared
|
|
// before the first use of that specialization that would cause an implicit
|
|
// instantiation to take place, in every translation unit in which such a
|
|
// use occurs; no diagnostic is required.
|
|
assert(MSInfo && "Member specialization info missing?");
|
|
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
|
|
TSK_ExplicitSpecialization,
|
|
Instantiation,
|
|
MSInfo->getTemplateSpecializationKind(),
|
|
MSInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// Check the scope of this explicit specialization.
|
|
if (CheckTemplateSpecializationScope(*this,
|
|
InstantiatedFrom,
|
|
Instantiation, Member->getLocation(),
|
|
false))
|
|
return true;
|
|
|
|
// Note that this is an explicit instantiation of a member.
|
|
// the original declaration to note that it is an explicit specialization
|
|
// (if it was previously an implicit instantiation). This latter step
|
|
// makes bookkeeping easier.
|
|
if (isa<FunctionDecl>(Member)) {
|
|
FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
|
|
if (InstantiationFunction->getTemplateSpecializationKind() ==
|
|
TSK_ImplicitInstantiation) {
|
|
InstantiationFunction->setTemplateSpecializationKind(
|
|
TSK_ExplicitSpecialization);
|
|
InstantiationFunction->setLocation(Member->getLocation());
|
|
// Explicit specializations of member functions of class templates do not
|
|
// inherit '=delete' from the member function they are specializing.
|
|
if (InstantiationFunction->isDeleted()) {
|
|
assert(InstantiationFunction->getCanonicalDecl() ==
|
|
InstantiationFunction);
|
|
InstantiationFunction->setDeletedAsWritten(false);
|
|
}
|
|
}
|
|
|
|
cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
|
|
cast<CXXMethodDecl>(InstantiatedFrom),
|
|
TSK_ExplicitSpecialization);
|
|
MarkUnusedFileScopedDecl(InstantiationFunction);
|
|
} else if (isa<VarDecl>(Member)) {
|
|
VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
|
|
if (InstantiationVar->getTemplateSpecializationKind() ==
|
|
TSK_ImplicitInstantiation) {
|
|
InstantiationVar->setTemplateSpecializationKind(
|
|
TSK_ExplicitSpecialization);
|
|
InstantiationVar->setLocation(Member->getLocation());
|
|
}
|
|
|
|
cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
|
|
cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
MarkUnusedFileScopedDecl(InstantiationVar);
|
|
} else if (isa<CXXRecordDecl>(Member)) {
|
|
CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
|
|
if (InstantiationClass->getTemplateSpecializationKind() ==
|
|
TSK_ImplicitInstantiation) {
|
|
InstantiationClass->setTemplateSpecializationKind(
|
|
TSK_ExplicitSpecialization);
|
|
InstantiationClass->setLocation(Member->getLocation());
|
|
}
|
|
|
|
cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
|
|
cast<CXXRecordDecl>(InstantiatedFrom),
|
|
TSK_ExplicitSpecialization);
|
|
} else {
|
|
assert(isa<EnumDecl>(Member) && "Only member enums remain");
|
|
EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
|
|
if (InstantiationEnum->getTemplateSpecializationKind() ==
|
|
TSK_ImplicitInstantiation) {
|
|
InstantiationEnum->setTemplateSpecializationKind(
|
|
TSK_ExplicitSpecialization);
|
|
InstantiationEnum->setLocation(Member->getLocation());
|
|
}
|
|
|
|
cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
|
|
cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
|
|
}
|
|
|
|
// Save the caller the trouble of having to figure out which declaration
|
|
// this specialization matches.
|
|
Previous.clear();
|
|
Previous.addDecl(FoundInstantiation);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Check the scope of an explicit instantiation.
|
|
///
|
|
/// \returns true if a serious error occurs, false otherwise.
|
|
static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
|
|
SourceLocation InstLoc,
|
|
bool WasQualifiedName) {
|
|
DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
|
|
DeclContext *CurContext = S.CurContext->getRedeclContext();
|
|
|
|
if (CurContext->isRecord()) {
|
|
S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
|
|
<< D;
|
|
return true;
|
|
}
|
|
|
|
// C++11 [temp.explicit]p3:
|
|
// An explicit instantiation shall appear in an enclosing namespace of its
|
|
// template. If the name declared in the explicit instantiation is an
|
|
// unqualified name, the explicit instantiation shall appear in the
|
|
// namespace where its template is declared or, if that namespace is inline
|
|
// (7.3.1), any namespace from its enclosing namespace set.
|
|
//
|
|
// This is DR275, which we do not retroactively apply to C++98/03.
|
|
if (WasQualifiedName) {
|
|
if (CurContext->Encloses(OrigContext))
|
|
return false;
|
|
} else {
|
|
if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
|
|
return false;
|
|
}
|
|
|
|
if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
|
|
if (WasQualifiedName)
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_out_of_scope :
|
|
diag::warn_explicit_instantiation_out_of_scope_0x)
|
|
<< D << NS;
|
|
else
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_unqualified_wrong_namespace :
|
|
diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
|
|
<< D << NS;
|
|
} else
|
|
S.Diag(InstLoc,
|
|
S.getLangOpts().CPlusPlus11?
|
|
diag::err_explicit_instantiation_must_be_global :
|
|
diag::warn_explicit_instantiation_must_be_global_0x)
|
|
<< D;
|
|
S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Determine whether the given scope specifier has a template-id in it.
|
|
static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
|
|
if (!SS.isSet())
|
|
return false;
|
|
|
|
// C++11 [temp.explicit]p3:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
|
|
NNS = NNS->getPrefix())
|
|
if (const Type *T = NNS->getAsType())
|
|
if (isa<TemplateSpecializationType>(T))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Explicit instantiation of a class template specialization
|
|
DeclResult
|
|
Sema::ActOnExplicitInstantiation(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
unsigned TagSpec,
|
|
SourceLocation KWLoc,
|
|
const CXXScopeSpec &SS,
|
|
TemplateTy TemplateD,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc,
|
|
AttributeList *Attr) {
|
|
// Find the class template we're specializing
|
|
TemplateName Name = TemplateD.get();
|
|
TemplateDecl *TD = Name.getAsTemplateDecl();
|
|
// Check that the specialization uses the same tag kind as the
|
|
// original template.
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
assert(Kind != TTK_Enum &&
|
|
"Invalid enum tag in class template explicit instantiation!");
|
|
|
|
ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
|
|
|
|
if (!ClassTemplate) {
|
|
NonTagKind NTK = getNonTagTypeDeclKind(TD);
|
|
Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << NTK;
|
|
Diag(TD->getLocation(), diag::note_previous_use);
|
|
return true;
|
|
}
|
|
|
|
if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
|
|
Kind, /*isDefinition*/false, KWLoc,
|
|
ClassTemplate->getIdentifier())) {
|
|
Diag(KWLoc, diag::err_use_with_wrong_tag)
|
|
<< ClassTemplate
|
|
<< FixItHint::CreateReplacement(KWLoc,
|
|
ClassTemplate->getTemplatedDecl()->getKindName());
|
|
Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
|
|
diag::note_previous_use);
|
|
Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK = ExternLoc.isInvalid()
|
|
? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration) {
|
|
// Check for dllexport class template instantiation declarations.
|
|
for (AttributeList *A = Attr; A; A = A->getNext()) {
|
|
if (A->getKind() == AttributeList::AT_DLLExport) {
|
|
Diag(ExternLoc,
|
|
diag::warn_attribute_dllexport_explicit_instantiation_decl);
|
|
Diag(A->getLoc(), diag::note_attribute);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
|
|
Diag(ExternLoc,
|
|
diag::warn_attribute_dllexport_explicit_instantiation_decl);
|
|
Diag(A->getLocation(), diag::note_attribute);
|
|
}
|
|
}
|
|
|
|
// In MSVC mode, dllimported explicit instantiation definitions are treated as
|
|
// instantiation declarations for most purposes.
|
|
bool DLLImportExplicitInstantiationDef = false;
|
|
if (TSK == TSK_ExplicitInstantiationDefinition &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// Check for dllimport class template instantiation definitions.
|
|
bool DLLImport =
|
|
ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
|
|
for (AttributeList *A = Attr; A; A = A->getNext()) {
|
|
if (A->getKind() == AttributeList::AT_DLLImport)
|
|
DLLImport = true;
|
|
if (A->getKind() == AttributeList::AT_DLLExport) {
|
|
// dllexport trumps dllimport here.
|
|
DLLImport = false;
|
|
break;
|
|
}
|
|
}
|
|
if (DLLImport) {
|
|
TSK = TSK_ExplicitInstantiationDeclaration;
|
|
DLLImportExplicitInstantiationDef = true;
|
|
}
|
|
}
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
|
|
TemplateArgs, false, Converted))
|
|
return true;
|
|
|
|
// Find the class template specialization declaration that
|
|
// corresponds to these arguments.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl
|
|
= ClassTemplate->findSpecialization(Converted, InsertPos);
|
|
|
|
TemplateSpecializationKind PrevDecl_TSK
|
|
= PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// [...] An explicit instantiation shall appear in an enclosing
|
|
// namespace of its template. [...]
|
|
//
|
|
// This is C++ DR 275.
|
|
if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
|
|
SS.isSet()))
|
|
return true;
|
|
|
|
ClassTemplateSpecializationDecl *Specialization = nullptr;
|
|
|
|
bool HasNoEffect = false;
|
|
if (PrevDecl) {
|
|
if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
|
|
PrevDecl, PrevDecl_TSK,
|
|
PrevDecl->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return PrevDecl;
|
|
|
|
// Even though HasNoEffect == true means that this explicit instantiation
|
|
// has no effect on semantics, we go on to put its syntax in the AST.
|
|
|
|
if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
|
|
PrevDecl_TSK == TSK_Undeclared) {
|
|
// Since the only prior class template specialization with these
|
|
// arguments was referenced but not declared, reuse that
|
|
// declaration node as our own, updating the source location
|
|
// for the template name to reflect our new declaration.
|
|
// (Other source locations will be updated later.)
|
|
Specialization = PrevDecl;
|
|
Specialization->setLocation(TemplateNameLoc);
|
|
PrevDecl = nullptr;
|
|
}
|
|
|
|
if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
DLLImportExplicitInstantiationDef) {
|
|
// The new specialization might add a dllimport attribute.
|
|
HasNoEffect = false;
|
|
}
|
|
}
|
|
|
|
if (!Specialization) {
|
|
// Create a new class template specialization declaration node for
|
|
// this explicit specialization.
|
|
Specialization
|
|
= ClassTemplateSpecializationDecl::Create(Context, Kind,
|
|
ClassTemplate->getDeclContext(),
|
|
KWLoc, TemplateNameLoc,
|
|
ClassTemplate,
|
|
Converted,
|
|
PrevDecl);
|
|
SetNestedNameSpecifier(Specialization, SS);
|
|
|
|
if (!HasNoEffect && !PrevDecl) {
|
|
// Insert the new specialization.
|
|
ClassTemplate->AddSpecialization(Specialization, InsertPos);
|
|
}
|
|
}
|
|
|
|
// Build the fully-sugared type for this explicit instantiation as
|
|
// the user wrote in the explicit instantiation itself. This means
|
|
// that we'll pretty-print the type retrieved from the
|
|
// specialization's declaration the way that the user actually wrote
|
|
// the explicit instantiation, rather than formatting the name based
|
|
// on the "canonical" representation used to store the template
|
|
// arguments in the specialization.
|
|
TypeSourceInfo *WrittenTy
|
|
= Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
|
|
TemplateArgs,
|
|
Context.getTypeDeclType(Specialization));
|
|
Specialization->setTypeAsWritten(WrittenTy);
|
|
|
|
// Set source locations for keywords.
|
|
Specialization->setExternLoc(ExternLoc);
|
|
Specialization->setTemplateKeywordLoc(TemplateLoc);
|
|
Specialization->setBraceRange(SourceRange());
|
|
|
|
if (Attr)
|
|
ProcessDeclAttributeList(S, Specialization, Attr);
|
|
|
|
// Add the explicit instantiation into its lexical context. However,
|
|
// since explicit instantiations are never found by name lookup, we
|
|
// just put it into the declaration context directly.
|
|
Specialization->setLexicalDeclContext(CurContext);
|
|
CurContext->addDecl(Specialization);
|
|
|
|
// Syntax is now OK, so return if it has no other effect on semantics.
|
|
if (HasNoEffect) {
|
|
// Set the template specialization kind.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
return Specialization;
|
|
}
|
|
|
|
// C++ [temp.explicit]p3:
|
|
// A definition of a class template or class member template
|
|
// shall be in scope at the point of the explicit instantiation of
|
|
// the class template or class member template.
|
|
//
|
|
// This check comes when we actually try to perform the
|
|
// instantiation.
|
|
ClassTemplateSpecializationDecl *Def
|
|
= cast_or_null<ClassTemplateSpecializationDecl>(
|
|
Specialization->getDefinition());
|
|
if (!Def)
|
|
InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
|
|
else if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
MarkVTableUsed(TemplateNameLoc, Specialization, true);
|
|
Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
|
|
}
|
|
|
|
// Instantiate the members of this class template specialization.
|
|
Def = cast_or_null<ClassTemplateSpecializationDecl>(
|
|
Specialization->getDefinition());
|
|
if (Def) {
|
|
TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
|
|
// Fix a TSK_ExplicitInstantiationDeclaration followed by a
|
|
// TSK_ExplicitInstantiationDefinition
|
|
if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
(TSK == TSK_ExplicitInstantiationDefinition ||
|
|
DLLImportExplicitInstantiationDef)) {
|
|
// FIXME: Need to notify the ASTMutationListener that we did this.
|
|
Def->setTemplateSpecializationKind(TSK);
|
|
|
|
if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
|
|
Context.getTargetInfo().getCXXABI().isMicrosoft()) {
|
|
// In the MS ABI, an explicit instantiation definition can add a dll
|
|
// attribute to a template with a previous instantiation declaration.
|
|
// MinGW doesn't allow this.
|
|
auto *A = cast<InheritableAttr>(
|
|
getDLLAttr(Specialization)->clone(getASTContext()));
|
|
A->setInherited(true);
|
|
Def->addAttr(A);
|
|
|
|
// We reject explicit instantiations in class scope, so there should
|
|
// never be any delayed exported classes to worry about.
|
|
assert(DelayedDllExportClasses.empty() &&
|
|
"delayed exports present at explicit instantiation");
|
|
checkClassLevelDLLAttribute(Def);
|
|
referenceDLLExportedClassMethods();
|
|
|
|
// Propagate attribute to base class templates.
|
|
for (auto &B : Def->bases()) {
|
|
if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
|
|
B.getType()->getAsCXXRecordDecl()))
|
|
propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the template specialization kind. Make sure it is set before
|
|
// instantiating the members which will trigger ASTConsumer callbacks.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
|
|
} else {
|
|
|
|
// Set the template specialization kind.
|
|
Specialization->setTemplateSpecializationKind(TSK);
|
|
}
|
|
|
|
return Specialization;
|
|
}
|
|
|
|
// Explicit instantiation of a member class of a class template.
|
|
DeclResult
|
|
Sema::ActOnExplicitInstantiation(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
unsigned TagSpec,
|
|
SourceLocation KWLoc,
|
|
CXXScopeSpec &SS,
|
|
IdentifierInfo *Name,
|
|
SourceLocation NameLoc,
|
|
AttributeList *Attr) {
|
|
|
|
bool Owned = false;
|
|
bool IsDependent = false;
|
|
Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
|
|
KWLoc, SS, Name, NameLoc, Attr, AS_none,
|
|
/*ModulePrivateLoc=*/SourceLocation(),
|
|
MultiTemplateParamsArg(), Owned, IsDependent,
|
|
SourceLocation(), false, TypeResult(),
|
|
/*IsTypeSpecifier*/false);
|
|
assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
|
|
|
|
if (!TagD)
|
|
return true;
|
|
|
|
TagDecl *Tag = cast<TagDecl>(TagD);
|
|
assert(!Tag->isEnum() && "shouldn't see enumerations here");
|
|
|
|
if (Tag->isInvalidDecl())
|
|
return true;
|
|
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
|
|
CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
|
|
if (!Pattern) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
|
|
<< Context.getTypeDeclType(Record);
|
|
Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
|
|
return true;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a class or member class, the
|
|
// elaborated-type-specifier in the declaration shall include a
|
|
// simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
if (!ScopeSpecifierHasTemplateId(SS))
|
|
Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Record << SS.getRange();
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK
|
|
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// [...] An explicit instantiation shall appear in an enclosing
|
|
// namespace of its template. [...]
|
|
//
|
|
// This is C++ DR 275.
|
|
CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
|
|
|
|
// Verify that it is okay to explicitly instantiate here.
|
|
CXXRecordDecl *PrevDecl
|
|
= cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
|
|
if (!PrevDecl && Record->getDefinition())
|
|
PrevDecl = Record;
|
|
if (PrevDecl) {
|
|
MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
|
|
bool HasNoEffect = false;
|
|
assert(MSInfo && "No member specialization information?");
|
|
if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
|
|
PrevDecl,
|
|
MSInfo->getTemplateSpecializationKind(),
|
|
MSInfo->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
if (HasNoEffect)
|
|
return TagD;
|
|
}
|
|
|
|
CXXRecordDecl *RecordDef
|
|
= cast_or_null<CXXRecordDecl>(Record->getDefinition());
|
|
if (!RecordDef) {
|
|
// C++ [temp.explicit]p3:
|
|
// A definition of a member class of a class template shall be in scope
|
|
// at the point of an explicit instantiation of the member class.
|
|
CXXRecordDecl *Def
|
|
= cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
|
|
if (!Def) {
|
|
Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
|
|
<< 0 << Record->getDeclName() << Record->getDeclContext();
|
|
Diag(Pattern->getLocation(), diag::note_forward_declaration)
|
|
<< Pattern;
|
|
return true;
|
|
} else {
|
|
if (InstantiateClass(NameLoc, Record, Def,
|
|
getTemplateInstantiationArgs(Record),
|
|
TSK))
|
|
return true;
|
|
|
|
RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
|
|
if (!RecordDef)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Instantiate all of the members of the class.
|
|
InstantiateClassMembers(NameLoc, RecordDef,
|
|
getTemplateInstantiationArgs(Record), TSK);
|
|
|
|
if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
MarkVTableUsed(NameLoc, RecordDef, true);
|
|
|
|
// FIXME: We don't have any representation for explicit instantiations of
|
|
// member classes. Such a representation is not needed for compilation, but it
|
|
// should be available for clients that want to see all of the declarations in
|
|
// the source code.
|
|
return TagD;
|
|
}
|
|
|
|
DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
|
|
SourceLocation ExternLoc,
|
|
SourceLocation TemplateLoc,
|
|
Declarator &D) {
|
|
// Explicit instantiations always require a name.
|
|
// TODO: check if/when DNInfo should replace Name.
|
|
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
|
|
DeclarationName Name = NameInfo.getName();
|
|
if (!Name) {
|
|
if (!D.isInvalidType())
|
|
Diag(D.getDeclSpec().getLocStart(),
|
|
diag::err_explicit_instantiation_requires_name)
|
|
<< D.getDeclSpec().getSourceRange()
|
|
<< D.getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
// The scope passed in may not be a decl scope. Zip up the scope tree until
|
|
// we find one that is.
|
|
while ((S->getFlags() & Scope::DeclScope) == 0 ||
|
|
(S->getFlags() & Scope::TemplateParamScope) != 0)
|
|
S = S->getParent();
|
|
|
|
// Determine the type of the declaration.
|
|
TypeSourceInfo *T = GetTypeForDeclarator(D, S);
|
|
QualType R = T->getType();
|
|
if (R.isNull())
|
|
return true;
|
|
|
|
// C++ [dcl.stc]p1:
|
|
// A storage-class-specifier shall not be specified in [...] an explicit
|
|
// instantiation (14.7.2) directive.
|
|
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
|
|
<< Name;
|
|
return true;
|
|
} else if (D.getDeclSpec().getStorageClassSpec()
|
|
!= DeclSpec::SCS_unspecified) {
|
|
// Complain about then remove the storage class specifier.
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
|
|
|
|
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
|
}
|
|
|
|
// C++0x [temp.explicit]p1:
|
|
// [...] An explicit instantiation of a function template shall not use the
|
|
// inline or constexpr specifiers.
|
|
// Presumably, this also applies to member functions of class templates as
|
|
// well.
|
|
if (D.getDeclSpec().isInlineSpecified())
|
|
Diag(D.getDeclSpec().getInlineSpecLoc(),
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::err_explicit_instantiation_inline :
|
|
diag::warn_explicit_instantiation_inline_0x)
|
|
<< FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
|
|
if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
|
|
// FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
|
|
// not already specified.
|
|
Diag(D.getDeclSpec().getConstexprSpecLoc(),
|
|
diag::err_explicit_instantiation_constexpr);
|
|
|
|
// C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
|
|
// applied only to the definition of a function template or variable template,
|
|
// declared in namespace scope.
|
|
if (D.getDeclSpec().isConceptSpecified()) {
|
|
Diag(D.getDeclSpec().getConceptSpecLoc(),
|
|
diag::err_concept_specified_specialization) << 0;
|
|
return true;
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// There are two forms of explicit instantiation: an explicit instantiation
|
|
// definition and an explicit instantiation declaration. An explicit
|
|
// instantiation declaration begins with the extern keyword. [...]
|
|
TemplateSpecializationKind TSK
|
|
= ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
|
|
: TSK_ExplicitInstantiationDeclaration;
|
|
|
|
LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
|
|
LookupParsedName(Previous, S, &D.getCXXScopeSpec());
|
|
|
|
if (!R->isFunctionType()) {
|
|
// C++ [temp.explicit]p1:
|
|
// A [...] static data member of a class template can be explicitly
|
|
// instantiated from the member definition associated with its class
|
|
// template.
|
|
// C++1y [temp.explicit]p1:
|
|
// A [...] variable [...] template specialization can be explicitly
|
|
// instantiated from its template.
|
|
if (Previous.isAmbiguous())
|
|
return true;
|
|
|
|
VarDecl *Prev = Previous.getAsSingle<VarDecl>();
|
|
VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
|
|
|
|
if (!PrevTemplate) {
|
|
if (!Prev || !Prev->isStaticDataMember()) {
|
|
// We expect to see a data data member here.
|
|
Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
|
|
<< Name;
|
|
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
|
|
P != PEnd; ++P)
|
|
Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
if (!Prev->getInstantiatedFromStaticDataMember()) {
|
|
// FIXME: Check for explicit specialization?
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_data_member_not_instantiated)
|
|
<< Prev;
|
|
Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
|
|
// FIXME: Can we provide a note showing where this was declared?
|
|
return true;
|
|
}
|
|
} else {
|
|
// Explicitly instantiate a variable template.
|
|
|
|
// C++1y [dcl.spec.auto]p6:
|
|
// ... A program that uses auto or decltype(auto) in a context not
|
|
// explicitly allowed in this section is ill-formed.
|
|
//
|
|
// This includes auto-typed variable template instantiations.
|
|
if (R->isUndeducedType()) {
|
|
Diag(T->getTypeLoc().getLocStart(),
|
|
diag::err_auto_not_allowed_var_inst);
|
|
return true;
|
|
}
|
|
|
|
if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
|
|
// C++1y [temp.explicit]p3:
|
|
// If the explicit instantiation is for a variable, the unqualified-id
|
|
// in the declaration shall be a template-id.
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_without_template_id)
|
|
<< PrevTemplate;
|
|
Diag(PrevTemplate->getLocation(),
|
|
diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
// C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
|
|
// explicit instantiation (14.8.2) [...] of a concept definition.
|
|
if (PrevTemplate->isConcept()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
|
|
<< 1 /*variable*/ << 0 /*explicitly instantiated*/;
|
|
Diag(PrevTemplate->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
// Translate the parser's template argument list into our AST format.
|
|
TemplateArgumentListInfo TemplateArgs =
|
|
makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
|
|
|
|
DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
|
|
D.getIdentifierLoc(), TemplateArgs);
|
|
if (Res.isInvalid())
|
|
return true;
|
|
|
|
// Ignore access control bits, we don't need them for redeclaration
|
|
// checking.
|
|
Prev = cast<VarDecl>(Res.get());
|
|
}
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
//
|
|
// This does not apply to variable template specializations, where the
|
|
// template-id is in the unqualified-id instead.
|
|
if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Prev << D.getCXXScopeSpec().getRange();
|
|
|
|
// Check the scope of this explicit instantiation.
|
|
CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
|
|
|
|
// Verify that it is okay to explicitly instantiate here.
|
|
TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
|
|
SourceLocation POI = Prev->getPointOfInstantiation();
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
|
|
PrevTSK, POI, HasNoEffect))
|
|
return true;
|
|
|
|
if (!HasNoEffect) {
|
|
// Instantiate static data member or variable template.
|
|
|
|
Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
|
|
if (PrevTemplate) {
|
|
// Merge attributes.
|
|
if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
|
|
ProcessDeclAttributeList(S, Prev, Attr);
|
|
}
|
|
if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
|
|
}
|
|
|
|
// Check the new variable specialization against the parsed input.
|
|
if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
|
|
Diag(T->getTypeLoc().getLocStart(),
|
|
diag::err_invalid_var_template_spec_type)
|
|
<< 0 << PrevTemplate << R << Prev->getType();
|
|
Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
|
|
<< 2 << PrevTemplate->getDeclName();
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Create an ExplicitInstantiation node?
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
// If the declarator is a template-id, translate the parser's template
|
|
// argument list into our AST format.
|
|
bool HasExplicitTemplateArgs = false;
|
|
TemplateArgumentListInfo TemplateArgs;
|
|
if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
|
|
TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
|
|
HasExplicitTemplateArgs = true;
|
|
}
|
|
|
|
// C++ [temp.explicit]p1:
|
|
// A [...] function [...] can be explicitly instantiated from its template.
|
|
// A member function [...] of a class template can be explicitly
|
|
// instantiated from the member definition associated with its class
|
|
// template.
|
|
UnresolvedSet<8> Matches;
|
|
TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
|
|
for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
|
|
P != PEnd; ++P) {
|
|
NamedDecl *Prev = *P;
|
|
if (!HasExplicitTemplateArgs) {
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
|
|
QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
|
|
if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
|
|
Matches.clear();
|
|
|
|
Matches.addDecl(Method, P.getAccess());
|
|
if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
|
|
if (!FunTmpl)
|
|
continue;
|
|
|
|
TemplateDeductionInfo Info(FailedCandidates.getLocation());
|
|
FunctionDecl *Specialization = nullptr;
|
|
if (TemplateDeductionResult TDK
|
|
= DeduceTemplateArguments(FunTmpl,
|
|
(HasExplicitTemplateArgs ? &TemplateArgs
|
|
: nullptr),
|
|
R, Specialization, Info)) {
|
|
// Keep track of almost-matches.
|
|
FailedCandidates.addCandidate()
|
|
.set(P.getPair(), FunTmpl->getTemplatedDecl(),
|
|
MakeDeductionFailureInfo(Context, TDK, Info));
|
|
(void)TDK;
|
|
continue;
|
|
}
|
|
|
|
Matches.addDecl(Specialization, P.getAccess());
|
|
}
|
|
|
|
// Find the most specialized function template specialization.
|
|
UnresolvedSetIterator Result = getMostSpecialized(
|
|
Matches.begin(), Matches.end(), FailedCandidates,
|
|
D.getIdentifierLoc(),
|
|
PDiag(diag::err_explicit_instantiation_not_known) << Name,
|
|
PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
|
|
PDiag(diag::note_explicit_instantiation_candidate));
|
|
|
|
if (Result == Matches.end())
|
|
return true;
|
|
|
|
// Ignore access control bits, we don't need them for redeclaration checking.
|
|
FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
|
|
|
|
// C++11 [except.spec]p4
|
|
// In an explicit instantiation an exception-specification may be specified,
|
|
// but is not required.
|
|
// If an exception-specification is specified in an explicit instantiation
|
|
// directive, it shall be compatible with the exception-specifications of
|
|
// other declarations of that function.
|
|
if (auto *FPT = R->getAs<FunctionProtoType>())
|
|
if (FPT->hasExceptionSpec()) {
|
|
unsigned DiagID =
|
|
diag::err_mismatched_exception_spec_explicit_instantiation;
|
|
if (getLangOpts().MicrosoftExt)
|
|
DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
|
|
bool Result = CheckEquivalentExceptionSpec(
|
|
PDiag(DiagID) << Specialization->getType(),
|
|
PDiag(diag::note_explicit_instantiation_here),
|
|
Specialization->getType()->getAs<FunctionProtoType>(),
|
|
Specialization->getLocation(), FPT, D.getLocStart());
|
|
// In Microsoft mode, mismatching exception specifications just cause a
|
|
// warning.
|
|
if (!getLangOpts().MicrosoftExt && Result)
|
|
return true;
|
|
}
|
|
|
|
if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::err_explicit_instantiation_member_function_not_instantiated)
|
|
<< Specialization
|
|
<< (Specialization->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitSpecialization);
|
|
Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
|
|
return true;
|
|
}
|
|
|
|
FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
|
|
if (!PrevDecl && Specialization->isThisDeclarationADefinition())
|
|
PrevDecl = Specialization;
|
|
|
|
if (PrevDecl) {
|
|
bool HasNoEffect = false;
|
|
if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
|
|
PrevDecl,
|
|
PrevDecl->getTemplateSpecializationKind(),
|
|
PrevDecl->getPointOfInstantiation(),
|
|
HasNoEffect))
|
|
return true;
|
|
|
|
// FIXME: We may still want to build some representation of this
|
|
// explicit specialization.
|
|
if (HasNoEffect)
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
|
|
AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
|
|
if (Attr)
|
|
ProcessDeclAttributeList(S, Specialization, Attr);
|
|
|
|
if (Specialization->isDefined()) {
|
|
// Let the ASTConsumer know that this function has been explicitly
|
|
// instantiated now, and its linkage might have changed.
|
|
Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
|
|
} else if (TSK == TSK_ExplicitInstantiationDefinition)
|
|
InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
|
|
|
|
// C++0x [temp.explicit]p2:
|
|
// If the explicit instantiation is for a member function, a member class
|
|
// or a static data member of a class template specialization, the name of
|
|
// the class template specialization in the qualified-id for the member
|
|
// name shall be a simple-template-id.
|
|
//
|
|
// C++98 has the same restriction, just worded differently.
|
|
FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
|
|
if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
|
|
D.getCXXScopeSpec().isSet() &&
|
|
!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
|
|
Diag(D.getIdentifierLoc(),
|
|
diag::ext_explicit_instantiation_without_qualified_id)
|
|
<< Specialization << D.getCXXScopeSpec().getRange();
|
|
|
|
// C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
|
|
// explicit instantiation (14.8.2) [...] of a concept definition.
|
|
if (FunTmpl && FunTmpl->isConcept() &&
|
|
!D.getDeclSpec().isConceptSpecified()) {
|
|
Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
|
|
<< 0 /*function*/ << 0 /*explicitly instantiated*/;
|
|
Diag(FunTmpl->getLocation(), diag::note_previous_declaration);
|
|
return true;
|
|
}
|
|
|
|
CheckExplicitInstantiationScope(*this,
|
|
FunTmpl? (NamedDecl *)FunTmpl
|
|
: Specialization->getInstantiatedFromMemberFunction(),
|
|
D.getIdentifierLoc(),
|
|
D.getCXXScopeSpec().isSet());
|
|
|
|
// FIXME: Create some kind of ExplicitInstantiationDecl here.
|
|
return (Decl*) nullptr;
|
|
}
|
|
|
|
TypeResult
|
|
Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
|
|
const CXXScopeSpec &SS, IdentifierInfo *Name,
|
|
SourceLocation TagLoc, SourceLocation NameLoc) {
|
|
// This has to hold, because SS is expected to be defined.
|
|
assert(Name && "Expected a name in a dependent tag");
|
|
|
|
NestedNameSpecifier *NNS = SS.getScopeRep();
|
|
if (!NNS)
|
|
return true;
|
|
|
|
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
|
|
|
|
if (TUK == TUK_Declaration || TUK == TUK_Definition) {
|
|
Diag(NameLoc, diag::err_dependent_tag_decl)
|
|
<< (TUK == TUK_Definition) << Kind << SS.getRange();
|
|
return true;
|
|
}
|
|
|
|
// Create the resulting type.
|
|
ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
|
|
QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
|
|
|
|
// Create type-source location information for this type.
|
|
TypeLocBuilder TLB;
|
|
DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
|
|
TL.setElaboratedKeywordLoc(TagLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
TL.setNameLoc(NameLoc);
|
|
return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
|
|
}
|
|
|
|
TypeResult
|
|
Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS, const IdentifierInfo &II,
|
|
SourceLocation IdLoc) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
|
|
Diag(TypenameLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_typename_outside_of_template :
|
|
diag::ext_typename_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TypenameLoc);
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
|
|
TypenameLoc, QualifierLoc, II, IdLoc);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
|
|
if (isa<DependentNameType>(T)) {
|
|
DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(TypenameLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.setNameLoc(IdLoc);
|
|
} else {
|
|
ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
|
|
TL.setElaboratedKeywordLoc(TypenameLoc);
|
|
TL.setQualifierLoc(QualifierLoc);
|
|
TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
|
|
}
|
|
|
|
return CreateParsedType(T, TSI);
|
|
}
|
|
|
|
TypeResult
|
|
Sema::ActOnTypenameType(Scope *S,
|
|
SourceLocation TypenameLoc,
|
|
const CXXScopeSpec &SS,
|
|
SourceLocation TemplateKWLoc,
|
|
TemplateTy TemplateIn,
|
|
SourceLocation TemplateNameLoc,
|
|
SourceLocation LAngleLoc,
|
|
ASTTemplateArgsPtr TemplateArgsIn,
|
|
SourceLocation RAngleLoc) {
|
|
if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
|
|
Diag(TypenameLoc,
|
|
getLangOpts().CPlusPlus11 ?
|
|
diag::warn_cxx98_compat_typename_outside_of_template :
|
|
diag::ext_typename_outside_of_template)
|
|
<< FixItHint::CreateRemoval(TypenameLoc);
|
|
|
|
// Translate the parser's template argument list in our AST format.
|
|
TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
|
|
translateTemplateArguments(TemplateArgsIn, TemplateArgs);
|
|
|
|
TemplateName Template = TemplateIn.get();
|
|
if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
|
|
// Construct a dependent template specialization type.
|
|
assert(DTN && "dependent template has non-dependent name?");
|
|
assert(DTN->getQualifier() == SS.getScopeRep());
|
|
QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
|
|
DTN->getQualifier(),
|
|
DTN->getIdentifier(),
|
|
TemplateArgs);
|
|
|
|
// Create source-location information for this type.
|
|
TypeLocBuilder Builder;
|
|
DependentTemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<DependentTemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setElaboratedKeywordLoc(TypenameLoc);
|
|
SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateNameLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
|
|
}
|
|
|
|
QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
|
|
if (T.isNull())
|
|
return true;
|
|
|
|
// Provide source-location information for the template specialization type.
|
|
TypeLocBuilder Builder;
|
|
TemplateSpecializationTypeLoc SpecTL
|
|
= Builder.push<TemplateSpecializationTypeLoc>(T);
|
|
SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
|
|
SpecTL.setTemplateNameLoc(TemplateNameLoc);
|
|
SpecTL.setLAngleLoc(LAngleLoc);
|
|
SpecTL.setRAngleLoc(RAngleLoc);
|
|
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
|
SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
|
|
|
|
T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
|
|
ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
|
|
TL.setElaboratedKeywordLoc(TypenameLoc);
|
|
TL.setQualifierLoc(SS.getWithLocInContext(Context));
|
|
|
|
TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
|
|
return CreateParsedType(T, TSI);
|
|
}
|
|
|
|
|
|
/// Determine whether this failed name lookup should be treated as being
|
|
/// disabled by a usage of std::enable_if.
|
|
static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
|
|
SourceRange &CondRange) {
|
|
// We must be looking for a ::type...
|
|
if (!II.isStr("type"))
|
|
return false;
|
|
|
|
// ... within an explicitly-written template specialization...
|
|
if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
|
|
return false;
|
|
TypeLoc EnableIfTy = NNS.getTypeLoc();
|
|
TemplateSpecializationTypeLoc EnableIfTSTLoc =
|
|
EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
|
|
if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
|
|
return false;
|
|
const TemplateSpecializationType *EnableIfTST =
|
|
cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
|
|
|
|
// ... which names a complete class template declaration...
|
|
const TemplateDecl *EnableIfDecl =
|
|
EnableIfTST->getTemplateName().getAsTemplateDecl();
|
|
if (!EnableIfDecl || EnableIfTST->isIncompleteType())
|
|
return false;
|
|
|
|
// ... called "enable_if".
|
|
const IdentifierInfo *EnableIfII =
|
|
EnableIfDecl->getDeclName().getAsIdentifierInfo();
|
|
if (!EnableIfII || !EnableIfII->isStr("enable_if"))
|
|
return false;
|
|
|
|
// Assume the first template argument is the condition.
|
|
CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
/// \brief Build the type that describes a C++ typename specifier,
|
|
/// e.g., "typename T::type".
|
|
QualType
|
|
Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
|
|
SourceLocation KeywordLoc,
|
|
NestedNameSpecifierLoc QualifierLoc,
|
|
const IdentifierInfo &II,
|
|
SourceLocation IILoc) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
DeclContext *Ctx = computeDeclContext(SS);
|
|
if (!Ctx) {
|
|
// If the nested-name-specifier is dependent and couldn't be
|
|
// resolved to a type, build a typename type.
|
|
assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
|
|
return Context.getDependentNameType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
&II);
|
|
}
|
|
|
|
// If the nested-name-specifier refers to the current instantiation,
|
|
// the "typename" keyword itself is superfluous. In C++03, the
|
|
// program is actually ill-formed. However, DR 382 (in C++0x CD1)
|
|
// allows such extraneous "typename" keywords, and we retroactively
|
|
// apply this DR to C++03 code with only a warning. In any case we continue.
|
|
|
|
if (RequireCompleteDeclContext(SS, Ctx))
|
|
return QualType();
|
|
|
|
DeclarationName Name(&II);
|
|
LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
|
|
LookupQualifiedName(Result, Ctx, SS);
|
|
unsigned DiagID = 0;
|
|
Decl *Referenced = nullptr;
|
|
switch (Result.getResultKind()) {
|
|
case LookupResult::NotFound: {
|
|
// If we're looking up 'type' within a template named 'enable_if', produce
|
|
// a more specific diagnostic.
|
|
SourceRange CondRange;
|
|
if (isEnableIf(QualifierLoc, II, CondRange)) {
|
|
Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
|
|
<< Ctx << CondRange;
|
|
return QualType();
|
|
}
|
|
|
|
DiagID = diag::err_typename_nested_not_found;
|
|
break;
|
|
}
|
|
|
|
case LookupResult::FoundUnresolvedValue: {
|
|
// We found a using declaration that is a value. Most likely, the using
|
|
// declaration itself is meant to have the 'typename' keyword.
|
|
SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
|
|
IILoc);
|
|
Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
|
|
<< Name << Ctx << FullRange;
|
|
if (UnresolvedUsingValueDecl *Using
|
|
= dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
|
|
SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
|
|
Diag(Loc, diag::note_using_value_decl_missing_typename)
|
|
<< FixItHint::CreateInsertion(Loc, "typename ");
|
|
}
|
|
}
|
|
// Fall through to create a dependent typename type, from which we can recover
|
|
// better.
|
|
|
|
case LookupResult::NotFoundInCurrentInstantiation:
|
|
// Okay, it's a member of an unknown instantiation.
|
|
return Context.getDependentNameType(Keyword,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
&II);
|
|
|
|
case LookupResult::Found:
|
|
if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
|
|
// We found a type. Build an ElaboratedType, since the
|
|
// typename-specifier was just sugar.
|
|
MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
|
|
return Context.getElaboratedType(ETK_Typename,
|
|
QualifierLoc.getNestedNameSpecifier(),
|
|
Context.getTypeDeclType(Type));
|
|
}
|
|
|
|
DiagID = diag::err_typename_nested_not_type;
|
|
Referenced = Result.getFoundDecl();
|
|
break;
|
|
|
|
case LookupResult::FoundOverloaded:
|
|
DiagID = diag::err_typename_nested_not_type;
|
|
Referenced = *Result.begin();
|
|
break;
|
|
|
|
case LookupResult::Ambiguous:
|
|
return QualType();
|
|
}
|
|
|
|
// If we get here, it's because name lookup did not find a
|
|
// type. Emit an appropriate diagnostic and return an error.
|
|
SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
|
|
IILoc);
|
|
Diag(IILoc, DiagID) << FullRange << Name << Ctx;
|
|
if (Referenced)
|
|
Diag(Referenced->getLocation(), diag::note_typename_refers_here)
|
|
<< Name;
|
|
return QualType();
|
|
}
|
|
|
|
namespace {
|
|
// See Sema::RebuildTypeInCurrentInstantiation
|
|
class CurrentInstantiationRebuilder
|
|
: public TreeTransform<CurrentInstantiationRebuilder> {
|
|
SourceLocation Loc;
|
|
DeclarationName Entity;
|
|
|
|
public:
|
|
typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
|
|
|
|
CurrentInstantiationRebuilder(Sema &SemaRef,
|
|
SourceLocation Loc,
|
|
DeclarationName Entity)
|
|
: TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
|
|
Loc(Loc), Entity(Entity) { }
|
|
|
|
/// \brief Determine whether the given type \p T has already been
|
|
/// transformed.
|
|
///
|
|
/// For the purposes of type reconstruction, a type has already been
|
|
/// transformed if it is NULL or if it is not dependent.
|
|
bool AlreadyTransformed(QualType T) {
|
|
return T.isNull() || !T->isDependentType();
|
|
}
|
|
|
|
/// \brief Returns the location of the entity whose type is being
|
|
/// rebuilt.
|
|
SourceLocation getBaseLocation() { return Loc; }
|
|
|
|
/// \brief Returns the name of the entity whose type is being rebuilt.
|
|
DeclarationName getBaseEntity() { return Entity; }
|
|
|
|
/// \brief Sets the "base" location and entity when that
|
|
/// information is known based on another transformation.
|
|
void setBase(SourceLocation Loc, DeclarationName Entity) {
|
|
this->Loc = Loc;
|
|
this->Entity = Entity;
|
|
}
|
|
|
|
ExprResult TransformLambdaExpr(LambdaExpr *E) {
|
|
// Lambdas never need to be transformed.
|
|
return E;
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
/// \brief Rebuilds a type within the context of the current instantiation.
|
|
///
|
|
/// The type \p T is part of the type of an out-of-line member definition of
|
|
/// a class template (or class template partial specialization) that was parsed
|
|
/// and constructed before we entered the scope of the class template (or
|
|
/// partial specialization thereof). This routine will rebuild that type now
|
|
/// that we have entered the declarator's scope, which may produce different
|
|
/// canonical types, e.g.,
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// typedef T* pointer;
|
|
/// pointer data();
|
|
/// };
|
|
///
|
|
/// template<typename T>
|
|
/// typename X<T>::pointer X<T>::data() { ... }
|
|
/// \endcode
|
|
///
|
|
/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
|
|
/// since we do not know that we can look into X<T> when we parsed the type.
|
|
/// This function will rebuild the type, performing the lookup of "pointer"
|
|
/// in X<T> and returning an ElaboratedType whose canonical type is the same
|
|
/// as the canonical type of T*, allowing the return types of the out-of-line
|
|
/// definition and the declaration to match.
|
|
TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
|
|
SourceLocation Loc,
|
|
DeclarationName Name) {
|
|
if (!T || !T->getType()->isDependentType())
|
|
return T;
|
|
|
|
CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
|
|
return Rebuilder.TransformType(T);
|
|
}
|
|
|
|
ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
|
|
CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
|
|
DeclarationName());
|
|
return Rebuilder.TransformExpr(E);
|
|
}
|
|
|
|
bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
|
|
if (SS.isInvalid())
|
|
return true;
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
|
|
CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
|
|
DeclarationName());
|
|
NestedNameSpecifierLoc Rebuilt
|
|
= Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
|
|
if (!Rebuilt)
|
|
return true;
|
|
|
|
SS.Adopt(Rebuilt);
|
|
return false;
|
|
}
|
|
|
|
/// \brief Rebuild the template parameters now that we know we're in a current
|
|
/// instantiation.
|
|
bool Sema::RebuildTemplateParamsInCurrentInstantiation(
|
|
TemplateParameterList *Params) {
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
Decl *Param = Params->getParam(I);
|
|
|
|
// There is nothing to rebuild in a type parameter.
|
|
if (isa<TemplateTypeParmDecl>(Param))
|
|
continue;
|
|
|
|
// Rebuild the template parameter list of a template template parameter.
|
|
if (TemplateTemplateParmDecl *TTP
|
|
= dyn_cast<TemplateTemplateParmDecl>(Param)) {
|
|
if (RebuildTemplateParamsInCurrentInstantiation(
|
|
TTP->getTemplateParameters()))
|
|
return true;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Rebuild the type of a non-type template parameter.
|
|
NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
|
|
TypeSourceInfo *NewTSI
|
|
= RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
|
|
NTTP->getLocation(),
|
|
NTTP->getDeclName());
|
|
if (!NewTSI)
|
|
return true;
|
|
|
|
if (NewTSI != NTTP->getTypeSourceInfo()) {
|
|
NTTP->setTypeSourceInfo(NewTSI);
|
|
NTTP->setType(NewTSI->getType());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Produces a formatted string that describes the binding of
|
|
/// template parameters to template arguments.
|
|
std::string
|
|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgumentList &Args) {
|
|
return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
|
|
}
|
|
|
|
std::string
|
|
Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
|
|
const TemplateArgument *Args,
|
|
unsigned NumArgs) {
|
|
SmallString<128> Str;
|
|
llvm::raw_svector_ostream Out(Str);
|
|
|
|
if (!Params || Params->size() == 0 || NumArgs == 0)
|
|
return std::string();
|
|
|
|
for (unsigned I = 0, N = Params->size(); I != N; ++I) {
|
|
if (I >= NumArgs)
|
|
break;
|
|
|
|
if (I == 0)
|
|
Out << "[with ";
|
|
else
|
|
Out << ", ";
|
|
|
|
if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
|
|
Out << Id->getName();
|
|
} else {
|
|
Out << '$' << I;
|
|
}
|
|
|
|
Out << " = ";
|
|
Args[I].print(getPrintingPolicy(), Out);
|
|
}
|
|
|
|
Out << ']';
|
|
return Out.str();
|
|
}
|
|
|
|
void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
|
|
CachedTokens &Toks) {
|
|
if (!FD)
|
|
return;
|
|
|
|
LateParsedTemplate *LPT = new LateParsedTemplate;
|
|
|
|
// Take tokens to avoid allocations
|
|
LPT->Toks.swap(Toks);
|
|
LPT->D = FnD;
|
|
LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
|
|
|
|
FD->setLateTemplateParsed(true);
|
|
}
|
|
|
|
void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
|
|
if (!FD)
|
|
return;
|
|
FD->setLateTemplateParsed(false);
|
|
}
|
|
|
|
bool Sema::IsInsideALocalClassWithinATemplateFunction() {
|
|
DeclContext *DC = CurContext;
|
|
|
|
while (DC) {
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
|
|
const FunctionDecl *FD = RD->isLocalClass();
|
|
return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
|
|
} else if (DC->isTranslationUnit() || DC->isNamespace())
|
|
return false;
|
|
|
|
DC = DC->getParent();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
/// \brief Walk the path from which a declaration was instantiated, and check
|
|
/// that every explicit specialization along that path is visible. This enforces
|
|
/// C++ [temp.expl.spec]/6:
|
|
///
|
|
/// If a template, a member template or a member of a class template is
|
|
/// explicitly specialized then that specialization shall be declared before
|
|
/// the first use of that specialization that would cause an implicit
|
|
/// instantiation to take place, in every translation unit in which such a
|
|
/// use occurs; no diagnostic is required.
|
|
///
|
|
/// and also C++ [temp.class.spec]/1:
|
|
///
|
|
/// A partial specialization shall be declared before the first use of a
|
|
/// class template specialization that would make use of the partial
|
|
/// specialization as the result of an implicit or explicit instantiation
|
|
/// in every translation unit in which such a use occurs; no diagnostic is
|
|
/// required.
|
|
class ExplicitSpecializationVisibilityChecker {
|
|
Sema &S;
|
|
SourceLocation Loc;
|
|
llvm::SmallVector<Module *, 8> Modules;
|
|
|
|
public:
|
|
ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
|
|
: S(S), Loc(Loc) {}
|
|
|
|
void check(NamedDecl *ND) {
|
|
if (auto *FD = dyn_cast<FunctionDecl>(ND))
|
|
return checkImpl(FD);
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
|
|
return checkImpl(RD);
|
|
if (auto *VD = dyn_cast<VarDecl>(ND))
|
|
return checkImpl(VD);
|
|
if (auto *ED = dyn_cast<EnumDecl>(ND))
|
|
return checkImpl(ED);
|
|
}
|
|
|
|
private:
|
|
void diagnose(NamedDecl *D, bool IsPartialSpec) {
|
|
auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
|
|
: Sema::MissingImportKind::ExplicitSpecialization;
|
|
const bool Recover = true;
|
|
|
|
// If we got a custom set of modules (because only a subset of the
|
|
// declarations are interesting), use them, otherwise let
|
|
// diagnoseMissingImport intelligently pick some.
|
|
if (Modules.empty())
|
|
S.diagnoseMissingImport(Loc, D, Kind, Recover);
|
|
else
|
|
S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
|
|
}
|
|
|
|
// Check a specific declaration. There are three problematic cases:
|
|
//
|
|
// 1) The declaration is an explicit specialization of a template
|
|
// specialization.
|
|
// 2) The declaration is an explicit specialization of a member of an
|
|
// templated class.
|
|
// 3) The declaration is an instantiation of a template, and that template
|
|
// is an explicit specialization of a member of a templated class.
|
|
//
|
|
// We don't need to go any deeper than that, as the instantiation of the
|
|
// surrounding class / etc is not triggered by whatever triggered this
|
|
// instantiation, and thus should be checked elsewhere.
|
|
template<typename SpecDecl>
|
|
void checkImpl(SpecDecl *Spec) {
|
|
bool IsHiddenExplicitSpecialization = false;
|
|
if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
|
|
IsHiddenExplicitSpecialization =
|
|
Spec->getMemberSpecializationInfo()
|
|
? !S.hasVisibleMemberSpecialization(Spec, &Modules)
|
|
: !S.hasVisibleDeclaration(Spec);
|
|
} else {
|
|
checkInstantiated(Spec);
|
|
}
|
|
|
|
if (IsHiddenExplicitSpecialization)
|
|
diagnose(Spec->getMostRecentDecl(), false);
|
|
}
|
|
|
|
void checkInstantiated(FunctionDecl *FD) {
|
|
if (auto *TD = FD->getPrimaryTemplate())
|
|
checkTemplate(TD);
|
|
}
|
|
|
|
void checkInstantiated(CXXRecordDecl *RD) {
|
|
auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
|
|
if (!SD)
|
|
return;
|
|
|
|
auto From = SD->getSpecializedTemplateOrPartial();
|
|
if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
|
|
checkTemplate(TD);
|
|
else if (auto *TD =
|
|
From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
|
|
if (!S.hasVisibleDeclaration(TD))
|
|
diagnose(TD, true);
|
|
checkTemplate(TD);
|
|
}
|
|
}
|
|
|
|
void checkInstantiated(VarDecl *RD) {
|
|
auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
|
|
if (!SD)
|
|
return;
|
|
|
|
auto From = SD->getSpecializedTemplateOrPartial();
|
|
if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
|
|
checkTemplate(TD);
|
|
else if (auto *TD =
|
|
From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
|
|
if (!S.hasVisibleDeclaration(TD))
|
|
diagnose(TD, true);
|
|
checkTemplate(TD);
|
|
}
|
|
}
|
|
|
|
void checkInstantiated(EnumDecl *FD) {}
|
|
|
|
template<typename TemplDecl>
|
|
void checkTemplate(TemplDecl *TD) {
|
|
if (TD->isMemberSpecialization()) {
|
|
if (!S.hasVisibleMemberSpecialization(TD, &Modules))
|
|
diagnose(TD->getMostRecentDecl(), false);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
|
|
if (!getLangOpts().Modules)
|
|
return;
|
|
|
|
ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
|
|
}
|
|
|
|
/// \brief Check whether a template partial specialization that we've discovered
|
|
/// is hidden, and produce suitable diagnostics if so.
|
|
void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
|
|
NamedDecl *Spec) {
|
|
llvm::SmallVector<Module *, 8> Modules;
|
|
if (!hasVisibleDeclaration(Spec, &Modules))
|
|
diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
|
|
MissingImportKind::PartialSpecialization,
|
|
/*Recover*/true);
|
|
}
|