llvm-project/llvm/lib/Transforms/Scalar/CorrelatedValuePropagation.cpp

933 lines
32 KiB
C++

//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Correlated Value Propagation pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyValueInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <cassert>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "correlated-value-propagation"
STATISTIC(NumPhis, "Number of phis propagated");
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
STATISTIC(NumSelects, "Number of selects propagated");
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
STATISTIC(NumCmps, "Number of comparisons propagated");
STATISTIC(NumReturns, "Number of return values propagated");
STATISTIC(NumDeadCases, "Number of switch cases removed");
STATISTIC(NumSDivs, "Number of sdiv converted to udiv");
STATISTIC(NumUDivs, "Number of udivs whose width was decreased");
STATISTIC(NumAShrs, "Number of ashr converted to lshr");
STATISTIC(NumSRems, "Number of srem converted to urem");
STATISTIC(NumSExt, "Number of sext converted to zext");
STATISTIC(NumAnd, "Number of ands removed");
STATISTIC(NumNW, "Number of no-wrap deductions");
STATISTIC(NumNSW, "Number of no-signed-wrap deductions");
STATISTIC(NumNUW, "Number of no-unsigned-wrap deductions");
STATISTIC(NumAddNW, "Number of no-wrap deductions for add");
STATISTIC(NumAddNSW, "Number of no-signed-wrap deductions for add");
STATISTIC(NumAddNUW, "Number of no-unsigned-wrap deductions for add");
STATISTIC(NumSubNW, "Number of no-wrap deductions for sub");
STATISTIC(NumSubNSW, "Number of no-signed-wrap deductions for sub");
STATISTIC(NumSubNUW, "Number of no-unsigned-wrap deductions for sub");
STATISTIC(NumMulNW, "Number of no-wrap deductions for mul");
STATISTIC(NumMulNSW, "Number of no-signed-wrap deductions for mul");
STATISTIC(NumMulNUW, "Number of no-unsigned-wrap deductions for mul");
STATISTIC(NumShlNW, "Number of no-wrap deductions for shl");
STATISTIC(NumShlNSW, "Number of no-signed-wrap deductions for shl");
STATISTIC(NumShlNUW, "Number of no-unsigned-wrap deductions for shl");
STATISTIC(NumOverflows, "Number of overflow checks removed");
STATISTIC(NumSaturating,
"Number of saturating arithmetics converted to normal arithmetics");
static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false));
namespace {
class CorrelatedValuePropagation : public FunctionPass {
public:
static char ID;
CorrelatedValuePropagation(): FunctionPass(ID) {
initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LazyValueInfoWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<LazyValueInfoWrapperPass>();
}
};
} // end anonymous namespace
char CorrelatedValuePropagation::ID = 0;
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
"Value Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
"Value Propagation", false, false)
// Public interface to the Value Propagation pass
Pass *llvm::createCorrelatedValuePropagationPass() {
return new CorrelatedValuePropagation();
}
static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
if (S->getType()->isVectorTy()) return false;
if (isa<Constant>(S->getOperand(0))) return false;
Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S);
if (!C) return false;
ConstantInt *CI = dyn_cast<ConstantInt>(C);
if (!CI) return false;
Value *ReplaceWith = S->getTrueValue();
Value *Other = S->getFalseValue();
if (!CI->isOne()) std::swap(ReplaceWith, Other);
if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType());
S->replaceAllUsesWith(ReplaceWith);
S->eraseFromParent();
++NumSelects;
return true;
}
/// Try to simplify a phi with constant incoming values that match the edge
/// values of a non-constant value on all other edges:
/// bb0:
/// %isnull = icmp eq i8* %x, null
/// br i1 %isnull, label %bb2, label %bb1
/// bb1:
/// br label %bb2
/// bb2:
/// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
/// -->
/// %r = %x
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
DominatorTree *DT) {
// Collect incoming constants and initialize possible common value.
SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
Value *CommonValue = nullptr;
for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = P->getIncomingValue(i);
if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
} else if (!CommonValue) {
// The potential common value is initialized to the first non-constant.
CommonValue = Incoming;
} else if (Incoming != CommonValue) {
// There can be only one non-constant common value.
return false;
}
}
if (!CommonValue || IncomingConstants.empty())
return false;
// The common value must be valid in all incoming blocks.
BasicBlock *ToBB = P->getParent();
if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
if (!DT->dominates(CommonInst, ToBB))
return false;
// We have a phi with exactly 1 variable incoming value and 1 or more constant
// incoming values. See if all constant incoming values can be mapped back to
// the same incoming variable value.
for (auto &IncomingConstant : IncomingConstants) {
Constant *C = IncomingConstant.first;
BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
return false;
}
// All constant incoming values map to the same variable along the incoming
// edges of the phi. The phi is unnecessary.
P->replaceAllUsesWith(CommonValue);
P->eraseFromParent();
++NumPhiCommon;
return true;
}
static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
const SimplifyQuery &SQ) {
bool Changed = false;
BasicBlock *BB = P->getParent();
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
Value *Incoming = P->getIncomingValue(i);
if (isa<Constant>(Incoming)) continue;
Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
// Look if the incoming value is a select with a scalar condition for which
// LVI can tells us the value. In that case replace the incoming value with
// the appropriate value of the select. This often allows us to remove the
// select later.
if (!V) {
SelectInst *SI = dyn_cast<SelectInst>(Incoming);
if (!SI) continue;
Value *Condition = SI->getCondition();
if (!Condition->getType()->isVectorTy()) {
if (Constant *C = LVI->getConstantOnEdge(
Condition, P->getIncomingBlock(i), BB, P)) {
if (C->isOneValue()) {
V = SI->getTrueValue();
} else if (C->isZeroValue()) {
V = SI->getFalseValue();
}
// Once LVI learns to handle vector types, we could also add support
// for vector type constants that are not all zeroes or all ones.
}
}
// Look if the select has a constant but LVI tells us that the incoming
// value can never be that constant. In that case replace the incoming
// value with the other value of the select. This often allows us to
// remove the select later.
if (!V) {
Constant *C = dyn_cast<Constant>(SI->getFalseValue());
if (!C) continue;
if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
P->getIncomingBlock(i), BB, P) !=
LazyValueInfo::False)
continue;
V = SI->getTrueValue();
}
LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
}
P->setIncomingValue(i, V);
Changed = true;
}
if (Value *V = SimplifyInstruction(P, SQ)) {
P->replaceAllUsesWith(V);
P->eraseFromParent();
Changed = true;
}
if (!Changed)
Changed = simplifyCommonValuePhi(P, LVI, DT);
if (Changed)
++NumPhis;
return Changed;
}
static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
Value *Pointer = nullptr;
if (LoadInst *L = dyn_cast<LoadInst>(I))
Pointer = L->getPointerOperand();
else
Pointer = cast<StoreInst>(I)->getPointerOperand();
if (isa<Constant>(Pointer)) return false;
Constant *C = LVI->getConstant(Pointer, I->getParent(), I);
if (!C) return false;
++NumMemAccess;
I->replaceUsesOfWith(Pointer, C);
return true;
}
/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove this comparison. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
Value *Op0 = Cmp->getOperand(0);
auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
if (!C)
return false;
// As a policy choice, we choose not to waste compile time on anything where
// the comparison is testing local values. While LVI can sometimes reason
// about such cases, it's not its primary purpose. We do make sure to do
// the block local query for uses from terminator instructions, but that's
// handled in the code for each terminator.
auto *I = dyn_cast<Instruction>(Op0);
if (I && I->getParent() == Cmp->getParent())
return false;
LazyValueInfo::Tristate Result =
LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp);
if (Result == LazyValueInfo::Unknown)
return false;
++NumCmps;
Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
Cmp->replaceAllUsesWith(TorF);
Cmp->eraseFromParent();
return true;
}
/// Simplify a switch instruction by removing cases which can never fire. If the
/// uselessness of a case could be determined locally then constant propagation
/// would already have figured it out. Instead, walk the predecessors and
/// statically evaluate cases based on information available on that edge. Cases
/// that cannot fire no matter what the incoming edge can safely be removed. If
/// a case fires on every incoming edge then the entire switch can be removed
/// and replaced with a branch to the case destination.
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
DominatorTree *DT) {
DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
Value *Cond = I->getCondition();
BasicBlock *BB = I->getParent();
// If the condition was defined in same block as the switch then LazyValueInfo
// currently won't say anything useful about it, though in theory it could.
if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB)
return false;
// If the switch is unreachable then trying to improve it is a waste of time.
pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
if (PB == PE) return false;
// Analyse each switch case in turn.
bool Changed = false;
DenseMap<BasicBlock*, int> SuccessorsCount;
for (auto *Succ : successors(BB))
SuccessorsCount[Succ]++;
{ // Scope for SwitchInstProfUpdateWrapper. It must not live during
// ConstantFoldTerminator() as the underlying SwitchInst can be changed.
SwitchInstProfUpdateWrapper SI(*I);
for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
ConstantInt *Case = CI->getCaseValue();
// Check to see if the switch condition is equal to/not equal to the case
// value on every incoming edge, equal/not equal being the same each time.
LazyValueInfo::Tristate State = LazyValueInfo::Unknown;
for (pred_iterator PI = PB; PI != PE; ++PI) {
// Is the switch condition equal to the case value?
LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ,
Cond, Case, *PI,
BB, SI);
// Give up on this case if nothing is known.
if (Value == LazyValueInfo::Unknown) {
State = LazyValueInfo::Unknown;
break;
}
// If this was the first edge to be visited, record that all other edges
// need to give the same result.
if (PI == PB) {
State = Value;
continue;
}
// If this case is known to fire for some edges and known not to fire for
// others then there is nothing we can do - give up.
if (Value != State) {
State = LazyValueInfo::Unknown;
break;
}
}
if (State == LazyValueInfo::False) {
// This case never fires - remove it.
BasicBlock *Succ = CI->getCaseSuccessor();
Succ->removePredecessor(BB);
CI = SI.removeCase(CI);
CE = SI->case_end();
// The condition can be modified by removePredecessor's PHI simplification
// logic.
Cond = SI->getCondition();
++NumDeadCases;
Changed = true;
if (--SuccessorsCount[Succ] == 0)
DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
continue;
}
if (State == LazyValueInfo::True) {
// This case always fires. Arrange for the switch to be turned into an
// unconditional branch by replacing the switch condition with the case
// value.
SI->setCondition(Case);
NumDeadCases += SI->getNumCases();
Changed = true;
break;
}
// Increment the case iterator since we didn't delete it.
++CI;
}
}
if (Changed)
// If the switch has been simplified to the point where it can be replaced
// by a branch then do so now.
ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
/*TLI = */ nullptr, &DTU);
return Changed;
}
// See if we can prove that the given binary op intrinsic will not overflow.
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
ConstantRange LRange = LVI->getConstantRange(
BO->getLHS(), BO->getParent(), BO);
ConstantRange RRange = LVI->getConstantRange(
BO->getRHS(), BO->getParent(), BO);
ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
BO->getBinaryOp(), RRange, BO->getNoWrapKind());
return NWRegion.contains(LRange);
}
static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
bool NewNSW, bool NewNUW) {
Statistic *OpcNW, *OpcNSW, *OpcNUW;
switch (Opcode) {
case Instruction::Add:
OpcNW = &NumAddNW;
OpcNSW = &NumAddNSW;
OpcNUW = &NumAddNUW;
break;
case Instruction::Sub:
OpcNW = &NumSubNW;
OpcNSW = &NumSubNSW;
OpcNUW = &NumSubNUW;
break;
case Instruction::Mul:
OpcNW = &NumMulNW;
OpcNSW = &NumMulNSW;
OpcNUW = &NumMulNUW;
break;
case Instruction::Shl:
OpcNW = &NumShlNW;
OpcNSW = &NumShlNSW;
OpcNUW = &NumShlNUW;
break;
default:
llvm_unreachable("Will not be called with other binops");
}
auto *Inst = dyn_cast<Instruction>(V);
if (NewNSW) {
++NumNW;
++*OpcNW;
++NumNSW;
++*OpcNSW;
if (Inst)
Inst->setHasNoSignedWrap();
}
if (NewNUW) {
++NumNW;
++*OpcNW;
++NumNUW;
++*OpcNUW;
if (Inst)
Inst->setHasNoUnsignedWrap();
}
}
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
// Rewrite this with.overflow intrinsic as non-overflowing.
static void processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
IRBuilder<> B(WO);
Instruction::BinaryOps Opcode = WO->getBinaryOp();
bool NSW = WO->isSigned();
bool NUW = !WO->isSigned();
Value *NewOp =
B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
StructType *ST = cast<StructType>(WO->getType());
Constant *Struct = ConstantStruct::get(ST,
{ UndefValue::get(ST->getElementType(0)),
ConstantInt::getFalse(ST->getElementType(1)) });
Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
WO->replaceAllUsesWith(NewI);
WO->eraseFromParent();
++NumOverflows;
// See if we can infer the other no-wrap too.
if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
processBinOp(BO, LVI);
}
static void processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
Instruction::BinaryOps Opcode = SI->getBinaryOp();
bool NSW = SI->isSigned();
bool NUW = !SI->isSigned();
BinaryOperator *BinOp = BinaryOperator::Create(
Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
BinOp->setDebugLoc(SI->getDebugLoc());
setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
SI->replaceAllUsesWith(BinOp);
SI->eraseFromParent();
++NumSaturating;
// See if we can infer the other no-wrap too.
if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
processBinOp(BO, LVI);
}
/// Infer nonnull attributes for the arguments at the specified callsite.
static bool processCallSite(CallSite CS, LazyValueInfo *LVI) {
SmallVector<unsigned, 4> ArgNos;
unsigned ArgNo = 0;
if (auto *WO = dyn_cast<WithOverflowInst>(CS.getInstruction())) {
if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
processOverflowIntrinsic(WO, LVI);
return true;
}
}
if (auto *SI = dyn_cast<SaturatingInst>(CS.getInstruction())) {
if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
processSaturatingInst(SI, LVI);
return true;
}
}
// Deopt bundle operands are intended to capture state with minimal
// perturbance of the code otherwise. If we can find a constant value for
// any such operand and remove a use of the original value, that's
// desireable since it may allow further optimization of that value (e.g. via
// single use rules in instcombine). Since deopt uses tend to,
// idiomatically, appear along rare conditional paths, it's reasonable likely
// we may have a conditional fact with which LVI can fold.
if (auto DeoptBundle = CS.getOperandBundle(LLVMContext::OB_deopt)) {
bool Progress = false;
for (const Use &ConstU : DeoptBundle->Inputs) {
Use &U = const_cast<Use&>(ConstU);
Value *V = U.get();
if (V->getType()->isVectorTy()) continue;
if (isa<Constant>(V)) continue;
Constant *C = LVI->getConstant(V, CS.getParent(), CS.getInstruction());
if (!C) continue;
U.set(C);
Progress = true;
}
if (Progress)
return true;
}
for (Value *V : CS.args()) {
PointerType *Type = dyn_cast<PointerType>(V->getType());
// Try to mark pointer typed parameters as non-null. We skip the
// relatively expensive analysis for constants which are obviously either
// null or non-null to start with.
if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) &&
!isa<Constant>(V) &&
LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
ConstantPointerNull::get(Type),
CS.getInstruction()) == LazyValueInfo::False)
ArgNos.push_back(ArgNo);
ArgNo++;
}
assert(ArgNo == CS.arg_size() && "sanity check");
if (ArgNos.empty())
return false;
AttributeList AS = CS.getAttributes();
LLVMContext &Ctx = CS.getInstruction()->getContext();
AS = AS.addParamAttribute(Ctx, ArgNos,
Attribute::get(Ctx, Attribute::NonNull));
CS.setAttributes(AS);
return true;
}
static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) {
Constant *Zero = ConstantInt::get(SDI->getType(), 0);
for (Value *O : SDI->operands()) {
auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI);
if (Result != LazyValueInfo::True)
return false;
}
return true;
}
/// Try to shrink a udiv/urem's width down to the smallest power of two that's
/// sufficient to contain its operands.
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
assert(Instr->getOpcode() == Instruction::UDiv ||
Instr->getOpcode() == Instruction::URem);
if (Instr->getType()->isVectorTy())
return false;
// Find the smallest power of two bitwidth that's sufficient to hold Instr's
// operands.
auto OrigWidth = Instr->getType()->getIntegerBitWidth();
ConstantRange OperandRange(OrigWidth, /*isFullSet=*/false);
for (Value *Operand : Instr->operands()) {
OperandRange = OperandRange.unionWith(
LVI->getConstantRange(Operand, Instr->getParent()));
}
// Don't shrink below 8 bits wide.
unsigned NewWidth = std::max<unsigned>(
PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8);
// NewWidth might be greater than OrigWidth if OrigWidth is not a power of
// two.
if (NewWidth >= OrigWidth)
return false;
++NumUDivs;
IRBuilder<> B{Instr};
auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
Instr->getName() + ".lhs.trunc");
auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
Instr->getName() + ".rhs.trunc");
auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
if (BinOp->getOpcode() == Instruction::UDiv)
BinOp->setIsExact(Instr->isExact());
Instr->replaceAllUsesWith(Zext);
Instr->eraseFromParent();
return true;
}
static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
return false;
++NumSRems;
auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1),
SDI->getName(), SDI);
BO->setDebugLoc(SDI->getDebugLoc());
SDI->replaceAllUsesWith(BO);
SDI->eraseFromParent();
// Try to process our new urem.
processUDivOrURem(BO, LVI);
return true;
}
/// See if LazyValueInfo's ability to exploit edge conditions or range
/// information is sufficient to prove the both operands of this SDiv are
/// positive. If this is the case, replace the SDiv with a UDiv. Even for local
/// conditions, this can sometimes prove conditions instcombine can't by
/// exploiting range information.
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI))
return false;
++NumSDivs;
auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1),
SDI->getName(), SDI);
BO->setDebugLoc(SDI->getDebugLoc());
BO->setIsExact(SDI->isExact());
SDI->replaceAllUsesWith(BO);
SDI->eraseFromParent();
// Try to simplify our new udiv.
processUDivOrURem(BO, LVI);
return true;
}
static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy())
return false;
Constant *Zero = ConstantInt::get(SDI->getType(), 0);
if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) !=
LazyValueInfo::True)
return false;
++NumAShrs;
auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
SDI->getName(), SDI);
BO->setDebugLoc(SDI->getDebugLoc());
BO->setIsExact(SDI->isExact());
SDI->replaceAllUsesWith(BO);
SDI->eraseFromParent();
return true;
}
static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
if (SDI->getType()->isVectorTy())
return false;
Value *Base = SDI->getOperand(0);
Constant *Zero = ConstantInt::get(Base->getType(), 0);
if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, Base, Zero, SDI) !=
LazyValueInfo::True)
return false;
++NumSExt;
auto *ZExt =
CastInst::CreateZExtOrBitCast(Base, SDI->getType(), SDI->getName(), SDI);
ZExt->setDebugLoc(SDI->getDebugLoc());
SDI->replaceAllUsesWith(ZExt);
SDI->eraseFromParent();
return true;
}
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
using OBO = OverflowingBinaryOperator;
if (DontAddNoWrapFlags)
return false;
if (BinOp->getType()->isVectorTy())
return false;
bool NSW = BinOp->hasNoSignedWrap();
bool NUW = BinOp->hasNoUnsignedWrap();
if (NSW && NUW)
return false;
BasicBlock *BB = BinOp->getParent();
Instruction::BinaryOps Opcode = BinOp->getOpcode();
Value *LHS = BinOp->getOperand(0);
Value *RHS = BinOp->getOperand(1);
ConstantRange LRange = LVI->getConstantRange(LHS, BB, BinOp);
ConstantRange RRange = LVI->getConstantRange(RHS, BB, BinOp);
bool Changed = false;
bool NewNUW = false, NewNSW = false;
if (!NUW) {
ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
Opcode, RRange, OBO::NoUnsignedWrap);
NewNUW = NUWRange.contains(LRange);
Changed |= NewNUW;
}
if (!NSW) {
ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
Opcode, RRange, OBO::NoSignedWrap);
NewNSW = NSWRange.contains(LRange);
Changed |= NewNSW;
}
setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
return Changed;
}
static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
if (BinOp->getType()->isVectorTy())
return false;
// Pattern match (and lhs, C) where C includes a superset of bits which might
// be set in lhs. This is a common truncation idiom created by instcombine.
BasicBlock *BB = BinOp->getParent();
Value *LHS = BinOp->getOperand(0);
ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
if (!RHS || !RHS->getValue().isMask())
return false;
ConstantRange LRange = LVI->getConstantRange(LHS, BB, BinOp);
if (!LRange.getUnsignedMax().ule(RHS->getValue()))
return false;
BinOp->replaceAllUsesWith(LHS);
BinOp->eraseFromParent();
NumAnd++;
return true;
}
static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
if (Constant *C = LVI->getConstant(V, At->getParent(), At))
return C;
// TODO: The following really should be sunk inside LVI's core algorithm, or
// at least the outer shims around such.
auto *C = dyn_cast<CmpInst>(V);
if (!C) return nullptr;
Value *Op0 = C->getOperand(0);
Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
if (!Op1) return nullptr;
LazyValueInfo::Tristate Result =
LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
if (Result == LazyValueInfo::Unknown)
return nullptr;
return (Result == LazyValueInfo::True) ?
ConstantInt::getTrue(C->getContext()) :
ConstantInt::getFalse(C->getContext());
}
static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
const SimplifyQuery &SQ) {
bool FnChanged = false;
// Visiting in a pre-order depth-first traversal causes us to simplify early
// blocks before querying later blocks (which require us to analyze early
// blocks). Eagerly simplifying shallow blocks means there is strictly less
// work to do for deep blocks. This also means we don't visit unreachable
// blocks.
for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
bool BBChanged = false;
for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Instruction *II = &*BI++;
switch (II->getOpcode()) {
case Instruction::Select:
BBChanged |= processSelect(cast<SelectInst>(II), LVI);
break;
case Instruction::PHI:
BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
break;
case Instruction::ICmp:
case Instruction::FCmp:
BBChanged |= processCmp(cast<CmpInst>(II), LVI);
break;
case Instruction::Load:
case Instruction::Store:
BBChanged |= processMemAccess(II, LVI);
break;
case Instruction::Call:
case Instruction::Invoke:
BBChanged |= processCallSite(CallSite(II), LVI);
break;
case Instruction::SRem:
BBChanged |= processSRem(cast<BinaryOperator>(II), LVI);
break;
case Instruction::SDiv:
BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI);
break;
case Instruction::UDiv:
case Instruction::URem:
BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
break;
case Instruction::AShr:
BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
break;
case Instruction::SExt:
BBChanged |= processSExt(cast<SExtInst>(II), LVI);
break;
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
break;
case Instruction::And:
BBChanged |= processAnd(cast<BinaryOperator>(II), LVI);
break;
}
}
Instruction *Term = BB->getTerminator();
switch (Term->getOpcode()) {
case Instruction::Switch:
BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
break;
case Instruction::Ret: {
auto *RI = cast<ReturnInst>(Term);
// Try to determine the return value if we can. This is mainly here to
// simplify the writing of unit tests, but also helps to enable IPO by
// constant folding the return values of callees.
auto *RetVal = RI->getReturnValue();
if (!RetVal) break; // handle "ret void"
if (isa<Constant>(RetVal)) break; // nothing to do
if (auto *C = getConstantAt(RetVal, RI, LVI)) {
++NumReturns;
RI->replaceUsesOfWith(RetVal, C);
BBChanged = true;
}
}
}
FnChanged |= BBChanged;
}
return FnChanged;
}
bool CorrelatedValuePropagation::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
}
PreservedAnalyses
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<GlobalsAA>();
PA.preserve<DominatorTreeAnalysis>();
PA.preserve<LazyValueAnalysis>();
return PA;
}