forked from OSchip/llvm-project
652 lines
22 KiB
C++
652 lines
22 KiB
C++
//===-- lib/Evaluate/real.cpp ---------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Evaluate/real.h"
|
|
#include "int-power.h"
|
|
#include "flang/Common/idioms.h"
|
|
#include "flang/Decimal/decimal.h"
|
|
#include "flang/Parser/characters.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <limits>
|
|
|
|
namespace Fortran::evaluate::value {
|
|
|
|
template <typename W, int P> Relation Real<W, P>::Compare(const Real &y) const {
|
|
if (IsNotANumber() || y.IsNotANumber()) { // NaN vs x, x vs NaN
|
|
return Relation::Unordered;
|
|
} else if (IsInfinite()) {
|
|
if (y.IsInfinite()) {
|
|
if (IsNegative()) { // -Inf vs +/-Inf
|
|
return y.IsNegative() ? Relation::Equal : Relation::Less;
|
|
} else { // +Inf vs +/-Inf
|
|
return y.IsNegative() ? Relation::Greater : Relation::Equal;
|
|
}
|
|
} else { // +/-Inf vs finite
|
|
return IsNegative() ? Relation::Less : Relation::Greater;
|
|
}
|
|
} else if (y.IsInfinite()) { // finite vs +/-Inf
|
|
return y.IsNegative() ? Relation::Greater : Relation::Less;
|
|
} else { // two finite numbers
|
|
bool isNegative{IsNegative()};
|
|
if (isNegative != y.IsNegative()) {
|
|
if (word_.IOR(y.word_).IBCLR(bits - 1).IsZero()) {
|
|
return Relation::Equal; // +/-0.0 == -/+0.0
|
|
} else {
|
|
return isNegative ? Relation::Less : Relation::Greater;
|
|
}
|
|
} else {
|
|
// same sign
|
|
Ordering order{evaluate::Compare(Exponent(), y.Exponent())};
|
|
if (order == Ordering::Equal) {
|
|
order = GetSignificand().CompareUnsigned(y.GetSignificand());
|
|
}
|
|
if (isNegative) {
|
|
order = Reverse(order);
|
|
}
|
|
return RelationFromOrdering(order);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::Add(
|
|
const Real &y, Rounding rounding) const {
|
|
ValueWithRealFlags<Real> result;
|
|
if (IsNotANumber() || y.IsNotANumber()) {
|
|
result.value = NotANumber(); // NaN + x -> NaN
|
|
if (IsSignalingNaN() || y.IsSignalingNaN()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
}
|
|
return result;
|
|
}
|
|
bool isNegative{IsNegative()};
|
|
bool yIsNegative{y.IsNegative()};
|
|
if (IsInfinite()) {
|
|
if (y.IsInfinite()) {
|
|
if (isNegative == yIsNegative) {
|
|
result.value = *this; // +/-Inf + +/-Inf -> +/-Inf
|
|
} else {
|
|
result.value = NotANumber(); // +/-Inf + -/+Inf -> NaN
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
}
|
|
} else {
|
|
result.value = *this; // +/-Inf + x -> +/-Inf
|
|
}
|
|
return result;
|
|
}
|
|
if (y.IsInfinite()) {
|
|
result.value = y; // x + +/-Inf -> +/-Inf
|
|
return result;
|
|
}
|
|
int exponent{Exponent()};
|
|
int yExponent{y.Exponent()};
|
|
if (exponent < yExponent) {
|
|
// y is larger in magnitude; simplify by reversing operands
|
|
return y.Add(*this, rounding);
|
|
}
|
|
if (exponent == yExponent && isNegative != yIsNegative) {
|
|
Ordering order{GetSignificand().CompareUnsigned(y.GetSignificand())};
|
|
if (order == Ordering::Less) {
|
|
// Same exponent, opposite signs, and y is larger in magnitude
|
|
return y.Add(*this, rounding);
|
|
}
|
|
if (order == Ordering::Equal) {
|
|
// x + (-x) -> +0.0 unless rounding is directed downwards
|
|
if (rounding.mode == common::RoundingMode::Down) {
|
|
result.value.word_ = result.value.word_.IBSET(bits - 1); // -0.0
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
// Our exponent is greater than y's, or the exponents match and y is not
|
|
// of the opposite sign and greater magnitude. So (x+y) will have the
|
|
// same sign as x.
|
|
Fraction fraction{GetFraction()};
|
|
Fraction yFraction{y.GetFraction()};
|
|
int rshift = exponent - yExponent;
|
|
if (exponent > 0 && yExponent == 0) {
|
|
--rshift; // correct overshift when only y is subnormal
|
|
}
|
|
RoundingBits roundingBits{yFraction, rshift};
|
|
yFraction = yFraction.SHIFTR(rshift);
|
|
bool carry{false};
|
|
if (isNegative != yIsNegative) {
|
|
// Opposite signs: subtract via addition of two's complement of y and
|
|
// the rounding bits.
|
|
yFraction = yFraction.NOT();
|
|
carry = roundingBits.Negate();
|
|
}
|
|
auto sum{fraction.AddUnsigned(yFraction, carry)};
|
|
fraction = sum.value;
|
|
if (isNegative == yIsNegative && sum.carry) {
|
|
roundingBits.ShiftRight(sum.value.BTEST(0));
|
|
fraction = fraction.SHIFTR(1).IBSET(fraction.bits - 1);
|
|
++exponent;
|
|
}
|
|
NormalizeAndRound(
|
|
result, isNegative, exponent, fraction, rounding, roundingBits);
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::Multiply(
|
|
const Real &y, Rounding rounding) const {
|
|
ValueWithRealFlags<Real> result;
|
|
if (IsNotANumber() || y.IsNotANumber()) {
|
|
result.value = NotANumber(); // NaN * x -> NaN
|
|
if (IsSignalingNaN() || y.IsSignalingNaN()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
}
|
|
} else {
|
|
bool isNegative{IsNegative() != y.IsNegative()};
|
|
if (IsInfinite() || y.IsInfinite()) {
|
|
if (IsZero() || y.IsZero()) {
|
|
result.value = NotANumber(); // 0 * Inf -> NaN
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
} else {
|
|
result.value = Infinity(isNegative);
|
|
}
|
|
} else {
|
|
auto product{GetFraction().MultiplyUnsigned(y.GetFraction())};
|
|
std::int64_t exponent{CombineExponents(y, false)};
|
|
if (exponent < 1) {
|
|
int rshift = 1 - exponent;
|
|
exponent = 1;
|
|
bool sticky{false};
|
|
if (rshift >= product.upper.bits + product.lower.bits) {
|
|
sticky = !product.lower.IsZero() || !product.upper.IsZero();
|
|
} else if (rshift >= product.lower.bits) {
|
|
sticky = !product.lower.IsZero() ||
|
|
!product.upper
|
|
.IAND(product.upper.MASKR(rshift - product.lower.bits))
|
|
.IsZero();
|
|
} else {
|
|
sticky = !product.lower.IAND(product.lower.MASKR(rshift)).IsZero();
|
|
}
|
|
product.lower = product.lower.SHIFTRWithFill(product.upper, rshift);
|
|
product.upper = product.upper.SHIFTR(rshift);
|
|
if (sticky) {
|
|
product.lower = product.lower.IBSET(0);
|
|
}
|
|
}
|
|
int leadz{product.upper.LEADZ()};
|
|
if (leadz >= product.upper.bits) {
|
|
leadz += product.lower.LEADZ();
|
|
}
|
|
int lshift{leadz};
|
|
if (lshift > exponent - 1) {
|
|
lshift = exponent - 1;
|
|
}
|
|
exponent -= lshift;
|
|
product.upper = product.upper.SHIFTLWithFill(product.lower, lshift);
|
|
product.lower = product.lower.SHIFTL(lshift);
|
|
RoundingBits roundingBits{product.lower, product.lower.bits};
|
|
NormalizeAndRound(result, isNegative, exponent, product.upper, rounding,
|
|
roundingBits, true /*multiply*/);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::Divide(
|
|
const Real &y, Rounding rounding) const {
|
|
ValueWithRealFlags<Real> result;
|
|
if (IsNotANumber() || y.IsNotANumber()) {
|
|
result.value = NotANumber(); // NaN / x -> NaN, x / NaN -> NaN
|
|
if (IsSignalingNaN() || y.IsSignalingNaN()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
}
|
|
} else {
|
|
bool isNegative{IsNegative() != y.IsNegative()};
|
|
if (IsInfinite()) {
|
|
if (y.IsInfinite()) {
|
|
result.value = NotANumber(); // Inf/Inf -> NaN
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
} else { // Inf/x -> Inf, Inf/0 -> Inf
|
|
result.value = Infinity(isNegative);
|
|
}
|
|
} else if (y.IsZero()) {
|
|
if (IsZero()) { // 0/0 -> NaN
|
|
result.value = NotANumber();
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
} else { // x/0 -> Inf, Inf/0 -> Inf
|
|
result.value = Infinity(isNegative);
|
|
result.flags.set(RealFlag::DivideByZero);
|
|
}
|
|
} else if (IsZero() || y.IsInfinite()) { // 0/x, x/Inf -> 0
|
|
if (isNegative) {
|
|
result.value.word_ = result.value.word_.IBSET(bits - 1);
|
|
}
|
|
} else {
|
|
// dividend and divisor are both finite and nonzero numbers
|
|
Fraction top{GetFraction()}, divisor{y.GetFraction()};
|
|
std::int64_t exponent{CombineExponents(y, true)};
|
|
Fraction quotient;
|
|
bool msb{false};
|
|
if (!top.BTEST(top.bits - 1) || !divisor.BTEST(divisor.bits - 1)) {
|
|
// One or two subnormals
|
|
int topLshift{top.LEADZ()};
|
|
top = top.SHIFTL(topLshift);
|
|
int divisorLshift{divisor.LEADZ()};
|
|
divisor = divisor.SHIFTL(divisorLshift);
|
|
exponent += divisorLshift - topLshift;
|
|
}
|
|
for (int j{1}; j <= quotient.bits; ++j) {
|
|
if (NextQuotientBit(top, msb, divisor)) {
|
|
quotient = quotient.IBSET(quotient.bits - j);
|
|
}
|
|
}
|
|
bool guard{NextQuotientBit(top, msb, divisor)};
|
|
bool round{NextQuotientBit(top, msb, divisor)};
|
|
bool sticky{msb || !top.IsZero()};
|
|
RoundingBits roundingBits{guard, round, sticky};
|
|
if (exponent < 1) {
|
|
std::int64_t rshift{1 - exponent};
|
|
for (; rshift > 0; --rshift) {
|
|
roundingBits.ShiftRight(quotient.BTEST(0));
|
|
quotient = quotient.SHIFTR(1);
|
|
}
|
|
exponent = 1;
|
|
}
|
|
NormalizeAndRound(
|
|
result, isNegative, exponent, quotient, rounding, roundingBits);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::SQRT(Rounding rounding) const {
|
|
ValueWithRealFlags<Real> result;
|
|
if (IsNotANumber()) {
|
|
result.value = NotANumber();
|
|
if (IsSignalingNaN()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
}
|
|
} else if (IsNegative()) {
|
|
if (IsZero()) {
|
|
// SQRT(-0) == -0 in IEEE-754.
|
|
result.value.word_ = result.value.word_.IBSET(bits - 1);
|
|
} else {
|
|
result.value = NotANumber();
|
|
}
|
|
} else if (IsInfinite()) {
|
|
// SQRT(+Inf) == +Inf
|
|
result.value = Infinity(false);
|
|
} else {
|
|
int expo{UnbiasedExponent()};
|
|
if (expo < -1 || expo > 1) {
|
|
// Reduce the range to [0.5 .. 4.0) by dividing by an integral power
|
|
// of four to avoid trouble with very large and very small values
|
|
// (esp. truncation of subnormals).
|
|
// SQRT(2**(2a) * x) = SQRT(2**(2a)) * SQRT(x) = 2**a * SQRT(x)
|
|
Real scaled;
|
|
int adjust{expo / 2};
|
|
scaled.Normalize(false, expo - 2 * adjust + exponentBias, GetFraction());
|
|
result = scaled.SQRT(rounding);
|
|
result.value.Normalize(false,
|
|
result.value.UnbiasedExponent() + adjust + exponentBias,
|
|
result.value.GetFraction());
|
|
return result;
|
|
}
|
|
// Compute the square root of the reduced value with the slow but
|
|
// reliable bit-at-a-time method. Start with a clear significand and
|
|
// half of the unbiased exponent, and then try to set significand bits
|
|
// in descending order of magnitude without exceeding the exact result.
|
|
expo = expo / 2 + exponentBias;
|
|
result.value.Normalize(false, expo, Fraction::MASKL(1));
|
|
Real initialSq{result.value.Multiply(result.value).value};
|
|
if (Compare(initialSq) == Relation::Less) {
|
|
// Initial estimate is too large; this can happen for values just
|
|
// under 1.0.
|
|
--expo;
|
|
result.value.Normalize(false, expo, Fraction::MASKL(1));
|
|
}
|
|
for (int bit{significandBits - 1}; bit >= 0; --bit) {
|
|
Word word{result.value.word_};
|
|
result.value.word_ = word.IBSET(bit);
|
|
auto squared{result.value.Multiply(result.value, rounding)};
|
|
if (squared.flags.test(RealFlag::Overflow) ||
|
|
squared.flags.test(RealFlag::Underflow) ||
|
|
Compare(squared.value) == Relation::Less) {
|
|
result.value.word_ = word;
|
|
}
|
|
}
|
|
// The computed square root has a square that's not greater than the
|
|
// original argument. Check this square against the square of the next
|
|
// larger Real and return that one if its square is closer in magnitude to
|
|
// the original argument.
|
|
Real resultSq{result.value.Multiply(result.value).value};
|
|
Real diff{Subtract(resultSq).value.ABS()};
|
|
if (diff.IsZero()) {
|
|
return result; // exact
|
|
}
|
|
Real ulp;
|
|
ulp.Normalize(false, expo, Fraction::MASKR(1));
|
|
Real nextAfter{result.value.Add(ulp).value};
|
|
auto nextAfterSq{nextAfter.Multiply(nextAfter)};
|
|
if (!nextAfterSq.flags.test(RealFlag::Overflow) &&
|
|
!nextAfterSq.flags.test(RealFlag::Underflow)) {
|
|
Real nextAfterDiff{Subtract(nextAfterSq.value).value.ABS()};
|
|
if (nextAfterDiff.Compare(diff) == Relation::Less) {
|
|
result.value = nextAfter;
|
|
if (nextAfterDiff.IsZero()) {
|
|
return result; // exact
|
|
}
|
|
}
|
|
}
|
|
result.flags.set(RealFlag::Inexact);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// HYPOT(x,y) = SQRT(x**2 + y**2) by definition, but those squared intermediate
|
|
// values are susceptible to over/underflow when computed naively.
|
|
// Assuming that x>=y, calculate instead:
|
|
// HYPOT(x,y) = SQRT(x**2 * (1+(y/x)**2))
|
|
// = ABS(x) * SQRT(1+(y/x)**2)
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::HYPOT(
|
|
const Real &y, Rounding rounding) const {
|
|
ValueWithRealFlags<Real> result;
|
|
if (IsNotANumber() || y.IsNotANumber()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
result.value = NotANumber();
|
|
} else if (ABS().Compare(y.ABS()) == Relation::Less) {
|
|
return y.HYPOT(*this);
|
|
} else if (IsZero()) {
|
|
return result; // x==y==0
|
|
} else {
|
|
auto yOverX{y.Divide(*this, rounding)}; // y/x
|
|
bool inexact{yOverX.flags.test(RealFlag::Inexact)};
|
|
auto squared{yOverX.value.Multiply(yOverX.value, rounding)}; // (y/x)**2
|
|
inexact |= squared.flags.test(RealFlag::Inexact);
|
|
Real one;
|
|
one.Normalize(false, exponentBias, Fraction::MASKL(1)); // 1.0
|
|
auto sum{squared.value.Add(one, rounding)}; // 1.0 + (y/x)**2
|
|
inexact |= sum.flags.test(RealFlag::Inexact);
|
|
auto sqrt{sum.value.SQRT()};
|
|
inexact |= sqrt.flags.test(RealFlag::Inexact);
|
|
result = sqrt.value.Multiply(ABS(), rounding);
|
|
if (inexact) {
|
|
result.flags.set(RealFlag::Inexact);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::ToWholeNumber(
|
|
common::RoundingMode mode) const {
|
|
ValueWithRealFlags<Real> result{*this};
|
|
if (IsNotANumber()) {
|
|
result.flags.set(RealFlag::InvalidArgument);
|
|
result.value = NotANumber();
|
|
} else if (IsInfinite()) {
|
|
result.flags.set(RealFlag::Overflow);
|
|
} else {
|
|
constexpr int noClipExponent{exponentBias + binaryPrecision - 1};
|
|
if (Exponent() < noClipExponent) {
|
|
Real adjust; // ABS(EPSILON(adjust)) == 0.5
|
|
adjust.Normalize(IsSignBitSet(), noClipExponent, Fraction::MASKL(1));
|
|
// Compute ival=(*this + adjust), losing any fractional bits; keep flags
|
|
result = Add(adjust, Rounding{mode});
|
|
result.flags.reset(RealFlag::Inexact); // result *is* exact
|
|
// Return (ival-adjust) with original sign in case we've generated a zero.
|
|
result.value =
|
|
result.value.Subtract(adjust, Rounding{common::RoundingMode::ToZero})
|
|
.value.SIGN(*this);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
RealFlags Real<W, P>::Normalize(bool negative, int exponent,
|
|
const Fraction &fraction, Rounding rounding, RoundingBits *roundingBits) {
|
|
int lshift{fraction.LEADZ()};
|
|
if (lshift == fraction.bits /* fraction is zero */ &&
|
|
(!roundingBits || roundingBits->empty())) {
|
|
// No fraction, no rounding bits -> +/-0.0
|
|
exponent = lshift = 0;
|
|
} else if (lshift < exponent) {
|
|
exponent -= lshift;
|
|
} else if (exponent > 0) {
|
|
lshift = exponent - 1;
|
|
exponent = 0;
|
|
} else if (lshift == 0) {
|
|
exponent = 1;
|
|
} else {
|
|
lshift = 0;
|
|
}
|
|
if (exponent >= maxExponent) {
|
|
// Infinity or overflow
|
|
if (rounding.mode == common::RoundingMode::TiesToEven ||
|
|
rounding.mode == common::RoundingMode::TiesAwayFromZero ||
|
|
(rounding.mode == common::RoundingMode::Up && !negative) ||
|
|
(rounding.mode == common::RoundingMode::Down && negative)) {
|
|
word_ = Word{maxExponent}.SHIFTL(significandBits); // Inf
|
|
} else {
|
|
// directed rounding: round to largest finite value rather than infinity
|
|
// (x86 does this, not sure whether it's standard behavior)
|
|
word_ = Word{word_.MASKR(word_.bits - 1)}.IBCLR(significandBits);
|
|
}
|
|
if (negative) {
|
|
word_ = word_.IBSET(bits - 1);
|
|
}
|
|
RealFlags flags{RealFlag::Overflow};
|
|
if (!fraction.IsZero()) {
|
|
flags.set(RealFlag::Inexact);
|
|
}
|
|
return flags;
|
|
}
|
|
word_ = Word::ConvertUnsigned(fraction).value;
|
|
if (lshift > 0) {
|
|
word_ = word_.SHIFTL(lshift);
|
|
if (roundingBits) {
|
|
for (; lshift > 0; --lshift) {
|
|
if (roundingBits->ShiftLeft()) {
|
|
word_ = word_.IBSET(lshift - 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if constexpr (isImplicitMSB) {
|
|
word_ = word_.IBCLR(significandBits);
|
|
}
|
|
word_ = word_.IOR(Word{exponent}.SHIFTL(significandBits));
|
|
if (negative) {
|
|
word_ = word_.IBSET(bits - 1);
|
|
}
|
|
return {};
|
|
}
|
|
|
|
template <typename W, int P>
|
|
RealFlags Real<W, P>::Round(
|
|
Rounding rounding, const RoundingBits &bits, bool multiply) {
|
|
int origExponent{Exponent()};
|
|
RealFlags flags;
|
|
bool inexact{!bits.empty()};
|
|
if (inexact) {
|
|
flags.set(RealFlag::Inexact);
|
|
}
|
|
if (origExponent < maxExponent &&
|
|
bits.MustRound(rounding, IsNegative(), word_.BTEST(0) /* is odd */)) {
|
|
typename Fraction::ValueWithCarry sum{
|
|
GetFraction().AddUnsigned(Fraction{}, true)};
|
|
int newExponent{origExponent};
|
|
if (sum.carry) {
|
|
// The fraction was all ones before rounding; sum.value is now zero
|
|
sum.value = sum.value.IBSET(binaryPrecision - 1);
|
|
if (++newExponent >= maxExponent) {
|
|
flags.set(RealFlag::Overflow); // rounded away to an infinity
|
|
}
|
|
}
|
|
flags |= Normalize(IsNegative(), newExponent, sum.value);
|
|
}
|
|
if (inexact && origExponent == 0) {
|
|
// inexact subnormal input: signal Underflow unless in an x86-specific
|
|
// edge case
|
|
if (rounding.x86CompatibleBehavior && Exponent() != 0 && multiply &&
|
|
bits.sticky() &&
|
|
(bits.guard() ||
|
|
(rounding.mode != common::RoundingMode::Up &&
|
|
rounding.mode != common::RoundingMode::Down))) {
|
|
// x86 edge case in which Underflow fails to signal when a subnormal
|
|
// inexact multiplication product rounds to a normal result when
|
|
// the guard bit is set or we're not using directed rounding
|
|
} else {
|
|
flags.set(RealFlag::Underflow);
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
void Real<W, P>::NormalizeAndRound(ValueWithRealFlags<Real> &result,
|
|
bool isNegative, int exponent, const Fraction &fraction, Rounding rounding,
|
|
RoundingBits roundingBits, bool multiply) {
|
|
result.flags |= result.value.Normalize(
|
|
isNegative, exponent, fraction, rounding, &roundingBits);
|
|
result.flags |= result.value.Round(rounding, roundingBits, multiply);
|
|
}
|
|
|
|
inline enum decimal::FortranRounding MapRoundingMode(
|
|
common::RoundingMode rounding) {
|
|
switch (rounding) {
|
|
case common::RoundingMode::TiesToEven:
|
|
break;
|
|
case common::RoundingMode::ToZero:
|
|
return decimal::RoundToZero;
|
|
case common::RoundingMode::Down:
|
|
return decimal::RoundDown;
|
|
case common::RoundingMode::Up:
|
|
return decimal::RoundUp;
|
|
case common::RoundingMode::TiesAwayFromZero:
|
|
return decimal::RoundCompatible;
|
|
}
|
|
return decimal::RoundNearest; // dodge gcc warning about lack of result
|
|
}
|
|
|
|
inline RealFlags MapFlags(decimal::ConversionResultFlags flags) {
|
|
RealFlags result;
|
|
if (flags & decimal::Overflow) {
|
|
result.set(RealFlag::Overflow);
|
|
}
|
|
if (flags & decimal::Inexact) {
|
|
result.set(RealFlag::Inexact);
|
|
}
|
|
if (flags & decimal::Invalid) {
|
|
result.set(RealFlag::InvalidArgument);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template <typename W, int P>
|
|
ValueWithRealFlags<Real<W, P>> Real<W, P>::Read(
|
|
const char *&p, Rounding rounding) {
|
|
auto converted{
|
|
decimal::ConvertToBinary<P>(p, MapRoundingMode(rounding.mode))};
|
|
const auto *value{reinterpret_cast<Real<W, P> *>(&converted.binary)};
|
|
return {*value, MapFlags(converted.flags)};
|
|
}
|
|
|
|
template <typename W, int P> std::string Real<W, P>::DumpHexadecimal() const {
|
|
if (IsNotANumber()) {
|
|
return "NaN0x"s + word_.Hexadecimal();
|
|
} else if (IsNegative()) {
|
|
return "-"s + Negate().DumpHexadecimal();
|
|
} else if (IsInfinite()) {
|
|
return "Inf"s;
|
|
} else if (IsZero()) {
|
|
return "0.0"s;
|
|
} else {
|
|
Fraction frac{GetFraction()};
|
|
std::string result{"0x"};
|
|
char intPart = '0' + frac.BTEST(frac.bits - 1);
|
|
result += intPart;
|
|
result += '.';
|
|
int trailz{frac.TRAILZ()};
|
|
if (trailz >= frac.bits - 1) {
|
|
result += '0';
|
|
} else {
|
|
int remainingBits{frac.bits - 1 - trailz};
|
|
int wholeNybbles{remainingBits / 4};
|
|
int lostBits{remainingBits - 4 * wholeNybbles};
|
|
if (wholeNybbles > 0) {
|
|
std::string fracHex{frac.SHIFTR(trailz + lostBits)
|
|
.IAND(frac.MASKR(4 * wholeNybbles))
|
|
.Hexadecimal()};
|
|
std::size_t field = wholeNybbles;
|
|
if (fracHex.size() < field) {
|
|
result += std::string(field - fracHex.size(), '0');
|
|
}
|
|
result += fracHex;
|
|
}
|
|
if (lostBits > 0) {
|
|
result += frac.SHIFTR(trailz)
|
|
.IAND(frac.MASKR(lostBits))
|
|
.SHIFTL(4 - lostBits)
|
|
.Hexadecimal();
|
|
}
|
|
}
|
|
result += 'p';
|
|
int exponent = Exponent() - exponentBias;
|
|
result += Integer<32>{exponent}.SignedDecimal();
|
|
return result;
|
|
}
|
|
}
|
|
|
|
template <typename W, int P>
|
|
llvm::raw_ostream &Real<W, P>::AsFortran(
|
|
llvm::raw_ostream &o, int kind, bool minimal) const {
|
|
if (IsNotANumber()) {
|
|
o << "(0._" << kind << "/0.)";
|
|
} else if (IsInfinite()) {
|
|
if (IsNegative()) {
|
|
o << "(-1._" << kind << "/0.)";
|
|
} else {
|
|
o << "(1._" << kind << "/0.)";
|
|
}
|
|
} else {
|
|
using B = decimal::BinaryFloatingPointNumber<P>;
|
|
B value{word_.template ToUInt<typename B::RawType>()};
|
|
char buffer[common::MaxDecimalConversionDigits(P) +
|
|
EXTRA_DECIMAL_CONVERSION_SPACE];
|
|
decimal::DecimalConversionFlags flags{}; // default: exact representation
|
|
if (minimal) {
|
|
flags = decimal::Minimize;
|
|
}
|
|
auto result{decimal::ConvertToDecimal<P>(buffer, sizeof buffer, flags,
|
|
static_cast<int>(sizeof buffer), decimal::RoundNearest, value)};
|
|
const char *p{result.str};
|
|
if (DEREF(p) == '-' || *p == '+') {
|
|
o << *p++;
|
|
}
|
|
int expo{result.decimalExponent};
|
|
if (*p != '0') {
|
|
--expo;
|
|
}
|
|
o << *p << '.' << (p + 1);
|
|
if (expo != 0) {
|
|
o << 'e' << expo;
|
|
}
|
|
o << '_' << kind;
|
|
}
|
|
return o;
|
|
}
|
|
|
|
template class Real<Integer<16>, 11>;
|
|
template class Real<Integer<16>, 8>;
|
|
template class Real<Integer<32>, 24>;
|
|
template class Real<Integer<64>, 53>;
|
|
template class Real<Integer<80>, 64>;
|
|
template class Real<Integer<128>, 113>;
|
|
} // namespace Fortran::evaluate::value
|