forked from OSchip/llvm-project
504 lines
19 KiB
C++
504 lines
19 KiB
C++
//===-- X86OptimizeLEAs.cpp - optimize usage of LEA instructions ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the pass that performs some optimizations with LEA
|
|
// instructions in order to improve code size.
|
|
// Currently, it does two things:
|
|
// 1) If there are two LEA instructions calculating addresses which only differ
|
|
// by displacement inside a basic block, one of them is removed.
|
|
// 2) Address calculations in load and store instructions are replaced by
|
|
// existing LEA def registers where possible.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86-optimize-LEAs"
|
|
|
|
static cl::opt<bool> EnableX86LEAOpt("enable-x86-lea-opt", cl::Hidden,
|
|
cl::desc("X86: Enable LEA optimizations."),
|
|
cl::init(false));
|
|
|
|
STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
|
|
STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
|
|
|
|
namespace {
|
|
class OptimizeLEAPass : public MachineFunctionPass {
|
|
public:
|
|
OptimizeLEAPass() : MachineFunctionPass(ID) {}
|
|
|
|
const char *getPassName() const override { return "X86 LEA Optimize"; }
|
|
|
|
/// \brief Loop over all of the basic blocks, replacing address
|
|
/// calculations in load and store instructions, if it's already
|
|
/// been calculated by LEA. Also, remove redundant LEAs.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
/// \brief Returns a distance between two instructions inside one basic block.
|
|
/// Negative result means, that instructions occur in reverse order.
|
|
int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
|
|
|
|
/// \brief Choose the best \p LEA instruction from the \p List to replace
|
|
/// address calculation in \p MI instruction. Return the address displacement
|
|
/// and the distance between \p MI and the choosen \p LEA in \p AddrDispShift
|
|
/// and \p Dist.
|
|
bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
|
|
const MachineInstr &MI, MachineInstr *&LEA,
|
|
int64_t &AddrDispShift, int &Dist);
|
|
|
|
/// \brief Returns true if two machine operand are identical and they are not
|
|
/// physical registers.
|
|
bool isIdenticalOp(const MachineOperand &MO1, const MachineOperand &MO2);
|
|
|
|
/// \brief Returns true if the instruction is LEA.
|
|
bool isLEA(const MachineInstr &MI);
|
|
|
|
/// \brief Returns true if the \p Last LEA instruction can be replaced by the
|
|
/// \p First. The difference between displacements of the addresses calculated
|
|
/// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
|
|
/// replacement of the \p Last LEA's uses with the \p First's def register.
|
|
bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
|
|
int64_t &AddrDispShift);
|
|
|
|
/// \brief Returns true if two instructions have memory operands that only
|
|
/// differ by displacement. The numbers of the first memory operands for both
|
|
/// instructions are specified through \p N1 and \p N2. The address
|
|
/// displacement is returned through AddrDispShift.
|
|
bool isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
|
|
const MachineInstr &MI2, unsigned N2,
|
|
int64_t &AddrDispShift);
|
|
|
|
/// \brief Find all LEA instructions in the basic block. Also, assign position
|
|
/// numbers to all instructions in the basic block to speed up calculation of
|
|
/// distance between them.
|
|
void findLEAs(const MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineInstr *> &List);
|
|
|
|
/// \brief Removes redundant address calculations.
|
|
bool removeRedundantAddrCalc(const SmallVectorImpl<MachineInstr *> &List);
|
|
|
|
/// \brief Removes LEAs which calculate similar addresses.
|
|
bool removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List);
|
|
|
|
DenseMap<const MachineInstr *, unsigned> InstrPos;
|
|
|
|
MachineRegisterInfo *MRI;
|
|
const X86InstrInfo *TII;
|
|
const X86RegisterInfo *TRI;
|
|
|
|
static char ID;
|
|
};
|
|
char OptimizeLEAPass::ID = 0;
|
|
}
|
|
|
|
FunctionPass *llvm::createX86OptimizeLEAs() { return new OptimizeLEAPass(); }
|
|
|
|
int OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
|
|
const MachineInstr &Last) {
|
|
// Both instructions must be in the same basic block and they must be
|
|
// presented in InstrPos.
|
|
assert(Last.getParent() == First.getParent() &&
|
|
"Instructions are in different basic blocks");
|
|
assert(InstrPos.find(&First) != InstrPos.end() &&
|
|
InstrPos.find(&Last) != InstrPos.end() &&
|
|
"Instructions' positions are undefined");
|
|
|
|
return InstrPos[&Last] - InstrPos[&First];
|
|
}
|
|
|
|
// Find the best LEA instruction in the List to replace address recalculation in
|
|
// MI. Such LEA must meet these requirements:
|
|
// 1) The address calculated by the LEA differs only by the displacement from
|
|
// the address used in MI.
|
|
// 2) The register class of the definition of the LEA is compatible with the
|
|
// register class of the address base register of MI.
|
|
// 3) Displacement of the new memory operand should fit in 1 byte if possible.
|
|
// 4) The LEA should be as close to MI as possible, and prior to it if
|
|
// possible.
|
|
bool OptimizeLEAPass::chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
|
|
const MachineInstr &MI, MachineInstr *&LEA,
|
|
int64_t &AddrDispShift, int &Dist) {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
|
|
X86II::getOperandBias(Desc);
|
|
|
|
LEA = nullptr;
|
|
|
|
// Loop over all LEA instructions.
|
|
for (auto DefMI : List) {
|
|
int64_t AddrDispShiftTemp = 0;
|
|
|
|
// Compare instructions memory operands.
|
|
if (!isSimilarMemOp(MI, MemOpNo, *DefMI, 1, AddrDispShiftTemp))
|
|
continue;
|
|
|
|
// Make sure address displacement fits 4 bytes.
|
|
if (!isInt<32>(AddrDispShiftTemp))
|
|
continue;
|
|
|
|
// Check that LEA def register can be used as MI address base. Some
|
|
// instructions can use a limited set of registers as address base, for
|
|
// example MOV8mr_NOREX. We could constrain the register class of the LEA
|
|
// def to suit MI, however since this case is very rare and hard to
|
|
// reproduce in a test it's just more reliable to skip the LEA.
|
|
if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
|
|
MRI->getRegClass(DefMI->getOperand(0).getReg()))
|
|
continue;
|
|
|
|
// Choose the closest LEA instruction from the list, prior to MI if
|
|
// possible. Note that we took into account resulting address displacement
|
|
// as well. Also note that the list is sorted by the order in which the LEAs
|
|
// occur, so the break condition is pretty simple.
|
|
int DistTemp = calcInstrDist(*DefMI, MI);
|
|
assert(DistTemp != 0 &&
|
|
"The distance between two different instructions cannot be zero");
|
|
if (DistTemp > 0 || LEA == nullptr) {
|
|
// Do not update return LEA, if the current one provides a displacement
|
|
// which fits in 1 byte, while the new candidate does not.
|
|
if (LEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
|
|
isInt<8>(AddrDispShift))
|
|
continue;
|
|
|
|
LEA = DefMI;
|
|
AddrDispShift = AddrDispShiftTemp;
|
|
Dist = DistTemp;
|
|
}
|
|
|
|
// FIXME: Maybe we should not always stop at the first LEA after MI.
|
|
if (DistTemp < 0)
|
|
break;
|
|
}
|
|
|
|
return LEA != nullptr;
|
|
}
|
|
|
|
bool OptimizeLEAPass::isIdenticalOp(const MachineOperand &MO1,
|
|
const MachineOperand &MO2) {
|
|
return MO1.isIdenticalTo(MO2) &&
|
|
(!MO1.isReg() ||
|
|
!TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
|
|
}
|
|
|
|
bool OptimizeLEAPass::isLEA(const MachineInstr &MI) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
|
|
Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
|
|
}
|
|
|
|
// Check that the Last LEA can be replaced by the First LEA. To be so,
|
|
// these requirements must be met:
|
|
// 1) Addresses calculated by LEAs differ only by displacement.
|
|
// 2) Def registers of LEAs belong to the same class.
|
|
// 3) All uses of the Last LEA def register are replaceable, thus the
|
|
// register is used only as address base.
|
|
bool OptimizeLEAPass::isReplaceable(const MachineInstr &First,
|
|
const MachineInstr &Last,
|
|
int64_t &AddrDispShift) {
|
|
assert(isLEA(First) && isLEA(Last) &&
|
|
"The function works only with LEA instructions");
|
|
|
|
// Compare instructions' memory operands.
|
|
if (!isSimilarMemOp(Last, 1, First, 1, AddrDispShift))
|
|
return false;
|
|
|
|
// Make sure that LEA def registers belong to the same class. There may be
|
|
// instructions (like MOV8mr_NOREX) which allow a limited set of registers to
|
|
// be used as their operands, so we must be sure that replacing one LEA
|
|
// with another won't lead to putting a wrong register in the instruction.
|
|
if (MRI->getRegClass(First.getOperand(0).getReg()) !=
|
|
MRI->getRegClass(Last.getOperand(0).getReg()))
|
|
return false;
|
|
|
|
// Loop over all uses of the Last LEA to check that its def register is
|
|
// used only as address base for memory accesses. If so, it can be
|
|
// replaced, otherwise - no.
|
|
for (auto &MO : MRI->use_operands(Last.getOperand(0).getReg())) {
|
|
MachineInstr &MI = *MO.getParent();
|
|
|
|
// Get the number of the first memory operand.
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode());
|
|
|
|
// If the use instruction has no memory operand - the LEA is not
|
|
// replaceable.
|
|
if (MemOpNo < 0)
|
|
return false;
|
|
|
|
MemOpNo += X86II::getOperandBias(Desc);
|
|
|
|
// If the address base of the use instruction is not the LEA def register -
|
|
// the LEA is not replaceable.
|
|
if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
|
|
return false;
|
|
|
|
// If the LEA def register is used as any other operand of the use
|
|
// instruction - the LEA is not replaceable.
|
|
for (unsigned i = 0; i < MI.getNumOperands(); i++)
|
|
if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
|
|
isIdenticalOp(MI.getOperand(i), MO))
|
|
return false;
|
|
|
|
// Check that the new address displacement will fit 4 bytes.
|
|
if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
|
|
!isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
|
|
AddrDispShift))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check if MI1 and MI2 have memory operands which represent addresses that
|
|
// differ only by displacement.
|
|
bool OptimizeLEAPass::isSimilarMemOp(const MachineInstr &MI1, unsigned N1,
|
|
const MachineInstr &MI2, unsigned N2,
|
|
int64_t &AddrDispShift) {
|
|
// Address base, scale, index and segment operands must be identical.
|
|
static const int IdenticalOpNums[] = {X86::AddrBaseReg, X86::AddrScaleAmt,
|
|
X86::AddrIndexReg, X86::AddrSegmentReg};
|
|
for (auto &N : IdenticalOpNums)
|
|
if (!isIdenticalOp(MI1.getOperand(N1 + N), MI2.getOperand(N2 + N)))
|
|
return false;
|
|
|
|
// Address displacement operands may differ by a constant.
|
|
const MachineOperand *Op1 = &MI1.getOperand(N1 + X86::AddrDisp);
|
|
const MachineOperand *Op2 = &MI2.getOperand(N2 + X86::AddrDisp);
|
|
if (!isIdenticalOp(*Op1, *Op2)) {
|
|
if (Op1->isImm() && Op2->isImm())
|
|
AddrDispShift = Op1->getImm() - Op2->getImm();
|
|
else if (Op1->isGlobal() && Op2->isGlobal() &&
|
|
Op1->getGlobal() == Op2->getGlobal())
|
|
AddrDispShift = Op1->getOffset() - Op2->getOffset();
|
|
else
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
|
|
SmallVectorImpl<MachineInstr *> &List) {
|
|
unsigned Pos = 0;
|
|
for (auto &MI : MBB) {
|
|
// Assign the position number to the instruction. Note that we are going to
|
|
// move some instructions during the optimization however there will never
|
|
// be a need to move two instructions before any selected instruction. So to
|
|
// avoid multiple positions' updates during moves we just increase position
|
|
// counter by two leaving a free space for instructions which will be moved.
|
|
InstrPos[&MI] = Pos += 2;
|
|
|
|
if (isLEA(MI))
|
|
List.push_back(const_cast<MachineInstr *>(&MI));
|
|
}
|
|
}
|
|
|
|
// Try to find load and store instructions which recalculate addresses already
|
|
// calculated by some LEA and replace their memory operands with its def
|
|
// register.
|
|
bool OptimizeLEAPass::removeRedundantAddrCalc(
|
|
const SmallVectorImpl<MachineInstr *> &List) {
|
|
bool Changed = false;
|
|
|
|
assert(List.size() > 0);
|
|
MachineBasicBlock *MBB = List[0]->getParent();
|
|
|
|
// Process all instructions in basic block.
|
|
for (auto I = MBB->begin(), E = MBB->end(); I != E;) {
|
|
MachineInstr &MI = *I++;
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
// Instruction must be load or store.
|
|
if (!MI.mayLoadOrStore())
|
|
continue;
|
|
|
|
// Get the number of the first memory operand.
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, Opcode);
|
|
|
|
// If instruction has no memory operand - skip it.
|
|
if (MemOpNo < 0)
|
|
continue;
|
|
|
|
MemOpNo += X86II::getOperandBias(Desc);
|
|
|
|
// Get the best LEA instruction to replace address calculation.
|
|
MachineInstr *DefMI;
|
|
int64_t AddrDispShift;
|
|
int Dist;
|
|
if (!chooseBestLEA(List, MI, DefMI, AddrDispShift, Dist))
|
|
continue;
|
|
|
|
// If LEA occurs before current instruction, we can freely replace
|
|
// the instruction. If LEA occurs after, we can lift LEA above the
|
|
// instruction and this way to be able to replace it. Since LEA and the
|
|
// instruction have similar memory operands (thus, the same def
|
|
// instructions for these operands), we can always do that, without
|
|
// worries of using registers before their defs.
|
|
if (Dist < 0) {
|
|
DefMI->removeFromParent();
|
|
MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
|
|
InstrPos[DefMI] = InstrPos[&MI] - 1;
|
|
|
|
// Make sure the instructions' position numbers are sane.
|
|
assert(((InstrPos[DefMI] == 1 && DefMI == MBB->begin()) ||
|
|
InstrPos[DefMI] >
|
|
InstrPos[std::prev(MachineBasicBlock::iterator(DefMI))]) &&
|
|
"Instruction positioning is broken");
|
|
}
|
|
|
|
// Since we can possibly extend register lifetime, clear kill flags.
|
|
MRI->clearKillFlags(DefMI->getOperand(0).getReg());
|
|
|
|
++NumSubstLEAs;
|
|
DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
|
|
|
|
// Change instruction operands.
|
|
MI.getOperand(MemOpNo + X86::AddrBaseReg)
|
|
.ChangeToRegister(DefMI->getOperand(0).getReg(), false);
|
|
MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
|
|
MI.getOperand(MemOpNo + X86::AddrIndexReg)
|
|
.ChangeToRegister(X86::NoRegister, false);
|
|
MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
|
|
MI.getOperand(MemOpNo + X86::AddrSegmentReg)
|
|
.ChangeToRegister(X86::NoRegister, false);
|
|
|
|
DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Try to find similar LEAs in the list and replace one with another.
|
|
bool
|
|
OptimizeLEAPass::removeRedundantLEAs(SmallVectorImpl<MachineInstr *> &List) {
|
|
bool Changed = false;
|
|
|
|
// Loop over all LEA pairs.
|
|
auto I1 = List.begin();
|
|
while (I1 != List.end()) {
|
|
MachineInstr &First = **I1;
|
|
auto I2 = std::next(I1);
|
|
while (I2 != List.end()) {
|
|
MachineInstr &Last = **I2;
|
|
int64_t AddrDispShift;
|
|
|
|
// LEAs should be in occurence order in the list, so we can freely
|
|
// replace later LEAs with earlier ones.
|
|
assert(calcInstrDist(First, Last) > 0 &&
|
|
"LEAs must be in occurence order in the list");
|
|
|
|
// Check that the Last LEA instruction can be replaced by the First.
|
|
if (!isReplaceable(First, Last, AddrDispShift)) {
|
|
++I2;
|
|
continue;
|
|
}
|
|
|
|
// Loop over all uses of the Last LEA and update their operands. Note that
|
|
// the correctness of this has already been checked in the isReplaceable
|
|
// function.
|
|
for (auto UI = MRI->use_begin(Last.getOperand(0).getReg()),
|
|
UE = MRI->use_end();
|
|
UI != UE;) {
|
|
MachineOperand &MO = *UI++;
|
|
MachineInstr &MI = *MO.getParent();
|
|
|
|
// Get the number of the first memory operand.
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags, MI.getOpcode()) +
|
|
X86II::getOperandBias(Desc);
|
|
|
|
// Update address base.
|
|
MO.setReg(First.getOperand(0).getReg());
|
|
|
|
// Update address disp.
|
|
MachineOperand *Op = &MI.getOperand(MemOpNo + X86::AddrDisp);
|
|
if (Op->isImm())
|
|
Op->setImm(Op->getImm() + AddrDispShift);
|
|
else if (Op->isGlobal())
|
|
Op->setOffset(Op->getOffset() + AddrDispShift);
|
|
else
|
|
llvm_unreachable("Invalid address displacement operand");
|
|
}
|
|
|
|
// Since we can possibly extend register lifetime, clear kill flags.
|
|
MRI->clearKillFlags(First.getOperand(0).getReg());
|
|
|
|
++NumRedundantLEAs;
|
|
DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: "; Last.dump(););
|
|
|
|
// By this moment, all of the Last LEA's uses must be replaced. So we can
|
|
// freely remove it.
|
|
assert(MRI->use_empty(Last.getOperand(0).getReg()) &&
|
|
"The LEA's def register must have no uses");
|
|
Last.eraseFromParent();
|
|
|
|
// Erase removed LEA from the list.
|
|
I2 = List.erase(I2);
|
|
|
|
Changed = true;
|
|
}
|
|
++I1;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
|
|
bool Changed = false;
|
|
|
|
// Perform this optimization only if we care about code size.
|
|
if (!EnableX86LEAOpt || !MF.getFunction()->optForSize())
|
|
return false;
|
|
|
|
MRI = &MF.getRegInfo();
|
|
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
|
|
TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
|
|
|
|
// Process all basic blocks.
|
|
for (auto &MBB : MF) {
|
|
SmallVector<MachineInstr *, 16> LEAs;
|
|
InstrPos.clear();
|
|
|
|
// Find all LEA instructions in basic block.
|
|
findLEAs(MBB, LEAs);
|
|
|
|
// If current basic block has no LEAs, move on to the next one.
|
|
if (LEAs.empty())
|
|
continue;
|
|
|
|
// Remove redundant LEA instructions. The optimization may have a negative
|
|
// effect on performance, so do it only for -Oz.
|
|
if (MF.getFunction()->optForMinSize())
|
|
Changed |= removeRedundantLEAs(LEAs);
|
|
|
|
// Remove redundant address calculations.
|
|
Changed |= removeRedundantAddrCalc(LEAs);
|
|
}
|
|
|
|
return Changed;
|
|
}
|