forked from OSchip/llvm-project
3073 lines
107 KiB
C++
3073 lines
107 KiB
C++
//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the ARM-specific support for the FastISel class. Some
|
|
// of the target-specific code is generated by tablegen in the file
|
|
// ARMGenFastISel.inc, which is #included here.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseRegisterInfo.h"
|
|
#include "ARMCallingConv.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
// All possible address modes, plus some.
|
|
typedef struct Address {
|
|
enum {
|
|
RegBase,
|
|
FrameIndexBase
|
|
} BaseType;
|
|
|
|
union {
|
|
unsigned Reg;
|
|
int FI;
|
|
} Base;
|
|
|
|
int Offset;
|
|
|
|
// Innocuous defaults for our address.
|
|
Address()
|
|
: BaseType(RegBase), Offset(0) {
|
|
Base.Reg = 0;
|
|
}
|
|
} Address;
|
|
|
|
class ARMFastISel final : public FastISel {
|
|
|
|
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const ARMSubtarget *Subtarget;
|
|
Module &M;
|
|
const TargetMachine &TM;
|
|
const TargetInstrInfo &TII;
|
|
const TargetLowering &TLI;
|
|
ARMFunctionInfo *AFI;
|
|
|
|
// Convenience variables to avoid some queries.
|
|
bool isThumb2;
|
|
LLVMContext *Context;
|
|
|
|
public:
|
|
explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo)
|
|
: FastISel(funcInfo, libInfo),
|
|
Subtarget(
|
|
&static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
|
|
M(const_cast<Module &>(*funcInfo.Fn->getParent())),
|
|
TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
|
|
TLI(*Subtarget->getTargetLowering()) {
|
|
AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
|
|
isThumb2 = AFI->isThumbFunction();
|
|
Context = &funcInfo.Fn->getContext();
|
|
}
|
|
|
|
// Code from FastISel.cpp.
|
|
private:
|
|
unsigned fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill);
|
|
unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill);
|
|
unsigned fastEmitInst_rrr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
unsigned Op2, bool Op2IsKill);
|
|
unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm);
|
|
unsigned fastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm);
|
|
unsigned fastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
uint64_t Imm);
|
|
|
|
// Backend specific FastISel code.
|
|
private:
|
|
bool fastSelectInstruction(const Instruction *I) override;
|
|
unsigned fastMaterializeConstant(const Constant *C) override;
|
|
unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
|
|
bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
|
|
const LoadInst *LI) override;
|
|
bool fastLowerArguments() override;
|
|
private:
|
|
#include "ARMGenFastISel.inc"
|
|
|
|
// Instruction selection routines.
|
|
private:
|
|
bool SelectLoad(const Instruction *I);
|
|
bool SelectStore(const Instruction *I);
|
|
bool SelectBranch(const Instruction *I);
|
|
bool SelectIndirectBr(const Instruction *I);
|
|
bool SelectCmp(const Instruction *I);
|
|
bool SelectFPExt(const Instruction *I);
|
|
bool SelectFPTrunc(const Instruction *I);
|
|
bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
|
|
bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
|
|
bool SelectIToFP(const Instruction *I, bool isSigned);
|
|
bool SelectFPToI(const Instruction *I, bool isSigned);
|
|
bool SelectDiv(const Instruction *I, bool isSigned);
|
|
bool SelectRem(const Instruction *I, bool isSigned);
|
|
bool SelectCall(const Instruction *I, const char *IntrMemName);
|
|
bool SelectIntrinsicCall(const IntrinsicInst &I);
|
|
bool SelectSelect(const Instruction *I);
|
|
bool SelectRet(const Instruction *I);
|
|
bool SelectTrunc(const Instruction *I);
|
|
bool SelectIntExt(const Instruction *I);
|
|
bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
|
|
|
|
// Utility routines.
|
|
private:
|
|
bool isTypeLegal(Type *Ty, MVT &VT);
|
|
bool isLoadTypeLegal(Type *Ty, MVT &VT);
|
|
bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
|
|
bool isZExt);
|
|
bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
|
|
unsigned Alignment = 0, bool isZExt = true,
|
|
bool allocReg = true);
|
|
bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
|
|
unsigned Alignment = 0);
|
|
bool ARMComputeAddress(const Value *Obj, Address &Addr);
|
|
void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
|
|
bool ARMIsMemCpySmall(uint64_t Len);
|
|
bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
|
|
unsigned Alignment);
|
|
unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
|
|
unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
|
|
unsigned ARMMaterializeInt(const Constant *C, MVT VT);
|
|
unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
|
|
unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
|
|
unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
|
|
unsigned ARMSelectCallOp(bool UseReg);
|
|
unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
|
|
|
|
const TargetLowering *getTargetLowering() { return &TLI; }
|
|
|
|
// Call handling routines.
|
|
private:
|
|
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
|
|
bool Return,
|
|
bool isVarArg);
|
|
bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
|
|
SmallVectorImpl<unsigned> &ArgRegs,
|
|
SmallVectorImpl<MVT> &ArgVTs,
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
|
|
SmallVectorImpl<unsigned> &RegArgs,
|
|
CallingConv::ID CC,
|
|
unsigned &NumBytes,
|
|
bool isVarArg);
|
|
unsigned getLibcallReg(const Twine &Name);
|
|
bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
|
|
const Instruction *I, CallingConv::ID CC,
|
|
unsigned &NumBytes, bool isVarArg);
|
|
bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
|
|
|
|
// OptionalDef handling routines.
|
|
private:
|
|
bool isARMNEONPred(const MachineInstr *MI);
|
|
bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
|
|
const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
|
|
void AddLoadStoreOperands(MVT VT, Address &Addr,
|
|
const MachineInstrBuilder &MIB,
|
|
unsigned Flags, bool useAM3);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#include "ARMGenCallingConv.inc"
|
|
|
|
// DefinesOptionalPredicate - This is different from DefinesPredicate in that
|
|
// we don't care about implicit defs here, just places we'll need to add a
|
|
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
|
|
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
|
|
if (!MI->hasOptionalDef())
|
|
return false;
|
|
|
|
// Look to see if our OptionalDef is defining CPSR or CCR.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef()) continue;
|
|
if (MO.getReg() == ARM::CPSR)
|
|
*CPSR = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
|
|
const MCInstrDesc &MCID = MI->getDesc();
|
|
|
|
// If we're a thumb2 or not NEON function we'll be handled via isPredicable.
|
|
if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
|
|
AFI->isThumb2Function())
|
|
return MI->isPredicable();
|
|
|
|
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i)
|
|
if (MCID.OpInfo[i].isPredicate())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// If the machine is predicable go ahead and add the predicate operands, if
|
|
// it needs default CC operands add those.
|
|
// TODO: If we want to support thumb1 then we'll need to deal with optional
|
|
// CPSR defs that need to be added before the remaining operands. See s_cc_out
|
|
// for descriptions why.
|
|
const MachineInstrBuilder &
|
|
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
|
|
MachineInstr *MI = &*MIB;
|
|
|
|
// Do we use a predicate? or...
|
|
// Are we NEON in ARM mode and have a predicate operand? If so, I know
|
|
// we're not predicable but add it anyways.
|
|
if (isARMNEONPred(MI))
|
|
AddDefaultPred(MIB);
|
|
|
|
// Do we optionally set a predicate? Preds is size > 0 iff the predicate
|
|
// defines CPSR. All other OptionalDefines in ARM are the CCR register.
|
|
bool CPSR = false;
|
|
if (DefinesOptionalPredicate(MI, &CPSR)) {
|
|
if (CPSR)
|
|
AddDefaultT1CC(MIB);
|
|
else
|
|
AddDefaultCC(MIB);
|
|
}
|
|
return MIB;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
// Make sure the input operand is sufficiently constrained to be legal
|
|
// for this instruction.
|
|
Op0 = constrainOperandRegClass(II, Op0, 1);
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
|
|
ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
// Make sure the input operands are sufficiently constrained to be legal
|
|
// for this instruction.
|
|
Op0 = constrainOperandRegClass(II, Op0, 1);
|
|
Op1 = constrainOperandRegClass(II, Op1, 2);
|
|
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
unsigned Op2, bool Op2IsKill) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
// Make sure the input operands are sufficiently constrained to be legal
|
|
// for this instruction.
|
|
Op0 = constrainOperandRegClass(II, Op0, 1);
|
|
Op1 = constrainOperandRegClass(II, Op1, 2);
|
|
Op2 = constrainOperandRegClass(II, Op1, 3);
|
|
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addReg(Op2, Op2IsKill * RegState::Kill));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addReg(Op2, Op2IsKill * RegState::Kill));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
// Make sure the input operand is sufficiently constrained to be legal
|
|
// for this instruction.
|
|
Op0 = constrainOperandRegClass(II, Op0, 1);
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
// Make sure the input operands are sufficiently constrained to be legal
|
|
// for this instruction.
|
|
Op0 = constrainOperandRegClass(II, Op0, 1);
|
|
Op1 = constrainOperandRegClass(II, Op1, 2);
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const MCInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1) {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
|
|
ResultReg).addImm(Imm));
|
|
} else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
// TODO: Don't worry about 64-bit now, but when this is fixed remove the
|
|
// checks from the various callers.
|
|
unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
|
|
if (VT == MVT::f64) return 0;
|
|
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVSR), MoveReg)
|
|
.addReg(SrcReg));
|
|
return MoveReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
|
|
if (VT == MVT::i64) return 0;
|
|
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVRS), MoveReg)
|
|
.addReg(SrcReg));
|
|
return MoveReg;
|
|
}
|
|
|
|
// For double width floating point we need to materialize two constants
|
|
// (the high and the low) into integer registers then use a move to get
|
|
// the combined constant into an FP reg.
|
|
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
|
|
const APFloat Val = CFP->getValueAPF();
|
|
bool is64bit = VT == MVT::f64;
|
|
|
|
// This checks to see if we can use VFP3 instructions to materialize
|
|
// a constant, otherwise we have to go through the constant pool.
|
|
if (TLI.isFPImmLegal(Val, VT)) {
|
|
int Imm;
|
|
unsigned Opc;
|
|
if (is64bit) {
|
|
Imm = ARM_AM::getFP64Imm(Val);
|
|
Opc = ARM::FCONSTD;
|
|
} else {
|
|
Imm = ARM_AM::getFP32Imm(Val);
|
|
Opc = ARM::FCONSTS;
|
|
}
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), DestReg).addImm(Imm));
|
|
return DestReg;
|
|
}
|
|
|
|
// Require VFP2 for loading fp constants.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
|
|
if (Align == 0) {
|
|
// TODO: Figure out if this is correct.
|
|
Align = DL.getTypeAllocSize(CFP->getType());
|
|
}
|
|
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
|
|
|
|
// The extra reg is for addrmode5.
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addConstantPoolIndex(Idx)
|
|
.addReg(0));
|
|
return DestReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
|
|
|
|
if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
|
|
return 0;
|
|
|
|
// If we can do this in a single instruction without a constant pool entry
|
|
// do so now.
|
|
const ConstantInt *CI = cast<ConstantInt>(C);
|
|
if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
|
|
unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
|
|
&ARM::GPRRegClass;
|
|
unsigned ImmReg = createResultReg(RC);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ImmReg)
|
|
.addImm(CI->getZExtValue()));
|
|
return ImmReg;
|
|
}
|
|
|
|
// Use MVN to emit negative constants.
|
|
if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
|
|
unsigned Imm = (unsigned)~(CI->getSExtValue());
|
|
bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
|
|
(ARM_AM::getSOImmVal(Imm) != -1);
|
|
if (UseImm) {
|
|
unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
|
|
&ARM::GPRRegClass;
|
|
unsigned ImmReg = createResultReg(RC);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ImmReg)
|
|
.addImm(Imm));
|
|
return ImmReg;
|
|
}
|
|
}
|
|
|
|
unsigned ResultReg = 0;
|
|
if (Subtarget->useMovt(*FuncInfo.MF))
|
|
ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
|
|
|
|
if (ResultReg)
|
|
return ResultReg;
|
|
|
|
// Load from constant pool. For now 32-bit only.
|
|
if (VT != MVT::i32)
|
|
return 0;
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = DL.getPrefTypeAlignment(C->getType());
|
|
if (Align == 0) {
|
|
// TODO: Figure out if this is correct.
|
|
Align = DL.getTypeAllocSize(C->getType());
|
|
}
|
|
unsigned Idx = MCP.getConstantPoolIndex(C, Align);
|
|
ResultReg = createResultReg(TLI.getRegClassFor(VT));
|
|
if (isThumb2)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::t2LDRpci), ResultReg)
|
|
.addConstantPoolIndex(Idx));
|
|
else {
|
|
// The extra immediate is for addrmode2.
|
|
ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::LDRcp), ResultReg)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
|
|
// For now 32-bit only.
|
|
if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
|
|
|
|
Reloc::Model RelocM = TM.getRelocationModel();
|
|
bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM);
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
|
|
// FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
|
|
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
|
|
bool IsThreadLocal = GVar && GVar->isThreadLocal();
|
|
if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
|
|
|
|
// Use movw+movt when possible, it avoids constant pool entries.
|
|
// Non-darwin targets only support static movt relocations in FastISel.
|
|
if (Subtarget->useMovt(*FuncInfo.MF) &&
|
|
(Subtarget->isTargetMachO() || RelocM == Reloc::Static)) {
|
|
unsigned Opc;
|
|
unsigned char TF = 0;
|
|
if (Subtarget->isTargetMachO())
|
|
TF = ARMII::MO_NONLAZY;
|
|
|
|
switch (RelocM) {
|
|
case Reloc::PIC_:
|
|
Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
|
|
break;
|
|
default:
|
|
Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
|
|
break;
|
|
}
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
|
|
} else {
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = DL.getPrefTypeAlignment(GV->getType());
|
|
if (Align == 0) {
|
|
// TODO: Figure out if this is correct.
|
|
Align = DL.getTypeAllocSize(GV->getType());
|
|
}
|
|
|
|
if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_)
|
|
return ARMLowerPICELF(GV, Align, VT);
|
|
|
|
// Grab index.
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 :
|
|
(Subtarget->isThumb() ? 4 : 8);
|
|
unsigned Id = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
|
|
ARMCP::CPValue,
|
|
PCAdj);
|
|
unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
|
|
|
|
// Load value.
|
|
MachineInstrBuilder MIB;
|
|
if (isThumb2) {
|
|
unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic;
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
|
|
DestReg).addConstantPoolIndex(Idx);
|
|
if (RelocM == Reloc::PIC_)
|
|
MIB.addImm(Id);
|
|
AddOptionalDefs(MIB);
|
|
} else {
|
|
// The extra immediate is for addrmode2.
|
|
DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::LDRcp), DestReg)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0);
|
|
AddOptionalDefs(MIB);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
|
|
unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
|
|
DbgLoc, TII.get(Opc), NewDestReg)
|
|
.addReg(DestReg)
|
|
.addImm(Id);
|
|
AddOptionalDefs(MIB);
|
|
return NewDestReg;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (IsIndirect) {
|
|
MachineInstrBuilder MIB;
|
|
unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
if (isThumb2)
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::t2LDRi12), NewDestReg)
|
|
.addReg(DestReg)
|
|
.addImm(0);
|
|
else
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::LDRi12), NewDestReg)
|
|
.addReg(DestReg)
|
|
.addImm(0);
|
|
DestReg = NewDestReg;
|
|
AddOptionalDefs(MIB);
|
|
}
|
|
|
|
return DestReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
|
|
EVT CEVT = TLI.getValueType(DL, C->getType(), true);
|
|
|
|
// Only handle simple types.
|
|
if (!CEVT.isSimple()) return 0;
|
|
MVT VT = CEVT.getSimpleVT();
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
|
return ARMMaterializeFP(CFP, VT);
|
|
else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
|
|
return ARMMaterializeGV(GV, VT);
|
|
else if (isa<ConstantInt>(C))
|
|
return ARMMaterializeInt(C, VT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
|
|
|
|
unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
|
|
// Don't handle dynamic allocas.
|
|
if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
|
|
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
|
|
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
|
|
// This will get lowered later into the correct offsets and registers
|
|
// via rewriteXFrameIndex.
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
|
|
const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
|
|
unsigned ResultReg = createResultReg(RC);
|
|
ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
|
|
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg)
|
|
.addFrameIndex(SI->second)
|
|
.addImm(0));
|
|
return ResultReg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
|
|
EVT evt = TLI.getValueType(DL, Ty, true);
|
|
|
|
// Only handle simple types.
|
|
if (evt == MVT::Other || !evt.isSimple()) return false;
|
|
VT = evt.getSimpleVT();
|
|
|
|
// Handle all legal types, i.e. a register that will directly hold this
|
|
// value.
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
|
|
bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
|
|
if (isTypeLegal(Ty, VT)) return true;
|
|
|
|
// If this is a type than can be sign or zero-extended to a basic operation
|
|
// go ahead and accept it now.
|
|
if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Computes the address to get to an object.
|
|
bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
|
|
// Some boilerplate from the X86 FastISel.
|
|
const User *U = nullptr;
|
|
unsigned Opcode = Instruction::UserOp1;
|
|
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
|
|
// Don't walk into other basic blocks unless the object is an alloca from
|
|
// another block, otherwise it may not have a virtual register assigned.
|
|
if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
|
|
FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
|
|
Opcode = I->getOpcode();
|
|
U = I;
|
|
}
|
|
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
|
|
Opcode = C->getOpcode();
|
|
U = C;
|
|
}
|
|
|
|
if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
|
|
if (Ty->getAddressSpace() > 255)
|
|
// Fast instruction selection doesn't support the special
|
|
// address spaces.
|
|
return false;
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::BitCast:
|
|
// Look through bitcasts.
|
|
return ARMComputeAddress(U->getOperand(0), Addr);
|
|
case Instruction::IntToPtr:
|
|
// Look past no-op inttoptrs.
|
|
if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
|
|
TLI.getPointerTy(DL))
|
|
return ARMComputeAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::PtrToInt:
|
|
// Look past no-op ptrtoints.
|
|
if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
|
|
return ARMComputeAddress(U->getOperand(0), Addr);
|
|
break;
|
|
case Instruction::GetElementPtr: {
|
|
Address SavedAddr = Addr;
|
|
int TmpOffset = Addr.Offset;
|
|
|
|
// Iterate through the GEP folding the constants into offsets where
|
|
// we can.
|
|
gep_type_iterator GTI = gep_type_begin(U);
|
|
for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
|
|
i != e; ++i, ++GTI) {
|
|
const Value *Op = *i;
|
|
if (StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
|
|
TmpOffset += SL->getElementOffset(Idx);
|
|
} else {
|
|
uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
|
|
for (;;) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
|
|
// Constant-offset addressing.
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
break;
|
|
}
|
|
if (canFoldAddIntoGEP(U, Op)) {
|
|
// A compatible add with a constant operand. Fold the constant.
|
|
ConstantInt *CI =
|
|
cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
|
|
TmpOffset += CI->getSExtValue() * S;
|
|
// Iterate on the other operand.
|
|
Op = cast<AddOperator>(Op)->getOperand(0);
|
|
continue;
|
|
}
|
|
// Unsupported
|
|
goto unsupported_gep;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to grab the base operand now.
|
|
Addr.Offset = TmpOffset;
|
|
if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
|
|
|
|
// We failed, restore everything and try the other options.
|
|
Addr = SavedAddr;
|
|
|
|
unsupported_gep:
|
|
break;
|
|
}
|
|
case Instruction::Alloca: {
|
|
const AllocaInst *AI = cast<AllocaInst>(Obj);
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
Addr.BaseType = Address::FrameIndexBase;
|
|
Addr.Base.FI = SI->second;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Try to get this in a register if nothing else has worked.
|
|
if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
|
|
return Addr.Base.Reg != 0;
|
|
}
|
|
|
|
void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
|
|
bool needsLowering = false;
|
|
switch (VT.SimpleTy) {
|
|
default: llvm_unreachable("Unhandled load/store type!");
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (!useAM3) {
|
|
// Integer loads/stores handle 12-bit offsets.
|
|
needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
|
|
// Handle negative offsets.
|
|
if (needsLowering && isThumb2)
|
|
needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
|
|
Addr.Offset > -256);
|
|
} else {
|
|
// ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
|
|
needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Floating point operands handle 8-bit offsets.
|
|
needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
|
|
break;
|
|
}
|
|
|
|
// If this is a stack pointer and the offset needs to be simplified then
|
|
// put the alloca address into a register, set the base type back to
|
|
// register and continue. This should almost never happen.
|
|
if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
unsigned ResultReg = createResultReg(RC);
|
|
unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg)
|
|
.addFrameIndex(Addr.Base.FI)
|
|
.addImm(0));
|
|
Addr.Base.Reg = ResultReg;
|
|
Addr.BaseType = Address::RegBase;
|
|
}
|
|
|
|
// Since the offset is too large for the load/store instruction
|
|
// get the reg+offset into a register.
|
|
if (needsLowering) {
|
|
Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
|
|
/*Op0IsKill*/false, Addr.Offset, MVT::i32);
|
|
Addr.Offset = 0;
|
|
}
|
|
}
|
|
|
|
void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
|
|
const MachineInstrBuilder &MIB,
|
|
unsigned Flags, bool useAM3) {
|
|
// addrmode5 output depends on the selection dag addressing dividing the
|
|
// offset by 4 that it then later multiplies. Do this here as well.
|
|
if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
|
|
Addr.Offset /= 4;
|
|
|
|
// Frame base works a bit differently. Handle it separately.
|
|
if (Addr.BaseType == Address::FrameIndexBase) {
|
|
int FI = Addr.Base.FI;
|
|
int Offset = Addr.Offset;
|
|
MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
|
|
MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
|
|
// Now add the rest of the operands.
|
|
MIB.addFrameIndex(FI);
|
|
|
|
// ARM halfword load/stores and signed byte loads need an additional
|
|
// operand.
|
|
if (useAM3) {
|
|
signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
|
|
MIB.addReg(0);
|
|
MIB.addImm(Imm);
|
|
} else {
|
|
MIB.addImm(Addr.Offset);
|
|
}
|
|
MIB.addMemOperand(MMO);
|
|
} else {
|
|
// Now add the rest of the operands.
|
|
MIB.addReg(Addr.Base.Reg);
|
|
|
|
// ARM halfword load/stores and signed byte loads need an additional
|
|
// operand.
|
|
if (useAM3) {
|
|
signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
|
|
MIB.addReg(0);
|
|
MIB.addImm(Imm);
|
|
} else {
|
|
MIB.addImm(Addr.Offset);
|
|
}
|
|
}
|
|
AddOptionalDefs(MIB);
|
|
}
|
|
|
|
bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
|
|
unsigned Alignment, bool isZExt, bool allocReg) {
|
|
unsigned Opc;
|
|
bool useAM3 = false;
|
|
bool needVMOV = false;
|
|
const TargetRegisterClass *RC;
|
|
switch (VT.SimpleTy) {
|
|
// This is mostly going to be Neon/vector support.
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
|
|
else
|
|
Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
|
|
} else {
|
|
if (isZExt) {
|
|
Opc = ARM::LDRBi12;
|
|
} else {
|
|
Opc = ARM::LDRSB;
|
|
useAM3 = true;
|
|
}
|
|
}
|
|
RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
|
|
break;
|
|
case MVT::i16:
|
|
if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
|
|
return false;
|
|
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
|
|
else
|
|
Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
|
|
} else {
|
|
Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
|
|
useAM3 = true;
|
|
}
|
|
RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
|
|
break;
|
|
case MVT::i32:
|
|
if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
|
|
return false;
|
|
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
Opc = ARM::t2LDRi8;
|
|
else
|
|
Opc = ARM::t2LDRi12;
|
|
} else {
|
|
Opc = ARM::LDRi12;
|
|
}
|
|
RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
|
|
break;
|
|
case MVT::f32:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
// Unaligned loads need special handling. Floats require word-alignment.
|
|
if (Alignment && Alignment < 4) {
|
|
needVMOV = true;
|
|
VT = MVT::i32;
|
|
Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
|
|
RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
|
|
} else {
|
|
Opc = ARM::VLDRS;
|
|
RC = TLI.getRegClassFor(VT);
|
|
}
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
// FIXME: Unaligned loads need special handling. Doublewords require
|
|
// word-alignment.
|
|
if (Alignment && Alignment < 4)
|
|
return false;
|
|
|
|
Opc = ARM::VLDRD;
|
|
RC = TLI.getRegClassFor(VT);
|
|
break;
|
|
}
|
|
// Simplify this down to something we can handle.
|
|
ARMSimplifyAddress(Addr, VT, useAM3);
|
|
|
|
// Create the base instruction, then add the operands.
|
|
if (allocReg)
|
|
ResultReg = createResultReg(RC);
|
|
assert (ResultReg > 255 && "Expected an allocated virtual register.");
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg);
|
|
AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
|
|
|
|
// If we had an unaligned load of a float we've converted it to an regular
|
|
// load. Now we must move from the GRP to the FP register.
|
|
if (needVMOV) {
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVSR), MoveReg)
|
|
.addReg(ResultReg));
|
|
ResultReg = MoveReg;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectLoad(const Instruction *I) {
|
|
// Atomic loads need special handling.
|
|
if (cast<LoadInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(I->getType(), VT))
|
|
return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
|
|
|
|
unsigned ResultReg;
|
|
if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
|
|
return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
|
|
unsigned Alignment) {
|
|
unsigned StrOpc;
|
|
bool useAM3 = false;
|
|
switch (VT.SimpleTy) {
|
|
// This is mostly going to be Neon/vector support.
|
|
default: return false;
|
|
case MVT::i1: {
|
|
unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass);
|
|
unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
|
|
SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), Res)
|
|
.addReg(SrcReg).addImm(1));
|
|
SrcReg = Res;
|
|
} // Fallthrough here.
|
|
case MVT::i8:
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
StrOpc = ARM::t2STRBi8;
|
|
else
|
|
StrOpc = ARM::t2STRBi12;
|
|
} else {
|
|
StrOpc = ARM::STRBi12;
|
|
}
|
|
break;
|
|
case MVT::i16:
|
|
if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
|
|
return false;
|
|
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
StrOpc = ARM::t2STRHi8;
|
|
else
|
|
StrOpc = ARM::t2STRHi12;
|
|
} else {
|
|
StrOpc = ARM::STRH;
|
|
useAM3 = true;
|
|
}
|
|
break;
|
|
case MVT::i32:
|
|
if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
|
|
return false;
|
|
|
|
if (isThumb2) {
|
|
if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
|
|
StrOpc = ARM::t2STRi8;
|
|
else
|
|
StrOpc = ARM::t2STRi12;
|
|
} else {
|
|
StrOpc = ARM::STRi12;
|
|
}
|
|
break;
|
|
case MVT::f32:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
// Unaligned stores need special handling. Floats require word-alignment.
|
|
if (Alignment && Alignment < 4) {
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVRS), MoveReg)
|
|
.addReg(SrcReg));
|
|
SrcReg = MoveReg;
|
|
VT = MVT::i32;
|
|
StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
|
|
} else {
|
|
StrOpc = ARM::VSTRS;
|
|
}
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
// FIXME: Unaligned stores need special handling. Doublewords require
|
|
// word-alignment.
|
|
if (Alignment && Alignment < 4)
|
|
return false;
|
|
|
|
StrOpc = ARM::VSTRD;
|
|
break;
|
|
}
|
|
// Simplify this down to something we can handle.
|
|
ARMSimplifyAddress(Addr, VT, useAM3);
|
|
|
|
// Create the base instruction, then add the operands.
|
|
SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(StrOpc))
|
|
.addReg(SrcReg);
|
|
AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectStore(const Instruction *I) {
|
|
Value *Op0 = I->getOperand(0);
|
|
unsigned SrcReg = 0;
|
|
|
|
// Atomic stores need special handling.
|
|
if (cast<StoreInst>(I)->isAtomic())
|
|
return false;
|
|
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
|
|
return false;
|
|
|
|
// Get the value to be stored into a register.
|
|
SrcReg = getRegForValue(Op0);
|
|
if (SrcReg == 0) return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!ARMComputeAddress(I->getOperand(1), Addr))
|
|
return false;
|
|
|
|
if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
|
|
switch (Pred) {
|
|
// Needs two compares...
|
|
case CmpInst::FCMP_ONE:
|
|
case CmpInst::FCMP_UEQ:
|
|
default:
|
|
// AL is our "false" for now. The other two need more compares.
|
|
return ARMCC::AL;
|
|
case CmpInst::ICMP_EQ:
|
|
case CmpInst::FCMP_OEQ:
|
|
return ARMCC::EQ;
|
|
case CmpInst::ICMP_SGT:
|
|
case CmpInst::FCMP_OGT:
|
|
return ARMCC::GT;
|
|
case CmpInst::ICMP_SGE:
|
|
case CmpInst::FCMP_OGE:
|
|
return ARMCC::GE;
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::FCMP_UGT:
|
|
return ARMCC::HI;
|
|
case CmpInst::FCMP_OLT:
|
|
return ARMCC::MI;
|
|
case CmpInst::ICMP_ULE:
|
|
case CmpInst::FCMP_OLE:
|
|
return ARMCC::LS;
|
|
case CmpInst::FCMP_ORD:
|
|
return ARMCC::VC;
|
|
case CmpInst::FCMP_UNO:
|
|
return ARMCC::VS;
|
|
case CmpInst::FCMP_UGE:
|
|
return ARMCC::PL;
|
|
case CmpInst::ICMP_SLT:
|
|
case CmpInst::FCMP_ULT:
|
|
return ARMCC::LT;
|
|
case CmpInst::ICMP_SLE:
|
|
case CmpInst::FCMP_ULE:
|
|
return ARMCC::LE;
|
|
case CmpInst::FCMP_UNE:
|
|
case CmpInst::ICMP_NE:
|
|
return ARMCC::NE;
|
|
case CmpInst::ICMP_UGE:
|
|
return ARMCC::HS;
|
|
case CmpInst::ICMP_ULT:
|
|
return ARMCC::LO;
|
|
}
|
|
}
|
|
|
|
bool ARMFastISel::SelectBranch(const Instruction *I) {
|
|
const BranchInst *BI = cast<BranchInst>(I);
|
|
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
|
|
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
|
|
|
|
// Simple branch support.
|
|
|
|
// If we can, avoid recomputing the compare - redoing it could lead to wonky
|
|
// behavior.
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
|
|
if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
|
|
|
|
// Get the compare predicate.
|
|
// Try to take advantage of fallthrough opportunities.
|
|
CmpInst::Predicate Predicate = CI->getPredicate();
|
|
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
|
|
std::swap(TBB, FBB);
|
|
Predicate = CmpInst::getInversePredicate(Predicate);
|
|
}
|
|
|
|
ARMCC::CondCodes ARMPred = getComparePred(Predicate);
|
|
|
|
// We may not handle every CC for now.
|
|
if (ARMPred == ARMCC::AL) return false;
|
|
|
|
// Emit the compare.
|
|
if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
|
|
return false;
|
|
|
|
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
|
|
.addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
|
|
finishCondBranch(BI->getParent(), TBB, FBB);
|
|
return true;
|
|
}
|
|
} else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
|
|
MVT SourceVT;
|
|
if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
|
|
(isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
|
|
unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
|
|
unsigned OpReg = getRegForValue(TI->getOperand(0));
|
|
OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TstOpc))
|
|
.addReg(OpReg).addImm(1));
|
|
|
|
unsigned CCMode = ARMCC::NE;
|
|
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
|
|
std::swap(TBB, FBB);
|
|
CCMode = ARMCC::EQ;
|
|
}
|
|
|
|
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
|
|
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
|
|
|
|
finishCondBranch(BI->getParent(), TBB, FBB);
|
|
return true;
|
|
}
|
|
} else if (const ConstantInt *CI =
|
|
dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
uint64_t Imm = CI->getZExtValue();
|
|
MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
|
|
fastEmitBranch(Target, DbgLoc);
|
|
return true;
|
|
}
|
|
|
|
unsigned CmpReg = getRegForValue(BI->getCondition());
|
|
if (CmpReg == 0) return false;
|
|
|
|
// We've been divorced from our compare! Our block was split, and
|
|
// now our compare lives in a predecessor block. We musn't
|
|
// re-compare here, as the children of the compare aren't guaranteed
|
|
// live across the block boundary (we *could* check for this).
|
|
// Regardless, the compare has been done in the predecessor block,
|
|
// and it left a value for us in a virtual register. Ergo, we test
|
|
// the one-bit value left in the virtual register.
|
|
unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
|
|
CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
|
|
.addReg(CmpReg)
|
|
.addImm(1));
|
|
|
|
unsigned CCMode = ARMCC::NE;
|
|
if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
|
|
std::swap(TBB, FBB);
|
|
CCMode = ARMCC::EQ;
|
|
}
|
|
|
|
unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
|
|
.addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
|
|
finishCondBranch(BI->getParent(), TBB, FBB);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
|
|
unsigned AddrReg = getRegForValue(I->getOperand(0));
|
|
if (AddrReg == 0) return false;
|
|
|
|
unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc)).addReg(AddrReg));
|
|
|
|
const IndirectBrInst *IB = cast<IndirectBrInst>(I);
|
|
for (const BasicBlock *SuccBB : IB->successors())
|
|
FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
|
|
bool isZExt) {
|
|
Type *Ty = Src1Value->getType();
|
|
EVT SrcEVT = TLI.getValueType(DL, Ty, true);
|
|
if (!SrcEVT.isSimple()) return false;
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
|
|
bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy());
|
|
if (isFloat && !Subtarget->hasVFP2())
|
|
return false;
|
|
|
|
// Check to see if the 2nd operand is a constant that we can encode directly
|
|
// in the compare.
|
|
int Imm = 0;
|
|
bool UseImm = false;
|
|
bool isNegativeImm = false;
|
|
// FIXME: At -O0 we don't have anything that canonicalizes operand order.
|
|
// Thus, Src1Value may be a ConstantInt, but we're missing it.
|
|
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
|
|
if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
|
|
SrcVT == MVT::i1) {
|
|
const APInt &CIVal = ConstInt->getValue();
|
|
Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
|
|
// For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
|
|
// then a cmn, because there is no way to represent 2147483648 as a
|
|
// signed 32-bit int.
|
|
if (Imm < 0 && Imm != (int)0x80000000) {
|
|
isNegativeImm = true;
|
|
Imm = -Imm;
|
|
}
|
|
UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
|
|
(ARM_AM::getSOImmVal(Imm) != -1);
|
|
}
|
|
} else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
|
|
if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
|
|
if (ConstFP->isZero() && !ConstFP->isNegative())
|
|
UseImm = true;
|
|
}
|
|
|
|
unsigned CmpOpc;
|
|
bool isICmp = true;
|
|
bool needsExt = false;
|
|
switch (SrcVT.SimpleTy) {
|
|
default: return false;
|
|
// TODO: Verify compares.
|
|
case MVT::f32:
|
|
isICmp = false;
|
|
CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES;
|
|
break;
|
|
case MVT::f64:
|
|
isICmp = false;
|
|
CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED;
|
|
break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
needsExt = true;
|
|
// Intentional fall-through.
|
|
case MVT::i32:
|
|
if (isThumb2) {
|
|
if (!UseImm)
|
|
CmpOpc = ARM::t2CMPrr;
|
|
else
|
|
CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
|
|
} else {
|
|
if (!UseImm)
|
|
CmpOpc = ARM::CMPrr;
|
|
else
|
|
CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
|
|
}
|
|
break;
|
|
}
|
|
|
|
unsigned SrcReg1 = getRegForValue(Src1Value);
|
|
if (SrcReg1 == 0) return false;
|
|
|
|
unsigned SrcReg2 = 0;
|
|
if (!UseImm) {
|
|
SrcReg2 = getRegForValue(Src2Value);
|
|
if (SrcReg2 == 0) return false;
|
|
}
|
|
|
|
// We have i1, i8, or i16, we need to either zero extend or sign extend.
|
|
if (needsExt) {
|
|
SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
|
|
if (SrcReg1 == 0) return false;
|
|
if (!UseImm) {
|
|
SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
|
|
if (SrcReg2 == 0) return false;
|
|
}
|
|
}
|
|
|
|
const MCInstrDesc &II = TII.get(CmpOpc);
|
|
SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
|
|
if (!UseImm) {
|
|
SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(SrcReg1).addReg(SrcReg2));
|
|
} else {
|
|
MachineInstrBuilder MIB;
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
|
|
.addReg(SrcReg1);
|
|
|
|
// Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
|
|
if (isICmp)
|
|
MIB.addImm(Imm);
|
|
AddOptionalDefs(MIB);
|
|
}
|
|
|
|
// For floating point we need to move the result to a comparison register
|
|
// that we can then use for branches.
|
|
if (Ty->isFloatTy() || Ty->isDoubleTy())
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::FMSTAT)));
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectCmp(const Instruction *I) {
|
|
const CmpInst *CI = cast<CmpInst>(I);
|
|
|
|
// Get the compare predicate.
|
|
ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
|
|
|
|
// We may not handle every CC for now.
|
|
if (ARMPred == ARMCC::AL) return false;
|
|
|
|
// Emit the compare.
|
|
if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
|
|
return false;
|
|
|
|
// Now set a register based on the comparison. Explicitly set the predicates
|
|
// here.
|
|
unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
unsigned DestReg = createResultReg(RC);
|
|
Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
|
|
unsigned ZeroReg = fastMaterializeConstant(Zero);
|
|
// ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
|
|
.addReg(ZeroReg).addImm(1)
|
|
.addImm(ARMPred).addReg(ARM::CPSR);
|
|
|
|
updateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPExt(const Instruction *I) {
|
|
// Make sure we have VFP and that we're extending float to double.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
Value *V = I->getOperand(0);
|
|
if (!I->getType()->isDoubleTy() ||
|
|
!V->getType()->isFloatTy()) return false;
|
|
|
|
unsigned Op = getRegForValue(V);
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Result = createResultReg(&ARM::DPRRegClass);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VCVTDS), Result)
|
|
.addReg(Op));
|
|
updateValueMap(I, Result);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
|
|
// Make sure we have VFP and that we're truncating double to float.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
Value *V = I->getOperand(0);
|
|
if (!(I->getType()->isFloatTy() &&
|
|
V->getType()->isDoubleTy())) return false;
|
|
|
|
unsigned Op = getRegForValue(V);
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Result = createResultReg(&ARM::SPRRegClass);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VCVTSD), Result)
|
|
.addReg(Op));
|
|
updateValueMap(I, Result);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
|
|
// Make sure we have VFP.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
MVT DstVT;
|
|
Type *Ty = I->getType();
|
|
if (!isTypeLegal(Ty, DstVT))
|
|
return false;
|
|
|
|
Value *Src = I->getOperand(0);
|
|
EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
|
|
if (!SrcEVT.isSimple())
|
|
return false;
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (SrcReg == 0) return false;
|
|
|
|
// Handle sign-extension.
|
|
if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
|
|
SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
|
|
/*isZExt*/!isSigned);
|
|
if (SrcReg == 0) return false;
|
|
}
|
|
|
|
// The conversion routine works on fp-reg to fp-reg and the operand above
|
|
// was an integer, move it to the fp registers if possible.
|
|
unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
|
|
if (FP == 0) return false;
|
|
|
|
unsigned Opc;
|
|
if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
|
|
else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
|
|
else return false;
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg).addReg(FP));
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
|
|
// Make sure we have VFP.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
MVT DstVT;
|
|
Type *RetTy = I->getType();
|
|
if (!isTypeLegal(RetTy, DstVT))
|
|
return false;
|
|
|
|
unsigned Op = getRegForValue(I->getOperand(0));
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Opc;
|
|
Type *OpTy = I->getOperand(0)->getType();
|
|
if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
|
|
else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
|
|
else return false;
|
|
|
|
// f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg).addReg(Op));
|
|
|
|
// This result needs to be in an integer register, but the conversion only
|
|
// takes place in fp-regs.
|
|
unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
|
|
if (IntReg == 0) return false;
|
|
|
|
updateValueMap(I, IntReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectSelect(const Instruction *I) {
|
|
MVT VT;
|
|
if (!isTypeLegal(I->getType(), VT))
|
|
return false;
|
|
|
|
// Things need to be register sized for register moves.
|
|
if (VT != MVT::i32) return false;
|
|
|
|
unsigned CondReg = getRegForValue(I->getOperand(0));
|
|
if (CondReg == 0) return false;
|
|
unsigned Op1Reg = getRegForValue(I->getOperand(1));
|
|
if (Op1Reg == 0) return false;
|
|
|
|
// Check to see if we can use an immediate in the conditional move.
|
|
int Imm = 0;
|
|
bool UseImm = false;
|
|
bool isNegativeImm = false;
|
|
if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
|
|
assert (VT == MVT::i32 && "Expecting an i32.");
|
|
Imm = (int)ConstInt->getValue().getZExtValue();
|
|
if (Imm < 0) {
|
|
isNegativeImm = true;
|
|
Imm = ~Imm;
|
|
}
|
|
UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
|
|
(ARM_AM::getSOImmVal(Imm) != -1);
|
|
}
|
|
|
|
unsigned Op2Reg = 0;
|
|
if (!UseImm) {
|
|
Op2Reg = getRegForValue(I->getOperand(2));
|
|
if (Op2Reg == 0) return false;
|
|
}
|
|
|
|
unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
|
|
CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
|
|
AddOptionalDefs(
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
|
|
.addReg(CondReg)
|
|
.addImm(1));
|
|
|
|
unsigned MovCCOpc;
|
|
const TargetRegisterClass *RC;
|
|
if (!UseImm) {
|
|
RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
|
|
MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
|
|
} else {
|
|
RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
|
|
if (!isNegativeImm)
|
|
MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
|
|
else
|
|
MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
|
|
}
|
|
unsigned ResultReg = createResultReg(RC);
|
|
if (!UseImm) {
|
|
Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
|
|
Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
|
|
ResultReg)
|
|
.addReg(Op2Reg)
|
|
.addReg(Op1Reg)
|
|
.addImm(ARMCC::NE)
|
|
.addReg(ARM::CPSR);
|
|
} else {
|
|
Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
|
|
ResultReg)
|
|
.addReg(Op1Reg)
|
|
.addImm(Imm)
|
|
.addImm(ARMCC::EQ)
|
|
.addReg(ARM::CPSR);
|
|
}
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
|
|
MVT VT;
|
|
Type *Ty = I->getType();
|
|
if (!isTypeLegal(Ty, VT))
|
|
return false;
|
|
|
|
// If we have integer div support we should have selected this automagically.
|
|
// In case we have a real miss go ahead and return false and we'll pick
|
|
// it up later.
|
|
if (Subtarget->hasDivide()) return false;
|
|
|
|
// Otherwise emit a libcall.
|
|
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
|
|
if (VT == MVT::i8)
|
|
LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
|
|
else if (VT == MVT::i16)
|
|
LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
|
|
else if (VT == MVT::i32)
|
|
LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
|
|
else if (VT == MVT::i64)
|
|
LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
|
|
else if (VT == MVT::i128)
|
|
LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
|
|
|
|
return ARMEmitLibcall(I, LC);
|
|
}
|
|
|
|
bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
|
|
MVT VT;
|
|
Type *Ty = I->getType();
|
|
if (!isTypeLegal(Ty, VT))
|
|
return false;
|
|
|
|
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
|
|
if (VT == MVT::i8)
|
|
LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
|
|
else if (VT == MVT::i16)
|
|
LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
|
|
else if (VT == MVT::i32)
|
|
LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
|
|
else if (VT == MVT::i64)
|
|
LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
|
|
else if (VT == MVT::i128)
|
|
LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
|
|
|
|
return ARMEmitLibcall(I, LC);
|
|
}
|
|
|
|
bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
// We can get here in the case when we have a binary operation on a non-legal
|
|
// type and the target independent selector doesn't know how to handle it.
|
|
if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
|
|
return false;
|
|
|
|
unsigned Opc;
|
|
switch (ISDOpcode) {
|
|
default: return false;
|
|
case ISD::ADD:
|
|
Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
|
|
break;
|
|
case ISD::OR:
|
|
Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
|
|
break;
|
|
case ISD::SUB:
|
|
Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
|
|
break;
|
|
}
|
|
|
|
unsigned SrcReg1 = getRegForValue(I->getOperand(0));
|
|
if (SrcReg1 == 0) return false;
|
|
|
|
// TODO: Often the 2nd operand is an immediate, which can be encoded directly
|
|
// in the instruction, rather then materializing the value in a register.
|
|
unsigned SrcReg2 = getRegForValue(I->getOperand(1));
|
|
if (SrcReg2 == 0) return false;
|
|
|
|
unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
|
|
SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
|
|
SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(SrcReg1).addReg(SrcReg2));
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
|
|
EVT FPVT = TLI.getValueType(DL, I->getType(), true);
|
|
if (!FPVT.isSimple()) return false;
|
|
MVT VT = FPVT.getSimpleVT();
|
|
|
|
// FIXME: Support vector types where possible.
|
|
if (VT.isVector())
|
|
return false;
|
|
|
|
// We can get here in the case when we want to use NEON for our fp
|
|
// operations, but can't figure out how to. Just use the vfp instructions
|
|
// if we have them.
|
|
// FIXME: It'd be nice to use NEON instructions.
|
|
Type *Ty = I->getType();
|
|
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
|
|
if (isFloat && !Subtarget->hasVFP2())
|
|
return false;
|
|
|
|
unsigned Opc;
|
|
bool is64bit = VT == MVT::f64 || VT == MVT::i64;
|
|
switch (ISDOpcode) {
|
|
default: return false;
|
|
case ISD::FADD:
|
|
Opc = is64bit ? ARM::VADDD : ARM::VADDS;
|
|
break;
|
|
case ISD::FSUB:
|
|
Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
|
|
break;
|
|
case ISD::FMUL:
|
|
Opc = is64bit ? ARM::VMULD : ARM::VMULS;
|
|
break;
|
|
}
|
|
unsigned Op1 = getRegForValue(I->getOperand(0));
|
|
if (Op1 == 0) return false;
|
|
|
|
unsigned Op2 = getRegForValue(I->getOperand(1));
|
|
if (Op2 == 0) return false;
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Op1).addReg(Op2));
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Call Handling Code
|
|
|
|
// This is largely taken directly from CCAssignFnForNode
|
|
// TODO: We may not support all of this.
|
|
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
|
|
bool Return,
|
|
bool isVarArg) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::Fast:
|
|
if (Subtarget->hasVFP2() && !isVarArg) {
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
|
|
// For AAPCS ABI targets, just use VFP variant of the calling convention.
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
}
|
|
// Fallthrough
|
|
case CallingConv::C:
|
|
// Use target triple & subtarget features to do actual dispatch.
|
|
if (Subtarget->isAAPCS_ABI()) {
|
|
if (Subtarget->hasVFP2() &&
|
|
TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
|
|
else
|
|
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
|
|
} else {
|
|
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
|
|
}
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
if (!isVarArg)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
|
|
// Fall through to soft float variant, variadic functions don't
|
|
// use hard floating point ABI.
|
|
case CallingConv::ARM_AAPCS:
|
|
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
|
|
case CallingConv::ARM_APCS:
|
|
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
|
|
case CallingConv::GHC:
|
|
if (Return)
|
|
llvm_unreachable("Can't return in GHC call convention");
|
|
else
|
|
return CC_ARM_APCS_GHC;
|
|
}
|
|
}
|
|
|
|
bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
|
|
SmallVectorImpl<unsigned> &ArgRegs,
|
|
SmallVectorImpl<MVT> &ArgVTs,
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
|
|
SmallVectorImpl<unsigned> &RegArgs,
|
|
CallingConv::ID CC,
|
|
unsigned &NumBytes,
|
|
bool isVarArg) {
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
|
|
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
|
|
CCAssignFnForCall(CC, false, isVarArg));
|
|
|
|
// Check that we can handle all of the arguments. If we can't, then bail out
|
|
// now before we add code to the MBB.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
MVT ArgVT = ArgVTs[VA.getValNo()];
|
|
|
|
// We don't handle NEON/vector parameters yet.
|
|
if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
|
|
return false;
|
|
|
|
// Now copy/store arg to correct locations.
|
|
if (VA.isRegLoc() && !VA.needsCustom()) {
|
|
continue;
|
|
} else if (VA.needsCustom()) {
|
|
// TODO: We need custom lowering for vector (v2f64) args.
|
|
if (VA.getLocVT() != MVT::f64 ||
|
|
// TODO: Only handle register args for now.
|
|
!VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
} else {
|
|
switch (ArgVT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
break;
|
|
case MVT::f32:
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// At the point, we are able to handle the call's arguments in fast isel.
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// Issue CALLSEQ_START
|
|
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(AdjStackDown))
|
|
.addImm(NumBytes));
|
|
|
|
// Process the args.
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
const Value *ArgVal = Args[VA.getValNo()];
|
|
unsigned Arg = ArgRegs[VA.getValNo()];
|
|
MVT ArgVT = ArgVTs[VA.getValNo()];
|
|
|
|
assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
|
|
"We don't handle NEON/vector parameters yet.");
|
|
|
|
// Handle arg promotion, etc.
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
|
|
assert (Arg != 0 && "Failed to emit a sext");
|
|
ArgVT = DestVT;
|
|
break;
|
|
}
|
|
case CCValAssign::AExt:
|
|
// Intentional fall-through. Handle AExt and ZExt.
|
|
case CCValAssign::ZExt: {
|
|
MVT DestVT = VA.getLocVT();
|
|
Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
|
|
assert (Arg != 0 && "Failed to emit a zext");
|
|
ArgVT = DestVT;
|
|
break;
|
|
}
|
|
case CCValAssign::BCvt: {
|
|
unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
|
|
/*TODO: Kill=*/false);
|
|
assert(BC != 0 && "Failed to emit a bitcast!");
|
|
Arg = BC;
|
|
ArgVT = VA.getLocVT();
|
|
break;
|
|
}
|
|
default: llvm_unreachable("Unknown arg promotion!");
|
|
}
|
|
|
|
// Now copy/store arg to correct locations.
|
|
if (VA.isRegLoc() && !VA.needsCustom()) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
|
|
RegArgs.push_back(VA.getLocReg());
|
|
} else if (VA.needsCustom()) {
|
|
// TODO: We need custom lowering for vector (v2f64) args.
|
|
assert(VA.getLocVT() == MVT::f64 &&
|
|
"Custom lowering for v2f64 args not available");
|
|
|
|
CCValAssign &NextVA = ArgLocs[++i];
|
|
|
|
assert(VA.isRegLoc() && NextVA.isRegLoc() &&
|
|
"We only handle register args!");
|
|
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVRRD), VA.getLocReg())
|
|
.addReg(NextVA.getLocReg(), RegState::Define)
|
|
.addReg(Arg));
|
|
RegArgs.push_back(VA.getLocReg());
|
|
RegArgs.push_back(NextVA.getLocReg());
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
// Need to store on the stack.
|
|
|
|
// Don't emit stores for undef values.
|
|
if (isa<UndefValue>(ArgVal))
|
|
continue;
|
|
|
|
Address Addr;
|
|
Addr.BaseType = Address::RegBase;
|
|
Addr.Base.Reg = ARM::SP;
|
|
Addr.Offset = VA.getLocMemOffset();
|
|
|
|
bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
|
|
assert(EmitRet && "Could not emit a store for argument!");
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs,
|
|
const Instruction *I, CallingConv::ID CC,
|
|
unsigned &NumBytes, bool isVarArg) {
|
|
// Issue CALLSEQ_END
|
|
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(AdjStackUp))
|
|
.addImm(NumBytes).addImm(0));
|
|
|
|
// Now the return value.
|
|
if (RetVT != MVT::isVoid) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
|
|
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
if (RVLocs.size() == 2 && RetVT == MVT::f64) {
|
|
// For this move we copy into two registers and then move into the
|
|
// double fp reg we want.
|
|
MVT DestVT = RVLocs[0].getValVT();
|
|
const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
|
|
unsigned ResultReg = createResultReg(DstRC);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::VMOVDRR), ResultReg)
|
|
.addReg(RVLocs[0].getLocReg())
|
|
.addReg(RVLocs[1].getLocReg()));
|
|
|
|
UsedRegs.push_back(RVLocs[0].getLocReg());
|
|
UsedRegs.push_back(RVLocs[1].getLocReg());
|
|
|
|
// Finally update the result.
|
|
updateValueMap(I, ResultReg);
|
|
} else {
|
|
assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
|
|
MVT CopyVT = RVLocs[0].getValVT();
|
|
|
|
// Special handling for extended integers.
|
|
if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
|
|
CopyVT = MVT::i32;
|
|
|
|
const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
|
|
|
|
unsigned ResultReg = createResultReg(DstRC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY),
|
|
ResultReg).addReg(RVLocs[0].getLocReg());
|
|
UsedRegs.push_back(RVLocs[0].getLocReg());
|
|
|
|
// Finally update the result.
|
|
updateValueMap(I, ResultReg);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectRet(const Instruction *I) {
|
|
const ReturnInst *Ret = cast<ReturnInst>(I);
|
|
const Function &F = *I->getParent()->getParent();
|
|
|
|
if (!FuncInfo.CanLowerReturn)
|
|
return false;
|
|
|
|
if (TLI.supportSplitCSR(FuncInfo.MF))
|
|
return false;
|
|
|
|
// Build a list of return value registers.
|
|
SmallVector<unsigned, 4> RetRegs;
|
|
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
if (Ret->getNumOperands() > 0) {
|
|
SmallVector<ISD::OutputArg, 4> Outs;
|
|
GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ValLocs;
|
|
CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
|
|
CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
|
|
F.isVarArg()));
|
|
|
|
const Value *RV = Ret->getOperand(0);
|
|
unsigned Reg = getRegForValue(RV);
|
|
if (Reg == 0)
|
|
return false;
|
|
|
|
// Only handle a single return value for now.
|
|
if (ValLocs.size() != 1)
|
|
return false;
|
|
|
|
CCValAssign &VA = ValLocs[0];
|
|
|
|
// Don't bother handling odd stuff for now.
|
|
if (VA.getLocInfo() != CCValAssign::Full)
|
|
return false;
|
|
// Only handle register returns for now.
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
|
|
unsigned SrcReg = Reg + VA.getValNo();
|
|
EVT RVEVT = TLI.getValueType(DL, RV->getType());
|
|
if (!RVEVT.isSimple()) return false;
|
|
MVT RVVT = RVEVT.getSimpleVT();
|
|
MVT DestVT = VA.getValVT();
|
|
// Special handling for extended integers.
|
|
if (RVVT != DestVT) {
|
|
if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
|
|
return false;
|
|
|
|
assert(DestVT == MVT::i32 && "ARM should always ext to i32");
|
|
|
|
// Perform extension if flagged as either zext or sext. Otherwise, do
|
|
// nothing.
|
|
if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
|
|
SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
|
|
if (SrcReg == 0) return false;
|
|
}
|
|
}
|
|
|
|
// Make the copy.
|
|
unsigned DstReg = VA.getLocReg();
|
|
const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
|
|
// Avoid a cross-class copy. This is very unlikely.
|
|
if (!SrcRC->contains(DstReg))
|
|
return false;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
|
|
|
|
// Add register to return instruction.
|
|
RetRegs.push_back(VA.getLocReg());
|
|
}
|
|
|
|
unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET;
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(RetOpc));
|
|
AddOptionalDefs(MIB);
|
|
for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
|
|
MIB.addReg(RetRegs[i], RegState::Implicit);
|
|
return true;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
|
|
if (UseReg)
|
|
return isThumb2 ? ARM::tBLXr : ARM::BLX;
|
|
else
|
|
return isThumb2 ? ARM::tBL : ARM::BL;
|
|
}
|
|
|
|
unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
|
|
// Manually compute the global's type to avoid building it when unnecessary.
|
|
Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
|
|
EVT LCREVT = TLI.getValueType(DL, GVTy);
|
|
if (!LCREVT.isSimple()) return 0;
|
|
|
|
GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
|
|
GlobalValue::ExternalLinkage, nullptr,
|
|
Name);
|
|
assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
|
|
return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
|
|
}
|
|
|
|
// A quick function that will emit a call for a named libcall in F with the
|
|
// vector of passed arguments for the Instruction in I. We can assume that we
|
|
// can emit a call for any libcall we can produce. This is an abridged version
|
|
// of the full call infrastructure since we won't need to worry about things
|
|
// like computed function pointers or strange arguments at call sites.
|
|
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
|
|
// with X86.
|
|
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
|
|
CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
|
|
|
|
// Handle *simple* calls for now.
|
|
Type *RetTy = I->getType();
|
|
MVT RetVT;
|
|
if (RetTy->isVoidTy())
|
|
RetVT = MVT::isVoid;
|
|
else if (!isTypeLegal(RetTy, RetVT))
|
|
return false;
|
|
|
|
// Can't handle non-double multi-reg retvals.
|
|
if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
|
|
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
|
|
if (RVLocs.size() >= 2 && RetVT != MVT::f64)
|
|
return false;
|
|
}
|
|
|
|
// Set up the argument vectors.
|
|
SmallVector<Value*, 8> Args;
|
|
SmallVector<unsigned, 8> ArgRegs;
|
|
SmallVector<MVT, 8> ArgVTs;
|
|
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
|
|
Args.reserve(I->getNumOperands());
|
|
ArgRegs.reserve(I->getNumOperands());
|
|
ArgVTs.reserve(I->getNumOperands());
|
|
ArgFlags.reserve(I->getNumOperands());
|
|
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
|
|
Value *Op = I->getOperand(i);
|
|
unsigned Arg = getRegForValue(Op);
|
|
if (Arg == 0) return false;
|
|
|
|
Type *ArgTy = Op->getType();
|
|
MVT ArgVT;
|
|
if (!isTypeLegal(ArgTy, ArgVT)) return false;
|
|
|
|
ISD::ArgFlagsTy Flags;
|
|
unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
Args.push_back(Op);
|
|
ArgRegs.push_back(Arg);
|
|
ArgVTs.push_back(ArgVT);
|
|
ArgFlags.push_back(Flags);
|
|
}
|
|
|
|
// Handle the arguments now that we've gotten them.
|
|
SmallVector<unsigned, 4> RegArgs;
|
|
unsigned NumBytes;
|
|
if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
|
|
RegArgs, CC, NumBytes, false))
|
|
return false;
|
|
|
|
unsigned CalleeReg = 0;
|
|
if (Subtarget->genLongCalls()) {
|
|
CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
|
|
if (CalleeReg == 0) return false;
|
|
}
|
|
|
|
// Issue the call.
|
|
unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
|
|
DbgLoc, TII.get(CallOpc));
|
|
// BL / BLX don't take a predicate, but tBL / tBLX do.
|
|
if (isThumb2)
|
|
AddDefaultPred(MIB);
|
|
if (Subtarget->genLongCalls())
|
|
MIB.addReg(CalleeReg);
|
|
else
|
|
MIB.addExternalSymbol(TLI.getLibcallName(Call));
|
|
|
|
// Add implicit physical register uses to the call.
|
|
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
|
|
MIB.addReg(RegArgs[i], RegState::Implicit);
|
|
|
|
// Add a register mask with the call-preserved registers.
|
|
// Proper defs for return values will be added by setPhysRegsDeadExcept().
|
|
MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
|
|
|
|
// Finish off the call including any return values.
|
|
SmallVector<unsigned, 4> UsedRegs;
|
|
if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
|
|
|
|
// Set all unused physreg defs as dead.
|
|
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectCall(const Instruction *I,
|
|
const char *IntrMemName = nullptr) {
|
|
const CallInst *CI = cast<CallInst>(I);
|
|
const Value *Callee = CI->getCalledValue();
|
|
|
|
// Can't handle inline asm.
|
|
if (isa<InlineAsm>(Callee)) return false;
|
|
|
|
// Allow SelectionDAG isel to handle tail calls.
|
|
if (CI->isTailCall()) return false;
|
|
|
|
// Check the calling convention.
|
|
ImmutableCallSite CS(CI);
|
|
CallingConv::ID CC = CS.getCallingConv();
|
|
|
|
// TODO: Avoid some calling conventions?
|
|
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
bool isVarArg = FTy->isVarArg();
|
|
|
|
// Handle *simple* calls for now.
|
|
Type *RetTy = I->getType();
|
|
MVT RetVT;
|
|
if (RetTy->isVoidTy())
|
|
RetVT = MVT::isVoid;
|
|
else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
|
|
RetVT != MVT::i8 && RetVT != MVT::i1)
|
|
return false;
|
|
|
|
// Can't handle non-double multi-reg retvals.
|
|
if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
|
|
RetVT != MVT::i16 && RetVT != MVT::i32) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
|
|
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
|
|
if (RVLocs.size() >= 2 && RetVT != MVT::f64)
|
|
return false;
|
|
}
|
|
|
|
// Set up the argument vectors.
|
|
SmallVector<Value*, 8> Args;
|
|
SmallVector<unsigned, 8> ArgRegs;
|
|
SmallVector<MVT, 8> ArgVTs;
|
|
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
|
|
unsigned arg_size = CS.arg_size();
|
|
Args.reserve(arg_size);
|
|
ArgRegs.reserve(arg_size);
|
|
ArgVTs.reserve(arg_size);
|
|
ArgFlags.reserve(arg_size);
|
|
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
|
|
i != e; ++i) {
|
|
// If we're lowering a memory intrinsic instead of a regular call, skip the
|
|
// last two arguments, which shouldn't be passed to the underlying function.
|
|
if (IntrMemName && e-i <= 2)
|
|
break;
|
|
|
|
ISD::ArgFlagsTy Flags;
|
|
unsigned AttrInd = i - CS.arg_begin() + 1;
|
|
if (CS.paramHasAttr(AttrInd, Attribute::SExt))
|
|
Flags.setSExt();
|
|
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
|
|
Flags.setZExt();
|
|
|
|
// FIXME: Only handle *easy* calls for now.
|
|
if (CS.paramHasAttr(AttrInd, Attribute::InReg) ||
|
|
CS.paramHasAttr(AttrInd, Attribute::StructRet) ||
|
|
CS.paramHasAttr(AttrInd, Attribute::Nest) ||
|
|
CS.paramHasAttr(AttrInd, Attribute::ByVal))
|
|
return false;
|
|
|
|
Type *ArgTy = (*i)->getType();
|
|
MVT ArgVT;
|
|
if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
|
|
ArgVT != MVT::i1)
|
|
return false;
|
|
|
|
unsigned Arg = getRegForValue(*i);
|
|
if (Arg == 0)
|
|
return false;
|
|
|
|
unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
Args.push_back(*i);
|
|
ArgRegs.push_back(Arg);
|
|
ArgVTs.push_back(ArgVT);
|
|
ArgFlags.push_back(Flags);
|
|
}
|
|
|
|
// Handle the arguments now that we've gotten them.
|
|
SmallVector<unsigned, 4> RegArgs;
|
|
unsigned NumBytes;
|
|
if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
|
|
RegArgs, CC, NumBytes, isVarArg))
|
|
return false;
|
|
|
|
bool UseReg = false;
|
|
const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
|
|
if (!GV || Subtarget->genLongCalls()) UseReg = true;
|
|
|
|
unsigned CalleeReg = 0;
|
|
if (UseReg) {
|
|
if (IntrMemName)
|
|
CalleeReg = getLibcallReg(IntrMemName);
|
|
else
|
|
CalleeReg = getRegForValue(Callee);
|
|
|
|
if (CalleeReg == 0) return false;
|
|
}
|
|
|
|
// Issue the call.
|
|
unsigned CallOpc = ARMSelectCallOp(UseReg);
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
|
|
DbgLoc, TII.get(CallOpc));
|
|
|
|
unsigned char OpFlags = 0;
|
|
|
|
// Add MO_PLT for global address or external symbol in the PIC relocation
|
|
// model.
|
|
if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_)
|
|
OpFlags = ARMII::MO_PLT;
|
|
|
|
// ARM calls don't take a predicate, but tBL / tBLX do.
|
|
if(isThumb2)
|
|
AddDefaultPred(MIB);
|
|
if (UseReg)
|
|
MIB.addReg(CalleeReg);
|
|
else if (!IntrMemName)
|
|
MIB.addGlobalAddress(GV, 0, OpFlags);
|
|
else
|
|
MIB.addExternalSymbol(IntrMemName, OpFlags);
|
|
|
|
// Add implicit physical register uses to the call.
|
|
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
|
|
MIB.addReg(RegArgs[i], RegState::Implicit);
|
|
|
|
// Add a register mask with the call-preserved registers.
|
|
// Proper defs for return values will be added by setPhysRegsDeadExcept().
|
|
MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
|
|
|
|
// Finish off the call including any return values.
|
|
SmallVector<unsigned, 4> UsedRegs;
|
|
if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
|
|
return false;
|
|
|
|
// Set all unused physreg defs as dead.
|
|
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
|
|
return Len <= 16;
|
|
}
|
|
|
|
bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
|
|
uint64_t Len, unsigned Alignment) {
|
|
// Make sure we don't bloat code by inlining very large memcpy's.
|
|
if (!ARMIsMemCpySmall(Len))
|
|
return false;
|
|
|
|
while (Len) {
|
|
MVT VT;
|
|
if (!Alignment || Alignment >= 4) {
|
|
if (Len >= 4)
|
|
VT = MVT::i32;
|
|
else if (Len >= 2)
|
|
VT = MVT::i16;
|
|
else {
|
|
assert (Len == 1 && "Expected a length of 1!");
|
|
VT = MVT::i8;
|
|
}
|
|
} else {
|
|
// Bound based on alignment.
|
|
if (Len >= 2 && Alignment == 2)
|
|
VT = MVT::i16;
|
|
else {
|
|
VT = MVT::i8;
|
|
}
|
|
}
|
|
|
|
bool RV;
|
|
unsigned ResultReg;
|
|
RV = ARMEmitLoad(VT, ResultReg, Src);
|
|
assert (RV == true && "Should be able to handle this load.");
|
|
RV = ARMEmitStore(VT, ResultReg, Dest);
|
|
assert (RV == true && "Should be able to handle this store.");
|
|
(void)RV;
|
|
|
|
unsigned Size = VT.getSizeInBits()/8;
|
|
Len -= Size;
|
|
Dest.Offset += Size;
|
|
Src.Offset += Size;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
|
|
// FIXME: Handle more intrinsics.
|
|
switch (I.getIntrinsicID()) {
|
|
default: return false;
|
|
case Intrinsic::frameaddress: {
|
|
MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
|
|
const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
|
|
: &ARM::GPRRegClass;
|
|
|
|
const ARMBaseRegisterInfo *RegInfo =
|
|
static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
|
|
unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
|
|
unsigned SrcReg = FramePtr;
|
|
|
|
// Recursively load frame address
|
|
// ldr r0 [fp]
|
|
// ldr r0 [r0]
|
|
// ldr r0 [r0]
|
|
// ...
|
|
unsigned DestReg;
|
|
unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
|
|
while (Depth--) {
|
|
DestReg = createResultReg(RC);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(LdrOpc), DestReg)
|
|
.addReg(SrcReg).addImm(0));
|
|
SrcReg = DestReg;
|
|
}
|
|
updateValueMap(&I, SrcReg);
|
|
return true;
|
|
}
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memmove: {
|
|
const MemTransferInst &MTI = cast<MemTransferInst>(I);
|
|
// Don't handle volatile.
|
|
if (MTI.isVolatile())
|
|
return false;
|
|
|
|
// Disable inlining for memmove before calls to ComputeAddress. Otherwise,
|
|
// we would emit dead code because we don't currently handle memmoves.
|
|
bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
|
|
if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
|
|
// Small memcpy's are common enough that we want to do them without a call
|
|
// if possible.
|
|
uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
|
|
if (ARMIsMemCpySmall(Len)) {
|
|
Address Dest, Src;
|
|
if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
|
|
!ARMComputeAddress(MTI.getRawSource(), Src))
|
|
return false;
|
|
unsigned Alignment = MTI.getAlignment();
|
|
if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (!MTI.getLength()->getType()->isIntegerTy(32))
|
|
return false;
|
|
|
|
if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
|
|
return false;
|
|
|
|
const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
|
|
return SelectCall(&I, IntrMemName);
|
|
}
|
|
case Intrinsic::memset: {
|
|
const MemSetInst &MSI = cast<MemSetInst>(I);
|
|
// Don't handle volatile.
|
|
if (MSI.isVolatile())
|
|
return false;
|
|
|
|
if (!MSI.getLength()->getType()->isIntegerTy(32))
|
|
return false;
|
|
|
|
if (MSI.getDestAddressSpace() > 255)
|
|
return false;
|
|
|
|
return SelectCall(&I, "memset");
|
|
}
|
|
case Intrinsic::trap: {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
|
|
Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ARMFastISel::SelectTrunc(const Instruction *I) {
|
|
// The high bits for a type smaller than the register size are assumed to be
|
|
// undefined.
|
|
Value *Op = I->getOperand(0);
|
|
|
|
EVT SrcVT, DestVT;
|
|
SrcVT = TLI.getValueType(DL, Op->getType(), true);
|
|
DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
|
|
if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
|
|
return false;
|
|
if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
|
|
return false;
|
|
|
|
unsigned SrcReg = getRegForValue(Op);
|
|
if (!SrcReg) return false;
|
|
|
|
// Because the high bits are undefined, a truncate doesn't generate
|
|
// any code.
|
|
updateValueMap(I, SrcReg);
|
|
return true;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
|
|
bool isZExt) {
|
|
if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
|
|
return 0;
|
|
if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
|
|
return 0;
|
|
|
|
// Table of which combinations can be emitted as a single instruction,
|
|
// and which will require two.
|
|
static const uint8_t isSingleInstrTbl[3][2][2][2] = {
|
|
// ARM Thumb
|
|
// !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
|
|
// ext: s z s z s z s z
|
|
/* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
|
|
/* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
|
|
/* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
|
|
};
|
|
|
|
// Target registers for:
|
|
// - For ARM can never be PC.
|
|
// - For 16-bit Thumb are restricted to lower 8 registers.
|
|
// - For 32-bit Thumb are restricted to non-SP and non-PC.
|
|
static const TargetRegisterClass *RCTbl[2][2] = {
|
|
// Instructions: Two Single
|
|
/* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
|
|
/* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
|
|
};
|
|
|
|
// Table governing the instruction(s) to be emitted.
|
|
static const struct InstructionTable {
|
|
uint32_t Opc : 16;
|
|
uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
|
|
uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
|
|
uint32_t Imm : 8; // All instructions have either a shift or a mask.
|
|
} IT[2][2][3][2] = {
|
|
{ // Two instructions (first is left shift, second is in this table).
|
|
{ // ARM Opc S Shift Imm
|
|
/* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
|
|
/* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
|
|
/* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
|
|
/* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
|
|
/* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
|
|
/* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
|
|
},
|
|
{ // Thumb Opc S Shift Imm
|
|
/* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
|
|
/* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
|
|
/* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
|
|
/* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
|
|
/* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
|
|
/* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
|
|
}
|
|
},
|
|
{ // Single instruction.
|
|
{ // ARM Opc S Shift Imm
|
|
/* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
|
|
/* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
|
|
/* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
|
|
/* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
|
|
/* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
|
|
/* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
|
|
},
|
|
{ // Thumb Opc S Shift Imm
|
|
/* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
|
|
/* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
|
|
/* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
|
|
/* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
|
|
/* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
|
|
/* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
|
|
}
|
|
}
|
|
};
|
|
|
|
unsigned SrcBits = SrcVT.getSizeInBits();
|
|
unsigned DestBits = DestVT.getSizeInBits();
|
|
(void) DestBits;
|
|
assert((SrcBits < DestBits) && "can only extend to larger types");
|
|
assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
|
|
"other sizes unimplemented");
|
|
assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
|
|
"other sizes unimplemented");
|
|
|
|
bool hasV6Ops = Subtarget->hasV6Ops();
|
|
unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
|
|
assert((Bitness < 3) && "sanity-check table bounds");
|
|
|
|
bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
|
|
const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
|
|
const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
|
|
unsigned Opc = ITP->Opc;
|
|
assert(ARM::KILL != Opc && "Invalid table entry");
|
|
unsigned hasS = ITP->hasS;
|
|
ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
|
|
assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
|
|
"only MOVsi has shift operand addressing mode");
|
|
unsigned Imm = ITP->Imm;
|
|
|
|
// 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
|
|
bool setsCPSR = &ARM::tGPRRegClass == RC;
|
|
unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
|
|
unsigned ResultReg;
|
|
// MOVsi encodes shift and immediate in shift operand addressing mode.
|
|
// The following condition has the same value when emitting two
|
|
// instruction sequences: both are shifts.
|
|
bool ImmIsSO = (Shift != ARM_AM::no_shift);
|
|
|
|
// Either one or two instructions are emitted.
|
|
// They're always of the form:
|
|
// dst = in OP imm
|
|
// CPSR is set only by 16-bit Thumb instructions.
|
|
// Predicate, if any, is AL.
|
|
// S bit, if available, is always 0.
|
|
// When two are emitted the first's result will feed as the second's input,
|
|
// that value is then dead.
|
|
unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
|
|
for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
|
|
ResultReg = createResultReg(RC);
|
|
bool isLsl = (0 == Instr) && !isSingleInstr;
|
|
unsigned Opcode = isLsl ? LSLOpc : Opc;
|
|
ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
|
|
unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
|
|
bool isKill = 1 == Instr;
|
|
MachineInstrBuilder MIB = BuildMI(
|
|
*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
|
|
if (setsCPSR)
|
|
MIB.addReg(ARM::CPSR, RegState::Define);
|
|
SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
|
|
AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc));
|
|
if (hasS)
|
|
AddDefaultCC(MIB);
|
|
// Second instruction consumes the first's result.
|
|
SrcReg = ResultReg;
|
|
}
|
|
|
|
return ResultReg;
|
|
}
|
|
|
|
bool ARMFastISel::SelectIntExt(const Instruction *I) {
|
|
// On ARM, in general, integer casts don't involve legal types; this code
|
|
// handles promotable integers.
|
|
Type *DestTy = I->getType();
|
|
Value *Src = I->getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
|
|
bool isZExt = isa<ZExtInst>(I);
|
|
unsigned SrcReg = getRegForValue(Src);
|
|
if (!SrcReg) return false;
|
|
|
|
EVT SrcEVT, DestEVT;
|
|
SrcEVT = TLI.getValueType(DL, SrcTy, true);
|
|
DestEVT = TLI.getValueType(DL, DestTy, true);
|
|
if (!SrcEVT.isSimple()) return false;
|
|
if (!DestEVT.isSimple()) return false;
|
|
|
|
MVT SrcVT = SrcEVT.getSimpleVT();
|
|
MVT DestVT = DestEVT.getSimpleVT();
|
|
unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
|
|
if (ResultReg == 0) return false;
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectShift(const Instruction *I,
|
|
ARM_AM::ShiftOpc ShiftTy) {
|
|
// We handle thumb2 mode by target independent selector
|
|
// or SelectionDAG ISel.
|
|
if (isThumb2)
|
|
return false;
|
|
|
|
// Only handle i32 now.
|
|
EVT DestVT = TLI.getValueType(DL, I->getType(), true);
|
|
if (DestVT != MVT::i32)
|
|
return false;
|
|
|
|
unsigned Opc = ARM::MOVsr;
|
|
unsigned ShiftImm;
|
|
Value *Src2Value = I->getOperand(1);
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
|
|
ShiftImm = CI->getZExtValue();
|
|
|
|
// Fall back to selection DAG isel if the shift amount
|
|
// is zero or greater than the width of the value type.
|
|
if (ShiftImm == 0 || ShiftImm >=32)
|
|
return false;
|
|
|
|
Opc = ARM::MOVsi;
|
|
}
|
|
|
|
Value *Src1Value = I->getOperand(0);
|
|
unsigned Reg1 = getRegForValue(Src1Value);
|
|
if (Reg1 == 0) return false;
|
|
|
|
unsigned Reg2 = 0;
|
|
if (Opc == ARM::MOVsr) {
|
|
Reg2 = getRegForValue(Src2Value);
|
|
if (Reg2 == 0) return false;
|
|
}
|
|
|
|
unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
|
|
if(ResultReg == 0) return false;
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Reg1);
|
|
|
|
if (Opc == ARM::MOVsi)
|
|
MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
|
|
else if (Opc == ARM::MOVsr) {
|
|
MIB.addReg(Reg2);
|
|
MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
|
|
}
|
|
|
|
AddOptionalDefs(MIB);
|
|
updateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// TODO: SoftFP support.
|
|
bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
return SelectLoad(I);
|
|
case Instruction::Store:
|
|
return SelectStore(I);
|
|
case Instruction::Br:
|
|
return SelectBranch(I);
|
|
case Instruction::IndirectBr:
|
|
return SelectIndirectBr(I);
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return SelectCmp(I);
|
|
case Instruction::FPExt:
|
|
return SelectFPExt(I);
|
|
case Instruction::FPTrunc:
|
|
return SelectFPTrunc(I);
|
|
case Instruction::SIToFP:
|
|
return SelectIToFP(I, /*isSigned*/ true);
|
|
case Instruction::UIToFP:
|
|
return SelectIToFP(I, /*isSigned*/ false);
|
|
case Instruction::FPToSI:
|
|
return SelectFPToI(I, /*isSigned*/ true);
|
|
case Instruction::FPToUI:
|
|
return SelectFPToI(I, /*isSigned*/ false);
|
|
case Instruction::Add:
|
|
return SelectBinaryIntOp(I, ISD::ADD);
|
|
case Instruction::Or:
|
|
return SelectBinaryIntOp(I, ISD::OR);
|
|
case Instruction::Sub:
|
|
return SelectBinaryIntOp(I, ISD::SUB);
|
|
case Instruction::FAdd:
|
|
return SelectBinaryFPOp(I, ISD::FADD);
|
|
case Instruction::FSub:
|
|
return SelectBinaryFPOp(I, ISD::FSUB);
|
|
case Instruction::FMul:
|
|
return SelectBinaryFPOp(I, ISD::FMUL);
|
|
case Instruction::SDiv:
|
|
return SelectDiv(I, /*isSigned*/ true);
|
|
case Instruction::UDiv:
|
|
return SelectDiv(I, /*isSigned*/ false);
|
|
case Instruction::SRem:
|
|
return SelectRem(I, /*isSigned*/ true);
|
|
case Instruction::URem:
|
|
return SelectRem(I, /*isSigned*/ false);
|
|
case Instruction::Call:
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
return SelectIntrinsicCall(*II);
|
|
return SelectCall(I);
|
|
case Instruction::Select:
|
|
return SelectSelect(I);
|
|
case Instruction::Ret:
|
|
return SelectRet(I);
|
|
case Instruction::Trunc:
|
|
return SelectTrunc(I);
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
return SelectIntExt(I);
|
|
case Instruction::Shl:
|
|
return SelectShift(I, ARM_AM::lsl);
|
|
case Instruction::LShr:
|
|
return SelectShift(I, ARM_AM::lsr);
|
|
case Instruction::AShr:
|
|
return SelectShift(I, ARM_AM::asr);
|
|
default: break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
// This table describes sign- and zero-extend instructions which can be
|
|
// folded into a preceding load. All of these extends have an immediate
|
|
// (sometimes a mask and sometimes a shift) that's applied after
|
|
// extension.
|
|
const struct FoldableLoadExtendsStruct {
|
|
uint16_t Opc[2]; // ARM, Thumb.
|
|
uint8_t ExpectedImm;
|
|
uint8_t isZExt : 1;
|
|
uint8_t ExpectedVT : 7;
|
|
} FoldableLoadExtends[] = {
|
|
{ { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
|
|
{ { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
|
|
{ { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
|
|
{ { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
|
|
{ { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
|
|
};
|
|
}
|
|
|
|
/// \brief The specified machine instr operand is a vreg, and that
|
|
/// vreg is being provided by the specified load instruction. If possible,
|
|
/// try to fold the load as an operand to the instruction, returning true if
|
|
/// successful.
|
|
bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
|
|
const LoadInst *LI) {
|
|
// Verify we have a legal type before going any further.
|
|
MVT VT;
|
|
if (!isLoadTypeLegal(LI->getType(), VT))
|
|
return false;
|
|
|
|
// Combine load followed by zero- or sign-extend.
|
|
// ldrb r1, [r0] ldrb r1, [r0]
|
|
// uxtb r2, r1 =>
|
|
// mov r3, r2 mov r3, r1
|
|
if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
|
|
return false;
|
|
const uint64_t Imm = MI->getOperand(2).getImm();
|
|
|
|
bool Found = false;
|
|
bool isZExt;
|
|
for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends);
|
|
i != e; ++i) {
|
|
if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() &&
|
|
(uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm &&
|
|
MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) {
|
|
Found = true;
|
|
isZExt = FoldableLoadExtends[i].isZExt;
|
|
}
|
|
}
|
|
if (!Found) return false;
|
|
|
|
// See if we can handle this address.
|
|
Address Addr;
|
|
if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
|
|
|
|
unsigned ResultReg = MI->getOperand(0).getReg();
|
|
if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
|
|
return false;
|
|
MI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
|
|
unsigned Align, MVT VT) {
|
|
bool UseGOT_PREL =
|
|
!(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
|
|
|
|
LLVMContext *Context = &MF->getFunction()->getContext();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
|
|
GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
|
|
UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
|
|
/*AddCurrentAddress=*/UseGOT_PREL);
|
|
|
|
unsigned ConstAlign =
|
|
MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
|
|
unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
|
|
|
|
unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
|
|
unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
|
|
.addConstantPoolIndex(Idx);
|
|
if (Opc == ARM::LDRcp)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
|
|
// Fix the address by adding pc.
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
|
|
: ARM::PICADD;
|
|
DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
|
|
.addReg(TempReg)
|
|
.addImm(ARMPCLabelIndex);
|
|
if (!Subtarget->isThumb())
|
|
AddDefaultPred(MIB);
|
|
|
|
if (UseGOT_PREL && Subtarget->isThumb()) {
|
|
unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(ARM::t2LDRi12), NewDestReg)
|
|
.addReg(DestReg)
|
|
.addImm(0);
|
|
DestReg = NewDestReg;
|
|
AddOptionalDefs(MIB);
|
|
}
|
|
return DestReg;
|
|
}
|
|
|
|
bool ARMFastISel::fastLowerArguments() {
|
|
if (!FuncInfo.CanLowerReturn)
|
|
return false;
|
|
|
|
const Function *F = FuncInfo.Fn;
|
|
if (F->isVarArg())
|
|
return false;
|
|
|
|
CallingConv::ID CC = F->getCallingConv();
|
|
switch (CC) {
|
|
default:
|
|
return false;
|
|
case CallingConv::Fast:
|
|
case CallingConv::C:
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
case CallingConv::ARM_AAPCS:
|
|
case CallingConv::ARM_APCS:
|
|
break;
|
|
}
|
|
|
|
// Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
|
|
// which are passed in r0 - r3.
|
|
unsigned Idx = 1;
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I, ++Idx) {
|
|
if (Idx > 4)
|
|
return false;
|
|
|
|
if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
|
|
F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
|
|
F->getAttributes().hasAttribute(Idx, Attribute::ByVal))
|
|
return false;
|
|
|
|
Type *ArgTy = I->getType();
|
|
if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
|
|
return false;
|
|
|
|
EVT ArgVT = TLI.getValueType(DL, ArgTy);
|
|
if (!ArgVT.isSimple()) return false;
|
|
switch (ArgVT.getSimpleVT().SimpleTy) {
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
static const MCPhysReg GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
const TargetRegisterClass *RC = &ARM::rGPRRegClass;
|
|
Idx = 0;
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I, ++Idx) {
|
|
unsigned SrcReg = GPRArgRegs[Idx];
|
|
unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
|
|
// FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
|
|
// Without this, EmitLiveInCopies may eliminate the livein if its only
|
|
// use is a bitcast (which isn't turned into an instruction).
|
|
unsigned ResultReg = createResultReg(RC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
|
|
TII.get(TargetOpcode::COPY),
|
|
ResultReg).addReg(DstReg, getKillRegState(true));
|
|
updateValueMap(&*I, ResultReg);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace llvm {
|
|
FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) {
|
|
if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
|
|
return new ARMFastISel(funcInfo, libInfo);
|
|
|
|
return nullptr;
|
|
}
|
|
}
|