forked from OSchip/llvm-project
4504 lines
155 KiB
C++
4504 lines
155 KiB
C++
//===- bolt/Core/BinaryFunction.cpp - Low-level function ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BinaryFunction class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "bolt/Core/BinaryBasicBlock.h"
|
|
#include "bolt/Core/DynoStats.h"
|
|
#include "bolt/Core/MCPlusBuilder.h"
|
|
#include "bolt/Utils/NameResolver.h"
|
|
#include "bolt/Utils/NameShortener.h"
|
|
#include "bolt/Utils/Utils.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/edit_distance.h"
|
|
#include "llvm/Demangle/Demangle.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAsmLayout.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Object/ObjectFile.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/GraphWriter.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/Regex.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <numeric>
|
|
#include <string>
|
|
|
|
#define DEBUG_TYPE "bolt"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
|
|
extern cl::OptionCategory BoltCategory;
|
|
extern cl::OptionCategory BoltOptCategory;
|
|
extern cl::OptionCategory BoltRelocCategory;
|
|
|
|
extern cl::opt<bool> EnableBAT;
|
|
extern cl::opt<bool> Instrument;
|
|
extern cl::opt<bool> StrictMode;
|
|
extern cl::opt<bool> UpdateDebugSections;
|
|
extern cl::opt<unsigned> Verbosity;
|
|
|
|
extern bool processAllFunctions();
|
|
|
|
cl::opt<bool>
|
|
CheckEncoding("check-encoding",
|
|
cl::desc("perform verification of LLVM instruction encoding/decoding. "
|
|
"Every instruction in the input is decoded and re-encoded. "
|
|
"If the resulting bytes do not match the input, a warning message "
|
|
"is printed."),
|
|
cl::init(false),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
DotToolTipCode("dot-tooltip-code",
|
|
cl::desc("add basic block instructions as tool tips on nodes"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<JumpTableSupportLevel>
|
|
JumpTables("jump-tables",
|
|
cl::desc("jump tables support (default=basic)"),
|
|
cl::init(JTS_BASIC),
|
|
cl::values(
|
|
clEnumValN(JTS_NONE, "none",
|
|
"do not optimize functions with jump tables"),
|
|
clEnumValN(JTS_BASIC, "basic",
|
|
"optimize functions with jump tables"),
|
|
clEnumValN(JTS_MOVE, "move",
|
|
"move jump tables to a separate section"),
|
|
clEnumValN(JTS_SPLIT, "split",
|
|
"split jump tables section into hot and cold based on "
|
|
"function execution frequency"),
|
|
clEnumValN(JTS_AGGRESSIVE, "aggressive",
|
|
"aggressively split jump tables section based on usage "
|
|
"of the tables")),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<bool>
|
|
NoScan("no-scan",
|
|
cl::desc("do not scan cold functions for external references (may result in "
|
|
"slower binary)"),
|
|
cl::init(false),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
cl::opt<bool>
|
|
PreserveBlocksAlignment("preserve-blocks-alignment",
|
|
cl::desc("try to preserve basic block alignment"),
|
|
cl::init(false),
|
|
cl::ZeroOrMore,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
cl::opt<bool>
|
|
PrintDynoStats("dyno-stats",
|
|
cl::desc("print execution info based on profile"),
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::opt<bool>
|
|
PrintDynoStatsOnly("print-dyno-stats-only",
|
|
cl::desc("while printing functions output dyno-stats and skip instructions"),
|
|
cl::init(false),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
static cl::list<std::string>
|
|
PrintOnly("print-only",
|
|
cl::CommaSeparated,
|
|
cl::desc("list of functions to print"),
|
|
cl::value_desc("func1,func2,func3,..."),
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool>
|
|
TimeBuild("time-build",
|
|
cl::desc("print time spent constructing binary functions"),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
cl::opt<bool>
|
|
TrapOnAVX512("trap-avx512",
|
|
cl::desc("in relocation mode trap upon entry to any function that uses "
|
|
"AVX-512 instructions"),
|
|
cl::init(false),
|
|
cl::ZeroOrMore,
|
|
cl::Hidden,
|
|
cl::cat(BoltCategory));
|
|
|
|
bool shouldPrint(const BinaryFunction &Function) {
|
|
if (Function.isIgnored())
|
|
return false;
|
|
|
|
if (PrintOnly.empty())
|
|
return true;
|
|
|
|
for (std::string &Name : opts::PrintOnly) {
|
|
if (Function.hasNameRegex(Name)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
constexpr unsigned BinaryFunction::MinAlign;
|
|
|
|
namespace {
|
|
|
|
template <typename R> bool emptyRange(const R &Range) {
|
|
return Range.begin() == Range.end();
|
|
}
|
|
|
|
/// Gets debug line information for the instruction located at the given
|
|
/// address in the original binary. The SMLoc's pointer is used
|
|
/// to point to this information, which is represented by a
|
|
/// DebugLineTableRowRef. The returned pointer is null if no debug line
|
|
/// information for this instruction was found.
|
|
SMLoc findDebugLineInformationForInstructionAt(
|
|
uint64_t Address, DWARFUnit *Unit,
|
|
const DWARFDebugLine::LineTable *LineTable) {
|
|
// We use the pointer in SMLoc to store an instance of DebugLineTableRowRef,
|
|
// which occupies 64 bits. Thus, we can only proceed if the struct fits into
|
|
// the pointer itself.
|
|
assert(sizeof(decltype(SMLoc().getPointer())) >=
|
|
sizeof(DebugLineTableRowRef) &&
|
|
"Cannot fit instruction debug line information into SMLoc's pointer");
|
|
|
|
SMLoc NullResult = DebugLineTableRowRef::NULL_ROW.toSMLoc();
|
|
uint32_t RowIndex = LineTable->lookupAddress(
|
|
{Address, object::SectionedAddress::UndefSection});
|
|
if (RowIndex == LineTable->UnknownRowIndex)
|
|
return NullResult;
|
|
|
|
assert(RowIndex < LineTable->Rows.size() &&
|
|
"Line Table lookup returned invalid index.");
|
|
|
|
decltype(SMLoc().getPointer()) Ptr;
|
|
DebugLineTableRowRef *InstructionLocation =
|
|
reinterpret_cast<DebugLineTableRowRef *>(&Ptr);
|
|
|
|
InstructionLocation->DwCompileUnitIndex = Unit->getOffset();
|
|
InstructionLocation->RowIndex = RowIndex + 1;
|
|
|
|
return SMLoc::getFromPointer(Ptr);
|
|
}
|
|
|
|
std::string buildSectionName(StringRef Prefix, StringRef Name,
|
|
const BinaryContext &BC) {
|
|
if (BC.isELF())
|
|
return (Prefix + Name).str();
|
|
static NameShortener NS;
|
|
return (Prefix + Twine(NS.getID(Name))).str();
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const BinaryFunction::State State) {
|
|
switch (State) {
|
|
case BinaryFunction::State::Empty: OS << "empty"; break;
|
|
case BinaryFunction::State::Disassembled: OS << "disassembled"; break;
|
|
case BinaryFunction::State::CFG: OS << "CFG constructed"; break;
|
|
case BinaryFunction::State::CFG_Finalized: OS << "CFG finalized"; break;
|
|
case BinaryFunction::State::EmittedCFG: OS << "emitted with CFG"; break;
|
|
case BinaryFunction::State::Emitted: OS << "emitted"; break;
|
|
}
|
|
|
|
return OS;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::string BinaryFunction::buildCodeSectionName(StringRef Name,
|
|
const BinaryContext &BC) {
|
|
return buildSectionName(BC.isELF() ? ".local.text." : ".l.text.", Name, BC);
|
|
}
|
|
|
|
std::string BinaryFunction::buildColdCodeSectionName(StringRef Name,
|
|
const BinaryContext &BC) {
|
|
return buildSectionName(BC.isELF() ? ".local.cold.text." : ".l.c.text.", Name,
|
|
BC);
|
|
}
|
|
|
|
uint64_t BinaryFunction::Count = 0;
|
|
|
|
Optional<StringRef> BinaryFunction::hasNameRegex(const StringRef Name) const {
|
|
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
|
|
Regex MatchName(RegexName);
|
|
Optional<StringRef> Match = forEachName(
|
|
[&MatchName](StringRef Name) { return MatchName.match(Name); });
|
|
|
|
return Match;
|
|
}
|
|
|
|
Optional<StringRef>
|
|
BinaryFunction::hasRestoredNameRegex(const StringRef Name) const {
|
|
const std::string RegexName = (Twine("^") + StringRef(Name) + "$").str();
|
|
Regex MatchName(RegexName);
|
|
Optional<StringRef> Match = forEachName([&MatchName](StringRef Name) {
|
|
return MatchName.match(NameResolver::restore(Name));
|
|
});
|
|
|
|
return Match;
|
|
}
|
|
|
|
std::string BinaryFunction::getDemangledName() const {
|
|
StringRef MangledName = NameResolver::restore(getOneName());
|
|
return demangle(MangledName.str());
|
|
}
|
|
|
|
BinaryBasicBlock *
|
|
BinaryFunction::getBasicBlockContainingOffset(uint64_t Offset) {
|
|
if (Offset > Size)
|
|
return nullptr;
|
|
|
|
if (BasicBlockOffsets.empty())
|
|
return nullptr;
|
|
|
|
/*
|
|
* This is commented out because it makes BOLT too slow.
|
|
* assert(std::is_sorted(BasicBlockOffsets.begin(),
|
|
* BasicBlockOffsets.end(),
|
|
* CompareBasicBlockOffsets())));
|
|
*/
|
|
auto I = std::upper_bound(BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
|
|
BasicBlockOffset(Offset, nullptr),
|
|
CompareBasicBlockOffsets());
|
|
assert(I != BasicBlockOffsets.begin() && "first basic block not at offset 0");
|
|
--I;
|
|
BinaryBasicBlock *BB = I->second;
|
|
return (Offset < BB->getOffset() + BB->getOriginalSize()) ? BB : nullptr;
|
|
}
|
|
|
|
void BinaryFunction::markUnreachableBlocks() {
|
|
std::stack<BinaryBasicBlock *> Stack;
|
|
|
|
for (BinaryBasicBlock *BB : layout())
|
|
BB->markValid(false);
|
|
|
|
// Add all entries and landing pads as roots.
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
if (isEntryPoint(*BB) || BB->isLandingPad()) {
|
|
Stack.push(BB);
|
|
BB->markValid(true);
|
|
continue;
|
|
}
|
|
// FIXME:
|
|
// Also mark BBs with indirect jumps as reachable, since we do not
|
|
// support removing unused jump tables yet (GH-issue20).
|
|
for (const MCInst &Inst : *BB) {
|
|
if (BC.MIB->getJumpTable(Inst)) {
|
|
Stack.push(BB);
|
|
BB->markValid(true);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine reachable BBs from the entry point
|
|
while (!Stack.empty()) {
|
|
BinaryBasicBlock *BB = Stack.top();
|
|
Stack.pop();
|
|
for (BinaryBasicBlock *Succ : BB->successors()) {
|
|
if (Succ->isValid())
|
|
continue;
|
|
Succ->markValid(true);
|
|
Stack.push(Succ);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Any unnecessary fallthrough jumps revealed after calling eraseInvalidBBs
|
|
// will be cleaned up by fixBranches().
|
|
std::pair<unsigned, uint64_t> BinaryFunction::eraseInvalidBBs() {
|
|
BasicBlockOrderType NewLayout;
|
|
unsigned Count = 0;
|
|
uint64_t Bytes = 0;
|
|
for (BinaryBasicBlock *BB : layout()) {
|
|
if (BB->isValid()) {
|
|
NewLayout.push_back(BB);
|
|
} else {
|
|
assert(!isEntryPoint(*BB) && "all entry blocks must be valid");
|
|
++Count;
|
|
Bytes += BC.computeCodeSize(BB->begin(), BB->end());
|
|
}
|
|
}
|
|
BasicBlocksLayout = std::move(NewLayout);
|
|
|
|
BasicBlockListType NewBasicBlocks;
|
|
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
|
|
BinaryBasicBlock *BB = *I;
|
|
if (BB->isValid()) {
|
|
NewBasicBlocks.push_back(BB);
|
|
} else {
|
|
// Make sure the block is removed from the list of predecessors.
|
|
BB->removeAllSuccessors();
|
|
DeletedBasicBlocks.push_back(BB);
|
|
}
|
|
}
|
|
BasicBlocks = std::move(NewBasicBlocks);
|
|
|
|
assert(BasicBlocks.size() == BasicBlocksLayout.size());
|
|
|
|
// Update CFG state if needed
|
|
if (Count > 0)
|
|
recomputeLandingPads();
|
|
|
|
return std::make_pair(Count, Bytes);
|
|
}
|
|
|
|
bool BinaryFunction::isForwardCall(const MCSymbol *CalleeSymbol) const {
|
|
// This function should work properly before and after function reordering.
|
|
// In order to accomplish this, we use the function index (if it is valid).
|
|
// If the function indices are not valid, we fall back to the original
|
|
// addresses. This should be ok because the functions without valid indices
|
|
// should have been ordered with a stable sort.
|
|
const BinaryFunction *CalleeBF = BC.getFunctionForSymbol(CalleeSymbol);
|
|
if (CalleeBF) {
|
|
if (CalleeBF->isInjected())
|
|
return true;
|
|
|
|
if (hasValidIndex() && CalleeBF->hasValidIndex()) {
|
|
return getIndex() < CalleeBF->getIndex();
|
|
} else if (hasValidIndex() && !CalleeBF->hasValidIndex()) {
|
|
return true;
|
|
} else if (!hasValidIndex() && CalleeBF->hasValidIndex()) {
|
|
return false;
|
|
} else {
|
|
return getAddress() < CalleeBF->getAddress();
|
|
}
|
|
} else {
|
|
// Absolute symbol.
|
|
ErrorOr<uint64_t> CalleeAddressOrError = BC.getSymbolValue(*CalleeSymbol);
|
|
assert(CalleeAddressOrError && "unregistered symbol found");
|
|
return *CalleeAddressOrError > getAddress();
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::dump(bool PrintInstructions) const {
|
|
print(dbgs(), "", PrintInstructions);
|
|
}
|
|
|
|
void BinaryFunction::print(raw_ostream &OS, std::string Annotation,
|
|
bool PrintInstructions) const {
|
|
if (!opts::shouldPrint(*this))
|
|
return;
|
|
|
|
StringRef SectionName =
|
|
OriginSection ? OriginSection->getName() : "<no origin section>";
|
|
OS << "Binary Function \"" << *this << "\" " << Annotation << " {";
|
|
std::vector<StringRef> AllNames = getNames();
|
|
if (AllNames.size() > 1) {
|
|
OS << "\n All names : ";
|
|
const char *Sep = "";
|
|
for (const StringRef Name : AllNames) {
|
|
OS << Sep << Name;
|
|
Sep = "\n ";
|
|
}
|
|
}
|
|
OS << "\n Number : " << FunctionNumber
|
|
<< "\n State : " << CurrentState
|
|
<< "\n Address : 0x" << Twine::utohexstr(Address)
|
|
<< "\n Size : 0x" << Twine::utohexstr(Size)
|
|
<< "\n MaxSize : 0x" << Twine::utohexstr(MaxSize)
|
|
<< "\n Offset : 0x" << Twine::utohexstr(FileOffset)
|
|
<< "\n Section : " << SectionName
|
|
<< "\n Orc Section : " << getCodeSectionName()
|
|
<< "\n LSDA : 0x" << Twine::utohexstr(getLSDAAddress())
|
|
<< "\n IsSimple : " << IsSimple
|
|
<< "\n IsMultiEntry: " << isMultiEntry()
|
|
<< "\n IsSplit : " << isSplit()
|
|
<< "\n BB Count : " << size();
|
|
|
|
if (HasFixedIndirectBranch)
|
|
OS << "\n HasFixedIndirectBranch : true";
|
|
if (HasUnknownControlFlow)
|
|
OS << "\n Unknown CF : true";
|
|
if (getPersonalityFunction())
|
|
OS << "\n Personality : " << getPersonalityFunction()->getName();
|
|
if (IsFragment)
|
|
OS << "\n IsFragment : true";
|
|
if (isFolded())
|
|
OS << "\n FoldedInto : " << *getFoldedIntoFunction();
|
|
for (BinaryFunction *ParentFragment : ParentFragments)
|
|
OS << "\n Parent : " << *ParentFragment;
|
|
if (!Fragments.empty()) {
|
|
OS << "\n Fragments : ";
|
|
const char *Sep = "";
|
|
for (BinaryFunction *Frag : Fragments) {
|
|
OS << Sep << *Frag;
|
|
Sep = ", ";
|
|
}
|
|
}
|
|
if (hasCFG())
|
|
OS << "\n Hash : " << Twine::utohexstr(computeHash());
|
|
if (isMultiEntry()) {
|
|
OS << "\n Secondary Entry Points : ";
|
|
const char *Sep = "";
|
|
for (const auto &KV : SecondaryEntryPoints) {
|
|
OS << Sep << KV.second->getName();
|
|
Sep = ", ";
|
|
}
|
|
}
|
|
if (FrameInstructions.size())
|
|
OS << "\n CFI Instrs : " << FrameInstructions.size();
|
|
if (BasicBlocksLayout.size()) {
|
|
OS << "\n BB Layout : ";
|
|
const char *Sep = "";
|
|
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
|
|
OS << Sep << BB->getName();
|
|
Sep = ", ";
|
|
}
|
|
}
|
|
if (ImageAddress)
|
|
OS << "\n Image : 0x" << Twine::utohexstr(ImageAddress);
|
|
if (ExecutionCount != COUNT_NO_PROFILE) {
|
|
OS << "\n Exec Count : " << ExecutionCount;
|
|
OS << "\n Profile Acc : " << format("%.1f%%", ProfileMatchRatio * 100.0f);
|
|
}
|
|
|
|
if (opts::PrintDynoStats && !BasicBlocksLayout.empty()) {
|
|
OS << '\n';
|
|
DynoStats dynoStats = getDynoStats(*this);
|
|
OS << dynoStats;
|
|
}
|
|
|
|
OS << "\n}\n";
|
|
|
|
if (opts::PrintDynoStatsOnly || !PrintInstructions || !BC.InstPrinter)
|
|
return;
|
|
|
|
// Offset of the instruction in function.
|
|
uint64_t Offset = 0;
|
|
|
|
if (BasicBlocks.empty() && !Instructions.empty()) {
|
|
// Print before CFG was built.
|
|
for (const std::pair<const uint32_t, MCInst> &II : Instructions) {
|
|
Offset = II.first;
|
|
|
|
// Print label if exists at this offset.
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
if (const MCSymbol *EntrySymbol =
|
|
getSecondaryEntryPointSymbol(LI->second))
|
|
OS << EntrySymbol->getName() << " (Entry Point):\n";
|
|
OS << LI->second->getName() << ":\n";
|
|
}
|
|
|
|
BC.printInstruction(OS, II.second, Offset, this);
|
|
}
|
|
}
|
|
|
|
for (uint32_t I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
|
|
BinaryBasicBlock *BB = BasicBlocksLayout[I];
|
|
if (I != 0 && BB->isCold() != BasicBlocksLayout[I - 1]->isCold())
|
|
OS << "------- HOT-COLD SPLIT POINT -------\n\n";
|
|
|
|
OS << BB->getName() << " (" << BB->size()
|
|
<< " instructions, align : " << BB->getAlignment() << ")\n";
|
|
|
|
if (isEntryPoint(*BB)) {
|
|
if (MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB))
|
|
OS << " Secondary Entry Point: " << EntrySymbol->getName() << '\n';
|
|
else
|
|
OS << " Entry Point\n";
|
|
}
|
|
|
|
if (BB->isLandingPad())
|
|
OS << " Landing Pad\n";
|
|
|
|
uint64_t BBExecCount = BB->getExecutionCount();
|
|
if (hasValidProfile()) {
|
|
OS << " Exec Count : ";
|
|
if (BB->getExecutionCount() != BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
OS << BBExecCount << '\n';
|
|
else
|
|
OS << "<unknown>\n";
|
|
}
|
|
if (BB->getCFIState() >= 0)
|
|
OS << " CFI State : " << BB->getCFIState() << '\n';
|
|
if (opts::EnableBAT) {
|
|
OS << " Input offset: " << Twine::utohexstr(BB->getInputOffset())
|
|
<< "\n";
|
|
}
|
|
if (!BB->pred_empty()) {
|
|
OS << " Predecessors: ";
|
|
const char *Sep = "";
|
|
for (BinaryBasicBlock *Pred : BB->predecessors()) {
|
|
OS << Sep << Pred->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
if (!BB->throw_empty()) {
|
|
OS << " Throwers: ";
|
|
const char *Sep = "";
|
|
for (BinaryBasicBlock *Throw : BB->throwers()) {
|
|
OS << Sep << Throw->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
Offset = alignTo(Offset, BB->getAlignment());
|
|
|
|
// Note: offsets are imprecise since this is happening prior to relaxation.
|
|
Offset = BC.printInstructions(OS, BB->begin(), BB->end(), Offset, this);
|
|
|
|
if (!BB->succ_empty()) {
|
|
OS << " Successors: ";
|
|
// For more than 2 successors, sort them based on frequency.
|
|
std::vector<uint64_t> Indices(BB->succ_size());
|
|
std::iota(Indices.begin(), Indices.end(), 0);
|
|
if (BB->succ_size() > 2 && BB->getKnownExecutionCount()) {
|
|
std::stable_sort(Indices.begin(), Indices.end(),
|
|
[&](const uint64_t A, const uint64_t B) {
|
|
return BB->BranchInfo[B] < BB->BranchInfo[A];
|
|
});
|
|
}
|
|
const char *Sep = "";
|
|
for (unsigned I = 0; I < Indices.size(); ++I) {
|
|
BinaryBasicBlock *Succ = BB->Successors[Indices[I]];
|
|
BinaryBasicBlock::BinaryBranchInfo &BI = BB->BranchInfo[Indices[I]];
|
|
OS << Sep << Succ->getName();
|
|
if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI.MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
|
|
OS << " (mispreds: " << BI.MispredictedCount
|
|
<< ", count: " << BI.Count << ")";
|
|
} else if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
OS << " (inferred count: " << BI.Count << ")";
|
|
}
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
if (!BB->lp_empty()) {
|
|
OS << " Landing Pads: ";
|
|
const char *Sep = "";
|
|
for (BinaryBasicBlock *LP : BB->landing_pads()) {
|
|
OS << Sep << LP->getName();
|
|
if (ExecutionCount != COUNT_NO_PROFILE) {
|
|
OS << " (count: " << LP->getExecutionCount() << ")";
|
|
}
|
|
Sep = ", ";
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
// In CFG_Finalized state we can miscalculate CFI state at exit.
|
|
if (CurrentState == State::CFG) {
|
|
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
|
|
if (CFIStateAtExit >= 0)
|
|
OS << " CFI State: " << CFIStateAtExit << '\n';
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
// Dump new exception ranges for the function.
|
|
if (!CallSites.empty()) {
|
|
OS << "EH table:\n";
|
|
for (const CallSite &CSI : CallSites) {
|
|
OS << " [" << *CSI.Start << ", " << *CSI.End << ") landing pad : ";
|
|
if (CSI.LP)
|
|
OS << *CSI.LP;
|
|
else
|
|
OS << "0";
|
|
OS << ", action : " << CSI.Action << '\n';
|
|
}
|
|
OS << '\n';
|
|
}
|
|
|
|
// Print all jump tables.
|
|
for (const std::pair<const uint64_t, JumpTable *> &JTI : JumpTables)
|
|
JTI.second->print(OS);
|
|
|
|
OS << "DWARF CFI Instructions:\n";
|
|
if (OffsetToCFI.size()) {
|
|
// Pre-buildCFG information
|
|
for (const std::pair<const uint32_t, uint32_t> &Elmt : OffsetToCFI) {
|
|
OS << format(" %08x:\t", Elmt.first);
|
|
assert(Elmt.second < FrameInstructions.size() && "Incorrect CFI offset");
|
|
BinaryContext::printCFI(OS, FrameInstructions[Elmt.second]);
|
|
OS << "\n";
|
|
}
|
|
} else {
|
|
// Post-buildCFG information
|
|
for (uint32_t I = 0, E = FrameInstructions.size(); I != E; ++I) {
|
|
const MCCFIInstruction &CFI = FrameInstructions[I];
|
|
OS << format(" %d:\t", I);
|
|
BinaryContext::printCFI(OS, CFI);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
if (FrameInstructions.empty())
|
|
OS << " <empty>\n";
|
|
|
|
OS << "End of Function \"" << *this << "\"\n\n";
|
|
}
|
|
|
|
void BinaryFunction::printRelocations(raw_ostream &OS, uint64_t Offset,
|
|
uint64_t Size) const {
|
|
const char *Sep = " # Relocs: ";
|
|
|
|
auto RI = Relocations.lower_bound(Offset);
|
|
while (RI != Relocations.end() && RI->first < Offset + Size) {
|
|
OS << Sep << "(R: " << RI->second << ")";
|
|
Sep = ", ";
|
|
++RI;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
std::string mutateDWARFExpressionTargetReg(const MCCFIInstruction &Instr,
|
|
MCPhysReg NewReg) {
|
|
StringRef ExprBytes = Instr.getValues();
|
|
assert(ExprBytes.size() > 1 && "DWARF expression CFI is too short");
|
|
uint8_t Opcode = ExprBytes[0];
|
|
assert((Opcode == dwarf::DW_CFA_expression ||
|
|
Opcode == dwarf::DW_CFA_val_expression) &&
|
|
"invalid DWARF expression CFI");
|
|
const uint8_t *const Start =
|
|
reinterpret_cast<const uint8_t *>(ExprBytes.drop_front(1).data());
|
|
const uint8_t *const End =
|
|
reinterpret_cast<const uint8_t *>(Start + ExprBytes.size() - 1);
|
|
unsigned Size = 0;
|
|
decodeULEB128(Start, &Size, End);
|
|
assert(Size > 0 && "Invalid reg encoding for DWARF expression CFI");
|
|
SmallString<8> Tmp;
|
|
raw_svector_ostream OSE(Tmp);
|
|
encodeULEB128(NewReg, OSE);
|
|
return Twine(ExprBytes.slice(0, 1))
|
|
.concat(OSE.str())
|
|
.concat(ExprBytes.drop_front(1 + Size))
|
|
.str();
|
|
}
|
|
} // namespace
|
|
|
|
void BinaryFunction::mutateCFIRegisterFor(const MCInst &Instr,
|
|
MCPhysReg NewReg) {
|
|
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
|
|
assert(OldCFI && "invalid CFI instr");
|
|
switch (OldCFI->getOperation()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction");
|
|
case MCCFIInstruction::OpDefCfa:
|
|
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, NewReg,
|
|
OldCFI->getOffset()));
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
setCFIFor(Instr, MCCFIInstruction::createDefCfaRegister(nullptr, NewReg));
|
|
break;
|
|
case MCCFIInstruction::OpOffset:
|
|
setCFIFor(Instr, MCCFIInstruction::createOffset(nullptr, NewReg,
|
|
OldCFI->getOffset()));
|
|
break;
|
|
case MCCFIInstruction::OpRegister:
|
|
setCFIFor(Instr, MCCFIInstruction::createRegister(nullptr, NewReg,
|
|
OldCFI->getRegister2()));
|
|
break;
|
|
case MCCFIInstruction::OpSameValue:
|
|
setCFIFor(Instr, MCCFIInstruction::createSameValue(nullptr, NewReg));
|
|
break;
|
|
case MCCFIInstruction::OpEscape:
|
|
setCFIFor(Instr,
|
|
MCCFIInstruction::createEscape(
|
|
nullptr,
|
|
StringRef(mutateDWARFExpressionTargetReg(*OldCFI, NewReg))));
|
|
break;
|
|
case MCCFIInstruction::OpRestore:
|
|
setCFIFor(Instr, MCCFIInstruction::createRestore(nullptr, NewReg));
|
|
break;
|
|
case MCCFIInstruction::OpUndefined:
|
|
setCFIFor(Instr, MCCFIInstruction::createUndefined(nullptr, NewReg));
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MCCFIInstruction *BinaryFunction::mutateCFIOffsetFor(const MCInst &Instr,
|
|
int64_t NewOffset) {
|
|
const MCCFIInstruction *OldCFI = getCFIFor(Instr);
|
|
assert(OldCFI && "invalid CFI instr");
|
|
switch (OldCFI->getOperation()) {
|
|
default:
|
|
llvm_unreachable("Unexpected instruction");
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
setCFIFor(Instr, MCCFIInstruction::cfiDefCfaOffset(nullptr, NewOffset));
|
|
break;
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
setCFIFor(Instr,
|
|
MCCFIInstruction::createAdjustCfaOffset(nullptr, NewOffset));
|
|
break;
|
|
case MCCFIInstruction::OpDefCfa:
|
|
setCFIFor(Instr, MCCFIInstruction::cfiDefCfa(nullptr, OldCFI->getRegister(),
|
|
NewOffset));
|
|
break;
|
|
case MCCFIInstruction::OpOffset:
|
|
setCFIFor(Instr, MCCFIInstruction::createOffset(
|
|
nullptr, OldCFI->getRegister(), NewOffset));
|
|
break;
|
|
}
|
|
return getCFIFor(Instr);
|
|
}
|
|
|
|
IndirectBranchType
|
|
BinaryFunction::processIndirectBranch(MCInst &Instruction, unsigned Size,
|
|
uint64_t Offset,
|
|
uint64_t &TargetAddress) {
|
|
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
|
|
|
|
// The instruction referencing memory used by the branch instruction.
|
|
// It could be the branch instruction itself or one of the instructions
|
|
// setting the value of the register used by the branch.
|
|
MCInst *MemLocInstr;
|
|
|
|
// Address of the table referenced by MemLocInstr. Could be either an
|
|
// array of function pointers, or a jump table.
|
|
uint64_t ArrayStart = 0;
|
|
|
|
unsigned BaseRegNum, IndexRegNum;
|
|
int64_t DispValue;
|
|
const MCExpr *DispExpr;
|
|
|
|
// In AArch, identify the instruction adding the PC-relative offset to
|
|
// jump table entries to correctly decode it.
|
|
MCInst *PCRelBaseInstr;
|
|
uint64_t PCRelAddr = 0;
|
|
|
|
auto Begin = Instructions.begin();
|
|
if (BC.isAArch64()) {
|
|
PreserveNops = BC.HasRelocations;
|
|
// Start at the last label as an approximation of the current basic block.
|
|
// This is a heuristic, since the full set of labels have yet to be
|
|
// determined
|
|
for (auto LI = Labels.rbegin(); LI != Labels.rend(); ++LI) {
|
|
auto II = Instructions.find(LI->first);
|
|
if (II != Instructions.end()) {
|
|
Begin = II;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
IndirectBranchType BranchType = BC.MIB->analyzeIndirectBranch(
|
|
Instruction, Begin, Instructions.end(), PtrSize, MemLocInstr, BaseRegNum,
|
|
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
|
|
|
|
if (BranchType == IndirectBranchType::UNKNOWN && !MemLocInstr)
|
|
return BranchType;
|
|
|
|
if (MemLocInstr != &Instruction)
|
|
IndexRegNum = BC.MIB->getNoRegister();
|
|
|
|
if (BC.isAArch64()) {
|
|
const MCSymbol *Sym = BC.MIB->getTargetSymbol(*PCRelBaseInstr, 1);
|
|
assert(Sym && "Symbol extraction failed");
|
|
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*Sym);
|
|
if (SymValueOrError) {
|
|
PCRelAddr = *SymValueOrError;
|
|
} else {
|
|
for (std::pair<const uint32_t, MCSymbol *> &Elmt : Labels) {
|
|
if (Elmt.second == Sym) {
|
|
PCRelAddr = Elmt.first + getAddress();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
uint64_t InstrAddr = 0;
|
|
for (auto II = Instructions.rbegin(); II != Instructions.rend(); ++II) {
|
|
if (&II->second == PCRelBaseInstr) {
|
|
InstrAddr = II->first + getAddress();
|
|
break;
|
|
}
|
|
}
|
|
assert(InstrAddr != 0 && "instruction not found");
|
|
// We do this to avoid spurious references to code locations outside this
|
|
// function (for example, if the indirect jump lives in the last basic
|
|
// block of the function, it will create a reference to the next function).
|
|
// This replaces a symbol reference with an immediate.
|
|
BC.MIB->replaceMemOperandDisp(*PCRelBaseInstr,
|
|
MCOperand::createImm(PCRelAddr - InstrAddr));
|
|
// FIXME: Disable full jump table processing for AArch64 until we have a
|
|
// proper way of determining the jump table limits.
|
|
return IndirectBranchType::UNKNOWN;
|
|
}
|
|
|
|
// RIP-relative addressing should be converted to symbol form by now
|
|
// in processed instructions (but not in jump).
|
|
if (DispExpr) {
|
|
const MCSymbol *TargetSym;
|
|
uint64_t TargetOffset;
|
|
std::tie(TargetSym, TargetOffset) = BC.MIB->getTargetSymbolInfo(DispExpr);
|
|
ErrorOr<uint64_t> SymValueOrError = BC.getSymbolValue(*TargetSym);
|
|
assert(SymValueOrError && "global symbol needs a value");
|
|
ArrayStart = *SymValueOrError + TargetOffset;
|
|
BaseRegNum = BC.MIB->getNoRegister();
|
|
if (BC.isAArch64()) {
|
|
ArrayStart &= ~0xFFFULL;
|
|
ArrayStart += DispValue & 0xFFFULL;
|
|
}
|
|
} else {
|
|
ArrayStart = static_cast<uint64_t>(DispValue);
|
|
}
|
|
|
|
if (BaseRegNum == BC.MRI->getProgramCounter())
|
|
ArrayStart += getAddress() + Offset + Size;
|
|
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: addressed memory is 0x"
|
|
<< Twine::utohexstr(ArrayStart) << '\n');
|
|
|
|
ErrorOr<BinarySection &> Section = BC.getSectionForAddress(ArrayStart);
|
|
if (!Section) {
|
|
// No section - possibly an absolute address. Since we don't allow
|
|
// internal function addresses to escape the function scope - we
|
|
// consider it a tail call.
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: no section for address 0x"
|
|
<< Twine::utohexstr(ArrayStart) << " referenced from function "
|
|
<< *this << '\n';
|
|
}
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
}
|
|
if (Section->isVirtual()) {
|
|
// The contents are filled at runtime.
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
}
|
|
|
|
if (BranchType == IndirectBranchType::POSSIBLE_FIXED_BRANCH) {
|
|
ErrorOr<uint64_t> Value = BC.getPointerAtAddress(ArrayStart);
|
|
if (!Value)
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
if (!BC.getSectionForAddress(ArrayStart)->isReadOnly())
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
outs() << "BOLT-INFO: fixed indirect branch detected in " << *this
|
|
<< " at 0x" << Twine::utohexstr(getAddress() + Offset)
|
|
<< " referencing data at 0x" << Twine::utohexstr(ArrayStart)
|
|
<< " the destination value is 0x" << Twine::utohexstr(*Value)
|
|
<< '\n';
|
|
|
|
TargetAddress = *Value;
|
|
return BranchType;
|
|
}
|
|
|
|
// Check if there's already a jump table registered at this address.
|
|
MemoryContentsType MemType;
|
|
if (JumpTable *JT = BC.getJumpTableContainingAddress(ArrayStart)) {
|
|
switch (JT->Type) {
|
|
case JumpTable::JTT_NORMAL:
|
|
MemType = MemoryContentsType::POSSIBLE_JUMP_TABLE;
|
|
break;
|
|
case JumpTable::JTT_PIC:
|
|
MemType = MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE;
|
|
break;
|
|
}
|
|
} else {
|
|
MemType = BC.analyzeMemoryAt(ArrayStart, *this);
|
|
}
|
|
|
|
// Check that jump table type in instruction pattern matches memory contents.
|
|
JumpTable::JumpTableType JTType;
|
|
if (BranchType == IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE) {
|
|
if (MemType != MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
|
|
return IndirectBranchType::UNKNOWN;
|
|
JTType = JumpTable::JTT_PIC;
|
|
} else {
|
|
if (MemType == MemoryContentsType::POSSIBLE_PIC_JUMP_TABLE)
|
|
return IndirectBranchType::UNKNOWN;
|
|
|
|
if (MemType == MemoryContentsType::UNKNOWN)
|
|
return IndirectBranchType::POSSIBLE_TAIL_CALL;
|
|
|
|
BranchType = IndirectBranchType::POSSIBLE_JUMP_TABLE;
|
|
JTType = JumpTable::JTT_NORMAL;
|
|
}
|
|
|
|
// Convert the instruction into jump table branch.
|
|
const MCSymbol *JTLabel = BC.getOrCreateJumpTable(*this, ArrayStart, JTType);
|
|
BC.MIB->replaceMemOperandDisp(*MemLocInstr, JTLabel, BC.Ctx.get());
|
|
BC.MIB->setJumpTable(Instruction, ArrayStart, IndexRegNum);
|
|
|
|
JTSites.emplace_back(Offset, ArrayStart);
|
|
|
|
return BranchType;
|
|
}
|
|
|
|
MCSymbol *BinaryFunction::getOrCreateLocalLabel(uint64_t Address,
|
|
bool CreatePastEnd) {
|
|
const uint64_t Offset = Address - getAddress();
|
|
|
|
if ((Offset == getSize()) && CreatePastEnd)
|
|
return getFunctionEndLabel();
|
|
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end())
|
|
return LI->second;
|
|
|
|
// For AArch64, check if this address is part of a constant island.
|
|
if (BC.isAArch64()) {
|
|
if (MCSymbol *IslandSym = getOrCreateIslandAccess(Address))
|
|
return IslandSym;
|
|
}
|
|
|
|
MCSymbol *Label = BC.Ctx->createNamedTempSymbol();
|
|
Labels[Offset] = Label;
|
|
|
|
return Label;
|
|
}
|
|
|
|
ErrorOr<ArrayRef<uint8_t>> BinaryFunction::getData() const {
|
|
BinarySection &Section = *getOriginSection();
|
|
assert(Section.containsRange(getAddress(), getMaxSize()) &&
|
|
"wrong section for function");
|
|
|
|
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
|
|
return std::make_error_code(std::errc::bad_address);
|
|
|
|
StringRef SectionContents = Section.getContents();
|
|
|
|
assert(SectionContents.size() == Section.getSize() &&
|
|
"section size mismatch");
|
|
|
|
// Function offset from the section start.
|
|
uint64_t Offset = getAddress() - Section.getAddress();
|
|
auto *Bytes = reinterpret_cast<const uint8_t *>(SectionContents.data());
|
|
return ArrayRef<uint8_t>(Bytes + Offset, getMaxSize());
|
|
}
|
|
|
|
size_t BinaryFunction::getSizeOfDataInCodeAt(uint64_t Offset) const {
|
|
if (!Islands)
|
|
return 0;
|
|
|
|
if (Islands->DataOffsets.find(Offset) == Islands->DataOffsets.end())
|
|
return 0;
|
|
|
|
auto Iter = Islands->CodeOffsets.upper_bound(Offset);
|
|
if (Iter != Islands->CodeOffsets.end())
|
|
return *Iter - Offset;
|
|
return getSize() - Offset;
|
|
}
|
|
|
|
bool BinaryFunction::isZeroPaddingAt(uint64_t Offset) const {
|
|
ArrayRef<uint8_t> FunctionData = *getData();
|
|
uint64_t EndOfCode = getSize();
|
|
if (Islands) {
|
|
auto Iter = Islands->DataOffsets.upper_bound(Offset);
|
|
if (Iter != Islands->DataOffsets.end())
|
|
EndOfCode = *Iter;
|
|
}
|
|
for (uint64_t I = Offset; I < EndOfCode; ++I)
|
|
if (FunctionData[I] != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BinaryFunction::disassemble() {
|
|
NamedRegionTimer T("disassemble", "Disassemble function", "buildfuncs",
|
|
"Build Binary Functions", opts::TimeBuild);
|
|
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
|
|
assert(ErrorOrFunctionData && "function data is not available");
|
|
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
|
|
assert(FunctionData.size() == getMaxSize() &&
|
|
"function size does not match raw data size");
|
|
|
|
auto &Ctx = BC.Ctx;
|
|
auto &MIB = BC.MIB;
|
|
|
|
// Insert a label at the beginning of the function. This will be our first
|
|
// basic block.
|
|
Labels[0] = Ctx->createNamedTempSymbol("BB0");
|
|
|
|
auto handlePCRelOperand = [&](MCInst &Instruction, uint64_t Address,
|
|
uint64_t Size) {
|
|
uint64_t TargetAddress = 0;
|
|
if (!MIB->evaluateMemOperandTarget(Instruction, TargetAddress, Address,
|
|
Size)) {
|
|
errs() << "BOLT-ERROR: PC-relative operand can't be evaluated:\n";
|
|
BC.InstPrinter->printInst(&Instruction, 0, "", *BC.STI, errs());
|
|
errs() << '\n';
|
|
Instruction.dump_pretty(errs(), BC.InstPrinter.get());
|
|
errs() << '\n';
|
|
errs() << "BOLT-ERROR: cannot handle PC-relative operand at 0x"
|
|
<< Twine::utohexstr(Address) << ". Skipping function " << *this
|
|
<< ".\n";
|
|
if (BC.HasRelocations)
|
|
exit(1);
|
|
IsSimple = false;
|
|
return;
|
|
}
|
|
if (TargetAddress == 0 && opts::Verbosity >= 1) {
|
|
outs() << "BOLT-INFO: PC-relative operand is zero in function " << *this
|
|
<< '\n';
|
|
}
|
|
|
|
const MCSymbol *TargetSymbol;
|
|
uint64_t TargetOffset;
|
|
std::tie(TargetSymbol, TargetOffset) =
|
|
BC.handleAddressRef(TargetAddress, *this, /*IsPCRel*/ true);
|
|
const MCExpr *Expr = MCSymbolRefExpr::create(
|
|
TargetSymbol, MCSymbolRefExpr::VK_None, *BC.Ctx);
|
|
if (TargetOffset) {
|
|
const MCConstantExpr *Offset =
|
|
MCConstantExpr::create(TargetOffset, *BC.Ctx);
|
|
Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx);
|
|
}
|
|
MIB->replaceMemOperandDisp(Instruction,
|
|
MCOperand::createExpr(BC.MIB->getTargetExprFor(
|
|
Instruction, Expr, *BC.Ctx, 0)));
|
|
};
|
|
|
|
// Used to fix the target of linker-generated AArch64 stubs with no relocation
|
|
// info
|
|
auto fixStubTarget = [&](MCInst &LoadLowBits, MCInst &LoadHiBits,
|
|
uint64_t Target) {
|
|
const MCSymbol *TargetSymbol;
|
|
uint64_t Addend = 0;
|
|
std::tie(TargetSymbol, Addend) = BC.handleAddressRef(Target, *this, true);
|
|
|
|
int64_t Val;
|
|
MIB->replaceImmWithSymbolRef(LoadHiBits, TargetSymbol, Addend, Ctx.get(),
|
|
Val, ELF::R_AARCH64_ADR_PREL_PG_HI21);
|
|
MIB->replaceImmWithSymbolRef(LoadLowBits, TargetSymbol, Addend, Ctx.get(),
|
|
Val, ELF::R_AARCH64_ADD_ABS_LO12_NC);
|
|
};
|
|
|
|
auto handleExternalReference = [&](MCInst &Instruction, uint64_t Size,
|
|
uint64_t Offset, uint64_t TargetAddress,
|
|
bool &IsCall) -> MCSymbol * {
|
|
const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
|
|
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
|
|
MCSymbol *TargetSymbol = nullptr;
|
|
InterproceduralReferences.insert(TargetAddress);
|
|
if (opts::Verbosity >= 2 && !IsCall && Size == 2 && !BC.HasRelocations) {
|
|
errs() << "BOLT-WARNING: relaxed tail call detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << " in function " << *this
|
|
<< ". Code size will be increased.\n";
|
|
}
|
|
|
|
assert(!MIB->isTailCall(Instruction) &&
|
|
"synthetic tail call instruction found");
|
|
|
|
// This is a call regardless of the opcode.
|
|
// Assign proper opcode for tail calls, so that they could be
|
|
// treated as calls.
|
|
if (!IsCall) {
|
|
if (!MIB->convertJmpToTailCall(Instruction)) {
|
|
assert(IsCondBranch && "unknown tail call instruction");
|
|
if (opts::Verbosity >= 2) {
|
|
errs() << "BOLT-WARNING: conditional tail call detected in "
|
|
<< "function " << *this << " at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << ".\n";
|
|
}
|
|
}
|
|
IsCall = true;
|
|
}
|
|
|
|
TargetSymbol = BC.getOrCreateGlobalSymbol(TargetAddress, "FUNCat");
|
|
if (opts::Verbosity >= 2 && TargetAddress == 0) {
|
|
// We actually see calls to address 0 in presence of weak
|
|
// symbols originating from libraries. This code is never meant
|
|
// to be executed.
|
|
outs() << "BOLT-INFO: Function " << *this
|
|
<< " has a call to address zero.\n";
|
|
}
|
|
|
|
return TargetSymbol;
|
|
};
|
|
|
|
auto handleIndirectBranch = [&](MCInst &Instruction, uint64_t Size,
|
|
uint64_t Offset) {
|
|
uint64_t IndirectTarget = 0;
|
|
IndirectBranchType Result =
|
|
processIndirectBranch(Instruction, Size, Offset, IndirectTarget);
|
|
switch (Result) {
|
|
default:
|
|
llvm_unreachable("unexpected result");
|
|
case IndirectBranchType::POSSIBLE_TAIL_CALL: {
|
|
bool Result = MIB->convertJmpToTailCall(Instruction);
|
|
(void)Result;
|
|
assert(Result);
|
|
break;
|
|
}
|
|
case IndirectBranchType::POSSIBLE_JUMP_TABLE:
|
|
case IndirectBranchType::POSSIBLE_PIC_JUMP_TABLE:
|
|
if (opts::JumpTables == JTS_NONE)
|
|
IsSimple = false;
|
|
break;
|
|
case IndirectBranchType::POSSIBLE_FIXED_BRANCH: {
|
|
if (containsAddress(IndirectTarget)) {
|
|
const MCSymbol *TargetSymbol = getOrCreateLocalLabel(IndirectTarget);
|
|
Instruction.clear();
|
|
MIB->createUncondBranch(Instruction, TargetSymbol, BC.Ctx.get());
|
|
TakenBranches.emplace_back(Offset, IndirectTarget - getAddress());
|
|
HasFixedIndirectBranch = true;
|
|
} else {
|
|
MIB->convertJmpToTailCall(Instruction);
|
|
InterproceduralReferences.insert(IndirectTarget);
|
|
}
|
|
break;
|
|
}
|
|
case IndirectBranchType::UNKNOWN:
|
|
// Keep processing. We'll do more checks and fixes in
|
|
// postProcessIndirectBranches().
|
|
UnknownIndirectBranchOffsets.emplace(Offset);
|
|
break;
|
|
}
|
|
};
|
|
|
|
// Check for linker veneers, which lack relocations and need manual
|
|
// adjustments.
|
|
auto handleAArch64IndirectCall = [&](MCInst &Instruction, uint64_t Offset) {
|
|
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
|
|
MCInst *TargetHiBits, *TargetLowBits;
|
|
uint64_t TargetAddress;
|
|
if (MIB->matchLinkerVeneer(Instructions.begin(), Instructions.end(),
|
|
AbsoluteInstrAddr, Instruction, TargetHiBits,
|
|
TargetLowBits, TargetAddress)) {
|
|
MIB->addAnnotation(Instruction, "AArch64Veneer", true);
|
|
|
|
uint8_t Counter = 0;
|
|
for (auto It = std::prev(Instructions.end()); Counter != 2;
|
|
--It, ++Counter) {
|
|
MIB->addAnnotation(It->second, "AArch64Veneer", true);
|
|
}
|
|
|
|
fixStubTarget(*TargetLowBits, *TargetHiBits, TargetAddress);
|
|
}
|
|
};
|
|
|
|
uint64_t Size = 0; // instruction size
|
|
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
|
|
MCInst Instruction;
|
|
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
|
|
|
|
// Check for data inside code and ignore it
|
|
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
|
|
Size = DataInCodeSize;
|
|
continue;
|
|
}
|
|
|
|
if (!BC.DisAsm->getInstruction(Instruction, Size,
|
|
FunctionData.slice(Offset),
|
|
AbsoluteInstrAddr, nulls())) {
|
|
// Functions with "soft" boundaries, e.g. coming from assembly source,
|
|
// can have 0-byte padding at the end.
|
|
if (isZeroPaddingAt(Offset))
|
|
break;
|
|
|
|
errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
|
|
<< Twine::utohexstr(Offset) << " (address 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function " << *this
|
|
<< '\n';
|
|
// Some AVX-512 instructions could not be disassembled at all.
|
|
if (BC.HasRelocations && opts::TrapOnAVX512 && BC.isX86()) {
|
|
setTrapOnEntry();
|
|
BC.TrappedFunctions.push_back(this);
|
|
} else {
|
|
setIgnored();
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// Check integrity of LLVM assembler/disassembler.
|
|
if (opts::CheckEncoding && !BC.MIB->isBranch(Instruction) &&
|
|
!BC.MIB->isCall(Instruction) && !BC.MIB->isNoop(Instruction)) {
|
|
if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
|
|
errs() << "BOLT-WARNING: mismatching LLVM encoding detected in "
|
|
<< "function " << *this << " for instruction :\n";
|
|
BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
|
|
errs() << '\n';
|
|
}
|
|
}
|
|
|
|
// Special handling for AVX-512 instructions.
|
|
if (MIB->hasEVEXEncoding(Instruction)) {
|
|
if (BC.HasRelocations && opts::TrapOnAVX512) {
|
|
setTrapOnEntry();
|
|
BC.TrappedFunctions.push_back(this);
|
|
break;
|
|
}
|
|
|
|
// Check if our disassembly is correct and matches the assembler output.
|
|
if (!BC.validateEncoding(Instruction, FunctionData.slice(Offset, Size))) {
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: internal assembler/disassembler error "
|
|
"detected for AVX512 instruction:\n";
|
|
BC.printInstruction(errs(), Instruction, AbsoluteInstrAddr);
|
|
errs() << " in function " << *this << '\n';
|
|
}
|
|
|
|
setIgnored();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MIB->isBranch(Instruction) || MIB->isCall(Instruction)) {
|
|
uint64_t TargetAddress = 0;
|
|
if (MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
|
|
TargetAddress)) {
|
|
// Check if the target is within the same function. Otherwise it's
|
|
// a call, possibly a tail call.
|
|
//
|
|
// If the target *is* the function address it could be either a branch
|
|
// or a recursive call.
|
|
bool IsCall = MIB->isCall(Instruction);
|
|
const bool IsCondBranch = MIB->isConditionalBranch(Instruction);
|
|
MCSymbol *TargetSymbol = nullptr;
|
|
|
|
if (BC.MIB->isUnsupportedBranch(Instruction.getOpcode())) {
|
|
setIgnored();
|
|
if (BinaryFunction *TargetFunc =
|
|
BC.getBinaryFunctionContainingAddress(TargetAddress))
|
|
TargetFunc->setIgnored();
|
|
}
|
|
|
|
if (IsCall && containsAddress(TargetAddress)) {
|
|
if (TargetAddress == getAddress()) {
|
|
// Recursive call.
|
|
TargetSymbol = getSymbol();
|
|
} else {
|
|
if (BC.isX86()) {
|
|
// Dangerous old-style x86 PIC code. We may need to freeze this
|
|
// function, so preserve the function as is for now.
|
|
PreserveNops = true;
|
|
} else {
|
|
errs() << "BOLT-WARNING: internal call detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << " in function "
|
|
<< *this << ". Skipping.\n";
|
|
IsSimple = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!TargetSymbol) {
|
|
// Create either local label or external symbol.
|
|
if (containsAddress(TargetAddress)) {
|
|
TargetSymbol = getOrCreateLocalLabel(TargetAddress);
|
|
} else {
|
|
if (TargetAddress == getAddress() + getSize() &&
|
|
TargetAddress < getAddress() + getMaxSize()) {
|
|
// Result of __builtin_unreachable().
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: jump past end detected at 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr)
|
|
<< " in function " << *this
|
|
<< " : replacing with nop.\n");
|
|
BC.MIB->createNoop(Instruction);
|
|
if (IsCondBranch) {
|
|
// Register branch offset for profile validation.
|
|
IgnoredBranches.emplace_back(Offset, Offset + Size);
|
|
}
|
|
goto add_instruction;
|
|
}
|
|
// May update Instruction and IsCall
|
|
TargetSymbol = handleExternalReference(Instruction, Size, Offset,
|
|
TargetAddress, IsCall);
|
|
}
|
|
}
|
|
|
|
if (!IsCall) {
|
|
// Add taken branch info.
|
|
TakenBranches.emplace_back(Offset, TargetAddress - getAddress());
|
|
}
|
|
BC.MIB->replaceBranchTarget(Instruction, TargetSymbol, &*Ctx);
|
|
|
|
// Mark CTC.
|
|
if (IsCondBranch && IsCall)
|
|
MIB->setConditionalTailCall(Instruction, TargetAddress);
|
|
} else {
|
|
// Could not evaluate branch. Should be an indirect call or an
|
|
// indirect branch. Bail out on the latter case.
|
|
if (MIB->isIndirectBranch(Instruction))
|
|
handleIndirectBranch(Instruction, Size, Offset);
|
|
// Indirect call. We only need to fix it if the operand is RIP-relative.
|
|
if (IsSimple && MIB->hasPCRelOperand(Instruction))
|
|
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
|
|
|
|
if (BC.isAArch64())
|
|
handleAArch64IndirectCall(Instruction, Offset);
|
|
}
|
|
} else {
|
|
// Check if there's a relocation associated with this instruction.
|
|
bool UsedReloc = false;
|
|
for (auto Itr = Relocations.lower_bound(Offset),
|
|
ItrE = Relocations.lower_bound(Offset + Size);
|
|
Itr != ItrE; ++Itr) {
|
|
const Relocation &Relocation = Itr->second;
|
|
uint64_t SymbolValue = Relocation.Value - Relocation.Addend;
|
|
if (Relocation.isPCRelative())
|
|
SymbolValue += getAddress() + Relocation.Offset;
|
|
|
|
// Process reference to the symbol.
|
|
if (BC.isX86())
|
|
BC.handleAddressRef(SymbolValue, *this, Relocation.isPCRelative());
|
|
|
|
if (BC.isAArch64() || !Relocation.isPCRelative()) {
|
|
int64_t Value = Relocation.Value;
|
|
const bool Result = BC.MIB->replaceImmWithSymbolRef(
|
|
Instruction, Relocation.Symbol, Relocation.Addend, Ctx.get(),
|
|
Value, Relocation.Type);
|
|
(void)Result;
|
|
assert(Result && "cannot replace immediate with relocation");
|
|
|
|
if (BC.isX86()) {
|
|
// Make sure we replaced the correct immediate (instruction
|
|
// can have multiple immediate operands).
|
|
assert(
|
|
truncateToSize(static_cast<uint64_t>(Value),
|
|
Relocation::getSizeForType(Relocation.Type)) ==
|
|
truncateToSize(Relocation.Value, Relocation::getSizeForType(
|
|
Relocation.Type)) &&
|
|
"immediate value mismatch in function");
|
|
} else if (BC.isAArch64()) {
|
|
// For aarch, if we replaced an immediate with a symbol from a
|
|
// relocation, we mark it so we do not try to further process a
|
|
// pc-relative operand. All we need is the symbol.
|
|
UsedReloc = true;
|
|
}
|
|
} else {
|
|
// Check if the relocation matches memop's Disp.
|
|
uint64_t TargetAddress;
|
|
if (!BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
|
|
AbsoluteInstrAddr, Size)) {
|
|
errs() << "BOLT-ERROR: PC-relative operand can't be evaluated\n";
|
|
exit(1);
|
|
}
|
|
assert(TargetAddress == Relocation.Value + AbsoluteInstrAddr + Size &&
|
|
"Immediate value mismatch detected.");
|
|
|
|
const MCExpr *Expr = MCSymbolRefExpr::create(
|
|
Relocation.Symbol, MCSymbolRefExpr::VK_None, *BC.Ctx);
|
|
// Real addend for pc-relative targets is adjusted with a delta
|
|
// from relocation placement to the next instruction.
|
|
const uint64_t TargetAddend =
|
|
Relocation.Addend + Offset + Size - Relocation.Offset;
|
|
if (TargetAddend) {
|
|
const MCConstantExpr *Offset =
|
|
MCConstantExpr::create(TargetAddend, *BC.Ctx);
|
|
Expr = MCBinaryExpr::createAdd(Expr, Offset, *BC.Ctx);
|
|
}
|
|
BC.MIB->replaceMemOperandDisp(
|
|
Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor(
|
|
Instruction, Expr, *BC.Ctx, 0)));
|
|
UsedReloc = true;
|
|
}
|
|
}
|
|
|
|
if (MIB->hasPCRelOperand(Instruction) && !UsedReloc)
|
|
handlePCRelOperand(Instruction, AbsoluteInstrAddr, Size);
|
|
}
|
|
|
|
add_instruction:
|
|
if (getDWARFLineTable()) {
|
|
Instruction.setLoc(findDebugLineInformationForInstructionAt(
|
|
AbsoluteInstrAddr, getDWARFUnit(), getDWARFLineTable()));
|
|
}
|
|
|
|
// Record offset of the instruction for profile matching.
|
|
if (BC.keepOffsetForInstruction(Instruction))
|
|
MIB->setOffset(Instruction, static_cast<uint32_t>(Offset));
|
|
|
|
if (BC.MIB->isNoop(Instruction)) {
|
|
// NOTE: disassembly loses the correct size information for noops.
|
|
// E.g. nopw 0x0(%rax,%rax,1) is 9 bytes, but re-encoded it's only
|
|
// 5 bytes. Preserve the size info using annotations.
|
|
MIB->addAnnotation(Instruction, "Size", static_cast<uint32_t>(Size));
|
|
}
|
|
|
|
addInstruction(Offset, std::move(Instruction));
|
|
}
|
|
|
|
clearList(Relocations);
|
|
|
|
if (!IsSimple) {
|
|
clearList(Instructions);
|
|
return false;
|
|
}
|
|
|
|
updateState(State::Disassembled);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BinaryFunction::scanExternalRefs() {
|
|
bool Success = true;
|
|
bool DisassemblyFailed = false;
|
|
|
|
// Ignore pseudo functions.
|
|
if (isPseudo())
|
|
return Success;
|
|
|
|
if (opts::NoScan) {
|
|
clearList(Relocations);
|
|
clearList(ExternallyReferencedOffsets);
|
|
|
|
return false;
|
|
}
|
|
|
|
// List of external references for this function.
|
|
std::vector<Relocation> FunctionRelocations;
|
|
|
|
static BinaryContext::IndependentCodeEmitter Emitter =
|
|
BC.createIndependentMCCodeEmitter();
|
|
|
|
ErrorOr<ArrayRef<uint8_t>> ErrorOrFunctionData = getData();
|
|
assert(ErrorOrFunctionData && "function data is not available");
|
|
ArrayRef<uint8_t> FunctionData = *ErrorOrFunctionData;
|
|
assert(FunctionData.size() == getMaxSize() &&
|
|
"function size does not match raw data size");
|
|
|
|
uint64_t Size = 0; // instruction size
|
|
for (uint64_t Offset = 0; Offset < getSize(); Offset += Size) {
|
|
// Check for data inside code and ignore it
|
|
if (const size_t DataInCodeSize = getSizeOfDataInCodeAt(Offset)) {
|
|
Size = DataInCodeSize;
|
|
continue;
|
|
}
|
|
|
|
const uint64_t AbsoluteInstrAddr = getAddress() + Offset;
|
|
MCInst Instruction;
|
|
if (!BC.DisAsm->getInstruction(Instruction, Size,
|
|
FunctionData.slice(Offset),
|
|
AbsoluteInstrAddr, nulls())) {
|
|
if (opts::Verbosity >= 1 && !isZeroPaddingAt(Offset)) {
|
|
errs() << "BOLT-WARNING: unable to disassemble instruction at offset 0x"
|
|
<< Twine::utohexstr(Offset) << " (address 0x"
|
|
<< Twine::utohexstr(AbsoluteInstrAddr) << ") in function "
|
|
<< *this << '\n';
|
|
}
|
|
Success = false;
|
|
DisassemblyFailed = true;
|
|
break;
|
|
}
|
|
|
|
// Return true if we can skip handling the Target function reference.
|
|
auto ignoreFunctionRef = [&](const BinaryFunction &Target) {
|
|
if (&Target == this)
|
|
return true;
|
|
|
|
// Note that later we may decide not to emit Target function. In that
|
|
// case, we conservatively create references that will be ignored or
|
|
// resolved to the same function.
|
|
if (!BC.shouldEmit(Target))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
// Return true if we can ignore reference to the symbol.
|
|
auto ignoreReference = [&](const MCSymbol *TargetSymbol) {
|
|
if (!TargetSymbol)
|
|
return true;
|
|
|
|
if (BC.forceSymbolRelocations(TargetSymbol->getName()))
|
|
return false;
|
|
|
|
BinaryFunction *TargetFunction = BC.getFunctionForSymbol(TargetSymbol);
|
|
if (!TargetFunction)
|
|
return true;
|
|
|
|
return ignoreFunctionRef(*TargetFunction);
|
|
};
|
|
|
|
// Detect if the instruction references an address.
|
|
// Without relocations, we can only trust PC-relative address modes.
|
|
uint64_t TargetAddress = 0;
|
|
bool IsPCRel = false;
|
|
bool IsBranch = false;
|
|
if (BC.MIB->hasPCRelOperand(Instruction)) {
|
|
if (BC.MIB->evaluateMemOperandTarget(Instruction, TargetAddress,
|
|
AbsoluteInstrAddr, Size)) {
|
|
IsPCRel = true;
|
|
}
|
|
} else if (BC.MIB->isCall(Instruction) || BC.MIB->isBranch(Instruction)) {
|
|
if (BC.MIB->evaluateBranch(Instruction, AbsoluteInstrAddr, Size,
|
|
TargetAddress)) {
|
|
IsBranch = true;
|
|
}
|
|
}
|
|
|
|
MCSymbol *TargetSymbol = nullptr;
|
|
|
|
// Create an entry point at reference address if needed.
|
|
BinaryFunction *TargetFunction =
|
|
BC.getBinaryFunctionContainingAddress(TargetAddress);
|
|
if (TargetFunction && !ignoreFunctionRef(*TargetFunction)) {
|
|
const uint64_t FunctionOffset =
|
|
TargetAddress - TargetFunction->getAddress();
|
|
TargetSymbol = FunctionOffset
|
|
? TargetFunction->addEntryPointAtOffset(FunctionOffset)
|
|
: TargetFunction->getSymbol();
|
|
}
|
|
|
|
// Can't find more references and not creating relocations.
|
|
if (!BC.HasRelocations)
|
|
continue;
|
|
|
|
// Create a relocation against the TargetSymbol as the symbol might get
|
|
// moved.
|
|
if (TargetSymbol) {
|
|
if (IsBranch) {
|
|
BC.MIB->replaceBranchTarget(Instruction, TargetSymbol,
|
|
Emitter.LocalCtx.get());
|
|
} else if (IsPCRel) {
|
|
const MCExpr *Expr = MCSymbolRefExpr::create(
|
|
TargetSymbol, MCSymbolRefExpr::VK_None, *Emitter.LocalCtx.get());
|
|
BC.MIB->replaceMemOperandDisp(
|
|
Instruction, MCOperand::createExpr(BC.MIB->getTargetExprFor(
|
|
Instruction, Expr, *Emitter.LocalCtx.get(), 0)));
|
|
}
|
|
}
|
|
|
|
// Create more relocations based on input file relocations.
|
|
bool HasRel = false;
|
|
for (auto Itr = Relocations.lower_bound(Offset),
|
|
ItrE = Relocations.lower_bound(Offset + Size);
|
|
Itr != ItrE; ++Itr) {
|
|
Relocation &Relocation = Itr->second;
|
|
if (Relocation.isPCRelative() && BC.isX86())
|
|
continue;
|
|
if (ignoreReference(Relocation.Symbol))
|
|
continue;
|
|
|
|
int64_t Value = Relocation.Value;
|
|
const bool Result = BC.MIB->replaceImmWithSymbolRef(
|
|
Instruction, Relocation.Symbol, Relocation.Addend,
|
|
Emitter.LocalCtx.get(), Value, Relocation.Type);
|
|
(void)Result;
|
|
assert(Result && "cannot replace immediate with relocation");
|
|
|
|
HasRel = true;
|
|
}
|
|
|
|
if (!TargetSymbol && !HasRel)
|
|
continue;
|
|
|
|
// Emit the instruction using temp emitter and generate relocations.
|
|
SmallString<256> Code;
|
|
SmallVector<MCFixup, 4> Fixups;
|
|
raw_svector_ostream VecOS(Code);
|
|
Emitter.MCE->encodeInstruction(Instruction, VecOS, Fixups, *BC.STI);
|
|
|
|
// Create relocation for every fixup.
|
|
for (const MCFixup &Fixup : Fixups) {
|
|
Optional<Relocation> Rel = BC.MIB->createRelocation(Fixup, *BC.MAB);
|
|
if (!Rel) {
|
|
Success = false;
|
|
continue;
|
|
}
|
|
|
|
if (Relocation::getSizeForType(Rel->Type) < 4) {
|
|
// If the instruction uses a short form, then we might not be able
|
|
// to handle the rewrite without relaxation, and hence cannot reliably
|
|
// create an external reference relocation.
|
|
Success = false;
|
|
continue;
|
|
}
|
|
Rel->Offset += getAddress() - getOriginSection()->getAddress() + Offset;
|
|
FunctionRelocations.push_back(*Rel);
|
|
}
|
|
|
|
if (!Success)
|
|
break;
|
|
}
|
|
|
|
// Add relocations unless disassembly failed for this function.
|
|
if (!DisassemblyFailed)
|
|
for (Relocation &Rel : FunctionRelocations)
|
|
getOriginSection()->addPendingRelocation(Rel);
|
|
|
|
// Inform BinaryContext that this function symbols will not be defined and
|
|
// relocations should not be created against them.
|
|
if (BC.HasRelocations) {
|
|
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
|
|
BC.UndefinedSymbols.insert(LI.second);
|
|
if (FunctionEndLabel)
|
|
BC.UndefinedSymbols.insert(FunctionEndLabel);
|
|
}
|
|
|
|
clearList(Relocations);
|
|
clearList(ExternallyReferencedOffsets);
|
|
|
|
if (Success && BC.HasRelocations)
|
|
HasExternalRefRelocations = true;
|
|
|
|
if (opts::Verbosity >= 1 && !Success)
|
|
outs() << "BOLT-INFO: failed to scan refs for " << *this << '\n';
|
|
|
|
return Success;
|
|
}
|
|
|
|
void BinaryFunction::postProcessEntryPoints() {
|
|
if (!isSimple())
|
|
return;
|
|
|
|
for (auto &KV : Labels) {
|
|
MCSymbol *Label = KV.second;
|
|
if (!getSecondaryEntryPointSymbol(Label))
|
|
continue;
|
|
|
|
// In non-relocation mode there's potentially an external undetectable
|
|
// reference to the entry point and hence we cannot move this entry
|
|
// point. Optimizing without moving could be difficult.
|
|
if (!BC.HasRelocations)
|
|
setSimple(false);
|
|
|
|
const uint32_t Offset = KV.first;
|
|
|
|
// If we are at Offset 0 and there is no instruction associated with it,
|
|
// this means this is an empty function. Just ignore. If we find an
|
|
// instruction at this offset, this entry point is valid.
|
|
if (!Offset || getInstructionAtOffset(Offset))
|
|
continue;
|
|
|
|
// On AArch64 there are legitimate reasons to have references past the
|
|
// end of the function, e.g. jump tables.
|
|
if (BC.isAArch64() && Offset == getSize())
|
|
continue;
|
|
|
|
errs() << "BOLT-WARNING: reference in the middle of instruction "
|
|
"detected in function "
|
|
<< *this << " at offset 0x" << Twine::utohexstr(Offset) << '\n';
|
|
if (BC.HasRelocations)
|
|
setIgnored();
|
|
setSimple(false);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::postProcessJumpTables() {
|
|
// Create labels for all entries.
|
|
for (auto &JTI : JumpTables) {
|
|
JumpTable &JT = *JTI.second;
|
|
if (JT.Type == JumpTable::JTT_PIC && opts::JumpTables == JTS_BASIC) {
|
|
opts::JumpTables = JTS_MOVE;
|
|
outs() << "BOLT-INFO: forcing -jump-tables=move as PIC jump table was "
|
|
"detected in function "
|
|
<< *this << '\n';
|
|
}
|
|
for (unsigned I = 0; I < JT.OffsetEntries.size(); ++I) {
|
|
MCSymbol *Label =
|
|
getOrCreateLocalLabel(getAddress() + JT.OffsetEntries[I],
|
|
/*CreatePastEnd*/ true);
|
|
JT.Entries.push_back(Label);
|
|
}
|
|
|
|
const uint64_t BDSize =
|
|
BC.getBinaryDataAtAddress(JT.getAddress())->getSize();
|
|
if (!BDSize) {
|
|
BC.setBinaryDataSize(JT.getAddress(), JT.getSize());
|
|
} else {
|
|
assert(BDSize >= JT.getSize() &&
|
|
"jump table cannot be larger than the containing object");
|
|
}
|
|
}
|
|
|
|
// Add TakenBranches from JumpTables.
|
|
//
|
|
// We want to do it after initial processing since we don't know jump tables'
|
|
// boundaries until we process them all.
|
|
for (auto &JTSite : JTSites) {
|
|
const uint64_t JTSiteOffset = JTSite.first;
|
|
const uint64_t JTAddress = JTSite.second;
|
|
const JumpTable *JT = getJumpTableContainingAddress(JTAddress);
|
|
assert(JT && "cannot find jump table for address");
|
|
|
|
uint64_t EntryOffset = JTAddress - JT->getAddress();
|
|
while (EntryOffset < JT->getSize()) {
|
|
uint64_t TargetOffset = JT->OffsetEntries[EntryOffset / JT->EntrySize];
|
|
if (TargetOffset < getSize()) {
|
|
TakenBranches.emplace_back(JTSiteOffset, TargetOffset);
|
|
|
|
if (opts::StrictMode)
|
|
registerReferencedOffset(TargetOffset);
|
|
}
|
|
|
|
EntryOffset += JT->EntrySize;
|
|
|
|
// A label at the next entry means the end of this jump table.
|
|
if (JT->Labels.count(EntryOffset))
|
|
break;
|
|
}
|
|
}
|
|
clearList(JTSites);
|
|
|
|
// Free memory used by jump table offsets.
|
|
for (auto &JTI : JumpTables) {
|
|
JumpTable &JT = *JTI.second;
|
|
clearList(JT.OffsetEntries);
|
|
}
|
|
|
|
// Conservatively populate all possible destinations for unknown indirect
|
|
// branches.
|
|
if (opts::StrictMode && hasInternalReference()) {
|
|
for (uint64_t Offset : UnknownIndirectBranchOffsets) {
|
|
for (uint64_t PossibleDestination : ExternallyReferencedOffsets) {
|
|
// Ignore __builtin_unreachable().
|
|
if (PossibleDestination == getSize())
|
|
continue;
|
|
TakenBranches.emplace_back(Offset, PossibleDestination);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove duplicates branches. We can get a bunch of them from jump tables.
|
|
// Without doing jump table value profiling we don't have use for extra
|
|
// (duplicate) branches.
|
|
std::sort(TakenBranches.begin(), TakenBranches.end());
|
|
auto NewEnd = std::unique(TakenBranches.begin(), TakenBranches.end());
|
|
TakenBranches.erase(NewEnd, TakenBranches.end());
|
|
}
|
|
|
|
bool BinaryFunction::postProcessIndirectBranches(
|
|
MCPlusBuilder::AllocatorIdTy AllocId) {
|
|
auto addUnknownControlFlow = [&](BinaryBasicBlock &BB) {
|
|
HasUnknownControlFlow = true;
|
|
BB.removeAllSuccessors();
|
|
for (uint64_t PossibleDestination : ExternallyReferencedOffsets)
|
|
if (BinaryBasicBlock *SuccBB = getBasicBlockAtOffset(PossibleDestination))
|
|
BB.addSuccessor(SuccBB);
|
|
};
|
|
|
|
uint64_t NumIndirectJumps = 0;
|
|
MCInst *LastIndirectJump = nullptr;
|
|
BinaryBasicBlock *LastIndirectJumpBB = nullptr;
|
|
uint64_t LastJT = 0;
|
|
uint16_t LastJTIndexReg = BC.MIB->getNoRegister();
|
|
for (BinaryBasicBlock *BB : layout()) {
|
|
for (MCInst &Instr : *BB) {
|
|
if (!BC.MIB->isIndirectBranch(Instr))
|
|
continue;
|
|
|
|
// If there's an indirect branch in a single-block function -
|
|
// it must be a tail call.
|
|
if (layout_size() == 1) {
|
|
BC.MIB->convertJmpToTailCall(Instr);
|
|
return true;
|
|
}
|
|
|
|
++NumIndirectJumps;
|
|
|
|
if (opts::StrictMode && !hasInternalReference()) {
|
|
BC.MIB->convertJmpToTailCall(Instr);
|
|
break;
|
|
}
|
|
|
|
// Validate the tail call or jump table assumptions now that we know
|
|
// basic block boundaries.
|
|
if (BC.MIB->isTailCall(Instr) || BC.MIB->getJumpTable(Instr)) {
|
|
const unsigned PtrSize = BC.AsmInfo->getCodePointerSize();
|
|
MCInst *MemLocInstr;
|
|
unsigned BaseRegNum, IndexRegNum;
|
|
int64_t DispValue;
|
|
const MCExpr *DispExpr;
|
|
MCInst *PCRelBaseInstr;
|
|
IndirectBranchType Type = BC.MIB->analyzeIndirectBranch(
|
|
Instr, BB->begin(), BB->end(), PtrSize, MemLocInstr, BaseRegNum,
|
|
IndexRegNum, DispValue, DispExpr, PCRelBaseInstr);
|
|
if (Type != IndirectBranchType::UNKNOWN || MemLocInstr != nullptr)
|
|
continue;
|
|
|
|
if (!opts::StrictMode)
|
|
return false;
|
|
|
|
if (BC.MIB->isTailCall(Instr)) {
|
|
BC.MIB->convertTailCallToJmp(Instr);
|
|
} else {
|
|
LastIndirectJump = &Instr;
|
|
LastIndirectJumpBB = BB;
|
|
LastJT = BC.MIB->getJumpTable(Instr);
|
|
LastJTIndexReg = BC.MIB->getJumpTableIndexReg(Instr);
|
|
BC.MIB->unsetJumpTable(Instr);
|
|
|
|
JumpTable *JT = BC.getJumpTableContainingAddress(LastJT);
|
|
if (JT->Type == JumpTable::JTT_NORMAL) {
|
|
// Invalidating the jump table may also invalidate other jump table
|
|
// boundaries. Until we have/need a support for this, mark the
|
|
// function as non-simple.
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: rejected jump table reference"
|
|
<< JT->getName() << " in " << *this << '\n');
|
|
return false;
|
|
}
|
|
}
|
|
|
|
addUnknownControlFlow(*BB);
|
|
continue;
|
|
}
|
|
|
|
// If this block contains an epilogue code and has an indirect branch,
|
|
// then most likely it's a tail call. Otherwise, we cannot tell for sure
|
|
// what it is and conservatively reject the function's CFG.
|
|
bool IsEpilogue = false;
|
|
for (const MCInst &Instr : *BB) {
|
|
if (BC.MIB->isLeave(Instr) || BC.MIB->isPop(Instr)) {
|
|
IsEpilogue = true;
|
|
break;
|
|
}
|
|
}
|
|
if (IsEpilogue) {
|
|
BC.MIB->convertJmpToTailCall(Instr);
|
|
BB->removeAllSuccessors();
|
|
continue;
|
|
}
|
|
|
|
if (opts::Verbosity >= 2) {
|
|
outs() << "BOLT-INFO: rejected potential indirect tail call in "
|
|
<< "function " << *this << " in basic block " << BB->getName()
|
|
<< ".\n";
|
|
LLVM_DEBUG(BC.printInstructions(dbgs(), BB->begin(), BB->end(),
|
|
BB->getOffset(), this, true));
|
|
}
|
|
|
|
if (!opts::StrictMode)
|
|
return false;
|
|
|
|
addUnknownControlFlow(*BB);
|
|
}
|
|
}
|
|
|
|
if (HasInternalLabelReference)
|
|
return false;
|
|
|
|
// If there's only one jump table, and one indirect jump, and no other
|
|
// references, then we should be able to derive the jump table even if we
|
|
// fail to match the pattern.
|
|
if (HasUnknownControlFlow && NumIndirectJumps == 1 &&
|
|
JumpTables.size() == 1 && LastIndirectJump) {
|
|
BC.MIB->setJumpTable(*LastIndirectJump, LastJT, LastJTIndexReg, AllocId);
|
|
HasUnknownControlFlow = false;
|
|
|
|
LastIndirectJumpBB->updateJumpTableSuccessors();
|
|
}
|
|
|
|
if (HasFixedIndirectBranch)
|
|
return false;
|
|
|
|
if (HasUnknownControlFlow && !BC.HasRelocations)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::recomputeLandingPads() {
|
|
updateBBIndices(0);
|
|
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
BB->LandingPads.clear();
|
|
BB->Throwers.clear();
|
|
}
|
|
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
|
|
for (MCInst &Instr : *BB) {
|
|
if (!BC.MIB->isInvoke(Instr))
|
|
continue;
|
|
|
|
const Optional<MCPlus::MCLandingPad> EHInfo = BC.MIB->getEHInfo(Instr);
|
|
if (!EHInfo || !EHInfo->first)
|
|
continue;
|
|
|
|
BinaryBasicBlock *LPBlock = getBasicBlockForLabel(EHInfo->first);
|
|
if (!BBLandingPads.count(LPBlock)) {
|
|
BBLandingPads.insert(LPBlock);
|
|
BB->LandingPads.emplace_back(LPBlock);
|
|
LPBlock->Throwers.emplace_back(BB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BinaryFunction::buildCFG(MCPlusBuilder::AllocatorIdTy AllocatorId) {
|
|
auto &MIB = BC.MIB;
|
|
|
|
if (!isSimple()) {
|
|
assert(!BC.HasRelocations &&
|
|
"cannot process file with non-simple function in relocs mode");
|
|
return false;
|
|
}
|
|
|
|
if (CurrentState != State::Disassembled)
|
|
return false;
|
|
|
|
assert(BasicBlocks.empty() && "basic block list should be empty");
|
|
assert((Labels.find(0) != Labels.end()) &&
|
|
"first instruction should always have a label");
|
|
|
|
// Create basic blocks in the original layout order:
|
|
//
|
|
// * Every instruction with associated label marks
|
|
// the beginning of a basic block.
|
|
// * Conditional instruction marks the end of a basic block,
|
|
// except when the following instruction is an
|
|
// unconditional branch, and the unconditional branch is not
|
|
// a destination of another branch. In the latter case, the
|
|
// basic block will consist of a single unconditional branch
|
|
// (missed "double-jump" optimization).
|
|
//
|
|
// Created basic blocks are sorted in layout order since they are
|
|
// created in the same order as instructions, and instructions are
|
|
// sorted by offsets.
|
|
BinaryBasicBlock *InsertBB = nullptr;
|
|
BinaryBasicBlock *PrevBB = nullptr;
|
|
bool IsLastInstrNop = false;
|
|
// Offset of the last non-nop instruction.
|
|
uint64_t LastInstrOffset = 0;
|
|
|
|
auto addCFIPlaceholders = [this](uint64_t CFIOffset,
|
|
BinaryBasicBlock *InsertBB) {
|
|
for (auto FI = OffsetToCFI.lower_bound(CFIOffset),
|
|
FE = OffsetToCFI.upper_bound(CFIOffset);
|
|
FI != FE; ++FI) {
|
|
addCFIPseudo(InsertBB, InsertBB->end(), FI->second);
|
|
}
|
|
};
|
|
|
|
// For profiling purposes we need to save the offset of the last instruction
|
|
// in the basic block.
|
|
// NOTE: nops always have an Offset annotation. Annotate the last non-nop as
|
|
// older profiles ignored nops.
|
|
auto updateOffset = [&](uint64_t Offset) {
|
|
assert(PrevBB && PrevBB != InsertBB && "invalid previous block");
|
|
MCInst *LastNonNop = nullptr;
|
|
for (BinaryBasicBlock::reverse_iterator RII = PrevBB->getLastNonPseudo(),
|
|
E = PrevBB->rend();
|
|
RII != E; ++RII) {
|
|
if (!BC.MIB->isPseudo(*RII) && !BC.MIB->isNoop(*RII)) {
|
|
LastNonNop = &*RII;
|
|
break;
|
|
}
|
|
}
|
|
if (LastNonNop && !MIB->getOffset(*LastNonNop))
|
|
MIB->setOffset(*LastNonNop, static_cast<uint32_t>(Offset), AllocatorId);
|
|
};
|
|
|
|
for (auto I = Instructions.begin(), E = Instructions.end(); I != E; ++I) {
|
|
const uint32_t Offset = I->first;
|
|
MCInst &Instr = I->second;
|
|
|
|
auto LI = Labels.find(Offset);
|
|
if (LI != Labels.end()) {
|
|
// Always create new BB at branch destination.
|
|
PrevBB = InsertBB ? InsertBB : PrevBB;
|
|
InsertBB = addBasicBlock(LI->first, LI->second,
|
|
opts::PreserveBlocksAlignment && IsLastInstrNop);
|
|
if (PrevBB)
|
|
updateOffset(LastInstrOffset);
|
|
}
|
|
|
|
const uint64_t InstrInputAddr = I->first + Address;
|
|
bool IsSDTMarker =
|
|
MIB->isNoop(Instr) && BC.SDTMarkers.count(InstrInputAddr);
|
|
bool IsLKMarker = BC.LKMarkers.count(InstrInputAddr);
|
|
// Mark all nops with Offset for profile tracking purposes.
|
|
if (MIB->isNoop(Instr) || IsLKMarker) {
|
|
if (!MIB->getOffset(Instr))
|
|
MIB->setOffset(Instr, static_cast<uint32_t>(Offset), AllocatorId);
|
|
if (IsSDTMarker || IsLKMarker)
|
|
HasSDTMarker = true;
|
|
else
|
|
// Annotate ordinary nops, so we can safely delete them if required.
|
|
MIB->addAnnotation(Instr, "NOP", static_cast<uint32_t>(1), AllocatorId);
|
|
}
|
|
|
|
if (!InsertBB) {
|
|
// It must be a fallthrough or unreachable code. Create a new block unless
|
|
// we see an unconditional branch following a conditional one. The latter
|
|
// should not be a conditional tail call.
|
|
assert(PrevBB && "no previous basic block for a fall through");
|
|
MCInst *PrevInstr = PrevBB->getLastNonPseudoInstr();
|
|
assert(PrevInstr && "no previous instruction for a fall through");
|
|
if (MIB->isUnconditionalBranch(Instr) &&
|
|
!MIB->isUnconditionalBranch(*PrevInstr) &&
|
|
!MIB->getConditionalTailCall(*PrevInstr) &&
|
|
!MIB->isReturn(*PrevInstr)) {
|
|
// Temporarily restore inserter basic block.
|
|
InsertBB = PrevBB;
|
|
} else {
|
|
MCSymbol *Label;
|
|
{
|
|
auto L = BC.scopeLock();
|
|
Label = BC.Ctx->createNamedTempSymbol("FT");
|
|
}
|
|
InsertBB = addBasicBlock(
|
|
Offset, Label, opts::PreserveBlocksAlignment && IsLastInstrNop);
|
|
updateOffset(LastInstrOffset);
|
|
}
|
|
}
|
|
if (Offset == 0) {
|
|
// Add associated CFI pseudos in the first offset (0)
|
|
addCFIPlaceholders(0, InsertBB);
|
|
}
|
|
|
|
const bool IsBlockEnd = MIB->isTerminator(Instr);
|
|
IsLastInstrNop = MIB->isNoop(Instr);
|
|
if (!IsLastInstrNop)
|
|
LastInstrOffset = Offset;
|
|
InsertBB->addInstruction(std::move(Instr));
|
|
|
|
// Add associated CFI instrs. We always add the CFI instruction that is
|
|
// located immediately after this instruction, since the next CFI
|
|
// instruction reflects the change in state caused by this instruction.
|
|
auto NextInstr = std::next(I);
|
|
uint64_t CFIOffset;
|
|
if (NextInstr != E)
|
|
CFIOffset = NextInstr->first;
|
|
else
|
|
CFIOffset = getSize();
|
|
|
|
// Note: this potentially invalidates instruction pointers/iterators.
|
|
addCFIPlaceholders(CFIOffset, InsertBB);
|
|
|
|
if (IsBlockEnd) {
|
|
PrevBB = InsertBB;
|
|
InsertBB = nullptr;
|
|
}
|
|
}
|
|
|
|
if (BasicBlocks.empty()) {
|
|
setSimple(false);
|
|
return false;
|
|
}
|
|
|
|
// Intermediate dump.
|
|
LLVM_DEBUG(print(dbgs(), "after creating basic blocks"));
|
|
|
|
// TODO: handle properly calls to no-return functions,
|
|
// e.g. exit(3), etc. Otherwise we'll see a false fall-through
|
|
// blocks.
|
|
|
|
for (std::pair<uint32_t, uint32_t> &Branch : TakenBranches) {
|
|
LLVM_DEBUG(dbgs() << "registering branch [0x"
|
|
<< Twine::utohexstr(Branch.first) << "] -> [0x"
|
|
<< Twine::utohexstr(Branch.second) << "]\n");
|
|
BinaryBasicBlock *FromBB = getBasicBlockContainingOffset(Branch.first);
|
|
BinaryBasicBlock *ToBB = getBasicBlockAtOffset(Branch.second);
|
|
if (!FromBB || !ToBB) {
|
|
if (!FromBB)
|
|
errs() << "BOLT-ERROR: cannot find BB containing the branch.\n";
|
|
if (!ToBB)
|
|
errs() << "BOLT-ERROR: cannot find BB containing branch destination.\n";
|
|
BC.exitWithBugReport("disassembly failed - inconsistent branch found.",
|
|
*this);
|
|
}
|
|
|
|
FromBB->addSuccessor(ToBB);
|
|
}
|
|
|
|
// Add fall-through branches.
|
|
PrevBB = nullptr;
|
|
bool IsPrevFT = false; // Is previous block a fall-through.
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
if (IsPrevFT)
|
|
PrevBB->addSuccessor(BB);
|
|
|
|
if (BB->empty()) {
|
|
IsPrevFT = true;
|
|
PrevBB = BB;
|
|
continue;
|
|
}
|
|
|
|
MCInst *LastInstr = BB->getLastNonPseudoInstr();
|
|
assert(LastInstr &&
|
|
"should have non-pseudo instruction in non-empty block");
|
|
|
|
if (BB->succ_size() == 0) {
|
|
// Since there's no existing successors, we know the last instruction is
|
|
// not a conditional branch. Thus if it's a terminator, it shouldn't be a
|
|
// fall-through.
|
|
//
|
|
// Conditional tail call is a special case since we don't add a taken
|
|
// branch successor for it.
|
|
IsPrevFT = !MIB->isTerminator(*LastInstr) ||
|
|
MIB->getConditionalTailCall(*LastInstr);
|
|
} else if (BB->succ_size() == 1) {
|
|
IsPrevFT = MIB->isConditionalBranch(*LastInstr);
|
|
} else {
|
|
IsPrevFT = false;
|
|
}
|
|
|
|
PrevBB = BB;
|
|
}
|
|
|
|
// Assign landing pads and throwers info.
|
|
recomputeLandingPads();
|
|
|
|
// Assign CFI information to each BB entry.
|
|
annotateCFIState();
|
|
|
|
// Annotate invoke instructions with GNU_args_size data.
|
|
propagateGnuArgsSizeInfo(AllocatorId);
|
|
|
|
// Set the basic block layout to the original order and set end offsets.
|
|
PrevBB = nullptr;
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
BasicBlocksLayout.emplace_back(BB);
|
|
if (PrevBB)
|
|
PrevBB->setEndOffset(BB->getOffset());
|
|
PrevBB = BB;
|
|
}
|
|
PrevBB->setEndOffset(getSize());
|
|
|
|
updateLayoutIndices();
|
|
|
|
normalizeCFIState();
|
|
|
|
// Clean-up memory taken by intermediate structures.
|
|
//
|
|
// NB: don't clear Labels list as we may need them if we mark the function
|
|
// as non-simple later in the process of discovering extra entry points.
|
|
clearList(Instructions);
|
|
clearList(OffsetToCFI);
|
|
clearList(TakenBranches);
|
|
|
|
// Update the state.
|
|
CurrentState = State::CFG;
|
|
|
|
// Make any necessary adjustments for indirect branches.
|
|
if (!postProcessIndirectBranches(AllocatorId)) {
|
|
if (opts::Verbosity) {
|
|
errs() << "BOLT-WARNING: failed to post-process indirect branches for "
|
|
<< *this << '\n';
|
|
}
|
|
// In relocation mode we want to keep processing the function but avoid
|
|
// optimizing it.
|
|
setSimple(false);
|
|
}
|
|
|
|
clearList(ExternallyReferencedOffsets);
|
|
clearList(UnknownIndirectBranchOffsets);
|
|
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::postProcessCFG() {
|
|
if (isSimple() && !BasicBlocks.empty()) {
|
|
// Convert conditional tail call branches to conditional branches that jump
|
|
// to a tail call.
|
|
removeConditionalTailCalls();
|
|
|
|
postProcessProfile();
|
|
|
|
// Eliminate inconsistencies between branch instructions and CFG.
|
|
postProcessBranches();
|
|
}
|
|
|
|
calculateMacroOpFusionStats();
|
|
|
|
// The final cleanup of intermediate structures.
|
|
clearList(IgnoredBranches);
|
|
|
|
// Remove "Offset" annotations, unless we need an address-translation table
|
|
// later. This has no cost, since annotations are allocated by a bumpptr
|
|
// allocator and won't be released anyway until late in the pipeline.
|
|
if (!requiresAddressTranslation() && !opts::Instrument) {
|
|
for (BinaryBasicBlock *BB : layout())
|
|
for (MCInst &Inst : *BB)
|
|
BC.MIB->clearOffset(Inst);
|
|
}
|
|
|
|
assert((!isSimple() || validateCFG()) &&
|
|
"invalid CFG detected after post-processing");
|
|
}
|
|
|
|
void BinaryFunction::calculateMacroOpFusionStats() {
|
|
if (!getBinaryContext().isX86())
|
|
return;
|
|
for (BinaryBasicBlock *BB : layout()) {
|
|
auto II = BB->getMacroOpFusionPair();
|
|
if (II == BB->end())
|
|
continue;
|
|
|
|
// Check offset of the second instruction.
|
|
// FIXME: arch-specific.
|
|
const uint32_t Offset = BC.MIB->getOffsetWithDefault(*std::next(II), 0);
|
|
if (!Offset || (getAddress() + Offset) % 64)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "\nmissed macro-op fusion at address 0x"
|
|
<< Twine::utohexstr(getAddress() + Offset)
|
|
<< " in function " << *this << "; executed "
|
|
<< BB->getKnownExecutionCount() << " times.\n");
|
|
++BC.MissedMacroFusionPairs;
|
|
BC.MissedMacroFusionExecCount += BB->getKnownExecutionCount();
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::removeTagsFromProfile() {
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
if (BB->ExecutionCount == BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
BB->ExecutionCount = 0;
|
|
for (BinaryBasicBlock::BinaryBranchInfo &BI : BB->branch_info()) {
|
|
if (BI.Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
BI.MispredictedCount != BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
continue;
|
|
BI.Count = 0;
|
|
BI.MispredictedCount = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::removeConditionalTailCalls() {
|
|
// Blocks to be appended at the end.
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBlocks;
|
|
|
|
for (auto BBI = begin(); BBI != end(); ++BBI) {
|
|
BinaryBasicBlock &BB = *BBI;
|
|
MCInst *CTCInstr = BB.getLastNonPseudoInstr();
|
|
if (!CTCInstr)
|
|
continue;
|
|
|
|
Optional<uint64_t> TargetAddressOrNone =
|
|
BC.MIB->getConditionalTailCall(*CTCInstr);
|
|
if (!TargetAddressOrNone)
|
|
continue;
|
|
|
|
// Gather all necessary information about CTC instruction before
|
|
// annotations are destroyed.
|
|
const int32_t CFIStateBeforeCTC = BB.getCFIStateAtInstr(CTCInstr);
|
|
uint64_t CTCTakenCount = BinaryBasicBlock::COUNT_NO_PROFILE;
|
|
uint64_t CTCMispredCount = BinaryBasicBlock::COUNT_NO_PROFILE;
|
|
if (hasValidProfile()) {
|
|
CTCTakenCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
|
|
*CTCInstr, "CTCTakenCount");
|
|
CTCMispredCount = BC.MIB->getAnnotationWithDefault<uint64_t>(
|
|
*CTCInstr, "CTCMispredCount");
|
|
}
|
|
|
|
// Assert that the tail call does not throw.
|
|
assert(!BC.MIB->getEHInfo(*CTCInstr) &&
|
|
"found tail call with associated landing pad");
|
|
|
|
// Create a basic block with an unconditional tail call instruction using
|
|
// the same destination.
|
|
const MCSymbol *CTCTargetLabel = BC.MIB->getTargetSymbol(*CTCInstr);
|
|
assert(CTCTargetLabel && "symbol expected for conditional tail call");
|
|
MCInst TailCallInstr;
|
|
BC.MIB->createTailCall(TailCallInstr, CTCTargetLabel, BC.Ctx.get());
|
|
// Link new BBs to the original input offset of the BB where the CTC
|
|
// is, so we can map samples recorded in new BBs back to the original BB
|
|
// seem in the input binary (if using BAT)
|
|
std::unique_ptr<BinaryBasicBlock> TailCallBB = createBasicBlock(
|
|
BB.getInputOffset(), BC.Ctx->createNamedTempSymbol("TC"));
|
|
TailCallBB->addInstruction(TailCallInstr);
|
|
TailCallBB->setCFIState(CFIStateBeforeCTC);
|
|
|
|
// Add CFG edge with profile info from BB to TailCallBB.
|
|
BB.addSuccessor(TailCallBB.get(), CTCTakenCount, CTCMispredCount);
|
|
|
|
// Add execution count for the block.
|
|
TailCallBB->setExecutionCount(CTCTakenCount);
|
|
|
|
BC.MIB->convertTailCallToJmp(*CTCInstr);
|
|
|
|
BC.MIB->replaceBranchTarget(*CTCInstr, TailCallBB->getLabel(),
|
|
BC.Ctx.get());
|
|
|
|
// Add basic block to the list that will be added to the end.
|
|
NewBlocks.emplace_back(std::move(TailCallBB));
|
|
|
|
// Swap edges as the TailCallBB corresponds to the taken branch.
|
|
BB.swapConditionalSuccessors();
|
|
|
|
// This branch is no longer a conditional tail call.
|
|
BC.MIB->unsetConditionalTailCall(*CTCInstr);
|
|
}
|
|
|
|
insertBasicBlocks(std::prev(end()), std::move(NewBlocks),
|
|
/* UpdateLayout */ true,
|
|
/* UpdateCFIState */ false);
|
|
}
|
|
|
|
uint64_t BinaryFunction::getFunctionScore() const {
|
|
if (FunctionScore != -1)
|
|
return FunctionScore;
|
|
|
|
if (!isSimple() || !hasValidProfile()) {
|
|
FunctionScore = 0;
|
|
return FunctionScore;
|
|
}
|
|
|
|
uint64_t TotalScore = 0ULL;
|
|
for (BinaryBasicBlock *BB : layout()) {
|
|
uint64_t BBExecCount = BB->getExecutionCount();
|
|
if (BBExecCount == BinaryBasicBlock::COUNT_NO_PROFILE)
|
|
continue;
|
|
TotalScore += BBExecCount;
|
|
}
|
|
FunctionScore = TotalScore;
|
|
return FunctionScore;
|
|
}
|
|
|
|
void BinaryFunction::annotateCFIState() {
|
|
assert(CurrentState == State::Disassembled && "unexpected function state");
|
|
assert(!BasicBlocks.empty() && "basic block list should not be empty");
|
|
|
|
// This is an index of the last processed CFI in FDE CFI program.
|
|
uint32_t State = 0;
|
|
|
|
// This is an index of RememberState CFI reflecting effective state right
|
|
// after execution of RestoreState CFI.
|
|
//
|
|
// It differs from State iff the CFI at (State-1)
|
|
// was RestoreState (modulo GNU_args_size CFIs, which are ignored).
|
|
//
|
|
// This allows us to generate shorter replay sequences when producing new
|
|
// CFI programs.
|
|
uint32_t EffectiveState = 0;
|
|
|
|
// For tracking RememberState/RestoreState sequences.
|
|
std::stack<uint32_t> StateStack;
|
|
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
BB->setCFIState(EffectiveState);
|
|
|
|
for (const MCInst &Instr : *BB) {
|
|
const MCCFIInstruction *CFI = getCFIFor(Instr);
|
|
if (!CFI)
|
|
continue;
|
|
|
|
++State;
|
|
|
|
switch (CFI->getOperation()) {
|
|
case MCCFIInstruction::OpRememberState:
|
|
StateStack.push(EffectiveState);
|
|
EffectiveState = State;
|
|
break;
|
|
case MCCFIInstruction::OpRestoreState:
|
|
assert(!StateStack.empty() && "corrupt CFI stack");
|
|
EffectiveState = StateStack.top();
|
|
StateStack.pop();
|
|
break;
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
// OpGnuArgsSize CFIs do not affect the CFI state.
|
|
break;
|
|
default:
|
|
// Any other CFI updates the state.
|
|
EffectiveState = State;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(StateStack.empty() && "corrupt CFI stack");
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Our full interpretation of a DWARF CFI machine state at a given point
|
|
struct CFISnapshot {
|
|
/// CFA register number and offset defining the canonical frame at this
|
|
/// point, or the number of a rule (CFI state) that computes it with a
|
|
/// DWARF expression. This number will be negative if it refers to a CFI
|
|
/// located in the CIE instead of the FDE.
|
|
uint32_t CFAReg;
|
|
int32_t CFAOffset;
|
|
int32_t CFARule;
|
|
/// Mapping of rules (CFI states) that define the location of each
|
|
/// register. If absent, no rule defining the location of such register
|
|
/// was ever read. This number will be negative if it refers to a CFI
|
|
/// located in the CIE instead of the FDE.
|
|
DenseMap<int32_t, int32_t> RegRule;
|
|
|
|
/// References to CIE, FDE and expanded instructions after a restore state
|
|
const BinaryFunction::CFIInstrMapType &CIE;
|
|
const BinaryFunction::CFIInstrMapType &FDE;
|
|
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents;
|
|
|
|
/// Current FDE CFI number representing the state where the snapshot is at
|
|
int32_t CurState;
|
|
|
|
/// Used when we don't have information about which state/rule to apply
|
|
/// to recover the location of either the CFA or a specific register
|
|
constexpr static int32_t UNKNOWN = std::numeric_limits<int32_t>::min();
|
|
|
|
private:
|
|
/// Update our snapshot by executing a single CFI
|
|
void update(const MCCFIInstruction &Instr, int32_t RuleNumber) {
|
|
switch (Instr.getOperation()) {
|
|
case MCCFIInstruction::OpSameValue:
|
|
case MCCFIInstruction::OpRelOffset:
|
|
case MCCFIInstruction::OpOffset:
|
|
case MCCFIInstruction::OpRestore:
|
|
case MCCFIInstruction::OpUndefined:
|
|
case MCCFIInstruction::OpRegister:
|
|
RegRule[Instr.getRegister()] = RuleNumber;
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
CFAReg = Instr.getRegister();
|
|
CFARule = UNKNOWN;
|
|
break;
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
CFAOffset = Instr.getOffset();
|
|
CFARule = UNKNOWN;
|
|
break;
|
|
case MCCFIInstruction::OpDefCfa:
|
|
CFAReg = Instr.getRegister();
|
|
CFAOffset = Instr.getOffset();
|
|
CFARule = UNKNOWN;
|
|
break;
|
|
case MCCFIInstruction::OpEscape: {
|
|
Optional<uint8_t> Reg = readDWARFExpressionTargetReg(Instr.getValues());
|
|
// Handle DW_CFA_def_cfa_expression
|
|
if (!Reg) {
|
|
CFARule = RuleNumber;
|
|
break;
|
|
}
|
|
RegRule[*Reg] = RuleNumber;
|
|
break;
|
|
}
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
case MCCFIInstruction::OpWindowSave:
|
|
case MCCFIInstruction::OpNegateRAState:
|
|
case MCCFIInstruction::OpLLVMDefAspaceCfa:
|
|
llvm_unreachable("unsupported CFI opcode");
|
|
break;
|
|
case MCCFIInstruction::OpRememberState:
|
|
case MCCFIInstruction::OpRestoreState:
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
// do not affect CFI state
|
|
break;
|
|
}
|
|
}
|
|
|
|
public:
|
|
/// Advance state reading FDE CFI instructions up to State number
|
|
void advanceTo(int32_t State) {
|
|
for (int32_t I = CurState, E = State; I != E; ++I) {
|
|
const MCCFIInstruction &Instr = FDE[I];
|
|
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
|
|
update(Instr, I);
|
|
continue;
|
|
}
|
|
// If restore state instruction, fetch the equivalent CFIs that have
|
|
// the same effect of this restore. This is used to ensure remember-
|
|
// restore pairs are completely removed.
|
|
auto Iter = FrameRestoreEquivalents.find(I);
|
|
if (Iter == FrameRestoreEquivalents.end())
|
|
continue;
|
|
for (int32_t RuleNumber : Iter->second)
|
|
update(FDE[RuleNumber], RuleNumber);
|
|
}
|
|
|
|
assert(((CFAReg != (uint32_t)UNKNOWN && CFAOffset != UNKNOWN) ||
|
|
CFARule != UNKNOWN) &&
|
|
"CIE did not define default CFA?");
|
|
|
|
CurState = State;
|
|
}
|
|
|
|
/// Interpret all CIE and FDE instructions up until CFI State number and
|
|
/// populate this snapshot
|
|
CFISnapshot(
|
|
const BinaryFunction::CFIInstrMapType &CIE,
|
|
const BinaryFunction::CFIInstrMapType &FDE,
|
|
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
|
|
int32_t State)
|
|
: CIE(CIE), FDE(FDE), FrameRestoreEquivalents(FrameRestoreEquivalents) {
|
|
CFAReg = UNKNOWN;
|
|
CFAOffset = UNKNOWN;
|
|
CFARule = UNKNOWN;
|
|
CurState = 0;
|
|
|
|
for (int32_t I = 0, E = CIE.size(); I != E; ++I) {
|
|
const MCCFIInstruction &Instr = CIE[I];
|
|
update(Instr, -I);
|
|
}
|
|
|
|
advanceTo(State);
|
|
}
|
|
};
|
|
|
|
/// A CFI snapshot with the capability of checking if incremental additions to
|
|
/// it are redundant. This is used to ensure we do not emit two CFI instructions
|
|
/// back-to-back that are doing the same state change, or to avoid emitting a
|
|
/// CFI at all when the state at that point would not be modified after that CFI
|
|
struct CFISnapshotDiff : public CFISnapshot {
|
|
bool RestoredCFAReg{false};
|
|
bool RestoredCFAOffset{false};
|
|
DenseMap<int32_t, bool> RestoredRegs;
|
|
|
|
CFISnapshotDiff(const CFISnapshot &S) : CFISnapshot(S) {}
|
|
|
|
CFISnapshotDiff(
|
|
const BinaryFunction::CFIInstrMapType &CIE,
|
|
const BinaryFunction::CFIInstrMapType &FDE,
|
|
const DenseMap<int32_t, SmallVector<int32_t, 4>> &FrameRestoreEquivalents,
|
|
int32_t State)
|
|
: CFISnapshot(CIE, FDE, FrameRestoreEquivalents, State) {}
|
|
|
|
/// Return true if applying Instr to this state is redundant and can be
|
|
/// dismissed.
|
|
bool isRedundant(const MCCFIInstruction &Instr) {
|
|
switch (Instr.getOperation()) {
|
|
case MCCFIInstruction::OpSameValue:
|
|
case MCCFIInstruction::OpRelOffset:
|
|
case MCCFIInstruction::OpOffset:
|
|
case MCCFIInstruction::OpRestore:
|
|
case MCCFIInstruction::OpUndefined:
|
|
case MCCFIInstruction::OpRegister:
|
|
case MCCFIInstruction::OpEscape: {
|
|
uint32_t Reg;
|
|
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
|
|
Reg = Instr.getRegister();
|
|
} else {
|
|
Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
|
|
// Handle DW_CFA_def_cfa_expression
|
|
if (!R) {
|
|
if (RestoredCFAReg && RestoredCFAOffset)
|
|
return true;
|
|
RestoredCFAReg = true;
|
|
RestoredCFAOffset = true;
|
|
return false;
|
|
}
|
|
Reg = *R;
|
|
}
|
|
if (RestoredRegs[Reg])
|
|
return true;
|
|
RestoredRegs[Reg] = true;
|
|
const int32_t CurRegRule =
|
|
RegRule.find(Reg) != RegRule.end() ? RegRule[Reg] : UNKNOWN;
|
|
if (CurRegRule == UNKNOWN) {
|
|
if (Instr.getOperation() == MCCFIInstruction::OpRestore ||
|
|
Instr.getOperation() == MCCFIInstruction::OpSameValue)
|
|
return true;
|
|
return false;
|
|
}
|
|
const MCCFIInstruction &LastDef =
|
|
CurRegRule < 0 ? CIE[-CurRegRule] : FDE[CurRegRule];
|
|
return LastDef == Instr;
|
|
}
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
if (RestoredCFAReg)
|
|
return true;
|
|
RestoredCFAReg = true;
|
|
return CFAReg == Instr.getRegister();
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
if (RestoredCFAOffset)
|
|
return true;
|
|
RestoredCFAOffset = true;
|
|
return CFAOffset == Instr.getOffset();
|
|
case MCCFIInstruction::OpDefCfa:
|
|
if (RestoredCFAReg && RestoredCFAOffset)
|
|
return true;
|
|
RestoredCFAReg = true;
|
|
RestoredCFAOffset = true;
|
|
return CFAReg == Instr.getRegister() && CFAOffset == Instr.getOffset();
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
case MCCFIInstruction::OpWindowSave:
|
|
case MCCFIInstruction::OpNegateRAState:
|
|
case MCCFIInstruction::OpLLVMDefAspaceCfa:
|
|
llvm_unreachable("unsupported CFI opcode");
|
|
return false;
|
|
case MCCFIInstruction::OpRememberState:
|
|
case MCCFIInstruction::OpRestoreState:
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
// do not affect CFI state
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool BinaryFunction::replayCFIInstrs(int32_t FromState, int32_t ToState,
|
|
BinaryBasicBlock *InBB,
|
|
BinaryBasicBlock::iterator InsertIt) {
|
|
if (FromState == ToState)
|
|
return true;
|
|
assert(FromState < ToState && "can only replay CFIs forward");
|
|
|
|
CFISnapshotDiff CFIDiff(CIEFrameInstructions, FrameInstructions,
|
|
FrameRestoreEquivalents, FromState);
|
|
|
|
std::vector<uint32_t> NewCFIs;
|
|
for (int32_t CurState = FromState; CurState < ToState; ++CurState) {
|
|
MCCFIInstruction *Instr = &FrameInstructions[CurState];
|
|
if (Instr->getOperation() == MCCFIInstruction::OpRestoreState) {
|
|
auto Iter = FrameRestoreEquivalents.find(CurState);
|
|
assert(Iter != FrameRestoreEquivalents.end());
|
|
NewCFIs.insert(NewCFIs.end(), Iter->second.begin(), Iter->second.end());
|
|
// RestoreState / Remember will be filtered out later by CFISnapshotDiff,
|
|
// so we might as well fall-through here.
|
|
}
|
|
NewCFIs.push_back(CurState);
|
|
continue;
|
|
}
|
|
|
|
// Replay instructions while avoiding duplicates
|
|
for (auto I = NewCFIs.rbegin(), E = NewCFIs.rend(); I != E; ++I) {
|
|
if (CFIDiff.isRedundant(FrameInstructions[*I]))
|
|
continue;
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, *I);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
SmallVector<int32_t, 4>
|
|
BinaryFunction::unwindCFIState(int32_t FromState, int32_t ToState,
|
|
BinaryBasicBlock *InBB,
|
|
BinaryBasicBlock::iterator &InsertIt) {
|
|
SmallVector<int32_t, 4> NewStates;
|
|
|
|
CFISnapshot ToCFITable(CIEFrameInstructions, FrameInstructions,
|
|
FrameRestoreEquivalents, ToState);
|
|
CFISnapshotDiff FromCFITable(ToCFITable);
|
|
FromCFITable.advanceTo(FromState);
|
|
|
|
auto undoStateDefCfa = [&]() {
|
|
if (ToCFITable.CFARule == CFISnapshot::UNKNOWN) {
|
|
FrameInstructions.emplace_back(MCCFIInstruction::cfiDefCfa(
|
|
nullptr, ToCFITable.CFAReg, ToCFITable.CFAOffset));
|
|
if (FromCFITable.isRedundant(FrameInstructions.back())) {
|
|
FrameInstructions.pop_back();
|
|
return;
|
|
}
|
|
NewStates.push_back(FrameInstructions.size() - 1);
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
|
|
++InsertIt;
|
|
} else if (ToCFITable.CFARule < 0) {
|
|
if (FromCFITable.isRedundant(CIEFrameInstructions[-ToCFITable.CFARule]))
|
|
return;
|
|
NewStates.push_back(FrameInstructions.size());
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
|
|
++InsertIt;
|
|
FrameInstructions.emplace_back(CIEFrameInstructions[-ToCFITable.CFARule]);
|
|
} else if (!FromCFITable.isRedundant(
|
|
FrameInstructions[ToCFITable.CFARule])) {
|
|
NewStates.push_back(ToCFITable.CFARule);
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, ToCFITable.CFARule);
|
|
++InsertIt;
|
|
}
|
|
};
|
|
|
|
auto undoState = [&](const MCCFIInstruction &Instr) {
|
|
switch (Instr.getOperation()) {
|
|
case MCCFIInstruction::OpRememberState:
|
|
case MCCFIInstruction::OpRestoreState:
|
|
break;
|
|
case MCCFIInstruction::OpSameValue:
|
|
case MCCFIInstruction::OpRelOffset:
|
|
case MCCFIInstruction::OpOffset:
|
|
case MCCFIInstruction::OpRestore:
|
|
case MCCFIInstruction::OpUndefined:
|
|
case MCCFIInstruction::OpEscape:
|
|
case MCCFIInstruction::OpRegister: {
|
|
uint32_t Reg;
|
|
if (Instr.getOperation() != MCCFIInstruction::OpEscape) {
|
|
Reg = Instr.getRegister();
|
|
} else {
|
|
Optional<uint8_t> R = readDWARFExpressionTargetReg(Instr.getValues());
|
|
// Handle DW_CFA_def_cfa_expression
|
|
if (!R) {
|
|
undoStateDefCfa();
|
|
return;
|
|
}
|
|
Reg = *R;
|
|
}
|
|
|
|
if (ToCFITable.RegRule.find(Reg) == ToCFITable.RegRule.end()) {
|
|
FrameInstructions.emplace_back(
|
|
MCCFIInstruction::createRestore(nullptr, Reg));
|
|
if (FromCFITable.isRedundant(FrameInstructions.back())) {
|
|
FrameInstructions.pop_back();
|
|
break;
|
|
}
|
|
NewStates.push_back(FrameInstructions.size() - 1);
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size() - 1);
|
|
++InsertIt;
|
|
break;
|
|
}
|
|
const int32_t Rule = ToCFITable.RegRule[Reg];
|
|
if (Rule < 0) {
|
|
if (FromCFITable.isRedundant(CIEFrameInstructions[-Rule]))
|
|
break;
|
|
NewStates.push_back(FrameInstructions.size());
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, FrameInstructions.size());
|
|
++InsertIt;
|
|
FrameInstructions.emplace_back(CIEFrameInstructions[-Rule]);
|
|
break;
|
|
}
|
|
if (FromCFITable.isRedundant(FrameInstructions[Rule]))
|
|
break;
|
|
NewStates.push_back(Rule);
|
|
InsertIt = addCFIPseudo(InBB, InsertIt, Rule);
|
|
++InsertIt;
|
|
break;
|
|
}
|
|
case MCCFIInstruction::OpDefCfaRegister:
|
|
case MCCFIInstruction::OpDefCfaOffset:
|
|
case MCCFIInstruction::OpDefCfa:
|
|
undoStateDefCfa();
|
|
break;
|
|
case MCCFIInstruction::OpAdjustCfaOffset:
|
|
case MCCFIInstruction::OpWindowSave:
|
|
case MCCFIInstruction::OpNegateRAState:
|
|
case MCCFIInstruction::OpLLVMDefAspaceCfa:
|
|
llvm_unreachable("unsupported CFI opcode");
|
|
break;
|
|
case MCCFIInstruction::OpGnuArgsSize:
|
|
// do not affect CFI state
|
|
break;
|
|
}
|
|
};
|
|
|
|
// Undo all modifications from ToState to FromState
|
|
for (int32_t I = ToState, E = FromState; I != E; ++I) {
|
|
const MCCFIInstruction &Instr = FrameInstructions[I];
|
|
if (Instr.getOperation() != MCCFIInstruction::OpRestoreState) {
|
|
undoState(Instr);
|
|
continue;
|
|
}
|
|
auto Iter = FrameRestoreEquivalents.find(I);
|
|
if (Iter == FrameRestoreEquivalents.end())
|
|
continue;
|
|
for (int32_t State : Iter->second)
|
|
undoState(FrameInstructions[State]);
|
|
}
|
|
|
|
return NewStates;
|
|
}
|
|
|
|
void BinaryFunction::normalizeCFIState() {
|
|
// Reordering blocks with remember-restore state instructions can be specially
|
|
// tricky. When rewriting the CFI, we omit remember-restore state instructions
|
|
// entirely. For restore state, we build a map expanding each restore to the
|
|
// equivalent unwindCFIState sequence required at that point to achieve the
|
|
// same effect of the restore. All remember state are then just ignored.
|
|
std::stack<int32_t> Stack;
|
|
for (BinaryBasicBlock *CurBB : BasicBlocksLayout) {
|
|
for (auto II = CurBB->begin(); II != CurBB->end(); ++II) {
|
|
if (const MCCFIInstruction *CFI = getCFIFor(*II)) {
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRememberState) {
|
|
Stack.push(II->getOperand(0).getImm());
|
|
continue;
|
|
}
|
|
if (CFI->getOperation() == MCCFIInstruction::OpRestoreState) {
|
|
const int32_t RememberState = Stack.top();
|
|
const int32_t CurState = II->getOperand(0).getImm();
|
|
FrameRestoreEquivalents[CurState] =
|
|
unwindCFIState(CurState, RememberState, CurBB, II);
|
|
Stack.pop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BinaryFunction::finalizeCFIState() {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Trying to fix CFI states for each BB after reordering.\n");
|
|
LLVM_DEBUG(dbgs() << "This is the list of CFI states for each BB of " << *this
|
|
<< ": ");
|
|
|
|
int32_t State = 0;
|
|
bool SeenCold = false;
|
|
const char *Sep = "";
|
|
(void)Sep;
|
|
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
|
|
const int32_t CFIStateAtExit = BB->getCFIStateAtExit();
|
|
|
|
// Hot-cold border: check if this is the first BB to be allocated in a cold
|
|
// region (with a different FDE). If yes, we need to reset the CFI state.
|
|
if (!SeenCold && BB->isCold()) {
|
|
State = 0;
|
|
SeenCold = true;
|
|
}
|
|
|
|
// We need to recover the correct state if it doesn't match expected
|
|
// state at BB entry point.
|
|
if (BB->getCFIState() < State) {
|
|
// In this case, State is currently higher than what this BB expect it
|
|
// to be. To solve this, we need to insert CFI instructions to undo
|
|
// the effect of all CFI from BB's state to current State.
|
|
auto InsertIt = BB->begin();
|
|
unwindCFIState(State, BB->getCFIState(), BB, InsertIt);
|
|
} else if (BB->getCFIState() > State) {
|
|
// If BB's CFI state is greater than State, it means we are behind in the
|
|
// state. Just emit all instructions to reach this state at the
|
|
// beginning of this BB. If this sequence of instructions involve
|
|
// remember state or restore state, bail out.
|
|
if (!replayCFIInstrs(State, BB->getCFIState(), BB, BB->begin()))
|
|
return false;
|
|
}
|
|
|
|
State = CFIStateAtExit;
|
|
LLVM_DEBUG(dbgs() << Sep << State; Sep = ", ");
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
|
|
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
|
|
for (auto II = BB->begin(); II != BB->end();) {
|
|
const MCCFIInstruction *CFI = getCFIFor(*II);
|
|
if (CFI && (CFI->getOperation() == MCCFIInstruction::OpRememberState ||
|
|
CFI->getOperation() == MCCFIInstruction::OpRestoreState)) {
|
|
II = BB->eraseInstruction(II);
|
|
} else {
|
|
++II;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BinaryFunction::requiresAddressTranslation() const {
|
|
return opts::EnableBAT || hasSDTMarker() || hasPseudoProbe();
|
|
}
|
|
|
|
uint64_t BinaryFunction::getInstructionCount() const {
|
|
uint64_t Count = 0;
|
|
for (BinaryBasicBlock *const &Block : BasicBlocksLayout)
|
|
Count += Block->getNumNonPseudos();
|
|
return Count;
|
|
}
|
|
|
|
bool BinaryFunction::hasLayoutChanged() const { return ModifiedLayout; }
|
|
|
|
uint64_t BinaryFunction::getEditDistance() const {
|
|
return ComputeEditDistance<BinaryBasicBlock *>(BasicBlocksPreviousLayout,
|
|
BasicBlocksLayout);
|
|
}
|
|
|
|
void BinaryFunction::clearDisasmState() {
|
|
clearList(Instructions);
|
|
clearList(IgnoredBranches);
|
|
clearList(TakenBranches);
|
|
clearList(InterproceduralReferences);
|
|
|
|
if (BC.HasRelocations) {
|
|
for (std::pair<const uint32_t, MCSymbol *> &LI : Labels)
|
|
BC.UndefinedSymbols.insert(LI.second);
|
|
if (FunctionEndLabel)
|
|
BC.UndefinedSymbols.insert(FunctionEndLabel);
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::setTrapOnEntry() {
|
|
clearDisasmState();
|
|
|
|
auto addTrapAtOffset = [&](uint64_t Offset) {
|
|
MCInst TrapInstr;
|
|
BC.MIB->createTrap(TrapInstr);
|
|
addInstruction(Offset, std::move(TrapInstr));
|
|
};
|
|
|
|
addTrapAtOffset(0);
|
|
for (const std::pair<const uint32_t, MCSymbol *> &KV : getLabels())
|
|
if (getSecondaryEntryPointSymbol(KV.second))
|
|
addTrapAtOffset(KV.first);
|
|
|
|
TrapsOnEntry = true;
|
|
}
|
|
|
|
void BinaryFunction::setIgnored() {
|
|
if (opts::processAllFunctions()) {
|
|
// We can accept ignored functions before they've been disassembled.
|
|
// In that case, they would still get disassembled and emited, but not
|
|
// optimized.
|
|
assert(CurrentState == State::Empty &&
|
|
"cannot ignore non-empty functions in current mode");
|
|
IsIgnored = true;
|
|
return;
|
|
}
|
|
|
|
clearDisasmState();
|
|
|
|
// Clear CFG state too.
|
|
if (hasCFG()) {
|
|
releaseCFG();
|
|
|
|
for (BinaryBasicBlock *BB : BasicBlocks)
|
|
delete BB;
|
|
clearList(BasicBlocks);
|
|
|
|
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
|
|
delete BB;
|
|
clearList(DeletedBasicBlocks);
|
|
|
|
clearList(BasicBlocksLayout);
|
|
clearList(BasicBlocksPreviousLayout);
|
|
}
|
|
|
|
CurrentState = State::Empty;
|
|
|
|
IsIgnored = true;
|
|
IsSimple = false;
|
|
LLVM_DEBUG(dbgs() << "Ignoring " << getPrintName() << '\n');
|
|
}
|
|
|
|
void BinaryFunction::duplicateConstantIslands() {
|
|
assert(Islands && "function expected to have constant islands");
|
|
|
|
for (BinaryBasicBlock *BB : layout()) {
|
|
if (!BB->isCold())
|
|
continue;
|
|
|
|
for (MCInst &Inst : *BB) {
|
|
int OpNum = 0;
|
|
for (MCOperand &Operand : Inst) {
|
|
if (!Operand.isExpr()) {
|
|
++OpNum;
|
|
continue;
|
|
}
|
|
const MCSymbol *Symbol = BC.MIB->getTargetSymbol(Inst, OpNum);
|
|
// Check if this is an island symbol
|
|
if (!Islands->Symbols.count(Symbol) &&
|
|
!Islands->ProxySymbols.count(Symbol))
|
|
continue;
|
|
|
|
// Create cold symbol, if missing
|
|
auto ISym = Islands->ColdSymbols.find(Symbol);
|
|
MCSymbol *ColdSymbol;
|
|
if (ISym != Islands->ColdSymbols.end()) {
|
|
ColdSymbol = ISym->second;
|
|
} else {
|
|
ColdSymbol = BC.Ctx->getOrCreateSymbol(Symbol->getName() + ".cold");
|
|
Islands->ColdSymbols[Symbol] = ColdSymbol;
|
|
// Check if this is a proxy island symbol and update owner proxy map
|
|
if (Islands->ProxySymbols.count(Symbol)) {
|
|
BinaryFunction *Owner = Islands->ProxySymbols[Symbol];
|
|
auto IProxiedSym = Owner->Islands->Proxies[this].find(Symbol);
|
|
Owner->Islands->ColdProxies[this][IProxiedSym->second] = ColdSymbol;
|
|
}
|
|
}
|
|
|
|
// Update instruction reference
|
|
Operand = MCOperand::createExpr(BC.MIB->getTargetExprFor(
|
|
Inst,
|
|
MCSymbolRefExpr::create(ColdSymbol, MCSymbolRefExpr::VK_None,
|
|
*BC.Ctx),
|
|
*BC.Ctx, 0));
|
|
++OpNum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
#ifndef MAX_PATH
|
|
#define MAX_PATH 255
|
|
#endif
|
|
|
|
std::string constructFilename(std::string Filename, std::string Annotation,
|
|
std::string Suffix) {
|
|
std::replace(Filename.begin(), Filename.end(), '/', '-');
|
|
if (!Annotation.empty())
|
|
Annotation.insert(0, "-");
|
|
if (Filename.size() + Annotation.size() + Suffix.size() > MAX_PATH) {
|
|
assert(Suffix.size() + Annotation.size() <= MAX_PATH);
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: Filename \"" << Filename << Annotation << Suffix
|
|
<< "\" exceeds the " << MAX_PATH << " size limit, truncating.\n";
|
|
}
|
|
Filename.resize(MAX_PATH - (Suffix.size() + Annotation.size()));
|
|
}
|
|
Filename += Annotation;
|
|
Filename += Suffix;
|
|
return Filename;
|
|
}
|
|
|
|
std::string formatEscapes(const std::string &Str) {
|
|
std::string Result;
|
|
for (unsigned I = 0; I < Str.size(); ++I) {
|
|
char C = Str[I];
|
|
switch (C) {
|
|
case '\n':
|
|
Result += " ";
|
|
break;
|
|
case '"':
|
|
break;
|
|
default:
|
|
Result += C;
|
|
break;
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
void BinaryFunction::dumpGraph(raw_ostream &OS) const {
|
|
OS << "strict digraph \"" << getPrintName() << "\" {\n";
|
|
uint64_t Offset = Address;
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
auto LayoutPos =
|
|
std::find(BasicBlocksLayout.begin(), BasicBlocksLayout.end(), BB);
|
|
unsigned Layout = LayoutPos - BasicBlocksLayout.begin();
|
|
const char *ColdStr = BB->isCold() ? " (cold)" : "";
|
|
OS << format("\"%s\" [label=\"%s%s\\n(C:%lu,O:%lu,I:%u,L:%u:CFI:%u)\"]\n",
|
|
BB->getName().data(), BB->getName().data(), ColdStr,
|
|
(BB->ExecutionCount != BinaryBasicBlock::COUNT_NO_PROFILE
|
|
? BB->ExecutionCount
|
|
: 0),
|
|
BB->getOffset(), getIndex(BB), Layout, BB->getCFIState());
|
|
OS << format("\"%s\" [shape=box]\n", BB->getName().data());
|
|
if (opts::DotToolTipCode) {
|
|
std::string Str;
|
|
raw_string_ostream CS(Str);
|
|
Offset = BC.printInstructions(CS, BB->begin(), BB->end(), Offset, this);
|
|
const std::string Code = formatEscapes(CS.str());
|
|
OS << format("\"%s\" [tooltip=\"%s\"]\n", BB->getName().data(),
|
|
Code.c_str());
|
|
}
|
|
|
|
// analyzeBranch is just used to get the names of the branch
|
|
// opcodes.
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
const bool Success = BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch);
|
|
|
|
const MCInst *LastInstr = BB->getLastNonPseudoInstr();
|
|
const bool IsJumpTable = LastInstr && BC.MIB->getJumpTable(*LastInstr);
|
|
|
|
auto BI = BB->branch_info_begin();
|
|
for (BinaryBasicBlock *Succ : BB->successors()) {
|
|
std::string Branch;
|
|
if (Success) {
|
|
if (Succ == BB->getConditionalSuccessor(true)) {
|
|
Branch = CondBranch ? std::string(BC.InstPrinter->getOpcodeName(
|
|
CondBranch->getOpcode()))
|
|
: "TB";
|
|
} else if (Succ == BB->getConditionalSuccessor(false)) {
|
|
Branch = UncondBranch ? std::string(BC.InstPrinter->getOpcodeName(
|
|
UncondBranch->getOpcode()))
|
|
: "FB";
|
|
} else {
|
|
Branch = "FT";
|
|
}
|
|
}
|
|
if (IsJumpTable)
|
|
Branch = "JT";
|
|
OS << format("\"%s\" -> \"%s\" [label=\"%s", BB->getName().data(),
|
|
Succ->getName().data(), Branch.c_str());
|
|
|
|
if (BB->getExecutionCount() != COUNT_NO_PROFILE &&
|
|
BI->MispredictedCount != BinaryBasicBlock::COUNT_INFERRED) {
|
|
OS << "\\n(C:" << BI->Count << ",M:" << BI->MispredictedCount << ")";
|
|
} else if (ExecutionCount != COUNT_NO_PROFILE &&
|
|
BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE) {
|
|
OS << "\\n(IC:" << BI->Count << ")";
|
|
}
|
|
OS << "\"]\n";
|
|
|
|
++BI;
|
|
}
|
|
for (BinaryBasicBlock *LP : BB->landing_pads()) {
|
|
OS << format("\"%s\" -> \"%s\" [constraint=false style=dashed]\n",
|
|
BB->getName().data(), LP->getName().data());
|
|
}
|
|
}
|
|
OS << "}\n";
|
|
}
|
|
|
|
void BinaryFunction::viewGraph() const {
|
|
SmallString<MAX_PATH> Filename;
|
|
if (std::error_code EC =
|
|
sys::fs::createTemporaryFile("bolt-cfg", "dot", Filename)) {
|
|
errs() << "BOLT-ERROR: " << EC.message() << ", unable to create "
|
|
<< " bolt-cfg-XXXXX.dot temporary file.\n";
|
|
return;
|
|
}
|
|
dumpGraphToFile(std::string(Filename));
|
|
if (DisplayGraph(Filename))
|
|
errs() << "BOLT-ERROR: Can't display " << Filename << " with graphviz.\n";
|
|
if (std::error_code EC = sys::fs::remove(Filename)) {
|
|
errs() << "BOLT-WARNING: " << EC.message() << ", failed to remove "
|
|
<< Filename << "\n";
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::dumpGraphForPass(std::string Annotation) const {
|
|
std::string Filename = constructFilename(getPrintName(), Annotation, ".dot");
|
|
outs() << "BOLT-DEBUG: Dumping CFG to " << Filename << "\n";
|
|
dumpGraphToFile(Filename);
|
|
}
|
|
|
|
void BinaryFunction::dumpGraphToFile(std::string Filename) const {
|
|
std::error_code EC;
|
|
raw_fd_ostream of(Filename, EC, sys::fs::OF_None);
|
|
if (EC) {
|
|
if (opts::Verbosity >= 1) {
|
|
errs() << "BOLT-WARNING: " << EC.message() << ", unable to open "
|
|
<< Filename << " for output.\n";
|
|
}
|
|
return;
|
|
}
|
|
dumpGraph(of);
|
|
}
|
|
|
|
bool BinaryFunction::validateCFG() const {
|
|
bool Valid = true;
|
|
for (BinaryBasicBlock *BB : BasicBlocks)
|
|
Valid &= BB->validateSuccessorInvariants();
|
|
|
|
if (!Valid)
|
|
return Valid;
|
|
|
|
// Make sure all blocks in CFG are valid.
|
|
auto validateBlock = [this](const BinaryBasicBlock *BB, StringRef Desc) {
|
|
if (!BB->isValid()) {
|
|
errs() << "BOLT-ERROR: deleted " << Desc << " " << BB->getName()
|
|
<< " detected in:\n";
|
|
this->dump();
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
for (const BinaryBasicBlock *BB : BasicBlocks) {
|
|
if (!validateBlock(BB, "block"))
|
|
return false;
|
|
for (const BinaryBasicBlock *PredBB : BB->predecessors())
|
|
if (!validateBlock(PredBB, "predecessor"))
|
|
return false;
|
|
for (const BinaryBasicBlock *SuccBB : BB->successors())
|
|
if (!validateBlock(SuccBB, "successor"))
|
|
return false;
|
|
for (const BinaryBasicBlock *LP : BB->landing_pads())
|
|
if (!validateBlock(LP, "landing pad"))
|
|
return false;
|
|
for (const BinaryBasicBlock *Thrower : BB->throwers())
|
|
if (!validateBlock(Thrower, "thrower"))
|
|
return false;
|
|
}
|
|
|
|
for (const BinaryBasicBlock *BB : BasicBlocks) {
|
|
std::unordered_set<const BinaryBasicBlock *> BBLandingPads;
|
|
for (const BinaryBasicBlock *LP : BB->landing_pads()) {
|
|
if (BBLandingPads.count(LP)) {
|
|
errs() << "BOLT-ERROR: duplicate landing pad detected in"
|
|
<< BB->getName() << " in function " << *this << '\n';
|
|
return false;
|
|
}
|
|
BBLandingPads.insert(LP);
|
|
}
|
|
|
|
std::unordered_set<const BinaryBasicBlock *> BBThrowers;
|
|
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
|
|
if (BBThrowers.count(Thrower)) {
|
|
errs() << "BOLT-ERROR: duplicate thrower detected in" << BB->getName()
|
|
<< " in function " << *this << '\n';
|
|
return false;
|
|
}
|
|
BBThrowers.insert(Thrower);
|
|
}
|
|
|
|
for (const BinaryBasicBlock *LPBlock : BB->landing_pads()) {
|
|
if (std::find(LPBlock->throw_begin(), LPBlock->throw_end(), BB) ==
|
|
LPBlock->throw_end()) {
|
|
errs() << "BOLT-ERROR: inconsistent landing pad detected in " << *this
|
|
<< ": " << BB->getName() << " is in LandingPads but not in "
|
|
<< LPBlock->getName() << " Throwers\n";
|
|
return false;
|
|
}
|
|
}
|
|
for (const BinaryBasicBlock *Thrower : BB->throwers()) {
|
|
if (std::find(Thrower->lp_begin(), Thrower->lp_end(), BB) ==
|
|
Thrower->lp_end()) {
|
|
errs() << "BOLT-ERROR: inconsistent thrower detected in " << *this
|
|
<< ": " << BB->getName() << " is in Throwers list but not in "
|
|
<< Thrower->getName() << " LandingPads\n";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Valid;
|
|
}
|
|
|
|
void BinaryFunction::fixBranches() {
|
|
auto &MIB = BC.MIB;
|
|
MCContext *Ctx = BC.Ctx.get();
|
|
|
|
for (unsigned I = 0, E = BasicBlocksLayout.size(); I != E; ++I) {
|
|
BinaryBasicBlock *BB = BasicBlocksLayout[I];
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
if (!BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch))
|
|
continue;
|
|
|
|
// We will create unconditional branch with correct destination if needed.
|
|
if (UncondBranch)
|
|
BB->eraseInstruction(BB->findInstruction(UncondBranch));
|
|
|
|
// Basic block that follows the current one in the final layout.
|
|
const BinaryBasicBlock *NextBB = nullptr;
|
|
if (I + 1 != E && BB->isCold() == BasicBlocksLayout[I + 1]->isCold())
|
|
NextBB = BasicBlocksLayout[I + 1];
|
|
|
|
if (BB->succ_size() == 1) {
|
|
// __builtin_unreachable() could create a conditional branch that
|
|
// falls-through into the next function - hence the block will have only
|
|
// one valid successor. Since behaviour is undefined - we replace
|
|
// the conditional branch with an unconditional if required.
|
|
if (CondBranch)
|
|
BB->eraseInstruction(BB->findInstruction(CondBranch));
|
|
if (BB->getSuccessor() == NextBB)
|
|
continue;
|
|
BB->addBranchInstruction(BB->getSuccessor());
|
|
} else if (BB->succ_size() == 2) {
|
|
assert(CondBranch && "conditional branch expected");
|
|
const BinaryBasicBlock *TSuccessor = BB->getConditionalSuccessor(true);
|
|
const BinaryBasicBlock *FSuccessor = BB->getConditionalSuccessor(false);
|
|
// Check whether we support reversing this branch direction
|
|
const bool IsSupported =
|
|
!MIB->isUnsupportedBranch(CondBranch->getOpcode());
|
|
if (NextBB && NextBB == TSuccessor && IsSupported) {
|
|
std::swap(TSuccessor, FSuccessor);
|
|
{
|
|
auto L = BC.scopeLock();
|
|
MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(), Ctx);
|
|
}
|
|
BB->swapConditionalSuccessors();
|
|
} else {
|
|
auto L = BC.scopeLock();
|
|
MIB->replaceBranchTarget(*CondBranch, TSuccessor->getLabel(), Ctx);
|
|
}
|
|
if (TSuccessor == FSuccessor)
|
|
BB->removeDuplicateConditionalSuccessor(CondBranch);
|
|
if (!NextBB ||
|
|
((NextBB != TSuccessor || !IsSupported) && NextBB != FSuccessor)) {
|
|
// If one of the branches is guaranteed to be "long" while the other
|
|
// could be "short", then prioritize short for "taken". This will
|
|
// generate a sequence 1 byte shorter on x86.
|
|
if (IsSupported && BC.isX86() &&
|
|
TSuccessor->isCold() != FSuccessor->isCold() &&
|
|
BB->isCold() != TSuccessor->isCold()) {
|
|
std::swap(TSuccessor, FSuccessor);
|
|
{
|
|
auto L = BC.scopeLock();
|
|
MIB->reverseBranchCondition(*CondBranch, TSuccessor->getLabel(),
|
|
Ctx);
|
|
}
|
|
BB->swapConditionalSuccessors();
|
|
}
|
|
BB->addBranchInstruction(FSuccessor);
|
|
}
|
|
}
|
|
// Cases where the number of successors is 0 (block ends with a
|
|
// terminator) or more than 2 (switch table) don't require branch
|
|
// instruction adjustments.
|
|
}
|
|
assert((!isSimple() || validateCFG()) &&
|
|
"Invalid CFG detected after fixing branches");
|
|
}
|
|
|
|
void BinaryFunction::propagateGnuArgsSizeInfo(
|
|
MCPlusBuilder::AllocatorIdTy AllocId) {
|
|
assert(CurrentState == State::Disassembled && "unexpected function state");
|
|
|
|
if (!hasEHRanges() || !usesGnuArgsSize())
|
|
return;
|
|
|
|
// The current value of DW_CFA_GNU_args_size affects all following
|
|
// invoke instructions until the next CFI overrides it.
|
|
// It is important to iterate basic blocks in the original order when
|
|
// assigning the value.
|
|
uint64_t CurrentGnuArgsSize = 0;
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
for (auto II = BB->begin(); II != BB->end();) {
|
|
MCInst &Instr = *II;
|
|
if (BC.MIB->isCFI(Instr)) {
|
|
const MCCFIInstruction *CFI = getCFIFor(Instr);
|
|
if (CFI->getOperation() == MCCFIInstruction::OpGnuArgsSize) {
|
|
CurrentGnuArgsSize = CFI->getOffset();
|
|
// Delete DW_CFA_GNU_args_size instructions and only regenerate
|
|
// during the final code emission. The information is embedded
|
|
// inside call instructions.
|
|
II = BB->erasePseudoInstruction(II);
|
|
continue;
|
|
}
|
|
} else if (BC.MIB->isInvoke(Instr)) {
|
|
// Add the value of GNU_args_size as an extra operand to invokes.
|
|
BC.MIB->addGnuArgsSize(Instr, CurrentGnuArgsSize, AllocId);
|
|
}
|
|
++II;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::postProcessBranches() {
|
|
if (!isSimple())
|
|
return;
|
|
for (BinaryBasicBlock *BB : BasicBlocksLayout) {
|
|
auto LastInstrRI = BB->getLastNonPseudo();
|
|
if (BB->succ_size() == 1) {
|
|
if (LastInstrRI != BB->rend() &&
|
|
BC.MIB->isConditionalBranch(*LastInstrRI)) {
|
|
// __builtin_unreachable() could create a conditional branch that
|
|
// falls-through into the next function - hence the block will have only
|
|
// one valid successor. Such behaviour is undefined and thus we remove
|
|
// the conditional branch while leaving a valid successor.
|
|
BB->eraseInstruction(std::prev(LastInstrRI.base()));
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: erasing conditional branch in "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
}
|
|
} else if (BB->succ_size() == 0) {
|
|
// Ignore unreachable basic blocks.
|
|
if (BB->pred_size() == 0 || BB->isLandingPad())
|
|
continue;
|
|
|
|
// If it's the basic block that does not end up with a terminator - we
|
|
// insert a return instruction unless it's a call instruction.
|
|
if (LastInstrRI == BB->rend()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: at least one instruction expected in BB "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
continue;
|
|
}
|
|
if (!BC.MIB->isTerminator(*LastInstrRI) &&
|
|
!BC.MIB->isCall(*LastInstrRI)) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: adding return to basic block "
|
|
<< BB->getName() << " in function " << *this << '\n');
|
|
MCInst ReturnInstr;
|
|
BC.MIB->createReturn(ReturnInstr);
|
|
BB->addInstruction(ReturnInstr);
|
|
}
|
|
}
|
|
}
|
|
assert(validateCFG() && "invalid CFG");
|
|
}
|
|
|
|
MCSymbol *BinaryFunction::addEntryPointAtOffset(uint64_t Offset) {
|
|
assert(Offset && "cannot add primary entry point");
|
|
assert(CurrentState == State::Empty || CurrentState == State::Disassembled);
|
|
|
|
const uint64_t EntryPointAddress = getAddress() + Offset;
|
|
MCSymbol *LocalSymbol = getOrCreateLocalLabel(EntryPointAddress);
|
|
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(LocalSymbol);
|
|
if (EntrySymbol)
|
|
return EntrySymbol;
|
|
|
|
if (BinaryData *EntryBD = BC.getBinaryDataAtAddress(EntryPointAddress)) {
|
|
EntrySymbol = EntryBD->getSymbol();
|
|
} else {
|
|
EntrySymbol = BC.getOrCreateGlobalSymbol(
|
|
EntryPointAddress, Twine("__ENTRY_") + getOneName() + "@");
|
|
}
|
|
SecondaryEntryPoints[LocalSymbol] = EntrySymbol;
|
|
|
|
BC.setSymbolToFunctionMap(EntrySymbol, this);
|
|
|
|
return EntrySymbol;
|
|
}
|
|
|
|
MCSymbol *BinaryFunction::addEntryPoint(const BinaryBasicBlock &BB) {
|
|
assert(CurrentState == State::CFG &&
|
|
"basic block can be added as an entry only in a function with CFG");
|
|
|
|
if (&BB == BasicBlocks.front())
|
|
return getSymbol();
|
|
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(BB);
|
|
if (EntrySymbol)
|
|
return EntrySymbol;
|
|
|
|
EntrySymbol =
|
|
BC.Ctx->getOrCreateSymbol("__ENTRY_" + BB.getLabel()->getName());
|
|
|
|
SecondaryEntryPoints[BB.getLabel()] = EntrySymbol;
|
|
|
|
BC.setSymbolToFunctionMap(EntrySymbol, this);
|
|
|
|
return EntrySymbol;
|
|
}
|
|
|
|
MCSymbol *BinaryFunction::getSymbolForEntryID(uint64_t EntryID) {
|
|
if (EntryID == 0)
|
|
return getSymbol();
|
|
|
|
if (!isMultiEntry())
|
|
return nullptr;
|
|
|
|
uint64_t NumEntries = 0;
|
|
if (hasCFG()) {
|
|
for (BinaryBasicBlock *BB : BasicBlocks) {
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
|
|
if (!EntrySymbol)
|
|
continue;
|
|
if (NumEntries == EntryID)
|
|
return EntrySymbol;
|
|
++NumEntries;
|
|
}
|
|
} else {
|
|
for (std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
|
|
if (!EntrySymbol)
|
|
continue;
|
|
if (NumEntries == EntryID)
|
|
return EntrySymbol;
|
|
++NumEntries;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
uint64_t BinaryFunction::getEntryIDForSymbol(const MCSymbol *Symbol) const {
|
|
if (!isMultiEntry())
|
|
return 0;
|
|
|
|
for (const MCSymbol *FunctionSymbol : getSymbols())
|
|
if (FunctionSymbol == Symbol)
|
|
return 0;
|
|
|
|
// Check all secondary entries available as either basic blocks or lables.
|
|
uint64_t NumEntries = 0;
|
|
for (const BinaryBasicBlock *BB : BasicBlocks) {
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(*BB);
|
|
if (!EntrySymbol)
|
|
continue;
|
|
if (EntrySymbol == Symbol)
|
|
return NumEntries;
|
|
++NumEntries;
|
|
}
|
|
NumEntries = 0;
|
|
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
|
|
if (!EntrySymbol)
|
|
continue;
|
|
if (EntrySymbol == Symbol)
|
|
return NumEntries;
|
|
++NumEntries;
|
|
}
|
|
|
|
llvm_unreachable("symbol not found");
|
|
}
|
|
|
|
bool BinaryFunction::forEachEntryPoint(EntryPointCallbackTy Callback) const {
|
|
bool Status = Callback(0, getSymbol());
|
|
if (!isMultiEntry())
|
|
return Status;
|
|
|
|
for (const std::pair<const uint32_t, MCSymbol *> &KV : Labels) {
|
|
if (!Status)
|
|
break;
|
|
|
|
MCSymbol *EntrySymbol = getSecondaryEntryPointSymbol(KV.second);
|
|
if (!EntrySymbol)
|
|
continue;
|
|
|
|
Status = Callback(KV.first, EntrySymbol);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
BinaryFunction::BasicBlockOrderType BinaryFunction::dfs() const {
|
|
BasicBlockOrderType DFS;
|
|
unsigned Index = 0;
|
|
std::stack<BinaryBasicBlock *> Stack;
|
|
|
|
// Push entry points to the stack in reverse order.
|
|
//
|
|
// NB: we rely on the original order of entries to match.
|
|
for (auto BBI = layout_rbegin(); BBI != layout_rend(); ++BBI) {
|
|
BinaryBasicBlock *BB = *BBI;
|
|
if (isEntryPoint(*BB))
|
|
Stack.push(BB);
|
|
BB->setLayoutIndex(BinaryBasicBlock::InvalidIndex);
|
|
}
|
|
|
|
while (!Stack.empty()) {
|
|
BinaryBasicBlock *BB = Stack.top();
|
|
Stack.pop();
|
|
|
|
if (BB->getLayoutIndex() != BinaryBasicBlock::InvalidIndex)
|
|
continue;
|
|
|
|
BB->setLayoutIndex(Index++);
|
|
DFS.push_back(BB);
|
|
|
|
for (BinaryBasicBlock *SuccBB : BB->landing_pads()) {
|
|
Stack.push(SuccBB);
|
|
}
|
|
|
|
const MCSymbol *TBB = nullptr;
|
|
const MCSymbol *FBB = nullptr;
|
|
MCInst *CondBranch = nullptr;
|
|
MCInst *UncondBranch = nullptr;
|
|
if (BB->analyzeBranch(TBB, FBB, CondBranch, UncondBranch) && CondBranch &&
|
|
BB->succ_size() == 2) {
|
|
if (BC.MIB->getCanonicalBranchCondCode(BC.MIB->getCondCode(
|
|
*CondBranch)) == BC.MIB->getCondCode(*CondBranch)) {
|
|
Stack.push(BB->getConditionalSuccessor(true));
|
|
Stack.push(BB->getConditionalSuccessor(false));
|
|
} else {
|
|
Stack.push(BB->getConditionalSuccessor(false));
|
|
Stack.push(BB->getConditionalSuccessor(true));
|
|
}
|
|
} else {
|
|
for (BinaryBasicBlock *SuccBB : BB->successors()) {
|
|
Stack.push(SuccBB);
|
|
}
|
|
}
|
|
}
|
|
|
|
return DFS;
|
|
}
|
|
|
|
size_t BinaryFunction::computeHash(bool UseDFS,
|
|
OperandHashFuncTy OperandHashFunc) const {
|
|
if (size() == 0)
|
|
return 0;
|
|
|
|
assert(hasCFG() && "function is expected to have CFG");
|
|
|
|
const BasicBlockOrderType &Order = UseDFS ? dfs() : BasicBlocksLayout;
|
|
|
|
// The hash is computed by creating a string of all instruction opcodes and
|
|
// possibly their operands and then hashing that string with std::hash.
|
|
std::string HashString;
|
|
for (const BinaryBasicBlock *BB : Order) {
|
|
for (const MCInst &Inst : *BB) {
|
|
unsigned Opcode = Inst.getOpcode();
|
|
|
|
if (BC.MIB->isPseudo(Inst))
|
|
continue;
|
|
|
|
// Ignore unconditional jumps since we check CFG consistency by processing
|
|
// basic blocks in order and do not rely on branches to be in-sync with
|
|
// CFG. Note that we still use condition code of conditional jumps.
|
|
if (BC.MIB->isUnconditionalBranch(Inst))
|
|
continue;
|
|
|
|
if (Opcode == 0)
|
|
HashString.push_back(0);
|
|
|
|
while (Opcode) {
|
|
uint8_t LSB = Opcode & 0xff;
|
|
HashString.push_back(LSB);
|
|
Opcode = Opcode >> 8;
|
|
}
|
|
|
|
for (unsigned I = 0, E = MCPlus::getNumPrimeOperands(Inst); I != E; ++I)
|
|
HashString.append(OperandHashFunc(Inst.getOperand(I)));
|
|
}
|
|
}
|
|
|
|
return Hash = std::hash<std::string>{}(HashString);
|
|
}
|
|
|
|
void BinaryFunction::insertBasicBlocks(
|
|
BinaryBasicBlock *Start,
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
|
|
const bool UpdateLayout, const bool UpdateCFIState,
|
|
const bool RecomputeLandingPads) {
|
|
const int64_t StartIndex = Start ? getIndex(Start) : -1LL;
|
|
const size_t NumNewBlocks = NewBBs.size();
|
|
|
|
BasicBlocks.insert(BasicBlocks.begin() + (StartIndex + 1), NumNewBlocks,
|
|
nullptr);
|
|
|
|
int64_t I = StartIndex + 1;
|
|
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
|
|
assert(!BasicBlocks[I]);
|
|
BasicBlocks[I++] = BB.release();
|
|
}
|
|
|
|
if (RecomputeLandingPads)
|
|
recomputeLandingPads();
|
|
else
|
|
updateBBIndices(0);
|
|
|
|
if (UpdateLayout)
|
|
updateLayout(Start, NumNewBlocks);
|
|
|
|
if (UpdateCFIState)
|
|
updateCFIState(Start, NumNewBlocks);
|
|
}
|
|
|
|
BinaryFunction::iterator BinaryFunction::insertBasicBlocks(
|
|
BinaryFunction::iterator StartBB,
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> &&NewBBs,
|
|
const bool UpdateLayout, const bool UpdateCFIState,
|
|
const bool RecomputeLandingPads) {
|
|
const unsigned StartIndex = getIndex(&*StartBB);
|
|
const size_t NumNewBlocks = NewBBs.size();
|
|
|
|
BasicBlocks.insert(BasicBlocks.begin() + StartIndex + 1, NumNewBlocks,
|
|
nullptr);
|
|
auto RetIter = BasicBlocks.begin() + StartIndex + 1;
|
|
|
|
unsigned I = StartIndex + 1;
|
|
for (std::unique_ptr<BinaryBasicBlock> &BB : NewBBs) {
|
|
assert(!BasicBlocks[I]);
|
|
BasicBlocks[I++] = BB.release();
|
|
}
|
|
|
|
if (RecomputeLandingPads)
|
|
recomputeLandingPads();
|
|
else
|
|
updateBBIndices(0);
|
|
|
|
if (UpdateLayout)
|
|
updateLayout(*std::prev(RetIter), NumNewBlocks);
|
|
|
|
if (UpdateCFIState)
|
|
updateCFIState(*std::prev(RetIter), NumNewBlocks);
|
|
|
|
return RetIter;
|
|
}
|
|
|
|
void BinaryFunction::updateBBIndices(const unsigned StartIndex) {
|
|
for (unsigned I = StartIndex; I < BasicBlocks.size(); ++I)
|
|
BasicBlocks[I]->Index = I;
|
|
}
|
|
|
|
void BinaryFunction::updateCFIState(BinaryBasicBlock *Start,
|
|
const unsigned NumNewBlocks) {
|
|
const int32_t CFIState = Start->getCFIStateAtExit();
|
|
const unsigned StartIndex = getIndex(Start) + 1;
|
|
for (unsigned I = 0; I < NumNewBlocks; ++I)
|
|
BasicBlocks[StartIndex + I]->setCFIState(CFIState);
|
|
}
|
|
|
|
void BinaryFunction::updateLayout(BinaryBasicBlock *Start,
|
|
const unsigned NumNewBlocks) {
|
|
// If start not provided insert new blocks at the beginning
|
|
if (!Start) {
|
|
BasicBlocksLayout.insert(layout_begin(), BasicBlocks.begin(),
|
|
BasicBlocks.begin() + NumNewBlocks);
|
|
updateLayoutIndices();
|
|
return;
|
|
}
|
|
|
|
// Insert new blocks in the layout immediately after Start.
|
|
auto Pos = std::find(layout_begin(), layout_end(), Start);
|
|
assert(Pos != layout_end());
|
|
BasicBlockListType::iterator Begin =
|
|
std::next(BasicBlocks.begin(), getIndex(Start) + 1);
|
|
BasicBlockListType::iterator End =
|
|
std::next(BasicBlocks.begin(), getIndex(Start) + NumNewBlocks + 1);
|
|
BasicBlocksLayout.insert(Pos + 1, Begin, End);
|
|
updateLayoutIndices();
|
|
}
|
|
|
|
bool BinaryFunction::checkForAmbiguousJumpTables() {
|
|
SmallSet<uint64_t, 4> JumpTables;
|
|
for (BinaryBasicBlock *&BB : BasicBlocks) {
|
|
for (MCInst &Inst : *BB) {
|
|
if (!BC.MIB->isIndirectBranch(Inst))
|
|
continue;
|
|
uint64_t JTAddress = BC.MIB->getJumpTable(Inst);
|
|
if (!JTAddress)
|
|
continue;
|
|
// This address can be inside another jump table, but we only consider
|
|
// it ambiguous when the same start address is used, not the same JT
|
|
// object.
|
|
if (!JumpTables.count(JTAddress)) {
|
|
JumpTables.insert(JTAddress);
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BinaryFunction::disambiguateJumpTables(
|
|
MCPlusBuilder::AllocatorIdTy AllocId) {
|
|
assert((opts::JumpTables != JTS_BASIC && isSimple()) || !BC.HasRelocations);
|
|
SmallPtrSet<JumpTable *, 4> JumpTables;
|
|
for (BinaryBasicBlock *&BB : BasicBlocks) {
|
|
for (MCInst &Inst : *BB) {
|
|
if (!BC.MIB->isIndirectBranch(Inst))
|
|
continue;
|
|
JumpTable *JT = getJumpTable(Inst);
|
|
if (!JT)
|
|
continue;
|
|
auto Iter = JumpTables.find(JT);
|
|
if (Iter == JumpTables.end()) {
|
|
JumpTables.insert(JT);
|
|
continue;
|
|
}
|
|
// This instruction is an indirect jump using a jump table, but it is
|
|
// using the same jump table of another jump. Try all our tricks to
|
|
// extract the jump table symbol and make it point to a new, duplicated JT
|
|
MCPhysReg BaseReg1;
|
|
uint64_t Scale;
|
|
const MCSymbol *Target;
|
|
// In case we match if our first matcher, first instruction is the one to
|
|
// patch
|
|
MCInst *JTLoadInst = &Inst;
|
|
// Try a standard indirect jump matcher, scale 8
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher =
|
|
BC.MIB->matchIndJmp(BC.MIB->matchReg(BaseReg1),
|
|
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
|
|
/*Offset=*/BC.MIB->matchSymbol(Target));
|
|
if (!IndJmpMatcher->match(
|
|
*BC.MRI, *BC.MIB,
|
|
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
|
|
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
|
|
MCPhysReg BaseReg2;
|
|
uint64_t Offset;
|
|
// Standard JT matching failed. Trying now:
|
|
// movq "jt.2397/1"(,%rax,8), %rax
|
|
// jmpq *%rax
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LoadMatcherOwner =
|
|
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg1),
|
|
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
|
|
/*Offset=*/BC.MIB->matchSymbol(Target));
|
|
MCPlusBuilder::MCInstMatcher *LoadMatcher = LoadMatcherOwner.get();
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> IndJmpMatcher2 =
|
|
BC.MIB->matchIndJmp(std::move(LoadMatcherOwner));
|
|
if (!IndJmpMatcher2->match(
|
|
*BC.MRI, *BC.MIB,
|
|
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
|
|
BaseReg1 != BC.MIB->getNoRegister() || Scale != 8) {
|
|
// JT matching failed. Trying now:
|
|
// PIC-style matcher, scale 4
|
|
// addq %rdx, %rsi
|
|
// addq %rdx, %rdi
|
|
// leaq DATAat0x402450(%rip), %r11
|
|
// movslq (%r11,%rdx,4), %rcx
|
|
// addq %r11, %rcx
|
|
// jmpq *%rcx # JUMPTABLE @0x402450
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICIndJmpMatcher =
|
|
BC.MIB->matchIndJmp(BC.MIB->matchAdd(
|
|
BC.MIB->matchReg(BaseReg1),
|
|
BC.MIB->matchLoad(BC.MIB->matchReg(BaseReg2),
|
|
BC.MIB->matchImm(Scale), BC.MIB->matchReg(),
|
|
BC.MIB->matchImm(Offset))));
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> LEAMatcherOwner =
|
|
BC.MIB->matchLoadAddr(BC.MIB->matchSymbol(Target));
|
|
MCPlusBuilder::MCInstMatcher *LEAMatcher = LEAMatcherOwner.get();
|
|
std::unique_ptr<MCPlusBuilder::MCInstMatcher> PICBaseAddrMatcher =
|
|
BC.MIB->matchIndJmp(BC.MIB->matchAdd(std::move(LEAMatcherOwner),
|
|
BC.MIB->matchAnyOperand()));
|
|
if (!PICIndJmpMatcher->match(
|
|
*BC.MRI, *BC.MIB,
|
|
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1) ||
|
|
Scale != 4 || BaseReg1 != BaseReg2 || Offset != 0 ||
|
|
!PICBaseAddrMatcher->match(
|
|
*BC.MRI, *BC.MIB,
|
|
MutableArrayRef<MCInst>(&*BB->begin(), &Inst + 1), -1)) {
|
|
llvm_unreachable("Failed to extract jump table base");
|
|
continue;
|
|
}
|
|
// Matched PIC, identify the instruction with the reference to the JT
|
|
JTLoadInst = LEAMatcher->CurInst;
|
|
} else {
|
|
// Matched non-PIC
|
|
JTLoadInst = LoadMatcher->CurInst;
|
|
}
|
|
}
|
|
|
|
uint64_t NewJumpTableID = 0;
|
|
const MCSymbol *NewJTLabel;
|
|
std::tie(NewJumpTableID, NewJTLabel) =
|
|
BC.duplicateJumpTable(*this, JT, Target);
|
|
{
|
|
auto L = BC.scopeLock();
|
|
BC.MIB->replaceMemOperandDisp(*JTLoadInst, NewJTLabel, BC.Ctx.get());
|
|
}
|
|
// We use a unique ID with the high bit set as address for this "injected"
|
|
// jump table (not originally in the input binary).
|
|
BC.MIB->setJumpTable(Inst, NewJumpTableID, 0, AllocId);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool BinaryFunction::replaceJumpTableEntryIn(BinaryBasicBlock *BB,
|
|
BinaryBasicBlock *OldDest,
|
|
BinaryBasicBlock *NewDest) {
|
|
MCInst *Instr = BB->getLastNonPseudoInstr();
|
|
if (!Instr || !BC.MIB->isIndirectBranch(*Instr))
|
|
return false;
|
|
uint64_t JTAddress = BC.MIB->getJumpTable(*Instr);
|
|
assert(JTAddress && "Invalid jump table address");
|
|
JumpTable *JT = getJumpTableContainingAddress(JTAddress);
|
|
assert(JT && "No jump table structure for this indirect branch");
|
|
bool Patched = JT->replaceDestination(JTAddress, OldDest->getLabel(),
|
|
NewDest->getLabel());
|
|
(void)Patched;
|
|
assert(Patched && "Invalid entry to be replaced in jump table");
|
|
return true;
|
|
}
|
|
|
|
BinaryBasicBlock *BinaryFunction::splitEdge(BinaryBasicBlock *From,
|
|
BinaryBasicBlock *To) {
|
|
// Create intermediate BB
|
|
MCSymbol *Tmp;
|
|
{
|
|
auto L = BC.scopeLock();
|
|
Tmp = BC.Ctx->createNamedTempSymbol("SplitEdge");
|
|
}
|
|
// Link new BBs to the original input offset of the From BB, so we can map
|
|
// samples recorded in new BBs back to the original BB seem in the input
|
|
// binary (if using BAT)
|
|
std::unique_ptr<BinaryBasicBlock> NewBB =
|
|
createBasicBlock(From->getInputOffset(), Tmp);
|
|
BinaryBasicBlock *NewBBPtr = NewBB.get();
|
|
|
|
// Update "From" BB
|
|
auto I = From->succ_begin();
|
|
auto BI = From->branch_info_begin();
|
|
for (; I != From->succ_end(); ++I) {
|
|
if (*I == To)
|
|
break;
|
|
++BI;
|
|
}
|
|
assert(I != From->succ_end() && "Invalid CFG edge in splitEdge!");
|
|
uint64_t OrigCount = BI->Count;
|
|
uint64_t OrigMispreds = BI->MispredictedCount;
|
|
replaceJumpTableEntryIn(From, To, NewBBPtr);
|
|
From->replaceSuccessor(To, NewBBPtr, OrigCount, OrigMispreds);
|
|
|
|
NewBB->addSuccessor(To, OrigCount, OrigMispreds);
|
|
NewBB->setExecutionCount(OrigCount);
|
|
NewBB->setIsCold(From->isCold());
|
|
|
|
// Update CFI and BB layout with new intermediate BB
|
|
std::vector<std::unique_ptr<BinaryBasicBlock>> NewBBs;
|
|
NewBBs.emplace_back(std::move(NewBB));
|
|
insertBasicBlocks(From, std::move(NewBBs), true, true,
|
|
/*RecomputeLandingPads=*/false);
|
|
return NewBBPtr;
|
|
}
|
|
|
|
void BinaryFunction::deleteConservativeEdges() {
|
|
// Our goal is to aggressively remove edges from the CFG that we believe are
|
|
// wrong. This is used for instrumentation, where it is safe to remove
|
|
// fallthrough edges because we won't reorder blocks.
|
|
for (auto I = BasicBlocks.begin(), E = BasicBlocks.end(); I != E; ++I) {
|
|
BinaryBasicBlock *BB = *I;
|
|
if (BB->succ_size() != 1 || BB->size() == 0)
|
|
continue;
|
|
|
|
auto NextBB = std::next(I);
|
|
MCInst *Last = BB->getLastNonPseudoInstr();
|
|
// Fallthrough is a landing pad? Delete this edge (as long as we don't
|
|
// have a direct jump to it)
|
|
if ((*BB->succ_begin())->isLandingPad() && NextBB != E &&
|
|
*BB->succ_begin() == *NextBB && Last && !BC.MIB->isBranch(*Last)) {
|
|
BB->removeAllSuccessors();
|
|
continue;
|
|
}
|
|
|
|
// Look for suspicious calls at the end of BB where gcc may optimize it and
|
|
// remove the jump to the epilogue when it knows the call won't return.
|
|
if (!Last || !BC.MIB->isCall(*Last))
|
|
continue;
|
|
|
|
const MCSymbol *CalleeSymbol = BC.MIB->getTargetSymbol(*Last);
|
|
if (!CalleeSymbol)
|
|
continue;
|
|
|
|
StringRef CalleeName = CalleeSymbol->getName();
|
|
if (CalleeName != "__cxa_throw@PLT" && CalleeName != "_Unwind_Resume@PLT" &&
|
|
CalleeName != "__cxa_rethrow@PLT" && CalleeName != "exit@PLT" &&
|
|
CalleeName != "abort@PLT")
|
|
continue;
|
|
|
|
BB->removeAllSuccessors();
|
|
}
|
|
}
|
|
|
|
bool BinaryFunction::isDataMarker(const SymbolRef &Symbol,
|
|
uint64_t SymbolSize) const {
|
|
// For aarch64, the ABI defines mapping symbols so we identify data in the
|
|
// code section (see IHI0056B). $d identifies a symbol starting data contents.
|
|
if (BC.isAArch64() && Symbol.getType() &&
|
|
cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
|
|
Symbol.getName() &&
|
|
(cantFail(Symbol.getName()) == "$d" ||
|
|
cantFail(Symbol.getName()).startswith("$d.")))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool BinaryFunction::isCodeMarker(const SymbolRef &Symbol,
|
|
uint64_t SymbolSize) const {
|
|
// For aarch64, the ABI defines mapping symbols so we identify data in the
|
|
// code section (see IHI0056B). $x identifies a symbol starting code or the
|
|
// end of a data chunk inside code.
|
|
if (BC.isAArch64() && Symbol.getType() &&
|
|
cantFail(Symbol.getType()) == SymbolRef::ST_Unknown && SymbolSize == 0 &&
|
|
Symbol.getName() &&
|
|
(cantFail(Symbol.getName()) == "$x" ||
|
|
cantFail(Symbol.getName()).startswith("$x.")))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool BinaryFunction::isSymbolValidInScope(const SymbolRef &Symbol,
|
|
uint64_t SymbolSize) const {
|
|
// If this symbol is in a different section from the one where the
|
|
// function symbol is, don't consider it as valid.
|
|
if (!getOriginSection()->containsAddress(
|
|
cantFail(Symbol.getAddress(), "cannot get symbol address")))
|
|
return false;
|
|
|
|
// Some symbols are tolerated inside function bodies, others are not.
|
|
// The real function boundaries may not be known at this point.
|
|
if (isDataMarker(Symbol, SymbolSize) || isCodeMarker(Symbol, SymbolSize))
|
|
return true;
|
|
|
|
// It's okay to have a zero-sized symbol in the middle of non-zero-sized
|
|
// function.
|
|
if (SymbolSize == 0 && containsAddress(cantFail(Symbol.getAddress())))
|
|
return true;
|
|
|
|
if (cantFail(Symbol.getType()) != SymbolRef::ST_Unknown)
|
|
return false;
|
|
|
|
if (cantFail(Symbol.getFlags()) & SymbolRef::SF_Global)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void BinaryFunction::adjustExecutionCount(uint64_t Count) {
|
|
if (getKnownExecutionCount() == 0 || Count == 0)
|
|
return;
|
|
|
|
if (ExecutionCount < Count)
|
|
Count = ExecutionCount;
|
|
|
|
double AdjustmentRatio = ((double)ExecutionCount - Count) / ExecutionCount;
|
|
if (AdjustmentRatio < 0.0)
|
|
AdjustmentRatio = 0.0;
|
|
|
|
for (BinaryBasicBlock *&BB : layout())
|
|
BB->adjustExecutionCount(AdjustmentRatio);
|
|
|
|
ExecutionCount -= Count;
|
|
}
|
|
|
|
BinaryFunction::~BinaryFunction() {
|
|
for (BinaryBasicBlock *BB : BasicBlocks)
|
|
delete BB;
|
|
for (BinaryBasicBlock *BB : DeletedBasicBlocks)
|
|
delete BB;
|
|
}
|
|
|
|
void BinaryFunction::calculateLoopInfo() {
|
|
// Discover loops.
|
|
BinaryDominatorTree DomTree;
|
|
DomTree.recalculate(*this);
|
|
BLI.reset(new BinaryLoopInfo());
|
|
BLI->analyze(DomTree);
|
|
|
|
// Traverse discovered loops and add depth and profile information.
|
|
std::stack<BinaryLoop *> St;
|
|
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I) {
|
|
St.push(*I);
|
|
++BLI->OuterLoops;
|
|
}
|
|
|
|
while (!St.empty()) {
|
|
BinaryLoop *L = St.top();
|
|
St.pop();
|
|
++BLI->TotalLoops;
|
|
BLI->MaximumDepth = std::max(L->getLoopDepth(), BLI->MaximumDepth);
|
|
|
|
// Add nested loops in the stack.
|
|
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
|
St.push(*I);
|
|
|
|
// Skip if no valid profile is found.
|
|
if (!hasValidProfile()) {
|
|
L->EntryCount = COUNT_NO_PROFILE;
|
|
L->ExitCount = COUNT_NO_PROFILE;
|
|
L->TotalBackEdgeCount = COUNT_NO_PROFILE;
|
|
continue;
|
|
}
|
|
|
|
// Compute back edge count.
|
|
SmallVector<BinaryBasicBlock *, 1> Latches;
|
|
L->getLoopLatches(Latches);
|
|
|
|
for (BinaryBasicBlock *Latch : Latches) {
|
|
auto BI = Latch->branch_info_begin();
|
|
for (BinaryBasicBlock *Succ : Latch->successors()) {
|
|
if (Succ == L->getHeader()) {
|
|
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"profile data not found");
|
|
L->TotalBackEdgeCount += BI->Count;
|
|
}
|
|
++BI;
|
|
}
|
|
}
|
|
|
|
// Compute entry count.
|
|
L->EntryCount = L->getHeader()->getExecutionCount() - L->TotalBackEdgeCount;
|
|
|
|
// Compute exit count.
|
|
SmallVector<BinaryLoop::Edge, 1> ExitEdges;
|
|
L->getExitEdges(ExitEdges);
|
|
for (BinaryLoop::Edge &Exit : ExitEdges) {
|
|
const BinaryBasicBlock *Exiting = Exit.first;
|
|
const BinaryBasicBlock *ExitTarget = Exit.second;
|
|
auto BI = Exiting->branch_info_begin();
|
|
for (BinaryBasicBlock *Succ : Exiting->successors()) {
|
|
if (Succ == ExitTarget) {
|
|
assert(BI->Count != BinaryBasicBlock::COUNT_NO_PROFILE &&
|
|
"profile data not found");
|
|
L->ExitCount += BI->Count;
|
|
}
|
|
++BI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BinaryFunction::updateOutputValues(const MCAsmLayout &Layout) {
|
|
if (!isEmitted()) {
|
|
assert(!isInjected() && "injected function should be emitted");
|
|
setOutputAddress(getAddress());
|
|
setOutputSize(getSize());
|
|
return;
|
|
}
|
|
|
|
const uint64_t BaseAddress = getCodeSection()->getOutputAddress();
|
|
ErrorOr<BinarySection &> ColdSection = getColdCodeSection();
|
|
const uint64_t ColdBaseAddress =
|
|
isSplit() ? ColdSection->getOutputAddress() : 0;
|
|
if (BC.HasRelocations || isInjected()) {
|
|
const uint64_t StartOffset = Layout.getSymbolOffset(*getSymbol());
|
|
const uint64_t EndOffset = Layout.getSymbolOffset(*getFunctionEndLabel());
|
|
setOutputAddress(BaseAddress + StartOffset);
|
|
setOutputSize(EndOffset - StartOffset);
|
|
if (hasConstantIsland()) {
|
|
const uint64_t DataOffset =
|
|
Layout.getSymbolOffset(*getFunctionConstantIslandLabel());
|
|
setOutputDataAddress(BaseAddress + DataOffset);
|
|
}
|
|
if (isSplit()) {
|
|
const MCSymbol *ColdStartSymbol = getColdSymbol();
|
|
assert(ColdStartSymbol && ColdStartSymbol->isDefined() &&
|
|
"split function should have defined cold symbol");
|
|
const MCSymbol *ColdEndSymbol = getFunctionColdEndLabel();
|
|
assert(ColdEndSymbol && ColdEndSymbol->isDefined() &&
|
|
"split function should have defined cold end symbol");
|
|
const uint64_t ColdStartOffset = Layout.getSymbolOffset(*ColdStartSymbol);
|
|
const uint64_t ColdEndOffset = Layout.getSymbolOffset(*ColdEndSymbol);
|
|
cold().setAddress(ColdBaseAddress + ColdStartOffset);
|
|
cold().setImageSize(ColdEndOffset - ColdStartOffset);
|
|
if (hasConstantIsland()) {
|
|
const uint64_t DataOffset =
|
|
Layout.getSymbolOffset(*getFunctionColdConstantIslandLabel());
|
|
setOutputColdDataAddress(ColdBaseAddress + DataOffset);
|
|
}
|
|
}
|
|
} else {
|
|
setOutputAddress(getAddress());
|
|
setOutputSize(Layout.getSymbolOffset(*getFunctionEndLabel()));
|
|
}
|
|
|
|
// Update basic block output ranges for the debug info, if we have
|
|
// secondary entry points in the symbol table to update or if writing BAT.
|
|
if (!opts::UpdateDebugSections && !isMultiEntry() &&
|
|
!requiresAddressTranslation())
|
|
return;
|
|
|
|
// Output ranges should match the input if the body hasn't changed.
|
|
if (!isSimple() && !BC.HasRelocations)
|
|
return;
|
|
|
|
// AArch64 may have functions that only contains a constant island (no code).
|
|
if (layout_begin() == layout_end())
|
|
return;
|
|
|
|
BinaryBasicBlock *PrevBB = nullptr;
|
|
for (auto BBI = layout_begin(), BBE = layout_end(); BBI != BBE; ++BBI) {
|
|
BinaryBasicBlock *BB = *BBI;
|
|
assert(BB->getLabel()->isDefined() && "symbol should be defined");
|
|
const uint64_t BBBaseAddress = BB->isCold() ? ColdBaseAddress : BaseAddress;
|
|
if (!BC.HasRelocations) {
|
|
if (BB->isCold()) {
|
|
assert(BBBaseAddress == cold().getAddress());
|
|
} else {
|
|
assert(BBBaseAddress == getOutputAddress());
|
|
}
|
|
}
|
|
const uint64_t BBOffset = Layout.getSymbolOffset(*BB->getLabel());
|
|
const uint64_t BBAddress = BBBaseAddress + BBOffset;
|
|
BB->setOutputStartAddress(BBAddress);
|
|
|
|
if (PrevBB) {
|
|
uint64_t PrevBBEndAddress = BBAddress;
|
|
if (BB->isCold() != PrevBB->isCold())
|
|
PrevBBEndAddress = getOutputAddress() + getOutputSize();
|
|
PrevBB->setOutputEndAddress(PrevBBEndAddress);
|
|
}
|
|
PrevBB = BB;
|
|
|
|
BB->updateOutputValues(Layout);
|
|
}
|
|
PrevBB->setOutputEndAddress(PrevBB->isCold()
|
|
? cold().getAddress() + cold().getImageSize()
|
|
: getOutputAddress() + getOutputSize());
|
|
}
|
|
|
|
DebugAddressRangesVector BinaryFunction::getOutputAddressRanges() const {
|
|
DebugAddressRangesVector OutputRanges;
|
|
|
|
if (isFolded())
|
|
return OutputRanges;
|
|
|
|
if (IsFragment)
|
|
return OutputRanges;
|
|
|
|
OutputRanges.emplace_back(getOutputAddress(),
|
|
getOutputAddress() + getOutputSize());
|
|
if (isSplit()) {
|
|
assert(isEmitted() && "split function should be emitted");
|
|
OutputRanges.emplace_back(cold().getAddress(),
|
|
cold().getAddress() + cold().getImageSize());
|
|
}
|
|
|
|
if (isSimple())
|
|
return OutputRanges;
|
|
|
|
for (BinaryFunction *Frag : Fragments) {
|
|
assert(!Frag->isSimple() &&
|
|
"fragment of non-simple function should also be non-simple");
|
|
OutputRanges.emplace_back(Frag->getOutputAddress(),
|
|
Frag->getOutputAddress() + Frag->getOutputSize());
|
|
}
|
|
|
|
return OutputRanges;
|
|
}
|
|
|
|
uint64_t BinaryFunction::translateInputToOutputAddress(uint64_t Address) const {
|
|
if (isFolded())
|
|
return 0;
|
|
|
|
// If the function hasn't changed return the same address.
|
|
if (!isEmitted())
|
|
return Address;
|
|
|
|
if (Address < getAddress())
|
|
return 0;
|
|
|
|
// Check if the address is associated with an instruction that is tracked
|
|
// by address translation.
|
|
auto KV = InputOffsetToAddressMap.find(Address - getAddress());
|
|
if (KV != InputOffsetToAddressMap.end())
|
|
return KV->second;
|
|
|
|
// FIXME: #18950828 - we rely on relative offsets inside basic blocks to stay
|
|
// intact. Instead we can use pseudo instructions and/or annotations.
|
|
const uint64_t Offset = Address - getAddress();
|
|
const BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
|
|
if (!BB) {
|
|
// Special case for address immediately past the end of the function.
|
|
if (Offset == getSize())
|
|
return getOutputAddress() + getOutputSize();
|
|
|
|
return 0;
|
|
}
|
|
|
|
return std::min(BB->getOutputAddressRange().first + Offset - BB->getOffset(),
|
|
BB->getOutputAddressRange().second);
|
|
}
|
|
|
|
DebugAddressRangesVector BinaryFunction::translateInputToOutputRanges(
|
|
const DWARFAddressRangesVector &InputRanges) const {
|
|
DebugAddressRangesVector OutputRanges;
|
|
|
|
if (isFolded())
|
|
return OutputRanges;
|
|
|
|
// If the function hasn't changed return the same ranges.
|
|
if (!isEmitted()) {
|
|
OutputRanges.resize(InputRanges.size());
|
|
std::transform(InputRanges.begin(), InputRanges.end(), OutputRanges.begin(),
|
|
[](const DWARFAddressRange &Range) {
|
|
return DebugAddressRange(Range.LowPC, Range.HighPC);
|
|
});
|
|
return OutputRanges;
|
|
}
|
|
|
|
// Even though we will merge ranges in a post-processing pass, we attempt to
|
|
// merge them in a main processing loop as it improves the processing time.
|
|
uint64_t PrevEndAddress = 0;
|
|
for (const DWARFAddressRange &Range : InputRanges) {
|
|
if (!containsAddress(Range.LowPC)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
|
|
<< *this << " : [0x" << Twine::utohexstr(Range.LowPC) << ", 0x"
|
|
<< Twine::utohexstr(Range.HighPC) << "]\n");
|
|
PrevEndAddress = 0;
|
|
continue;
|
|
}
|
|
uint64_t InputOffset = Range.LowPC - getAddress();
|
|
const uint64_t InputEndOffset =
|
|
std::min(Range.HighPC - getAddress(), getSize());
|
|
|
|
auto BBI = std::upper_bound(
|
|
BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
|
|
BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
|
|
--BBI;
|
|
do {
|
|
const BinaryBasicBlock *BB = BBI->second;
|
|
if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "BOLT-DEBUG: invalid debug address range detected for "
|
|
<< *this << " : [0x" << Twine::utohexstr(Range.LowPC)
|
|
<< ", 0x" << Twine::utohexstr(Range.HighPC) << "]\n");
|
|
PrevEndAddress = 0;
|
|
break;
|
|
}
|
|
|
|
// Skip the range if the block was deleted.
|
|
if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
|
|
const uint64_t StartAddress =
|
|
OutputStart + InputOffset - BB->getOffset();
|
|
uint64_t EndAddress = BB->getOutputAddressRange().second;
|
|
if (InputEndOffset < BB->getEndOffset())
|
|
EndAddress = StartAddress + InputEndOffset - InputOffset;
|
|
|
|
if (StartAddress == PrevEndAddress) {
|
|
OutputRanges.back().HighPC =
|
|
std::max(OutputRanges.back().HighPC, EndAddress);
|
|
} else {
|
|
OutputRanges.emplace_back(StartAddress,
|
|
std::max(StartAddress, EndAddress));
|
|
}
|
|
PrevEndAddress = OutputRanges.back().HighPC;
|
|
}
|
|
|
|
InputOffset = BB->getEndOffset();
|
|
++BBI;
|
|
} while (InputOffset < InputEndOffset);
|
|
}
|
|
|
|
// Post-processing pass to sort and merge ranges.
|
|
std::sort(OutputRanges.begin(), OutputRanges.end());
|
|
DebugAddressRangesVector MergedRanges;
|
|
PrevEndAddress = 0;
|
|
for (const DebugAddressRange &Range : OutputRanges) {
|
|
if (Range.LowPC <= PrevEndAddress) {
|
|
MergedRanges.back().HighPC =
|
|
std::max(MergedRanges.back().HighPC, Range.HighPC);
|
|
} else {
|
|
MergedRanges.emplace_back(Range.LowPC, Range.HighPC);
|
|
}
|
|
PrevEndAddress = MergedRanges.back().HighPC;
|
|
}
|
|
|
|
return MergedRanges;
|
|
}
|
|
|
|
MCInst *BinaryFunction::getInstructionAtOffset(uint64_t Offset) {
|
|
if (CurrentState == State::Disassembled) {
|
|
auto II = Instructions.find(Offset);
|
|
return (II == Instructions.end()) ? nullptr : &II->second;
|
|
} else if (CurrentState == State::CFG) {
|
|
BinaryBasicBlock *BB = getBasicBlockContainingOffset(Offset);
|
|
if (!BB)
|
|
return nullptr;
|
|
|
|
for (MCInst &Inst : *BB) {
|
|
constexpr uint32_t InvalidOffset = std::numeric_limits<uint32_t>::max();
|
|
if (Offset == BC.MIB->getOffsetWithDefault(Inst, InvalidOffset))
|
|
return &Inst;
|
|
}
|
|
|
|
if (MCInst *LastInstr = BB->getLastNonPseudoInstr()) {
|
|
const uint32_t Size =
|
|
BC.MIB->getAnnotationWithDefault<uint32_t>(*LastInstr, "Size");
|
|
if (BB->getEndOffset() - Offset == Size)
|
|
return LastInstr;
|
|
}
|
|
|
|
return nullptr;
|
|
} else {
|
|
llvm_unreachable("invalid CFG state to use getInstructionAtOffset()");
|
|
}
|
|
}
|
|
|
|
DebugLocationsVector BinaryFunction::translateInputToOutputLocationList(
|
|
const DebugLocationsVector &InputLL) const {
|
|
DebugLocationsVector OutputLL;
|
|
|
|
if (isFolded())
|
|
return OutputLL;
|
|
|
|
// If the function hasn't changed - there's nothing to update.
|
|
if (!isEmitted())
|
|
return InputLL;
|
|
|
|
uint64_t PrevEndAddress = 0;
|
|
SmallVectorImpl<uint8_t> *PrevExpr = nullptr;
|
|
for (const DebugLocationEntry &Entry : InputLL) {
|
|
const uint64_t Start = Entry.LowPC;
|
|
const uint64_t End = Entry.HighPC;
|
|
if (!containsAddress(Start)) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
|
|
"for "
|
|
<< *this << " : [0x" << Twine::utohexstr(Start)
|
|
<< ", 0x" << Twine::utohexstr(End) << "]\n");
|
|
continue;
|
|
}
|
|
uint64_t InputOffset = Start - getAddress();
|
|
const uint64_t InputEndOffset = std::min(End - getAddress(), getSize());
|
|
auto BBI = std::upper_bound(
|
|
BasicBlockOffsets.begin(), BasicBlockOffsets.end(),
|
|
BasicBlockOffset(InputOffset, nullptr), CompareBasicBlockOffsets());
|
|
--BBI;
|
|
do {
|
|
const BinaryBasicBlock *BB = BBI->second;
|
|
if (InputOffset < BB->getOffset() || InputOffset >= BB->getEndOffset()) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: invalid debug address range detected "
|
|
"for "
|
|
<< *this << " : [0x" << Twine::utohexstr(Start)
|
|
<< ", 0x" << Twine::utohexstr(End) << "]\n");
|
|
PrevEndAddress = 0;
|
|
break;
|
|
}
|
|
|
|
// Skip the range if the block was deleted.
|
|
if (const uint64_t OutputStart = BB->getOutputAddressRange().first) {
|
|
const uint64_t StartAddress =
|
|
OutputStart + InputOffset - BB->getOffset();
|
|
uint64_t EndAddress = BB->getOutputAddressRange().second;
|
|
if (InputEndOffset < BB->getEndOffset())
|
|
EndAddress = StartAddress + InputEndOffset - InputOffset;
|
|
|
|
if (StartAddress == PrevEndAddress && Entry.Expr == *PrevExpr) {
|
|
OutputLL.back().HighPC = std::max(OutputLL.back().HighPC, EndAddress);
|
|
} else {
|
|
OutputLL.emplace_back(DebugLocationEntry{
|
|
StartAddress, std::max(StartAddress, EndAddress), Entry.Expr});
|
|
}
|
|
PrevEndAddress = OutputLL.back().HighPC;
|
|
PrevExpr = &OutputLL.back().Expr;
|
|
}
|
|
|
|
++BBI;
|
|
InputOffset = BB->getEndOffset();
|
|
} while (InputOffset < InputEndOffset);
|
|
}
|
|
|
|
// Sort and merge adjacent entries with identical location.
|
|
std::stable_sort(
|
|
OutputLL.begin(), OutputLL.end(),
|
|
[](const DebugLocationEntry &A, const DebugLocationEntry &B) {
|
|
return A.LowPC < B.LowPC;
|
|
});
|
|
DebugLocationsVector MergedLL;
|
|
PrevEndAddress = 0;
|
|
PrevExpr = nullptr;
|
|
for (const DebugLocationEntry &Entry : OutputLL) {
|
|
if (Entry.LowPC <= PrevEndAddress && *PrevExpr == Entry.Expr) {
|
|
MergedLL.back().HighPC = std::max(Entry.HighPC, MergedLL.back().HighPC);
|
|
} else {
|
|
const uint64_t Begin = std::max(Entry.LowPC, PrevEndAddress);
|
|
const uint64_t End = std::max(Begin, Entry.HighPC);
|
|
MergedLL.emplace_back(DebugLocationEntry{Begin, End, Entry.Expr});
|
|
}
|
|
PrevEndAddress = MergedLL.back().HighPC;
|
|
PrevExpr = &MergedLL.back().Expr;
|
|
}
|
|
|
|
return MergedLL;
|
|
}
|
|
|
|
void BinaryFunction::printLoopInfo(raw_ostream &OS) const {
|
|
OS << "Loop Info for Function \"" << *this << "\"";
|
|
if (hasValidProfile())
|
|
OS << " (count: " << getExecutionCount() << ")";
|
|
OS << "\n";
|
|
|
|
std::stack<BinaryLoop *> St;
|
|
for (auto I = BLI->begin(), E = BLI->end(); I != E; ++I)
|
|
St.push(*I);
|
|
while (!St.empty()) {
|
|
BinaryLoop *L = St.top();
|
|
St.pop();
|
|
|
|
for (BinaryLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
|
St.push(*I);
|
|
|
|
if (!hasValidProfile())
|
|
continue;
|
|
|
|
OS << (L->getLoopDepth() > 1 ? "Nested" : "Outer")
|
|
<< " loop header: " << L->getHeader()->getName();
|
|
OS << "\n";
|
|
OS << "Loop basic blocks: ";
|
|
const char *Sep = "";
|
|
for (auto BI = L->block_begin(), BE = L->block_end(); BI != BE; ++BI) {
|
|
OS << Sep << (*BI)->getName();
|
|
Sep = ", ";
|
|
}
|
|
OS << "\n";
|
|
if (hasValidProfile()) {
|
|
OS << "Total back edge count: " << L->TotalBackEdgeCount << "\n";
|
|
OS << "Loop entry count: " << L->EntryCount << "\n";
|
|
OS << "Loop exit count: " << L->ExitCount << "\n";
|
|
if (L->EntryCount > 0) {
|
|
OS << "Average iters per entry: "
|
|
<< format("%.4lf", (double)L->TotalBackEdgeCount / L->EntryCount)
|
|
<< "\n";
|
|
}
|
|
}
|
|
OS << "----\n";
|
|
}
|
|
|
|
OS << "Total number of loops: " << BLI->TotalLoops << "\n";
|
|
OS << "Number of outer loops: " << BLI->OuterLoops << "\n";
|
|
OS << "Maximum nested loop depth: " << BLI->MaximumDepth << "\n\n";
|
|
}
|
|
|
|
bool BinaryFunction::isAArch64Veneer() const {
|
|
if (BasicBlocks.size() != 1)
|
|
return false;
|
|
|
|
BinaryBasicBlock &BB = **BasicBlocks.begin();
|
|
if (BB.size() != 3)
|
|
return false;
|
|
|
|
for (MCInst &Inst : BB)
|
|
if (!BC.MIB->hasAnnotation(Inst, "AArch64Veneer"))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|