llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

786 lines
26 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/TargetInfo.h"
using namespace clang;
static const FunctionTypeProto *getFunctionProto(Decl *d) {
QualType Ty;
if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
Ty = decl->getType();
else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
Ty = decl->getType();
else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
Ty = decl->getUnderlyingType();
else
return 0;
if (Ty->isFunctionPointerType())
Ty = Ty->getAsPointerType()->getPointeeType();
if (const FunctionType *FnTy = Ty->getAsFunctionType())
return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
return 0;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
if (!T->isPointerType())
return false;
T = T->getAsPointerType()->getPointeeType().getCanonicalType();
ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
if (!ClsT)
return false;
IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
void Sema::HandleDeclAttributes(Decl *New, const AttributeList *DeclSpecAttrs,
const AttributeList *DeclaratorAttrs) {
if (DeclSpecAttrs == 0 && DeclaratorAttrs == 0) return;
while (DeclSpecAttrs) {
HandleDeclAttribute(New, *DeclSpecAttrs);
DeclSpecAttrs = DeclSpecAttrs->getNext();
}
// If there are any type attributes that were in the declarator, apply them to
// its top level type.
if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) {
QualType DT = VD->getType();
ProcessTypeAttributes(DT, DeclaratorAttrs);
VD->setType(DT);
} else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(New)) {
QualType DT = TD->getUnderlyingType();
ProcessTypeAttributes(DT, DeclaratorAttrs);
TD->setUnderlyingType(DT);
}
while (DeclaratorAttrs) {
HandleDeclAttribute(New, *DeclaratorAttrs);
DeclaratorAttrs = DeclaratorAttrs->getNext();
}
}
/// HandleDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it.
void Sema::HandleDeclAttribute(Decl *New, const AttributeList &Attr) {
switch (Attr.getKind()) {
case AttributeList::AT_address_space:
// Ignore this, this is a type attribute, handled by ProcessTypeAttributes.
break;
case AttributeList::AT_vector_size:HandleVectorSizeAttribute(New, Attr);break;
case AttributeList::AT_ext_vector_type:
HandleExtVectorTypeAttribute(New, Attr);
break;
case AttributeList::AT_mode: HandleModeAttribute(New, Attr); break;
case AttributeList::AT_alias: HandleAliasAttribute(New, Attr); break;
case AttributeList::AT_deprecated: HandleDeprecatedAttribute(New, Attr);break;
case AttributeList::AT_visibility: HandleVisibilityAttribute(New, Attr);break;
case AttributeList::AT_weak: HandleWeakAttribute(New, Attr); break;
case AttributeList::AT_dllimport: HandleDLLImportAttribute(New, Attr); break;
case AttributeList::AT_dllexport: HandleDLLExportAttribute(New, Attr); break;
case AttributeList::AT_nothrow: HandleNothrowAttribute(New, Attr); break;
case AttributeList::AT_stdcall: HandleStdCallAttribute(New, Attr); break;
case AttributeList::AT_fastcall: HandleFastCallAttribute(New, Attr); break;
case AttributeList::AT_aligned: HandleAlignedAttribute(New, Attr); break;
case AttributeList::AT_packed: HandlePackedAttribute(New, Attr); break;
case AttributeList::AT_annotate: HandleAnnotateAttribute(New, Attr); break;
case AttributeList::AT_noreturn: HandleNoReturnAttribute(New, Attr); break;
case AttributeList::AT_format: HandleFormatAttribute(New, Attr); break;
case AttributeList::AT_transparent_union:
HandleTransparentUnionAttribute(New, Attr);
break;
default:
#if 0
// TODO: when we have the full set of attributes, warn about unknown ones.
Diag(Attr->getLoc(), diag::warn_attribute_ignored,
Attr->getName()->getName());
#endif
break;
}
}
void Sema::HandleExtVectorTypeAttribute(Decl *d, const AttributeList &Attr) {
TypedefDecl *tDecl = dyn_cast<TypedefDecl>(d);
if (tDecl == 0) {
Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
return;
}
QualType curType = tDecl->getUnderlyingType();
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_not_int,
"ext_vector_type", sizeExpr->getSourceRange());
return;
}
// unlike gcc's vector_size attribute, we do not allow vectors to be defined
// in conjunction with complex types (pointers, arrays, functions, etc.).
Type *canonType = curType.getCanonicalType().getTypePtr();
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type,
curType.getCanonicalType().getAsString());
return;
}
// unlike gcc's vector_size attribute, the size is specified as the
// number of elements, not the number of bytes.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
if (vectorSize == 0) {
Diag(Attr.getLoc(), diag::err_attribute_zero_size,
sizeExpr->getSourceRange());
return;
}
// Instantiate/Install the vector type, the number of elements is > 0.
tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
// Remember this typedef decl, we will need it later for diagnostics.
ExtVectorDecls.push_back(tDecl);
}
/// HandleVectorSizeAttribute - this attribute is only applicable to
/// integral and float scalars, although arrays, pointers, and function
/// return values are allowed in conjunction with this construct. Aggregates
/// with this attribute are invalid, even if they are of the same size as a
/// corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size
/// for the variable, measured in bytes. If curType and rawAttr are well
/// formed, this routine will return a new vector type.
void Sema::HandleVectorSizeAttribute(Decl *D, const AttributeList &Attr) {
QualType CurType;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
CurType = VD->getType();
else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
CurType = TD->getUnderlyingType();
else {
Diag(D->getLocation(), diag::err_attr_wrong_decl,std::string("vector_size"),
SourceRange(Attr.getLoc(), Attr.getLoc()));
return;
}
// Check the attribute arugments.
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt vecSize(32);
if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_not_int,
"vector_size", sizeExpr->getSourceRange());
return;
}
// navigate to the base type - we need to provide for vector pointers,
// vector arrays, and functions returning vectors.
Type *canonType = CurType.getCanonicalType().getTypePtr();
if (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType()) {
assert(0 && "HandleVector(): Complex type construction unimplemented");
/* FIXME: rebuild the type from the inside out, vectorizing the inner type.
do {
if (PointerType *PT = dyn_cast<PointerType>(canonType))
canonType = PT->getPointeeType().getTypePtr();
else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
canonType = AT->getElementType().getTypePtr();
else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
canonType = FT->getResultType().getTypePtr();
} while (canonType->isPointerType() || canonType->isArrayType() ||
canonType->isFunctionType());
*/
}
// the base type must be integer or float.
if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type,
CurType.getCanonicalType().getAsString());
return;
}
unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
// vecSize is specified in bytes - convert to bits.
unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
// the vector size needs to be an integral multiple of the type size.
if (vectorSize % typeSize) {
Diag(Attr.getLoc(), diag::err_attribute_invalid_size,
sizeExpr->getSourceRange());
return;
}
if (vectorSize == 0) {
Diag(Attr.getLoc(), diag::err_attribute_zero_size,
sizeExpr->getSourceRange());
return;
}
// Success! Instantiate the vector type, the number of elements is > 0, and
// not required to be a power of 2, unlike GCC.
CurType = Context.getVectorType(CurType, vectorSize/typeSize);
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
VD->setType(CurType);
else
cast<TypedefDecl>(D)->setUnderlyingType(CurType);
}
void Sema::HandlePackedAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
if (TagDecl *TD = dyn_cast<TagDecl>(d))
TD->addAttr(new PackedAttr);
else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
// If the alignment is less than or equal to 8 bits, the packed attribute
// has no effect.
if (!FD->getType()->isIncompleteType() &&
Context.getTypeAlign(FD->getType()) <= 8)
Diag(Attr.getLoc(),
diag::warn_attribute_ignored_for_field_of_type,
Attr.getName()->getName(), FD->getType().getAsString());
else
FD->addAttr(new PackedAttr);
} else
Diag(Attr.getLoc(), diag::warn_attribute_ignored,
Attr.getName()->getName());
}
void Sema::HandleAliasAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string,
"alias", std::string("1"));
return;
}
const char *Alias = Str->getStrData();
unsigned AliasLen = Str->getByteLength();
// FIXME: check if target symbol exists in current file
d->addAttr(new AliasAttr(std::string(Alias, AliasLen)));
}
void Sema::HandleNoReturnAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
if (!Fn) {
Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type,
"noreturn", "function");
return;
}
d->addAttr(new NoReturnAttr());
}
void Sema::HandleDeprecatedAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DeprecatedAttr());
}
void Sema::HandleVisibilityAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *Arg = static_cast<Expr*>(Attr.getArg(0));
Arg = Arg->IgnoreParenCasts();
StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
if (Str == 0 || Str->isWide()) {
Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string,
"visibility", std::string("1"));
return;
}
const char *TypeStr = Str->getStrData();
unsigned TypeLen = Str->getByteLength();
VisibilityAttr::VisibilityTypes type;
if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
type = VisibilityAttr::DefaultVisibility;
else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
type = VisibilityAttr::HiddenVisibility;
else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
type = VisibilityAttr::HiddenVisibility; // FIXME
else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
type = VisibilityAttr::ProtectedVisibility;
else {
Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported,
"visibility", TypeStr);
return;
}
d->addAttr(new VisibilityAttr(type));
}
void Sema::HandleWeakAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new WeakAttr());
}
void Sema::HandleDLLImportAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DLLImportAttr());
}
void Sema::HandleDLLExportAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new DLLExportAttr());
}
void Sema::HandleStdCallAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new StdCallAttr());
}
void Sema::HandleFastCallAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new FastCallAttr());
}
void Sema::HandleNothrowAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
d->addAttr(new NoThrowAttr());
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes
/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
void Sema::HandleFormatAttribute(Decl *d, const AttributeList &Attr) {
if (!Attr.getParameterName()) {
Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string,
"format", std::string("1"));
return;
}
if (Attr.getNumArgs() != 2) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("3"));
return;
}
// GCC ignores the format attribute on K&R style function
// prototypes, so we ignore it as well
const FunctionTypeProto *proto = getFunctionProto(d);
if (!proto) {
Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type,
"format", "function");
return;
}
// FIXME: in C++ the implicit 'this' function parameter also counts.
// this is needed in order to be compatible with GCC
// the index must start in 1 and the limit is numargs+1
unsigned NumArgs = proto->getNumArgs();
unsigned FirstIdx = 1;
const char *Format = Attr.getParameterName()->getName();
unsigned FormatLen = Attr.getParameterName()->getLength();
// Normalize the argument, __foo__ becomes foo.
if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
Format += 2;
FormatLen -= 4;
}
bool Supported = false;
bool is_NSString = false;
bool is_strftime = false;
switch (FormatLen) {
default: break;
case 5:
Supported = !memcmp(Format, "scanf", 5);
break;
case 6:
Supported = !memcmp(Format, "printf", 6);
break;
case 7:
Supported = !memcmp(Format, "strfmon", 7);
break;
case 8:
Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
(is_NSString = !memcmp(Format, "NSString", 8));
break;
}
if (!Supported) {
Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported,
"format", Attr.getParameterName()->getName());
return;
}
// checks for the 2nd argument
Expr *IdxExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int,
"format", std::string("2"), IdxExpr->getSourceRange());
return;
}
if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds,
"format", std::string("2"), IdxExpr->getSourceRange());
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx.getZExtValue() - 1;
// make sure the format string is really a string
QualType Ty = proto->getArgType(ArgIdx);
if (is_NSString) {
// FIXME: do we need to check if the type is NSString*? What are
// the semantics?
if (!isNSStringType(Ty, Context)) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
Diag(Attr.getLoc(), diag::err_format_attribute_not_NSString,
IdxExpr->getSourceRange());
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAsPointerType()->getPointeeType()->isCharType()) {
// FIXME: Should highlight the actual expression that has the
// wrong type.
Diag(Attr.getLoc(), diag::err_format_attribute_not_string,
IdxExpr->getSourceRange());
return;
}
// check the 3rd argument
Expr *FirstArgExpr = static_cast<Expr *>(Attr.getArg(1));
llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_int,
"format", std::string("3"), FirstArgExpr->getSourceRange());
return;
}
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (proto->isVariadic()) {
++NumArgs; // +1 for ...
} else {
Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any variable
// the input is just the current time + the format string
if (is_strftime) {
if (FirstArg != 0) {
Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter,
FirstArgExpr->getSourceRange());
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds,
"format", std::string("3"), FirstArgExpr->getSourceRange());
return;
}
d->addAttr(new FormatAttr(std::string(Format, FormatLen),
Idx.getZExtValue(), FirstArg.getZExtValue()));
}
void Sema::HandleTransparentUnionAttribute(Decl *d,
const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
TypeDecl *decl = dyn_cast<TypeDecl>(d);
if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type,
"transparent_union", "union");
return;
}
//QualType QTy = Context.getTypeDeclType(decl);
//const RecordType *Ty = QTy->getAsUnionType();
// FIXME
// Ty->addAttr(new TransparentUnionAttr());
}
void Sema::HandleAnnotateAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() != 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
Expr *argExpr = static_cast<Expr *>(Attr.getArg(0));
StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
// Make sure that there is a string literal as the annotation's single
// argument.
if (!SE) {
Diag(Attr.getLoc(), diag::err_attribute_annotate_no_string);
return;
}
d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
void Sema::HandleAlignedAttribute(Decl *d, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("1"));
return;
}
unsigned Align = 0;
if (Attr.getNumArgs() == 0) {
// FIXME: This should be the target specific maximum alignment.
// (For now we just use 128 bits which is the maximum on X86.
Align = 128;
return;
} else {
Expr *alignmentExpr = static_cast<Expr *>(Attr.getArg(0));
llvm::APSInt alignment(32);
if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
Diag(Attr.getLoc(), diag::err_attribute_argument_not_int,
"aligned", alignmentExpr->getSourceRange());
return;
}
Align = alignment.getZExtValue() * 8;
}
d->addAttr(new AlignedAttr(Align));
}
/// HandleModeAttribute - This attribute modifies the width of a decl with
/// primitive type.
///
/// Despite what would be logical, the mode attribute is a decl attribute,
/// not a type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make
/// 'G' be HImode, not an intermediate pointer.
///
void Sema::HandleModeAttribute(Decl *D, const AttributeList &Attr) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
// Check that there aren't any arguments
if (Attr.getNumArgs() != 0) {
Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments,
std::string("0"));
return;
}
IdentifierInfo *Name = Attr.getParameterName();
if (!Name) {
Diag(Attr.getLoc(), diag::err_attribute_missing_parameter_name);
return;
}
const char *Str = Name->getName();
unsigned Len = Name->getLength();
// Normalize the attribute name, __foo__ becomes foo.
if (Len > 4 && Str[0] == '_' && Str[1] == '_' &&
Str[Len - 2] == '_' && Str[Len - 1] == '_') {
Str += 2;
Len -= 4;
}
unsigned DestWidth = 0;
bool IntegerMode = true;
switch (Len) {
case 2:
if (!memcmp(Str, "QI", 2)) { DestWidth = 8; break; }
if (!memcmp(Str, "HI", 2)) { DestWidth = 16; break; }
if (!memcmp(Str, "SI", 2)) { DestWidth = 32; break; }
if (!memcmp(Str, "DI", 2)) { DestWidth = 64; break; }
if (!memcmp(Str, "TI", 2)) { DestWidth = 128; break; }
if (!memcmp(Str, "SF", 2)) { DestWidth = 32; IntegerMode = false; break; }
if (!memcmp(Str, "DF", 2)) { DestWidth = 64; IntegerMode = false; break; }
if (!memcmp(Str, "XF", 2)) { DestWidth = 96; IntegerMode = false; break; }
if (!memcmp(Str, "TF", 2)) { DestWidth = 128; IntegerMode = false; break; }
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (!memcmp(Str, "word", 4))
DestWidth = Context.Target.getPointerWidth(0);
if (!memcmp(Str, "byte", 4))
DestWidth = Context.Target.getCharWidth();
break;
case 7:
if (!memcmp(Str, "pointer", 7))
DestWidth = Context.Target.getPointerWidth(0);
break;
}
QualType OldTy;
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
OldTy = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
OldTy = VD->getType();
else {
Diag(D->getLocation(), diag::err_attr_wrong_decl, "mode",
SourceRange(Attr.getLoc(), Attr.getLoc()));
return;
}
// FIXME: Need proper fixed-width types
QualType NewTy;
switch (DestWidth) {
case 0:
Diag(Attr.getLoc(), diag::err_unknown_machine_mode, Name->getName());
return;
default:
Diag(Attr.getLoc(), diag::err_unsupported_machine_mode, Name->getName());
return;
case 8:
assert(IntegerMode);
if (OldTy->isSignedIntegerType())
NewTy = Context.SignedCharTy;
else
NewTy = Context.UnsignedCharTy;
break;
case 16:
assert(IntegerMode);
if (OldTy->isSignedIntegerType())
NewTy = Context.ShortTy;
else
NewTy = Context.UnsignedShortTy;
break;
case 32:
if (!IntegerMode)
NewTy = Context.FloatTy;
else if (OldTy->isSignedIntegerType())
NewTy = Context.IntTy;
else
NewTy = Context.UnsignedIntTy;
break;
case 64:
if (!IntegerMode)
NewTy = Context.DoubleTy;
else if (OldTy->isSignedIntegerType())
NewTy = Context.LongLongTy;
else
NewTy = Context.UnsignedLongLongTy;
break;
}
if (!OldTy->getAsBuiltinType())
Diag(Attr.getLoc(), diag::err_mode_not_primitive);
else if (!(IntegerMode && OldTy->isIntegerType()) &&
!(!IntegerMode && OldTy->isFloatingType())) {
Diag(Attr.getLoc(), diag::err_mode_wrong_type);
}
// Install the new type.
if (TypedefDecl *TD = dyn_cast<TypedefDecl>(D))
TD->setUnderlyingType(NewTy);
else
cast<ValueDecl>(D)->setType(NewTy);
}