llvm-project/clang/tools/CIndex/CIndex.cpp

2189 lines
71 KiB
C++

//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the main API hooks in the Clang-C Source Indexing
// library.
//
//===----------------------------------------------------------------------===//
#include "CIndexer.h"
#include "CXCursor.h"
#include "CXSourceLocation.h"
#include "CIndexDiagnostic.h"
#include "clang/Basic/Version.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/System/Program.h"
// Needed to define L_TMPNAM on some systems.
#include <cstdio>
using namespace clang;
using namespace clang::cxcursor;
using namespace idx;
//===----------------------------------------------------------------------===//
// Crash Reporting.
//===----------------------------------------------------------------------===//
#ifdef __APPLE__
#ifndef NDEBUG
#define USE_CRASHTRACER
#include "clang/Analysis/Support/SaveAndRestore.h"
// Integrate with crash reporter.
extern "C" const char *__crashreporter_info__;
#define NUM_CRASH_STRINGS 16
static unsigned crashtracer_counter = 0;
static unsigned crashtracer_counter_id[NUM_CRASH_STRINGS] = { 0 };
static const char *crashtracer_strings[NUM_CRASH_STRINGS] = { 0 };
static const char *agg_crashtracer_strings[NUM_CRASH_STRINGS] = { 0 };
static unsigned SetCrashTracerInfo(const char *str,
llvm::SmallString<1024> &AggStr) {
unsigned slot = 0;
while (crashtracer_strings[slot]) {
if (++slot == NUM_CRASH_STRINGS)
slot = 0;
}
crashtracer_strings[slot] = str;
crashtracer_counter_id[slot] = ++crashtracer_counter;
// We need to create an aggregate string because multiple threads
// may be in this method at one time. The crash reporter string
// will attempt to overapproximate the set of in-flight invocations
// of this function. Race conditions can still cause this goal
// to not be achieved.
{
llvm::raw_svector_ostream Out(AggStr);
for (unsigned i = 0; i < NUM_CRASH_STRINGS; ++i)
if (crashtracer_strings[i]) Out << crashtracer_strings[i] << '\n';
}
__crashreporter_info__ = agg_crashtracer_strings[slot] = AggStr.c_str();
return slot;
}
static void ResetCrashTracerInfo(unsigned slot) {
unsigned max_slot = 0;
unsigned max_value = 0;
crashtracer_strings[slot] = agg_crashtracer_strings[slot] = 0;
for (unsigned i = 0 ; i < NUM_CRASH_STRINGS; ++i)
if (agg_crashtracer_strings[i] &&
crashtracer_counter_id[i] > max_value) {
max_slot = i;
max_value = crashtracer_counter_id[i];
}
__crashreporter_info__ = agg_crashtracer_strings[max_slot];
}
namespace {
class ArgsCrashTracerInfo {
llvm::SmallString<1024> CrashString;
llvm::SmallString<1024> AggregateString;
unsigned crashtracerSlot;
public:
ArgsCrashTracerInfo(llvm::SmallVectorImpl<const char*> &Args)
: crashtracerSlot(0)
{
{
llvm::raw_svector_ostream Out(CrashString);
Out << "ClangCIndex [createTranslationUnitFromSourceFile]: clang";
for (llvm::SmallVectorImpl<const char*>::iterator I=Args.begin(),
E=Args.end(); I!=E; ++I)
Out << ' ' << *I;
}
crashtracerSlot = SetCrashTracerInfo(CrashString.c_str(),
AggregateString);
}
~ArgsCrashTracerInfo() {
ResetCrashTracerInfo(crashtracerSlot);
}
};
}
#endif
#endif
/// \brief The result of comparing two source ranges.
enum RangeComparisonResult {
/// \brief Either the ranges overlap or one of the ranges is invalid.
RangeOverlap,
/// \brief The first range ends before the second range starts.
RangeBefore,
/// \brief The first range starts after the second range ends.
RangeAfter
};
/// \brief Compare two source ranges to determine their relative position in
/// the translation unit.
static RangeComparisonResult RangeCompare(SourceManager &SM,
SourceRange R1,
SourceRange R2) {
assert(R1.isValid() && "First range is invalid?");
assert(R2.isValid() && "Second range is invalid?");
if (SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin()))
return RangeBefore;
if (SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin()))
return RangeAfter;
return RangeOverlap;
}
//===----------------------------------------------------------------------===//
// Cursor visitor.
//===----------------------------------------------------------------------===//
namespace {
// Cursor visitor.
class CursorVisitor : public DeclVisitor<CursorVisitor, bool>,
public TypeLocVisitor<CursorVisitor, bool>,
public StmtVisitor<CursorVisitor, bool>
{
/// \brief The translation unit we are traversing.
ASTUnit *TU;
/// \brief The parent cursor whose children we are traversing.
CXCursor Parent;
/// \brief The declaration that serves at the parent of any statement or
/// expression nodes.
Decl *StmtParent;
/// \brief The visitor function.
CXCursorVisitor Visitor;
/// \brief The opaque client data, to be passed along to the visitor.
CXClientData ClientData;
// MaxPCHLevel - the maximum PCH level of declarations that we will pass on
// to the visitor. Declarations with a PCH level greater than this value will
// be suppressed.
unsigned MaxPCHLevel;
/// \brief When valid, a source range to which the cursor should restrict
/// its search.
SourceRange RegionOfInterest;
using DeclVisitor<CursorVisitor, bool>::Visit;
using TypeLocVisitor<CursorVisitor, bool>::Visit;
using StmtVisitor<CursorVisitor, bool>::Visit;
/// \brief Determine whether this particular source range comes before, comes
/// after, or overlaps the region of interest.
///
/// \param R a source range retrieved from the abstract syntax tree.
RangeComparisonResult CompareRegionOfInterest(SourceRange R);
/// \brief Determine whether this particular source range comes before, comes
/// after, or overlaps the region of interest.
///
/// \param CXR a source range retrieved from a cursor.
RangeComparisonResult CompareRegionOfInterest(CXSourceRange CXR);
public:
CursorVisitor(ASTUnit *TU, CXCursorVisitor Visitor, CXClientData ClientData,
unsigned MaxPCHLevel,
SourceRange RegionOfInterest = SourceRange())
: TU(TU), Visitor(Visitor), ClientData(ClientData),
MaxPCHLevel(MaxPCHLevel), RegionOfInterest(RegionOfInterest)
{
Parent.kind = CXCursor_NoDeclFound;
Parent.data[0] = 0;
Parent.data[1] = 0;
Parent.data[2] = 0;
StmtParent = 0;
}
bool Visit(CXCursor Cursor, bool CheckedRegionOfInterest = false);
bool VisitChildren(CXCursor Parent);
// Declaration visitors
bool VisitDeclContext(DeclContext *DC);
bool VisitTranslationUnitDecl(TranslationUnitDecl *D);
bool VisitTypedefDecl(TypedefDecl *D);
bool VisitTagDecl(TagDecl *D);
bool VisitEnumConstantDecl(EnumConstantDecl *D);
bool VisitDeclaratorDecl(DeclaratorDecl *DD);
bool VisitFunctionDecl(FunctionDecl *ND);
bool VisitFieldDecl(FieldDecl *D);
bool VisitVarDecl(VarDecl *);
bool VisitObjCMethodDecl(ObjCMethodDecl *ND);
bool VisitObjCContainerDecl(ObjCContainerDecl *D);
bool VisitObjCCategoryDecl(ObjCCategoryDecl *ND);
bool VisitObjCProtocolDecl(ObjCProtocolDecl *PID);
bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
bool VisitObjCImplDecl(ObjCImplDecl *D);
bool VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
bool VisitObjCImplementationDecl(ObjCImplementationDecl *D);
// FIXME: ObjCPropertyDecl requires TypeSourceInfo, getter/setter locations,
// etc.
// FIXME: ObjCCompatibleAliasDecl requires aliased-class locations.
bool VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D);
bool VisitObjCClassDecl(ObjCClassDecl *D);
// Type visitors
// FIXME: QualifiedTypeLoc doesn't provide any location information
bool VisitBuiltinTypeLoc(BuiltinTypeLoc TL);
bool VisitTypedefTypeLoc(TypedefTypeLoc TL);
bool VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL);
bool VisitTagTypeLoc(TagTypeLoc TL);
// FIXME: TemplateTypeParmTypeLoc doesn't provide any location information
bool VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL);
bool VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL);
bool VisitPointerTypeLoc(PointerTypeLoc TL);
bool VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL);
bool VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL);
bool VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL);
bool VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL);
bool VisitFunctionTypeLoc(FunctionTypeLoc TL);
bool VisitArrayTypeLoc(ArrayTypeLoc TL);
// FIXME: Implement for TemplateSpecializationTypeLoc
// FIXME: Implement visitors here when the unimplemented TypeLocs get
// implemented
bool VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL);
bool VisitTypeOfTypeLoc(TypeOfTypeLoc TL);
// Statement visitors
bool VisitStmt(Stmt *S);
bool VisitDeclStmt(DeclStmt *S);
// FIXME: LabelStmt label?
bool VisitIfStmt(IfStmt *S);
bool VisitSwitchStmt(SwitchStmt *S);
bool VisitWhileStmt(WhileStmt *S);
bool VisitForStmt(ForStmt *S);
// Expression visitors
bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E);
bool VisitExplicitCastExpr(ExplicitCastExpr *E);
bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
};
} // end anonymous namespace
RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) {
assert(RegionOfInterest.isValid() && "RangeCompare called with invalid range");
if (R.isInvalid())
return RangeOverlap;
// Move the end of the input range to the end of the last token in that
// range.
SourceLocation NewEnd
= TU->getPreprocessor().getLocForEndOfToken(R.getEnd(), 1);
if (NewEnd.isValid())
R.setEnd(NewEnd);
return RangeCompare(TU->getSourceManager(), R, RegionOfInterest);
}
RangeComparisonResult CursorVisitor::CompareRegionOfInterest(CXSourceRange CXR) {
return CompareRegionOfInterest(cxloc::translateSourceRange(CXR));
}
/// \brief Visit the given cursor and, if requested by the visitor,
/// its children.
///
/// \param Cursor the cursor to visit.
///
/// \param CheckRegionOfInterest if true, then the caller already checked that
/// this cursor is within the region of interest.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) {
if (clang_isInvalid(Cursor.kind))
return false;
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
assert(D && "Invalid declaration cursor");
if (D->getPCHLevel() > MaxPCHLevel)
return false;
if (D->isImplicit())
return false;
}
// If we have a range of interest, and this cursor doesn't intersect with it,
// we're done.
if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) {
CXSourceRange Range = clang_getCursorExtent(Cursor);
if (cxloc::translateSourceRange(Range).isInvalid() ||
CompareRegionOfInterest(Range))
return false;
}
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break:
return true;
case CXChildVisit_Continue:
return false;
case CXChildVisit_Recurse:
return VisitChildren(Cursor);
}
return false;
}
/// \brief Visit the children of the given cursor.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::VisitChildren(CXCursor Cursor) {
if (clang_isReference(Cursor.kind)) {
// By definition, references have no children.
return false;
}
// Set the Parent field to Cursor, then back to its old value once we're
// done.
class SetParentRAII {
CXCursor &Parent;
Decl *&StmtParent;
CXCursor OldParent;
public:
SetParentRAII(CXCursor &Parent, Decl *&StmtParent, CXCursor NewParent)
: Parent(Parent), StmtParent(StmtParent), OldParent(Parent)
{
Parent = NewParent;
if (clang_isDeclaration(Parent.kind))
StmtParent = getCursorDecl(Parent);
}
~SetParentRAII() {
Parent = OldParent;
if (clang_isDeclaration(Parent.kind))
StmtParent = getCursorDecl(Parent);
}
} SetParent(Parent, StmtParent, Cursor);
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
assert(D && "Invalid declaration cursor");
return Visit(D);
}
if (clang_isStatement(Cursor.kind))
return Visit(getCursorStmt(Cursor));
if (clang_isExpression(Cursor.kind))
return Visit(getCursorExpr(Cursor));
if (clang_isTranslationUnit(Cursor.kind)) {
ASTUnit *CXXUnit = getCursorASTUnit(Cursor);
if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() &&
RegionOfInterest.isInvalid()) {
const std::vector<Decl*> &TLDs = CXXUnit->getTopLevelDecls();
for (std::vector<Decl*>::const_iterator it = TLDs.begin(),
ie = TLDs.end(); it != ie; ++it) {
if (Visit(MakeCXCursor(*it, CXXUnit), true))
return true;
}
} else {
return VisitDeclContext(
CXXUnit->getASTContext().getTranslationUnitDecl());
}
return false;
}
// Nothing to visit at the moment.
return false;
}
bool CursorVisitor::VisitDeclContext(DeclContext *DC) {
for (DeclContext::decl_iterator
I = DC->decls_begin(), E = DC->decls_end(); I != E; ++I) {
if (RegionOfInterest.isValid()) {
SourceRange R = (*I)->getSourceRange();
if (R.isInvalid())
continue;
switch (CompareRegionOfInterest(R)) {
case RangeBefore:
// This declaration comes before the region of interest; skip it.
continue;
case RangeAfter:
// This declaration comes after the region of interest; we're done.
return false;
case RangeOverlap:
// This declaration overlaps the region of interest; visit it.
break;
}
}
if (Visit(MakeCXCursor(*I, TU), true))
return true;
}
return false;
}
bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
llvm_unreachable("Translation units are visited directly by Visit()");
return false;
}
bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTagDecl(TagDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) {
if (Expr *Init = D->getInitExpr())
return Visit(MakeCXCursor(Init, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) {
if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
return false;
}
bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) {
if (VisitDeclaratorDecl(ND))
return true;
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitFieldDecl(FieldDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *BitWidth = D->getBitWidth())
return Visit(MakeCXCursor(BitWidth, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitVarDecl(VarDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *Init = D->getInit())
return Visit(MakeCXCursor(Init, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) {
// FIXME: We really need a TypeLoc covering Objective-C method declarations.
// At the moment, we don't have information about locations in the return
// type.
for (ObjCMethodDecl::param_iterator P = ND->param_begin(),
PEnd = ND->param_end();
P != PEnd; ++P) {
if (Visit(MakeCXCursor(*P, TU)))
return true;
}
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) {
if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(),
TU)))
return true;
ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(),
E = ND->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(ND);
}
bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) {
ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(),
E = PID->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(PID);
}
bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
// Issue callbacks for super class.
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) {
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
if (Visit(MakeCursorObjCClassRef(D->getCategoryDecl()->getClassInterface(),
D->getLocation(), TU)))
return true;
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
#if 0
// Issue callbacks for super class.
// FIXME: No source location information!
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
#endif
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) {
ObjCForwardProtocolDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCForwardProtocolDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end();
I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCClassDecl(ObjCClassDecl *D) {
for (ObjCClassDecl::iterator C = D->begin(), CEnd = D->end(); C != CEnd; ++C)
if (Visit(MakeCursorObjCClassRef(C->getInterface(), C->getLocation(), TU)))
return true;
return false;
}
bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
ASTContext &Context = TU->getASTContext();
// Some builtin types (such as Objective-C's "id", "sel", and
// "Class") have associated declarations. Create cursors for those.
QualType VisitType;
switch (TL.getType()->getAs<BuiltinType>()->getKind()) {
case BuiltinType::Void:
case BuiltinType::Bool:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::UShort:
case BuiltinType::UInt:
case BuiltinType::ULong:
case BuiltinType::ULongLong:
case BuiltinType::UInt128:
case BuiltinType::Char_S:
case BuiltinType::SChar:
case BuiltinType::WChar:
case BuiltinType::Short:
case BuiltinType::Int:
case BuiltinType::Long:
case BuiltinType::LongLong:
case BuiltinType::Int128:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
case BuiltinType::NullPtr:
case BuiltinType::Overload:
case BuiltinType::Dependent:
break;
case BuiltinType::UndeducedAuto: // FIXME: Deserves a cursor?
break;
case BuiltinType::ObjCId:
VisitType = Context.getObjCIdType();
break;
case BuiltinType::ObjCClass:
VisitType = Context.getObjCClassType();
break;
case BuiltinType::ObjCSel:
VisitType = Context.getObjCSelType();
break;
}
if (!VisitType.isNull()) {
if (const TypedefType *Typedef = VisitType->getAs<TypedefType>())
return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(),
TU));
}
return false;
}
bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getTypedefDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU)))
return true;
for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) {
if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I),
TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseTypeLoc()))
return true;
if (TL.hasProtocolsAsWritten()) {
for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) {
if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I),
TL.getProtocolLoc(I),
TU)))
return true;
}
}
return false;
}
bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
if (Visit(TL.getResultLoc()))
return true;
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (Visit(MakeCXCursor(TL.getArg(I), TU)))
return true;
return false;
}
bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) {
if (Visit(TL.getElementLoc()))
return true;
if (Expr *Size = TL.getSizeExpr())
return Visit(MakeCXCursor(Size, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU));
}
bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitStmt(Stmt *S) {
for (Stmt::child_iterator Child = S->child_begin(), ChildEnd = S->child_end();
Child != ChildEnd; ++Child) {
if (*Child && Visit(MakeCXCursor(*Child, StmtParent, TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitDeclStmt(DeclStmt *S) {
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
if (*D && Visit(MakeCXCursor(*D, TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitIfStmt(IfStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getThen() && Visit(MakeCXCursor(S->getThen(), StmtParent, TU)))
return true;
if (S->getElse() && Visit(MakeCXCursor(S->getElse(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitSwitchStmt(SwitchStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitWhileStmt(WhileStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitForStmt(ForStmt *S) {
if (S->getInit() && Visit(MakeCXCursor(S->getInit(), StmtParent, TU)))
return true;
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getInc() && Visit(MakeCXCursor(S->getInc(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
if (E->isArgumentType()) {
if (TypeSourceInfo *TSInfo = E->getArgumentTypeInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
return VisitExpr(E);
}
bool CursorVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) {
if (TypeSourceInfo *TSInfo = E->getTypeInfoAsWritten())
if (Visit(TSInfo->getTypeLoc()))
return true;
return VisitCastExpr(E);
}
bool CursorVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
if (TypeSourceInfo *TSInfo = E->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
return VisitExpr(E);
}
CXString CIndexer::createCXString(const char *String, bool DupString){
CXString Str;
if (DupString) {
Str.Spelling = strdup(String);
Str.MustFreeString = 1;
} else {
Str.Spelling = String;
Str.MustFreeString = 0;
}
return Str;
}
CXString CIndexer::createCXString(llvm::StringRef String, bool DupString) {
CXString Result;
if (DupString || (!String.empty() && String.data()[String.size()] != 0)) {
char *Spelling = (char *)malloc(String.size() + 1);
memmove(Spelling, String.data(), String.size());
Spelling[String.size()] = 0;
Result.Spelling = Spelling;
Result.MustFreeString = 1;
} else {
Result.Spelling = String.data();
Result.MustFreeString = 0;
}
return Result;
}
extern "C" {
CXIndex clang_createIndex(int excludeDeclarationsFromPCH) {
CIndexer *CIdxr = new CIndexer();
if (excludeDeclarationsFromPCH)
CIdxr->setOnlyLocalDecls();
return CIdxr;
}
void clang_disposeIndex(CXIndex CIdx) {
if (CIdx)
delete static_cast<CIndexer *>(CIdx);
}
void clang_setUseExternalASTGeneration(CXIndex CIdx, int value) {
if (CIdx) {
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
CXXIdx->setUseExternalASTGeneration(value);
}
}
CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx,
const char *ast_filename,
CXDiagnosticCallback diag_callback,
CXClientData diag_client_data) {
if (!CIdx)
return 0;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
// Configure the diagnostics.
DiagnosticOptions DiagOpts;
llvm::OwningPtr<Diagnostic> Diags;
Diags.reset(CompilerInstance::createDiagnostics(DiagOpts, 0, 0));
CIndexDiagnosticClient DiagClient(diag_callback, diag_client_data);
Diags->setClient(&DiagClient);
return ASTUnit::LoadFromPCHFile(ast_filename, *Diags,
CXXIdx->getOnlyLocalDecls(),
/* UseBumpAllocator = */ true);
}
CXTranslationUnit
clang_createTranslationUnitFromSourceFile(CXIndex CIdx,
const char *source_filename,
int num_command_line_args,
const char **command_line_args,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files,
CXDiagnosticCallback diag_callback,
CXClientData diag_client_data) {
if (!CIdx)
return 0;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
// Configure the diagnostics.
DiagnosticOptions DiagOpts;
llvm::OwningPtr<Diagnostic> Diags;
Diags.reset(CompilerInstance::createDiagnostics(DiagOpts, 0, 0));
CIndexDiagnosticClient DiagClient(diag_callback, diag_client_data);
Diags->setClient(&DiagClient);
llvm::SmallVector<ASTUnit::RemappedFile, 4> RemappedFiles;
for (unsigned I = 0; I != num_unsaved_files; ++I) {
const llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBuffer(unsaved_files[I].Contents,
unsaved_files[I].Contents + unsaved_files[I].Length,
unsaved_files[I].Filename);
RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename,
Buffer));
}
if (!CXXIdx->getUseExternalASTGeneration()) {
llvm::SmallVector<const char *, 16> Args;
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
if (source_filename)
Args.push_back(source_filename);
Args.insert(Args.end(), command_line_args,
command_line_args + num_command_line_args);
unsigned NumErrors = Diags->getNumErrors();
#ifdef USE_CRASHTRACER
ArgsCrashTracerInfo ACTI(Args);
#endif
llvm::OwningPtr<ASTUnit> Unit(
ASTUnit::LoadFromCommandLine(Args.data(), Args.data() + Args.size(),
*Diags,
CXXIdx->getClangResourcesPath(),
CXXIdx->getOnlyLocalDecls(),
/* UseBumpAllocator = */ true,
RemappedFiles.data(),
RemappedFiles.size()));
// FIXME: Until we have broader testing, just drop the entire AST if we
// encountered an error.
if (NumErrors != Diags->getNumErrors())
return 0;
return Unit.take();
}
// Build up the arguments for invoking 'clang'.
std::vector<const char *> argv;
// First add the complete path to the 'clang' executable.
llvm::sys::Path ClangPath = static_cast<CIndexer *>(CIdx)->getClangPath();
argv.push_back(ClangPath.c_str());
// Add the '-emit-ast' option as our execution mode for 'clang'.
argv.push_back("-emit-ast");
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
if (source_filename)
argv.push_back(source_filename);
// Generate a temporary name for the AST file.
argv.push_back("-o");
char astTmpFile[L_tmpnam];
argv.push_back(tmpnam(astTmpFile));
// Remap any unsaved files to temporary files.
std::vector<llvm::sys::Path> TemporaryFiles;
std::vector<std::string> RemapArgs;
if (RemapFiles(num_unsaved_files, unsaved_files, RemapArgs, TemporaryFiles))
return 0;
// The pointers into the elements of RemapArgs are stable because we
// won't be adding anything to RemapArgs after this point.
for (unsigned i = 0, e = RemapArgs.size(); i != e; ++i)
argv.push_back(RemapArgs[i].c_str());
// Process the compiler options, stripping off '-o', '-c', '-fsyntax-only'.
for (int i = 0; i < num_command_line_args; ++i)
if (const char *arg = command_line_args[i]) {
if (strcmp(arg, "-o") == 0) {
++i; // Also skip the matching argument.
continue;
}
if (strcmp(arg, "-emit-ast") == 0 ||
strcmp(arg, "-c") == 0 ||
strcmp(arg, "-fsyntax-only") == 0) {
continue;
}
// Keep the argument.
argv.push_back(arg);
}
// Generate a temporary name for the diagnostics file.
char tmpFileResults[L_tmpnam];
char *tmpResultsFileName = tmpnam(tmpFileResults);
llvm::sys::Path DiagnosticsFile(tmpResultsFileName);
TemporaryFiles.push_back(DiagnosticsFile);
argv.push_back("-fdiagnostics-binary");
// Add the null terminator.
argv.push_back(NULL);
// Invoke 'clang'.
llvm::sys::Path DevNull; // leave empty, causes redirection to /dev/null
// on Unix or NUL (Windows).
std::string ErrMsg;
const llvm::sys::Path *Redirects[] = { &DevNull, &DevNull, &DiagnosticsFile,
NULL };
llvm::sys::Program::ExecuteAndWait(ClangPath, &argv[0], /* env */ NULL,
/* redirects */ &Redirects[0],
/* secondsToWait */ 0, /* memoryLimits */ 0, &ErrMsg);
if (!ErrMsg.empty()) {
std::string AllArgs;
for (std::vector<const char*>::iterator I = argv.begin(), E = argv.end();
I != E; ++I) {
AllArgs += ' ';
if (*I)
AllArgs += *I;
}
Diags->Report(diag::err_fe_clang) << AllArgs << ErrMsg;
}
// FIXME: Parse the (redirected) standard error to emit diagnostics.
ASTUnit *ATU = ASTUnit::LoadFromPCHFile(astTmpFile, *Diags,
CXXIdx->getOnlyLocalDecls(),
/* UseBumpAllocator = */ true,
RemappedFiles.data(),
RemappedFiles.size());
if (ATU)
ATU->unlinkTemporaryFile();
ReportSerializedDiagnostics(DiagnosticsFile, *Diags,
num_unsaved_files, unsaved_files,
ATU->getASTContext().getLangOptions());
for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i)
TemporaryFiles[i].eraseFromDisk();
return ATU;
}
void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) {
if (CTUnit)
delete static_cast<ASTUnit *>(CTUnit);
}
CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) {
if (!CTUnit)
return CIndexer::createCXString("");
ASTUnit *CXXUnit = static_cast<ASTUnit *>(CTUnit);
return CIndexer::createCXString(CXXUnit->getOriginalSourceFileName().c_str(),
true);
}
CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) {
CXCursor Result = { CXCursor_TranslationUnit, { 0, 0, TU } };
return Result;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXSourceLocation and CXSourceRange Operations.
//===----------------------------------------------------------------------===//
extern "C" {
CXSourceLocation clang_getNullLocation() {
CXSourceLocation Result = { { 0, 0 }, 0 };
return Result;
}
unsigned clang_equalLocations(CXSourceLocation loc1, CXSourceLocation loc2) {
return (loc1.ptr_data[0] == loc2.ptr_data[0] &&
loc1.ptr_data[1] == loc2.ptr_data[1] &&
loc1.int_data == loc2.int_data);
}
CXSourceLocation clang_getLocation(CXTranslationUnit tu,
CXFile file,
unsigned line,
unsigned column) {
if (!tu)
return clang_getNullLocation();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu);
SourceLocation SLoc
= CXXUnit->getSourceManager().getLocation(
static_cast<const FileEntry *>(file),
line, column);
return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc, false);
}
CXSourceRange clang_getNullRange() {
CXSourceRange Result = { { 0, 0 }, 0, 0 };
return Result;
}
CXSourceRange clang_getRange(CXSourceLocation begin, CXSourceLocation end) {
if (begin.ptr_data[0] != end.ptr_data[0] ||
begin.ptr_data[1] != end.ptr_data[1])
return clang_getNullRange();
CXSourceRange Result = { { begin.ptr_data[0], begin.ptr_data[1] },
begin.int_data, end.int_data };
return Result;
}
void clang_getInstantiationLocation(CXSourceLocation location,
CXFile *file,
unsigned *line,
unsigned *column,
unsigned *offset) {
cxloc::CXSourceLocationPtr Ptr
= cxloc::CXSourceLocationPtr::getFromOpaqueValue(location.ptr_data[0]);
SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data);
if (!Ptr.getPointer() || Loc.isInvalid()) {
if (file)
*file = 0;
if (line)
*line = 0;
if (column)
*column = 0;
if (offset)
*offset = 0;
return;
}
// FIXME: This is largely copy-paste from
///TextDiagnosticPrinter::HighlightRange. When it is clear that this is
// what we want the two routines should be refactored.
const SourceManager &SM = *Ptr.getPointer();
SourceLocation InstLoc = SM.getInstantiationLoc(Loc);
if (Ptr.getInt()) {
// We want the last character in this location, so we will adjust
// the instantiation location accordingly.
// If the location is from a macro instantiation, get the end of
// the instantiation range.
if (Loc.isMacroID())
InstLoc = SM.getInstantiationRange(Loc).second;
// Measure the length token we're pointing at, so we can adjust
// the physical location in the file to point at the last
// character.
// FIXME: This won't cope with trigraphs or escaped newlines
// well. For that, we actually need a preprocessor, which isn't
// currently available here. Eventually, we'll switch the pointer
// data of CXSourceLocation/CXSourceRange to a translation unit
// (CXXUnit), so that the preprocessor will be available here. At
// that point, we can use Preprocessor::getLocForEndOfToken().
unsigned Length = Lexer::MeasureTokenLength(InstLoc, SM,
*static_cast<LangOptions *>(location.ptr_data[1]));
if (Length > 0)
InstLoc = InstLoc.getFileLocWithOffset(Length - 1);
}
if (file)
*file = (void *)SM.getFileEntryForID(SM.getFileID(InstLoc));
if (line)
*line = SM.getInstantiationLineNumber(InstLoc);
if (column)
*column = SM.getInstantiationColumnNumber(InstLoc);
if (offset)
*offset = SM.getDecomposedLoc(InstLoc).second;
}
CXSourceLocation clang_getRangeStart(CXSourceRange range) {
CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] },
range.begin_int_data };
return Result;
}
CXSourceLocation clang_getRangeEnd(CXSourceRange range) {
cxloc::CXSourceLocationPtr Ptr;
Ptr.setPointer(static_cast<SourceManager *>(range.ptr_data[0]));
Ptr.setInt(true);
CXSourceLocation Result = { { Ptr.getOpaqueValue(), range.ptr_data[1] },
range.end_int_data };
return Result;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXFile Operations.
//===----------------------------------------------------------------------===//
extern "C" {
const char *clang_getFileName(CXFile SFile) {
if (!SFile)
return 0;
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return FEnt->getName();
}
time_t clang_getFileTime(CXFile SFile) {
if (!SFile)
return 0;
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return FEnt->getModificationTime();
}
CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) {
if (!tu)
return 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu);
FileManager &FMgr = CXXUnit->getFileManager();
const FileEntry *File = FMgr.getFile(file_name, file_name+strlen(file_name));
return const_cast<FileEntry *>(File);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXCursor Operations.
//===----------------------------------------------------------------------===//
static Decl *getDeclFromExpr(Stmt *E) {
if (DeclRefExpr *RefExpr = dyn_cast<DeclRefExpr>(E))
return RefExpr->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
if (ObjCIvarRefExpr *RE = dyn_cast<ObjCIvarRefExpr>(E))
return RE->getDecl();
if (CallExpr *CE = dyn_cast<CallExpr>(E))
return getDeclFromExpr(CE->getCallee());
if (CastExpr *CE = dyn_cast<CastExpr>(E))
return getDeclFromExpr(CE->getSubExpr());
if (ObjCMessageExpr *OME = dyn_cast<ObjCMessageExpr>(E))
return OME->getMethodDecl();
return 0;
}
extern "C" {
unsigned clang_visitChildren(CXCursor parent,
CXCursorVisitor visitor,
CXClientData client_data) {
ASTUnit *CXXUnit = getCursorASTUnit(parent);
unsigned PCHLevel = Decl::MaxPCHLevel;
// Set the PCHLevel to filter out unwanted decls if requested.
if (CXXUnit->getOnlyLocalDecls()) {
PCHLevel = 0;
// If the main input was an AST, bump the level.
if (CXXUnit->isMainFileAST())
++PCHLevel;
}
CursorVisitor CursorVis(CXXUnit, visitor, client_data, PCHLevel);
return CursorVis.VisitChildren(parent);
}
static CXString getDeclSpelling(Decl *D) {
NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D);
if (!ND)
return CIndexer::createCXString("");
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(ND))
return CIndexer::createCXString(OMD->getSelector().getAsString().c_str(),
true);
if (ObjCCategoryImplDecl *CIMP = dyn_cast<ObjCCategoryImplDecl>(ND))
// No, this isn't the same as the code below. getIdentifier() is non-virtual
// and returns different names. NamedDecl returns the class name and
// ObjCCategoryImplDecl returns the category name.
return CIndexer::createCXString(CIMP->getIdentifier()->getNameStart());
if (ND->getIdentifier())
return CIndexer::createCXString(ND->getIdentifier()->getNameStart());
return CIndexer::createCXString("");
}
CXString clang_getCursorSpelling(CXCursor C) {
if (clang_isTranslationUnit(C.kind))
return clang_getTranslationUnitSpelling(C.data[2]);
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first;
return CIndexer::createCXString(Super->getIdentifier()->getNameStart());
}
case CXCursor_ObjCClassRef: {
ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
return CIndexer::createCXString(Class->getIdentifier()->getNameStart());
}
case CXCursor_ObjCProtocolRef: {
ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first;
assert(OID && "getCursorSpelling(): Missing protocol decl");
return CIndexer::createCXString(OID->getIdentifier()->getNameStart());
}
case CXCursor_TypeRef: {
TypeDecl *Type = getCursorTypeRef(C).first;
assert(Type && "Missing type decl");
return CIndexer::createCXString(
getCursorContext(C).getTypeDeclType(Type).getAsString().c_str(),
true);
}
default:
return CIndexer::createCXString("<not implemented>");
}
}
if (clang_isExpression(C.kind)) {
Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return getDeclSpelling(D);
return CIndexer::createCXString("");
}
if (clang_isDeclaration(C.kind))
return getDeclSpelling(getCursorDecl(C));
return CIndexer::createCXString("");
}
const char *clang_getCursorKindSpelling(enum CXCursorKind Kind) {
switch (Kind) {
case CXCursor_FunctionDecl: return "FunctionDecl";
case CXCursor_TypedefDecl: return "TypedefDecl";
case CXCursor_EnumDecl: return "EnumDecl";
case CXCursor_EnumConstantDecl: return "EnumConstantDecl";
case CXCursor_StructDecl: return "StructDecl";
case CXCursor_UnionDecl: return "UnionDecl";
case CXCursor_ClassDecl: return "ClassDecl";
case CXCursor_FieldDecl: return "FieldDecl";
case CXCursor_VarDecl: return "VarDecl";
case CXCursor_ParmDecl: return "ParmDecl";
case CXCursor_ObjCInterfaceDecl: return "ObjCInterfaceDecl";
case CXCursor_ObjCCategoryDecl: return "ObjCCategoryDecl";
case CXCursor_ObjCProtocolDecl: return "ObjCProtocolDecl";
case CXCursor_ObjCPropertyDecl: return "ObjCPropertyDecl";
case CXCursor_ObjCIvarDecl: return "ObjCIvarDecl";
case CXCursor_ObjCInstanceMethodDecl: return "ObjCInstanceMethodDecl";
case CXCursor_ObjCClassMethodDecl: return "ObjCClassMethodDecl";
case CXCursor_ObjCImplementationDecl: return "ObjCImplementationDecl";
case CXCursor_ObjCCategoryImplDecl: return "ObjCCategoryImplDecl";
case CXCursor_UnexposedDecl: return "UnexposedDecl";
case CXCursor_ObjCSuperClassRef: return "ObjCSuperClassRef";
case CXCursor_ObjCProtocolRef: return "ObjCProtocolRef";
case CXCursor_ObjCClassRef: return "ObjCClassRef";
case CXCursor_TypeRef: return "TypeRef";
case CXCursor_UnexposedExpr: return "UnexposedExpr";
case CXCursor_DeclRefExpr: return "DeclRefExpr";
case CXCursor_MemberRefExpr: return "MemberRefExpr";
case CXCursor_CallExpr: return "CallExpr";
case CXCursor_ObjCMessageExpr: return "ObjCMessageExpr";
case CXCursor_UnexposedStmt: return "UnexposedStmt";
case CXCursor_InvalidFile: return "InvalidFile";
case CXCursor_NoDeclFound: return "NoDeclFound";
case CXCursor_NotImplemented: return "NotImplemented";
case CXCursor_TranslationUnit: return "TranslationUnit";
}
llvm_unreachable("Unhandled CXCursorKind");
return NULL;
}
enum CXChildVisitResult GetCursorVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
CXCursor *BestCursor = static_cast<CXCursor *>(client_data);
*BestCursor = cursor;
return CXChildVisit_Recurse;
}
CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) {
if (!TU)
return clang_getNullCursor();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
SourceLocation SLoc = cxloc::translateSourceLocation(Loc);
CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound);
if (SLoc.isValid()) {
SourceRange RegionOfInterest(SLoc,
CXXUnit->getPreprocessor().getLocForEndOfToken(SLoc, 1));
// FIXME: Would be great to have a "hint" cursor, then walk from that
// hint cursor upward until we find a cursor whose source range encloses
// the region of interest, rather than starting from the translation unit.
CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit);
CursorVisitor CursorVis(CXXUnit, GetCursorVisitor, &Result,
Decl::MaxPCHLevel, RegionOfInterest);
CursorVis.VisitChildren(Parent);
}
return Result;
}
CXCursor clang_getNullCursor(void) {
return MakeCXCursorInvalid(CXCursor_InvalidFile);
}
unsigned clang_equalCursors(CXCursor X, CXCursor Y) {
return X == Y;
}
unsigned clang_isInvalid(enum CXCursorKind K) {
return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid;
}
unsigned clang_isDeclaration(enum CXCursorKind K) {
return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl;
}
unsigned clang_isReference(enum CXCursorKind K) {
return K >= CXCursor_FirstRef && K <= CXCursor_LastRef;
}
unsigned clang_isExpression(enum CXCursorKind K) {
return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr;
}
unsigned clang_isStatement(enum CXCursorKind K) {
return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt;
}
unsigned clang_isTranslationUnit(enum CXCursorKind K) {
return K == CXCursor_TranslationUnit;
}
CXCursorKind clang_getCursorKind(CXCursor C) {
return C.kind;
}
static SourceLocation getLocationFromExpr(Expr *E) {
if (ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E))
return /*FIXME:*/Msg->getLeftLoc();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getLocation();
if (MemberExpr *Member = dyn_cast<MemberExpr>(E))
return Member->getMemberLoc();
if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E))
return Ivar->getLocation();
return E->getLocStart();
}
CXSourceLocation clang_getCursorLocation(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCSuperClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCProtocolRef: {
std::pair<ObjCProtocolDecl *, SourceLocation> P
= getCursorObjCProtocolRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TypeRef: {
std::pair<TypeDecl *, SourceLocation> P = getCursorTypeRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getLocationFromExpr(getCursorExpr(C)));
if (!getCursorDecl(C))
return clang_getNullLocation();
Decl *D = getCursorDecl(C);
SourceLocation Loc = D->getLocation();
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(D))
Loc = Class->getClassLoc();
return cxloc::translateSourceLocation(D->getASTContext(), Loc);
}
CXSourceRange clang_getCursorExtent(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCSuperClassRef(C);
return cxloc::translateSourceRange(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCProtocolRef: {
std::pair<ObjCProtocolDecl *, SourceLocation> P
= getCursorObjCProtocolRef(C);
return cxloc::translateSourceRange(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCClassRef(C);
return cxloc::translateSourceRange(P.first->getASTContext(), P.second);
}
case CXCursor_TypeRef: {
std::pair<TypeDecl *, SourceLocation> P = getCursorTypeRef(C);
return cxloc::translateSourceRange(P.first->getASTContext(), P.second);
}
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return cxloc::translateSourceRange(getCursorContext(C),
getCursorExpr(C)->getSourceRange());
if (clang_isStatement(C.kind))
return cxloc::translateSourceRange(getCursorContext(C),
getCursorStmt(C)->getSourceRange());
if (!getCursorDecl(C))
return clang_getNullRange();
Decl *D = getCursorDecl(C);
return cxloc::translateSourceRange(D->getASTContext(), D->getSourceRange());
}
CXCursor clang_getCursorReferenced(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
ASTUnit *CXXUnit = getCursorASTUnit(C);
if (clang_isDeclaration(C.kind))
return C;
if (clang_isExpression(C.kind)) {
Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return MakeCXCursor(D, CXXUnit);
return clang_getNullCursor();
}
if (!clang_isReference(C.kind))
return clang_getNullCursor();
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return MakeCXCursor(getCursorObjCSuperClassRef(C).first, CXXUnit);
case CXCursor_ObjCProtocolRef: {
return MakeCXCursor(getCursorObjCProtocolRef(C).first, CXXUnit);
case CXCursor_ObjCClassRef:
return MakeCXCursor(getCursorObjCClassRef(C).first, CXXUnit);
case CXCursor_TypeRef:
return MakeCXCursor(getCursorTypeRef(C).first, CXXUnit);
default:
// We would prefer to enumerate all non-reference cursor kinds here.
llvm_unreachable("Unhandled reference cursor kind");
break;
}
}
return clang_getNullCursor();
}
CXCursor clang_getCursorDefinition(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
ASTUnit *CXXUnit = getCursorASTUnit(C);
bool WasReference = false;
if (clang_isReference(C.kind) || clang_isExpression(C.kind)) {
C = clang_getCursorReferenced(C);
WasReference = true;
}
if (!clang_isDeclaration(C.kind))
return clang_getNullCursor();
Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
switch (D->getKind()) {
// Declaration kinds that don't really separate the notions of
// declaration and definition.
case Decl::Namespace:
case Decl::Typedef:
case Decl::TemplateTypeParm:
case Decl::EnumConstant:
case Decl::Field:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ImplicitParam:
case Decl::ParmVar:
case Decl::NonTypeTemplateParm:
case Decl::TemplateTemplateParm:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::LinkageSpec:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::StaticAssert:
case Decl::Block:
return C;
// Declaration kinds that don't make any sense here, but are
// nonetheless harmless.
case Decl::TranslationUnit:
case Decl::Template:
case Decl::ObjCContainer:
break;
// Declaration kinds for which the definition is not resolvable.
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
break;
case Decl::UsingDirective:
return MakeCXCursor(cast<UsingDirectiveDecl>(D)->getNominatedNamespace(),
CXXUnit);
case Decl::NamespaceAlias:
return MakeCXCursor(cast<NamespaceAliasDecl>(D)->getNamespace(), CXXUnit);
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
if (TagDecl *Def = cast<TagDecl>(D)->getDefinition(D->getASTContext()))
return MakeCXCursor(Def, CXXUnit);
return clang_getNullCursor();
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion: {
const FunctionDecl *Def = 0;
if (cast<FunctionDecl>(D)->getBody(Def))
return MakeCXCursor(const_cast<FunctionDecl *>(Def), CXXUnit);
return clang_getNullCursor();
}
case Decl::Var: {
VarDecl *Var = cast<VarDecl>(D);
// Variables with initializers have definitions.
const VarDecl *Def = 0;
if (Var->getDefinition(Def))
return MakeCXCursor(const_cast<VarDecl *>(Def), CXXUnit);
// extern and private_extern variables are not definitions.
if (Var->hasExternalStorage())
return clang_getNullCursor();
// In-line static data members do not have definitions.
if (Var->isStaticDataMember() && !Var->isOutOfLine())
return clang_getNullCursor();
// All other variables are themselves definitions.
return C;
}
case Decl::FunctionTemplate: {
const FunctionDecl *Def = 0;
if (cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->getBody(Def))
return MakeCXCursor(Def->getDescribedFunctionTemplate(), CXXUnit);
return clang_getNullCursor();
}
case Decl::ClassTemplate: {
if (RecordDecl *Def = cast<ClassTemplateDecl>(D)->getTemplatedDecl()
->getDefinition(D->getASTContext()))
return MakeCXCursor(
cast<CXXRecordDecl>(Def)->getDescribedClassTemplate(),
CXXUnit);
return clang_getNullCursor();
}
case Decl::Using: {
UsingDecl *Using = cast<UsingDecl>(D);
CXCursor Def = clang_getNullCursor();
for (UsingDecl::shadow_iterator S = Using->shadow_begin(),
SEnd = Using->shadow_end();
S != SEnd; ++S) {
if (Def != clang_getNullCursor()) {
// FIXME: We have no way to return multiple results.
return clang_getNullCursor();
}
Def = clang_getCursorDefinition(MakeCXCursor((*S)->getTargetDecl(),
CXXUnit));
}
return Def;
}
case Decl::UsingShadow:
return clang_getCursorDefinition(
MakeCXCursor(cast<UsingShadowDecl>(D)->getTargetDecl(),
CXXUnit));
case Decl::ObjCMethod: {
ObjCMethodDecl *Method = cast<ObjCMethodDecl>(D);
if (Method->isThisDeclarationADefinition())
return C;
// Dig out the method definition in the associated
// @implementation, if we have it.
// FIXME: The ASTs should make finding the definition easier.
if (ObjCInterfaceDecl *Class
= dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()))
if (ObjCImplementationDecl *ClassImpl = Class->getImplementation())
if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(),
Method->isInstanceMethod()))
if (Def->isThisDeclarationADefinition())
return MakeCXCursor(Def, CXXUnit);
return clang_getNullCursor();
}
case Decl::ObjCCategory:
if (ObjCCategoryImplDecl *Impl
= cast<ObjCCategoryDecl>(D)->getImplementation())
return MakeCXCursor(Impl, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCProtocol:
if (!cast<ObjCProtocolDecl>(D)->isForwardDecl())
return C;
return clang_getNullCursor();
case Decl::ObjCInterface:
// There are two notions of a "definition" for an Objective-C
// class: the interface and its implementation. When we resolved a
// reference to an Objective-C class, produce the @interface as
// the definition; when we were provided with the interface,
// produce the @implementation as the definition.
if (WasReference) {
if (!cast<ObjCInterfaceDecl>(D)->isForwardDecl())
return C;
} else if (ObjCImplementationDecl *Impl
= cast<ObjCInterfaceDecl>(D)->getImplementation())
return MakeCXCursor(Impl, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCProperty:
// FIXME: We don't really know where to find the
// ObjCPropertyImplDecls that implement this property.
return clang_getNullCursor();
case Decl::ObjCCompatibleAlias:
if (ObjCInterfaceDecl *Class
= cast<ObjCCompatibleAliasDecl>(D)->getClassInterface())
if (!Class->isForwardDecl())
return MakeCXCursor(Class, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCForwardProtocol: {
ObjCForwardProtocolDecl *Forward = cast<ObjCForwardProtocolDecl>(D);
if (Forward->protocol_size() == 1)
return clang_getCursorDefinition(
MakeCXCursor(*Forward->protocol_begin(),
CXXUnit));
// FIXME: Cannot return multiple definitions.
return clang_getNullCursor();
}
case Decl::ObjCClass: {
ObjCClassDecl *Class = cast<ObjCClassDecl>(D);
if (Class->size() == 1) {
ObjCInterfaceDecl *IFace = Class->begin()->getInterface();
if (!IFace->isForwardDecl())
return MakeCXCursor(IFace, CXXUnit);
return clang_getNullCursor();
}
// FIXME: Cannot return multiple definitions.
return clang_getNullCursor();
}
case Decl::Friend:
if (NamedDecl *Friend = cast<FriendDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit));
return clang_getNullCursor();
case Decl::FriendTemplate:
if (NamedDecl *Friend = cast<FriendTemplateDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit));
return clang_getNullCursor();
}
return clang_getNullCursor();
}
unsigned clang_isCursorDefinition(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
return clang_getCursorDefinition(C) == C;
}
void clang_getDefinitionSpellingAndExtent(CXCursor C,
const char **startBuf,
const char **endBuf,
unsigned *startLine,
unsigned *startColumn,
unsigned *endLine,
unsigned *endColumn) {
assert(getCursorDecl(C) && "CXCursor has null decl");
NamedDecl *ND = static_cast<NamedDecl *>(getCursorDecl(C));
FunctionDecl *FD = dyn_cast<FunctionDecl>(ND);
CompoundStmt *Body = dyn_cast<CompoundStmt>(FD->getBody());
SourceManager &SM = FD->getASTContext().getSourceManager();
*startBuf = SM.getCharacterData(Body->getLBracLoc());
*endBuf = SM.getCharacterData(Body->getRBracLoc());
*startLine = SM.getSpellingLineNumber(Body->getLBracLoc());
*startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc());
*endLine = SM.getSpellingLineNumber(Body->getRBracLoc());
*endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc());
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token-based Operations.
//===----------------------------------------------------------------------===//
/* CXToken layout:
* int_data[0]: a CXTokenKind
* int_data[1]: starting token location
* int_data[2]: token length
* int_data[3]: reserved
* ptr_data: for identifiers and keywords, an IdentifierInfo*.
* otherwise unused.
*/
extern "C" {
CXTokenKind clang_getTokenKind(CXToken CXTok) {
return static_cast<CXTokenKind>(CXTok.int_data[0]);
}
CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) {
switch (clang_getTokenKind(CXTok)) {
case CXToken_Identifier:
case CXToken_Keyword:
// We know we have an IdentifierInfo*, so use that.
return CIndexer::createCXString(
static_cast<IdentifierInfo *>(CXTok.ptr_data)->getNameStart());
case CXToken_Literal: {
// We have stashed the starting pointer in the ptr_data field. Use it.
const char *Text = static_cast<const char *>(CXTok.ptr_data);
return CIndexer::createCXString(llvm::StringRef(Text, CXTok.int_data[2]),
true);
}
case CXToken_Punctuation:
case CXToken_Comment:
break;
}
// We have to find the starting buffer pointer the hard way, by
// deconstructing the source location.
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return CIndexer::createCXString("");
SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]);
std::pair<FileID, unsigned> LocInfo
= CXXUnit->getSourceManager().getDecomposedLoc(Loc);
std::pair<const char *,const char *> Buffer
= CXXUnit->getSourceManager().getBufferData(LocInfo.first);
return CIndexer::createCXString(llvm::StringRef(Buffer.first+LocInfo.second,
CXTok.int_data[2]),
true);
}
CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return clang_getNullLocation();
return cxloc::translateSourceLocation(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return clang_getNullRange();
return cxloc::translateSourceRange(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range,
CXToken **Tokens, unsigned *NumTokens) {
if (Tokens)
*Tokens = 0;
if (NumTokens)
*NumTokens = 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit || !Tokens || !NumTokens)
return;
SourceRange R = cxloc::translateSourceRange(Range);
if (R.isInvalid())
return;
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedLoc(R.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedLoc(R.getEnd());
// Cannot tokenize across files.
if (BeginLocInfo.first != EndLocInfo.first)
return;
// Create a lexer
std::pair<const char *,const char *> Buffer
= SourceMgr.getBufferData(BeginLocInfo.first);
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOptions(),
Buffer.first, Buffer.first + BeginLocInfo.second, Buffer.second);
Lex.SetCommentRetentionState(true);
// Lex tokens until we hit the end of the range.
const char *EffectiveBufferEnd = Buffer.first + EndLocInfo.second;
llvm::SmallVector<CXToken, 32> CXTokens;
Token Tok;
do {
// Lex the next token
Lex.LexFromRawLexer(Tok);
if (Tok.is(tok::eof))
break;
// Initialize the CXToken.
CXToken CXTok;
// - Common fields
CXTok.int_data[1] = Tok.getLocation().getRawEncoding();
CXTok.int_data[2] = Tok.getLength();
CXTok.int_data[3] = 0;
// - Kind-specific fields
if (Tok.isLiteral()) {
CXTok.int_data[0] = CXToken_Literal;
CXTok.ptr_data = (void *)Tok.getLiteralData();
} else if (Tok.is(tok::identifier)) {
// Lookup the identifier to determine whether we have a
std::pair<FileID, unsigned> LocInfo
= SourceMgr.getDecomposedLoc(Tok.getLocation());
const char *StartPos
= CXXUnit->getSourceManager().getBufferData(LocInfo.first).first +
LocInfo.second;
IdentifierInfo *II
= CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok, StartPos);
CXTok.int_data[0] = II->getTokenID() == tok::identifier?
CXToken_Identifier
: CXToken_Keyword;
CXTok.ptr_data = II;
} else if (Tok.is(tok::comment)) {
CXTok.int_data[0] = CXToken_Comment;
CXTok.ptr_data = 0;
} else {
CXTok.int_data[0] = CXToken_Punctuation;
CXTok.ptr_data = 0;
}
CXTokens.push_back(CXTok);
} while (Lex.getBufferLocation() <= EffectiveBufferEnd);
if (CXTokens.empty())
return;
*Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size());
memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size());
*NumTokens = CXTokens.size();
}
typedef llvm::DenseMap<unsigned, CXCursor> AnnotateTokensData;
enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
AnnotateTokensData *Data = static_cast<AnnotateTokensData *>(client_data);
// We only annotate the locations of declarations, simple
// references, and expressions which directly reference something.
CXCursorKind Kind = clang_getCursorKind(cursor);
if (clang_isDeclaration(Kind) || clang_isReference(Kind)) {
// Okay: We can annotate the location of this declaration with the
// declaration or reference
} else if (clang_isExpression(cursor.kind)) {
if (Kind != CXCursor_DeclRefExpr &&
Kind != CXCursor_MemberRefExpr &&
Kind != CXCursor_ObjCMessageExpr)
return CXChildVisit_Recurse;
CXCursor Referenced = clang_getCursorReferenced(cursor);
if (Referenced == cursor || Referenced == clang_getNullCursor())
return CXChildVisit_Recurse;
// Okay: we can annotate the location of this expression
} else {
// Nothing to annotate
return CXChildVisit_Recurse;
}
CXSourceLocation Loc = clang_getCursorLocation(cursor);
(*Data)[Loc.int_data] = cursor;
return CXChildVisit_Recurse;
}
void clang_annotateTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens,
CXCursor *Cursors) {
if (NumTokens == 0)
return;
// Any token we don't specifically annotate will have a NULL cursor.
for (unsigned I = 0; I != NumTokens; ++I)
Cursors[I] = clang_getNullCursor();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit || !Tokens)
return;
// Annotate all of the source locations in the region of interest that map
SourceRange RegionOfInterest;
RegionOfInterest.setBegin(
cxloc::translateSourceLocation(clang_getTokenLocation(TU, Tokens[0])));
SourceLocation End
= cxloc::translateSourceLocation(clang_getTokenLocation(TU,
Tokens[NumTokens - 1]));
RegionOfInterest.setEnd(CXXUnit->getPreprocessor().getLocForEndOfToken(End,
1));
// FIXME: Would be great to have a "hint" cursor, then walk from that
// hint cursor upward until we find a cursor whose source range encloses
// the region of interest, rather than starting from the translation unit.
AnnotateTokensData Annotated;
CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit);
CursorVisitor AnnotateVis(CXXUnit, AnnotateTokensVisitor, &Annotated,
Decl::MaxPCHLevel, RegionOfInterest);
AnnotateVis.VisitChildren(Parent);
for (unsigned I = 0; I != NumTokens; ++I) {
// Determine whether we saw a cursor at this token's location.
AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]);
if (Pos == Annotated.end())
continue;
Cursors[I] = Pos->second;
}
}
void clang_disposeTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens) {
free(Tokens);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXString Operations.
//===----------------------------------------------------------------------===//
extern "C" {
const char *clang_getCString(CXString string) {
return string.Spelling;
}
void clang_disposeString(CXString string) {
if (string.MustFreeString && string.Spelling)
free((void*)string.Spelling);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Misc. utility functions.
//===----------------------------------------------------------------------===//
extern "C" {
const char *clang_getClangVersion() {
return getClangFullVersion();
}
} // end: extern "C"