llvm-project/llvm/lib/DebugInfo/GSYM/GsymReader.cpp

280 lines
11 KiB
C++

//===- GsymReader.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/GSYM/GsymReader.h"
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/InlineInfo.h"
#include "llvm/DebugInfo/GSYM/LineTable.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
using namespace gsym;
GsymReader::GsymReader(std::unique_ptr<MemoryBuffer> Buffer) :
MemBuffer(std::move(Buffer)),
Endian(support::endian::system_endianness()) {}
GsymReader::GsymReader(GsymReader &&RHS) = default;
GsymReader::~GsymReader() = default;
llvm::Expected<GsymReader> GsymReader::openFile(StringRef Filename) {
// Open the input file and return an appropriate error if needed.
ErrorOr<std::unique_ptr<MemoryBuffer>> BuffOrErr =
MemoryBuffer::getFileOrSTDIN(Filename);
auto Err = BuffOrErr.getError();
if (Err)
return llvm::errorCodeToError(Err);
return create(BuffOrErr.get());
}
llvm::Expected<GsymReader> GsymReader::copyBuffer(StringRef Bytes) {
auto MemBuffer = MemoryBuffer::getMemBufferCopy(Bytes, "GSYM bytes");
return create(MemBuffer);
}
llvm::Expected<llvm::gsym::GsymReader>
GsymReader::create(std::unique_ptr<MemoryBuffer> &MemBuffer) {
if (!MemBuffer.get())
return createStringError(std::errc::invalid_argument,
"invalid memory buffer");
GsymReader GR(std::move(MemBuffer));
llvm::Error Err = GR.parse();
if (Err)
return std::move(Err);
return std::move(GR);
}
llvm::Error
GsymReader::parse() {
BinaryStreamReader FileData(MemBuffer->getBuffer(),
support::endian::system_endianness());
// Check for the magic bytes. This file format is designed to be mmap'ed
// into a process and accessed as read only. This is done for performance
// and efficiency for symbolicating and parsing GSYM data.
if (FileData.readObject(Hdr))
return createStringError(std::errc::invalid_argument,
"not enough data for a GSYM header");
const auto HostByteOrder = support::endian::system_endianness();
switch (Hdr->Magic) {
case GSYM_MAGIC:
Endian = HostByteOrder;
break;
case GSYM_CIGAM:
// This is a GSYM file, but not native endianness.
Endian = sys::IsBigEndianHost ? support::little : support::big;
Swap.reset(new SwappedData);
break;
default:
return createStringError(std::errc::invalid_argument,
"not a GSYM file");
}
bool DataIsLittleEndian = HostByteOrder != support::little;
// Read a correctly byte swapped header if we need to.
if (Swap) {
DataExtractor Data(MemBuffer->getBuffer(), DataIsLittleEndian, 4);
if (auto ExpectedHdr = Header::decode(Data))
Swap->Hdr = ExpectedHdr.get();
else
return ExpectedHdr.takeError();
Hdr = &Swap->Hdr;
}
// Detect errors in the header and report any that are found. If we make it
// past this without errors, we know we have a good magic value, a supported
// version number, verified address offset size and a valid UUID size.
if (Error Err = Hdr->checkForError())
return Err;
if (!Swap) {
// This is the native endianness case that is most common and optimized for
// efficient lookups. Here we just grab pointers to the native data and
// use ArrayRef objects to allow efficient read only access.
// Read the address offsets.
if (FileData.padToAlignment(Hdr->AddrOffSize) ||
FileData.readArray(AddrOffsets,
Hdr->NumAddresses * Hdr->AddrOffSize))
return createStringError(std::errc::invalid_argument,
"failed to read address table");
// Read the address info offsets.
if (FileData.padToAlignment(4) ||
FileData.readArray(AddrInfoOffsets, Hdr->NumAddresses))
return createStringError(std::errc::invalid_argument,
"failed to read address info offsets table");
// Read the file table.
uint32_t NumFiles = 0;
if (FileData.readInteger(NumFiles) || FileData.readArray(Files, NumFiles))
return createStringError(std::errc::invalid_argument,
"failed to read file table");
// Get the string table.
FileData.setOffset(Hdr->StrtabOffset);
if (FileData.readFixedString(StrTab.Data, Hdr->StrtabSize))
return createStringError(std::errc::invalid_argument,
"failed to read string table");
} else {
// This is the non native endianness case that is not common and not
// optimized for lookups. Here we decode the important tables into local
// storage and then set the ArrayRef objects to point to these swapped
// copies of the read only data so lookups can be as efficient as possible.
DataExtractor Data(MemBuffer->getBuffer(), DataIsLittleEndian, 4);
// Read the address offsets.
uint64_t Offset = alignTo(sizeof(Header), Hdr->AddrOffSize);
Swap->AddrOffsets.resize(Hdr->NumAddresses * Hdr->AddrOffSize);
switch (Hdr->AddrOffSize) {
case 1:
if (!Data.getU8(&Offset, Swap->AddrOffsets.data(), Hdr->NumAddresses))
return createStringError(std::errc::invalid_argument,
"failed to read address table");
break;
case 2:
if (!Data.getU16(&Offset,
reinterpret_cast<uint16_t *>(Swap->AddrOffsets.data()),
Hdr->NumAddresses))
return createStringError(std::errc::invalid_argument,
"failed to read address table");
break;
case 4:
if (!Data.getU32(&Offset,
reinterpret_cast<uint32_t *>(Swap->AddrOffsets.data()),
Hdr->NumAddresses))
return createStringError(std::errc::invalid_argument,
"failed to read address table");
break;
case 8:
if (!Data.getU64(&Offset,
reinterpret_cast<uint64_t *>(Swap->AddrOffsets.data()),
Hdr->NumAddresses))
return createStringError(std::errc::invalid_argument,
"failed to read address table");
}
AddrOffsets = ArrayRef<uint8_t>(Swap->AddrOffsets);
// Read the address info offsets.
Offset = alignTo(Offset, 4);
Swap->AddrInfoOffsets.resize(Hdr->NumAddresses);
if (Data.getU32(&Offset, Swap->AddrInfoOffsets.data(), Hdr->NumAddresses))
AddrInfoOffsets = ArrayRef<uint32_t>(Swap->AddrInfoOffsets);
else
return createStringError(std::errc::invalid_argument,
"failed to read address table");
// Read the file table.
const uint32_t NumFiles = Data.getU32(&Offset);
if (NumFiles > 0) {
Swap->Files.resize(NumFiles);
if (Data.getU32(&Offset, &Swap->Files[0].Dir, NumFiles*2))
Files = ArrayRef<FileEntry>(Swap->Files);
else
return createStringError(std::errc::invalid_argument,
"failed to read file table");
}
// Get the string table.
StrTab.Data = MemBuffer->getBuffer().substr(Hdr->StrtabOffset,
Hdr->StrtabSize);
if (StrTab.Data.empty())
return createStringError(std::errc::invalid_argument,
"failed to read string table");
}
return Error::success();
}
const Header &GsymReader::getHeader() const {
// The only way to get a GsymReader is from GsymReader::openFile(...) or
// GsymReader::copyBuffer() and the header must be valid and initialized to
// a valid pointer value, so the assert below should not trigger.
assert(Hdr);
return *Hdr;
}
Optional<uint64_t> GsymReader::getAddress(size_t Index) const {
switch (Hdr->AddrOffSize) {
case 1: return addressForIndex<uint8_t>(Index);
case 2: return addressForIndex<uint16_t>(Index);
case 4: return addressForIndex<uint32_t>(Index);
case 8: return addressForIndex<uint64_t>(Index);
}
return llvm::None;
}
Optional<uint64_t> GsymReader::getAddressInfoOffset(size_t Index) const {
const auto NumAddrInfoOffsets = AddrInfoOffsets.size();
if (Index < NumAddrInfoOffsets)
return AddrInfoOffsets[Index];
return llvm::None;
}
Expected<uint64_t>
GsymReader::getAddressIndex(const uint64_t Addr) const {
if (Addr < Hdr->BaseAddress)
return createStringError(std::errc::invalid_argument,
"address 0x%" PRIx64 " not in GSYM", Addr);
const uint64_t AddrOffset = Addr - Hdr->BaseAddress;
switch (Hdr->AddrOffSize) {
case 1: return getAddressOffsetIndex<uint8_t>(AddrOffset);
case 2: return getAddressOffsetIndex<uint16_t>(AddrOffset);
case 4: return getAddressOffsetIndex<uint32_t>(AddrOffset);
case 8: return getAddressOffsetIndex<uint64_t>(AddrOffset);
default: break;
}
return createStringError(std::errc::invalid_argument,
"unsupported address offset size %u",
Hdr->AddrOffSize);
}
llvm::Expected<FunctionInfo> GsymReader::getFunctionInfo(uint64_t Addr) const {
Expected<uint64_t> AddressIndex = getAddressIndex(Addr);
if (!AddressIndex)
return AddressIndex.takeError();
// Address info offsets size should have been checked in parse().
assert(*AddressIndex < AddrInfoOffsets.size());
auto AddrInfoOffset = AddrInfoOffsets[*AddressIndex];
DataExtractor Data(MemBuffer->getBuffer().substr(AddrInfoOffset), Endian, 4);
if (Optional<uint64_t> OptAddr = getAddress(*AddressIndex)) {
auto ExpectedFI = FunctionInfo::decode(Data, *OptAddr);
if (ExpectedFI) {
if (ExpectedFI->Range.contains(Addr) || ExpectedFI->Range.size() == 0)
return ExpectedFI;
return createStringError(std::errc::invalid_argument,
"address 0x%" PRIx64 " not in GSYM", Addr);
}
}
return createStringError(std::errc::invalid_argument,
"failed to extract address[%" PRIu64 "]",
*AddressIndex);
}
llvm::Expected<LookupResult> GsymReader::lookup(uint64_t Addr) const {
Expected<uint64_t> AddressIndex = getAddressIndex(Addr);
if (!AddressIndex)
return AddressIndex.takeError();
// Address info offsets size should have been checked in parse().
assert(*AddressIndex < AddrInfoOffsets.size());
auto AddrInfoOffset = AddrInfoOffsets[*AddressIndex];
DataExtractor Data(MemBuffer->getBuffer().substr(AddrInfoOffset), Endian, 4);
if (Optional<uint64_t> OptAddr = getAddress(*AddressIndex))
return FunctionInfo::lookup(Data, *this, *OptAddr, Addr);
return createStringError(std::errc::invalid_argument,
"failed to extract address[%" PRIu64 "]",
*AddressIndex);
}