forked from OSchip/llvm-project
247 lines
6.9 KiB
C++
247 lines
6.9 KiB
C++
//===- AVR.cpp ------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// AVR is a Harvard-architecture 8-bit microcontroller designed for small
|
|
// baremetal programs. All AVR-family processors have 32 8-bit registers.
|
|
// The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest
|
|
// one supports up to 2^24 data address space and 2^22 code address space.
|
|
//
|
|
// Since it is a baremetal programming, there's usually no loader to load
|
|
// ELF files on AVRs. You are expected to link your program against address
|
|
// 0 and pull out a .text section from the result using objcopy, so that you
|
|
// can write the linked code to on-chip flush memory. You can do that with
|
|
// the following commands:
|
|
//
|
|
// ld.lld -Ttext=0 -o foo foo.o
|
|
// objcopy -O binary --only-section=.text foo output.bin
|
|
//
|
|
// Note that the current AVR support is very preliminary so you can't
|
|
// link any useful program yet, though.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Symbols.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class AVR final : public TargetInfo {
|
|
public:
|
|
uint32_t calcEFlags() const override;
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
};
|
|
} // namespace
|
|
|
|
RelExpr AVR::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
switch (type) {
|
|
case R_AVR_6:
|
|
case R_AVR_6_ADIW:
|
|
case R_AVR_8:
|
|
case R_AVR_16:
|
|
case R_AVR_16_PM:
|
|
case R_AVR_32:
|
|
case R_AVR_LDI:
|
|
case R_AVR_LO8_LDI:
|
|
case R_AVR_LO8_LDI_NEG:
|
|
case R_AVR_HI8_LDI:
|
|
case R_AVR_HI8_LDI_NEG:
|
|
case R_AVR_HH8_LDI_NEG:
|
|
case R_AVR_HH8_LDI:
|
|
case R_AVR_MS8_LDI_NEG:
|
|
case R_AVR_MS8_LDI:
|
|
case R_AVR_LO8_LDI_PM:
|
|
case R_AVR_LO8_LDI_PM_NEG:
|
|
case R_AVR_HI8_LDI_PM:
|
|
case R_AVR_HI8_LDI_PM_NEG:
|
|
case R_AVR_HH8_LDI_PM:
|
|
case R_AVR_HH8_LDI_PM_NEG:
|
|
case R_AVR_PORT5:
|
|
case R_AVR_PORT6:
|
|
case R_AVR_CALL:
|
|
return R_ABS;
|
|
case R_AVR_7_PCREL:
|
|
case R_AVR_13_PCREL:
|
|
return R_PC;
|
|
default:
|
|
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
|
|
") against symbol " + toString(s));
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
static void writeLDI(uint8_t *loc, uint64_t val) {
|
|
write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f));
|
|
}
|
|
|
|
void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_AVR_8:
|
|
checkUInt(loc, val, 8, rel);
|
|
*loc = val;
|
|
break;
|
|
case R_AVR_16:
|
|
// Note: this relocation is often used between code and data space, which
|
|
// are 0x800000 apart in the output ELF file. The bitmask cuts off the high
|
|
// bit.
|
|
write16le(loc, val & 0xffff);
|
|
break;
|
|
case R_AVR_16_PM:
|
|
checkAlignment(loc, val, 2, rel);
|
|
checkUInt(loc, val >> 1, 16, rel);
|
|
write16le(loc, val >> 1);
|
|
break;
|
|
case R_AVR_32:
|
|
checkUInt(loc, val, 32, rel);
|
|
write32le(loc, val);
|
|
break;
|
|
|
|
case R_AVR_LDI:
|
|
checkUInt(loc, val, 8, rel);
|
|
writeLDI(loc, val & 0xff);
|
|
break;
|
|
|
|
case R_AVR_LO8_LDI_NEG:
|
|
writeLDI(loc, -val & 0xff);
|
|
break;
|
|
case R_AVR_LO8_LDI:
|
|
writeLDI(loc, val & 0xff);
|
|
break;
|
|
case R_AVR_HI8_LDI_NEG:
|
|
writeLDI(loc, (-val >> 8) & 0xff);
|
|
break;
|
|
case R_AVR_HI8_LDI:
|
|
writeLDI(loc, (val >> 8) & 0xff);
|
|
break;
|
|
case R_AVR_HH8_LDI_NEG:
|
|
writeLDI(loc, (-val >> 16) & 0xff);
|
|
break;
|
|
case R_AVR_HH8_LDI:
|
|
writeLDI(loc, (val >> 16) & 0xff);
|
|
break;
|
|
case R_AVR_MS8_LDI_NEG:
|
|
writeLDI(loc, (-val >> 24) & 0xff);
|
|
break;
|
|
case R_AVR_MS8_LDI:
|
|
writeLDI(loc, (val >> 24) & 0xff);
|
|
break;
|
|
|
|
case R_AVR_LO8_LDI_PM:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (val >> 1) & 0xff);
|
|
break;
|
|
case R_AVR_HI8_LDI_PM:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (val >> 9) & 0xff);
|
|
break;
|
|
case R_AVR_HH8_LDI_PM:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (val >> 17) & 0xff);
|
|
break;
|
|
|
|
case R_AVR_LO8_LDI_PM_NEG:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (-val >> 1) & 0xff);
|
|
break;
|
|
case R_AVR_HI8_LDI_PM_NEG:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (-val >> 9) & 0xff);
|
|
break;
|
|
case R_AVR_HH8_LDI_PM_NEG:
|
|
checkAlignment(loc, val, 2, rel);
|
|
writeLDI(loc, (-val >> 17) & 0xff);
|
|
break;
|
|
|
|
case R_AVR_PORT5:
|
|
checkUInt(loc, val, 5, rel);
|
|
write16le(loc, (read16le(loc) & 0xff07) | (val << 3));
|
|
break;
|
|
case R_AVR_PORT6:
|
|
checkUInt(loc, val, 6, rel);
|
|
write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f));
|
|
break;
|
|
|
|
// Since every jump destination is word aligned we gain an extra bit
|
|
case R_AVR_7_PCREL: {
|
|
checkInt(loc, val, 7, rel);
|
|
checkAlignment(loc, val, 2, rel);
|
|
const uint16_t target = (val - 2) >> 1;
|
|
write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3));
|
|
break;
|
|
}
|
|
case R_AVR_13_PCREL: {
|
|
checkAlignment(loc, val, 2, rel);
|
|
const uint16_t target = (val - 2) >> 1;
|
|
write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff));
|
|
break;
|
|
}
|
|
|
|
case R_AVR_6:
|
|
checkInt(loc, val, 6, rel);
|
|
write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 |
|
|
(val & 0x18) << 7 | (val & 0x07));
|
|
break;
|
|
case R_AVR_6_ADIW:
|
|
checkInt(loc, val, 6, rel);
|
|
write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F));
|
|
break;
|
|
|
|
case R_AVR_CALL: {
|
|
uint16_t hi = val >> 17;
|
|
uint16_t lo = val >> 1;
|
|
write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1));
|
|
write16le(loc + 2, lo);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
TargetInfo *elf::getAVRTargetInfo() {
|
|
static AVR target;
|
|
return ⌖
|
|
}
|
|
|
|
static uint32_t getEFlags(InputFile *file) {
|
|
return cast<ObjFile<ELF32LE>>(file)->getObj().getHeader().e_flags;
|
|
}
|
|
|
|
uint32_t AVR::calcEFlags() const {
|
|
assert(!objectFiles.empty());
|
|
|
|
uint32_t flags = getEFlags(objectFiles[0]);
|
|
bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED;
|
|
|
|
for (InputFile *f : makeArrayRef(objectFiles).slice(1)) {
|
|
uint32_t objFlags = getEFlags(f);
|
|
if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK))
|
|
error(toString(f) +
|
|
": cannot link object files with incompatible target ISA");
|
|
if (!(objFlags & EF_AVR_LINKRELAX_PREPARED))
|
|
hasLinkRelaxFlag = false;
|
|
}
|
|
|
|
if (!hasLinkRelaxFlag)
|
|
flags &= ~EF_AVR_LINKRELAX_PREPARED;
|
|
|
|
return flags;
|
|
}
|