forked from OSchip/llvm-project
4010 lines
159 KiB
C++
4010 lines
159 KiB
C++
//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for expressions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Sema.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Lex/LiteralSupport.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Parse/DeclSpec.h"
|
|
#include "clang/Parse/Designator.h"
|
|
#include "clang/Parse/Scope.h"
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard Promotions and Conversions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
|
|
void Sema::DefaultFunctionArrayConversion(Expr *&E) {
|
|
QualType Ty = E->getType();
|
|
assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
|
|
|
|
if (Ty->isFunctionType())
|
|
ImpCastExprToType(E, Context.getPointerType(Ty));
|
|
else if (Ty->isArrayType()) {
|
|
// In C90 mode, arrays only promote to pointers if the array expression is
|
|
// an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
|
|
// type 'array of type' is converted to an expression that has type 'pointer
|
|
// to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
|
|
// that has type 'array of type' ...". The relevant change is "an lvalue"
|
|
// (C90) to "an expression" (C99).
|
|
//
|
|
// C++ 4.2p1:
|
|
// An lvalue or rvalue of type "array of N T" or "array of unknown bound of
|
|
// T" can be converted to an rvalue of type "pointer to T".
|
|
//
|
|
if (getLangOptions().C99 || getLangOptions().CPlusPlus ||
|
|
E->isLvalue(Context) == Expr::LV_Valid)
|
|
ImpCastExprToType(E, Context.getArrayDecayedType(Ty));
|
|
}
|
|
}
|
|
|
|
/// UsualUnaryConversions - Performs various conversions that are common to most
|
|
/// operators (C99 6.3). The conversions of array and function types are
|
|
/// sometimes surpressed. For example, the array->pointer conversion doesn't
|
|
/// apply if the array is an argument to the sizeof or address (&) operators.
|
|
/// In these instances, this routine should *not* be called.
|
|
Expr *Sema::UsualUnaryConversions(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
|
|
|
|
if (Ty->isPromotableIntegerType()) // C99 6.3.1.1p2
|
|
ImpCastExprToType(Expr, Context.IntTy);
|
|
else
|
|
DefaultFunctionArrayConversion(Expr);
|
|
|
|
return Expr;
|
|
}
|
|
|
|
/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
|
|
/// do not have a prototype. Arguments that have type float are promoted to
|
|
/// double. All other argument types are converted by UsualUnaryConversions().
|
|
void Sema::DefaultArgumentPromotion(Expr *&Expr) {
|
|
QualType Ty = Expr->getType();
|
|
assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
|
|
|
|
// If this is a 'float' (CVR qualified or typedef) promote to double.
|
|
if (const BuiltinType *BT = Ty->getAsBuiltinType())
|
|
if (BT->getKind() == BuiltinType::Float)
|
|
return ImpCastExprToType(Expr, Context.DoubleTy);
|
|
|
|
UsualUnaryConversions(Expr);
|
|
}
|
|
|
|
/// UsualArithmeticConversions - Performs various conversions that are common to
|
|
/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
|
|
/// routine returns the first non-arithmetic type found. The client is
|
|
/// responsible for emitting appropriate error diagnostics.
|
|
/// FIXME: verify the conversion rules for "complex int" are consistent with
|
|
/// GCC.
|
|
QualType Sema::UsualArithmeticConversions(Expr *&lhsExpr, Expr *&rhsExpr,
|
|
bool isCompAssign) {
|
|
if (!isCompAssign) {
|
|
UsualUnaryConversions(lhsExpr);
|
|
UsualUnaryConversions(rhsExpr);
|
|
}
|
|
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhs =
|
|
Context.getCanonicalType(lhsExpr->getType()).getUnqualifiedType();
|
|
QualType rhs =
|
|
Context.getCanonicalType(rhsExpr->getType()).getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
QualType destType = UsualArithmeticConversionsType(lhs, rhs);
|
|
if (!isCompAssign) {
|
|
ImpCastExprToType(lhsExpr, destType);
|
|
ImpCastExprToType(rhsExpr, destType);
|
|
}
|
|
return destType;
|
|
}
|
|
|
|
QualType Sema::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
|
|
// Perform the usual unary conversions. We do this early so that
|
|
// integral promotions to "int" can allow us to exit early, in the
|
|
// lhs == rhs check. Also, for conversion purposes, we ignore any
|
|
// qualifiers. For example, "const float" and "float" are
|
|
// equivalent.
|
|
if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
|
|
else lhs = lhs.getUnqualifiedType();
|
|
if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
|
|
else rhs = rhs.getUnqualifiedType();
|
|
|
|
// If both types are identical, no conversion is needed.
|
|
if (lhs == rhs)
|
|
return lhs;
|
|
|
|
// If either side is a non-arithmetic type (e.g. a pointer), we are done.
|
|
// The caller can deal with this (e.g. pointer + int).
|
|
if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
|
|
return lhs;
|
|
|
|
// At this point, we have two different arithmetic types.
|
|
|
|
// Handle complex types first (C99 6.3.1.8p1).
|
|
if (lhs->isComplexType() || rhs->isComplexType()) {
|
|
// if we have an integer operand, the result is the complex type.
|
|
if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
}
|
|
if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
// This handles complex/complex, complex/float, or float/complex.
|
|
// When both operands are complex, the shorter operand is converted to the
|
|
// type of the longer, and that is the type of the result. This corresponds
|
|
// to what is done when combining two real floating-point operands.
|
|
// The fun begins when size promotion occur across type domains.
|
|
// From H&S 6.3.4: When one operand is complex and the other is a real
|
|
// floating-point type, the less precise type is converted, within it's
|
|
// real or complex domain, to the precision of the other type. For example,
|
|
// when combining a "long double" with a "double _Complex", the
|
|
// "double _Complex" is promoted to "long double _Complex".
|
|
int result = Context.getFloatingTypeOrder(lhs, rhs);
|
|
|
|
if (result > 0) { // The left side is bigger, convert rhs.
|
|
rhs = Context.getFloatingTypeOfSizeWithinDomain(lhs, rhs);
|
|
} else if (result < 0) { // The right side is bigger, convert lhs.
|
|
lhs = Context.getFloatingTypeOfSizeWithinDomain(rhs, lhs);
|
|
}
|
|
// At this point, lhs and rhs have the same rank/size. Now, make sure the
|
|
// domains match. This is a requirement for our implementation, C99
|
|
// does not require this promotion.
|
|
if (lhs != rhs) { // Domains don't match, we have complex/float mix.
|
|
if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
|
|
return rhs;
|
|
} else { // handle "_Complex double, double".
|
|
return lhs;
|
|
}
|
|
}
|
|
return lhs; // The domain/size match exactly.
|
|
}
|
|
// Now handle "real" floating types (i.e. float, double, long double).
|
|
if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
|
|
// if we have an integer operand, the result is the real floating type.
|
|
if (rhs->isIntegerType()) {
|
|
// convert rhs to the lhs floating point type.
|
|
return lhs;
|
|
}
|
|
if (rhs->isComplexIntegerType()) {
|
|
// convert rhs to the complex floating point type.
|
|
return Context.getComplexType(lhs);
|
|
}
|
|
if (lhs->isIntegerType()) {
|
|
// convert lhs to the rhs floating point type.
|
|
return rhs;
|
|
}
|
|
if (lhs->isComplexIntegerType()) {
|
|
// convert lhs to the complex floating point type.
|
|
return Context.getComplexType(rhs);
|
|
}
|
|
// We have two real floating types, float/complex combos were handled above.
|
|
// Convert the smaller operand to the bigger result.
|
|
int result = Context.getFloatingTypeOrder(lhs, rhs);
|
|
|
|
if (result > 0) { // convert the rhs
|
|
return lhs;
|
|
}
|
|
if (result < 0) { // convert the lhs
|
|
return rhs;
|
|
}
|
|
assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
|
|
}
|
|
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
|
|
// Handle GCC complex int extension.
|
|
const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
|
|
const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
|
|
|
|
if (lhsComplexInt && rhsComplexInt) {
|
|
if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
|
|
rhsComplexInt->getElementType()) >= 0) {
|
|
// convert the rhs
|
|
return lhs;
|
|
}
|
|
return rhs;
|
|
} else if (lhsComplexInt && rhs->isIntegerType()) {
|
|
// convert the rhs to the lhs complex type.
|
|
return lhs;
|
|
} else if (rhsComplexInt && lhs->isIntegerType()) {
|
|
// convert the lhs to the rhs complex type.
|
|
return rhs;
|
|
}
|
|
}
|
|
// Finally, we have two differing integer types.
|
|
// The rules for this case are in C99 6.3.1.8
|
|
int compare = Context.getIntegerTypeOrder(lhs, rhs);
|
|
bool lhsSigned = lhs->isSignedIntegerType(),
|
|
rhsSigned = rhs->isSignedIntegerType();
|
|
QualType destType;
|
|
if (lhsSigned == rhsSigned) {
|
|
// Same signedness; use the higher-ranked type
|
|
destType = compare >= 0 ? lhs : rhs;
|
|
} else if (compare != (lhsSigned ? 1 : -1)) {
|
|
// The unsigned type has greater than or equal rank to the
|
|
// signed type, so use the unsigned type
|
|
destType = lhsSigned ? rhs : lhs;
|
|
} else if (Context.getIntWidth(lhs) != Context.getIntWidth(rhs)) {
|
|
// The two types are different widths; if we are here, that
|
|
// means the signed type is larger than the unsigned type, so
|
|
// use the signed type.
|
|
destType = lhsSigned ? lhs : rhs;
|
|
} else {
|
|
// The signed type is higher-ranked than the unsigned type,
|
|
// but isn't actually any bigger (like unsigned int and long
|
|
// on most 32-bit systems). Use the unsigned type corresponding
|
|
// to the signed type.
|
|
destType = Context.getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
|
|
}
|
|
return destType;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic Analysis for various Expression Types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
|
|
/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
|
|
/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
|
|
/// multiple tokens. However, the common case is that StringToks points to one
|
|
/// string.
|
|
///
|
|
Action::ExprResult
|
|
Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks) {
|
|
assert(NumStringToks && "Must have at least one string!");
|
|
|
|
StringLiteralParser Literal(StringToks, NumStringToks, PP, Context.Target);
|
|
if (Literal.hadError)
|
|
return ExprResult(true);
|
|
|
|
llvm::SmallVector<SourceLocation, 4> StringTokLocs;
|
|
for (unsigned i = 0; i != NumStringToks; ++i)
|
|
StringTokLocs.push_back(StringToks[i].getLocation());
|
|
|
|
// Verify that pascal strings aren't too large.
|
|
if (Literal.Pascal && Literal.GetStringLength() > 256)
|
|
return Diag(StringToks[0].getLocation(), diag::err_pascal_string_too_long)
|
|
<< SourceRange(StringToks[0].getLocation(),
|
|
StringToks[NumStringToks-1].getLocation());
|
|
|
|
QualType StrTy = Context.CharTy;
|
|
if (Literal.AnyWide) StrTy = Context.getWCharType();
|
|
if (Literal.Pascal) StrTy = Context.UnsignedCharTy;
|
|
|
|
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
|
|
if (getLangOptions().CPlusPlus)
|
|
StrTy.addConst();
|
|
|
|
// Get an array type for the string, according to C99 6.4.5. This includes
|
|
// the nul terminator character as well as the string length for pascal
|
|
// strings.
|
|
StrTy = Context.getConstantArrayType(StrTy,
|
|
llvm::APInt(32, Literal.GetStringLength()+1),
|
|
ArrayType::Normal, 0);
|
|
|
|
// Pass &StringTokLocs[0], StringTokLocs.size() to factory!
|
|
return new StringLiteral(Literal.GetString(), Literal.GetStringLength(),
|
|
Literal.AnyWide, StrTy,
|
|
StringToks[0].getLocation(),
|
|
StringToks[NumStringToks-1].getLocation());
|
|
}
|
|
|
|
/// ShouldSnapshotBlockValueReference - Return true if a reference inside of
|
|
/// CurBlock to VD should cause it to be snapshotted (as we do for auto
|
|
/// variables defined outside the block) or false if this is not needed (e.g.
|
|
/// for values inside the block or for globals).
|
|
///
|
|
/// FIXME: This will create BlockDeclRefExprs for global variables,
|
|
/// function references, etc which is suboptimal :) and breaks
|
|
/// things like "integer constant expression" tests.
|
|
static bool ShouldSnapshotBlockValueReference(BlockSemaInfo *CurBlock,
|
|
ValueDecl *VD) {
|
|
// If the value is defined inside the block, we couldn't snapshot it even if
|
|
// we wanted to.
|
|
if (CurBlock->TheDecl == VD->getDeclContext())
|
|
return false;
|
|
|
|
// If this is an enum constant or function, it is constant, don't snapshot.
|
|
if (isa<EnumConstantDecl>(VD) || isa<FunctionDecl>(VD))
|
|
return false;
|
|
|
|
// If this is a reference to an extern, static, or global variable, no need to
|
|
// snapshot it.
|
|
// FIXME: What about 'const' variables in C++?
|
|
if (const VarDecl *Var = dyn_cast<VarDecl>(VD))
|
|
return Var->hasLocalStorage();
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// ActOnIdentifierExpr - The parser read an identifier in expression context,
|
|
/// validate it per-C99 6.5.1. HasTrailingLParen indicates whether this
|
|
/// identifier is used in a function call context.
|
|
/// LookupCtx is only used for a C++ qualified-id (foo::bar) to indicate the
|
|
/// class or namespace that the identifier must be a member of.
|
|
Sema::ExprResult Sema::ActOnIdentifierExpr(Scope *S, SourceLocation Loc,
|
|
IdentifierInfo &II,
|
|
bool HasTrailingLParen,
|
|
const CXXScopeSpec *SS) {
|
|
return ActOnDeclarationNameExpr(S, Loc, &II, HasTrailingLParen, SS);
|
|
}
|
|
|
|
/// ActOnDeclarationNameExpr - The parser has read some kind of name
|
|
/// (e.g., a C++ id-expression (C++ [expr.prim]p1)). This routine
|
|
/// performs lookup on that name and returns an expression that refers
|
|
/// to that name. This routine isn't directly called from the parser,
|
|
/// because the parser doesn't know about DeclarationName. Rather,
|
|
/// this routine is called by ActOnIdentifierExpr,
|
|
/// ActOnOperatorFunctionIdExpr, and ActOnConversionFunctionExpr,
|
|
/// which form the DeclarationName from the corresponding syntactic
|
|
/// forms.
|
|
///
|
|
/// HasTrailingLParen indicates whether this identifier is used in a
|
|
/// function call context. LookupCtx is only used for a C++
|
|
/// qualified-id (foo::bar) to indicate the class or namespace that
|
|
/// the identifier must be a member of.
|
|
///
|
|
/// If ForceResolution is true, then we will attempt to resolve the
|
|
/// name even if it looks like a dependent name. This option is off by
|
|
/// default.
|
|
Sema::ExprResult Sema::ActOnDeclarationNameExpr(Scope *S, SourceLocation Loc,
|
|
DeclarationName Name,
|
|
bool HasTrailingLParen,
|
|
const CXXScopeSpec *SS,
|
|
bool ForceResolution) {
|
|
if (S->getTemplateParamParent() && Name.getAsIdentifierInfo() &&
|
|
HasTrailingLParen && !SS && !ForceResolution) {
|
|
// We've seen something of the form
|
|
// identifier(
|
|
// and we are in a template, so it is likely that 's' is a
|
|
// dependent name. However, we won't know until we've parsed all
|
|
// of the call arguments. So, build a CXXDependentNameExpr node
|
|
// to represent this name. Then, if it turns out that none of the
|
|
// arguments are type-dependent, we'll force the resolution of the
|
|
// dependent name at that point.
|
|
return new CXXDependentNameExpr(Name.getAsIdentifierInfo(),
|
|
Context.DependentTy, Loc);
|
|
}
|
|
|
|
// Could be enum-constant, value decl, instance variable, etc.
|
|
Decl *D;
|
|
if (SS && !SS->isEmpty()) {
|
|
DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
|
|
if (DC == 0)
|
|
return true;
|
|
D = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
|
|
} else
|
|
D = LookupDecl(Name, Decl::IDNS_Ordinary, S);
|
|
|
|
// If this reference is in an Objective-C method, then ivar lookup happens as
|
|
// well.
|
|
IdentifierInfo *II = Name.getAsIdentifierInfo();
|
|
if (II && getCurMethodDecl()) {
|
|
ScopedDecl *SD = dyn_cast_or_null<ScopedDecl>(D);
|
|
// There are two cases to handle here. 1) scoped lookup could have failed,
|
|
// in which case we should look for an ivar. 2) scoped lookup could have
|
|
// found a decl, but that decl is outside the current method (i.e. a global
|
|
// variable). In these two cases, we do a lookup for an ivar with this
|
|
// name, if the lookup suceeds, we replace it our current decl.
|
|
if (SD == 0 || SD->isDefinedOutsideFunctionOrMethod()) {
|
|
ObjCInterfaceDecl *IFace = getCurMethodDecl()->getClassInterface();
|
|
if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II)) {
|
|
// FIXME: This should use a new expr for a direct reference, don't turn
|
|
// this into Self->ivar, just return a BareIVarExpr or something.
|
|
IdentifierInfo &II = Context.Idents.get("self");
|
|
ExprResult SelfExpr = ActOnIdentifierExpr(S, Loc, II, false);
|
|
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), Loc,
|
|
static_cast<Expr*>(SelfExpr.Val), true, true);
|
|
Context.setFieldDecl(IFace, IV, MRef);
|
|
return MRef;
|
|
}
|
|
}
|
|
// Needed to implement property "super.method" notation.
|
|
if (SD == 0 && II->isStr("super")) {
|
|
QualType T = Context.getPointerType(Context.getObjCInterfaceType(
|
|
getCurMethodDecl()->getClassInterface()));
|
|
return new ObjCSuperExpr(Loc, T);
|
|
}
|
|
}
|
|
if (D == 0) {
|
|
// Otherwise, this could be an implicitly declared function reference (legal
|
|
// in C90, extension in C99).
|
|
if (HasTrailingLParen && II &&
|
|
!getLangOptions().CPlusPlus) // Not in C++.
|
|
D = ImplicitlyDefineFunction(Loc, *II, S);
|
|
else {
|
|
// If this name wasn't predeclared and if this is not a function call,
|
|
// diagnose the problem.
|
|
if (SS && !SS->isEmpty())
|
|
return Diag(Loc, diag::err_typecheck_no_member)
|
|
<< Name << SS->getRange();
|
|
else if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
|
|
Name.getNameKind() == DeclarationName::CXXConversionFunctionName)
|
|
return Diag(Loc, diag::err_undeclared_use) << Name.getAsString();
|
|
else
|
|
return Diag(Loc, diag::err_undeclared_var_use) << Name;
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (!MD->isStatic()) {
|
|
// C++ [class.mfct.nonstatic]p2:
|
|
// [...] if name lookup (3.4.1) resolves the name in the
|
|
// id-expression to a nonstatic nontype member of class X or of
|
|
// a base class of X, the id-expression is transformed into a
|
|
// class member access expression (5.2.5) using (*this) (9.3.2)
|
|
// as the postfix-expression to the left of the '.' operator.
|
|
DeclContext *Ctx = 0;
|
|
QualType MemberType;
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
|
|
Ctx = FD->getDeclContext();
|
|
MemberType = FD->getType();
|
|
|
|
if (const ReferenceType *RefType = MemberType->getAsReferenceType())
|
|
MemberType = RefType->getPointeeType();
|
|
else if (!FD->isMutable()) {
|
|
unsigned combinedQualifiers
|
|
= MemberType.getCVRQualifiers() | MD->getTypeQualifiers();
|
|
MemberType = MemberType.getQualifiedType(combinedQualifiers);
|
|
}
|
|
} else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
if (!Method->isStatic()) {
|
|
Ctx = Method->getParent();
|
|
MemberType = Method->getType();
|
|
}
|
|
} else if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(D)) {
|
|
for (OverloadedFunctionDecl::function_iterator
|
|
Func = Ovl->function_begin(),
|
|
FuncEnd = Ovl->function_end();
|
|
Func != FuncEnd; ++Func) {
|
|
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(*Func))
|
|
if (!DMethod->isStatic()) {
|
|
Ctx = Ovl->getDeclContext();
|
|
MemberType = Context.OverloadTy;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Ctx && Ctx->isCXXRecord()) {
|
|
QualType CtxType = Context.getTagDeclType(cast<CXXRecordDecl>(Ctx));
|
|
QualType ThisType = Context.getTagDeclType(MD->getParent());
|
|
if ((Context.getCanonicalType(CtxType)
|
|
== Context.getCanonicalType(ThisType)) ||
|
|
IsDerivedFrom(ThisType, CtxType)) {
|
|
// Build the implicit member access expression.
|
|
Expr *This = new CXXThisExpr(SourceLocation(),
|
|
MD->getThisType(Context));
|
|
return new MemberExpr(This, true, cast<NamedDecl>(D),
|
|
SourceLocation(), MemberType);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
|
|
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext)) {
|
|
if (MD->isStatic())
|
|
// "invalid use of member 'x' in static member function"
|
|
return Diag(Loc, diag::err_invalid_member_use_in_static_method)
|
|
<< FD->getDeclName();
|
|
}
|
|
|
|
// Any other ways we could have found the field in a well-formed
|
|
// program would have been turned into implicit member expressions
|
|
// above.
|
|
return Diag(Loc, diag::err_invalid_non_static_member_use)
|
|
<< FD->getDeclName();
|
|
}
|
|
|
|
if (isa<TypedefDecl>(D))
|
|
return Diag(Loc, diag::err_unexpected_typedef) << Name;
|
|
if (isa<ObjCInterfaceDecl>(D))
|
|
return Diag(Loc, diag::err_unexpected_interface) << Name;
|
|
if (isa<NamespaceDecl>(D))
|
|
return Diag(Loc, diag::err_unexpected_namespace) << Name;
|
|
|
|
// Make the DeclRefExpr or BlockDeclRefExpr for the decl.
|
|
if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D))
|
|
return new DeclRefExpr(Ovl, Context.OverloadTy, Loc);
|
|
|
|
ValueDecl *VD = cast<ValueDecl>(D);
|
|
|
|
// check if referencing an identifier with __attribute__((deprecated)).
|
|
if (VD->getAttr<DeprecatedAttr>())
|
|
Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
|
|
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
|
|
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
|
|
Scope *CheckS = S;
|
|
while (CheckS) {
|
|
if (CheckS->isWithinElse() &&
|
|
CheckS->getControlParent()->isDeclScope(Var)) {
|
|
if (Var->getType()->isBooleanType())
|
|
Diag(Loc, diag::warn_value_always_false) << Var->getDeclName();
|
|
else
|
|
Diag(Loc, diag::warn_value_always_zero) << Var->getDeclName();
|
|
break;
|
|
}
|
|
|
|
// Move up one more control parent to check again.
|
|
CheckS = CheckS->getControlParent();
|
|
if (CheckS)
|
|
CheckS = CheckS->getParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only create DeclRefExpr's for valid Decl's.
|
|
if (VD->isInvalidDecl())
|
|
return true;
|
|
|
|
// If the identifier reference is inside a block, and it refers to a value
|
|
// that is outside the block, create a BlockDeclRefExpr instead of a
|
|
// DeclRefExpr. This ensures the value is treated as a copy-in snapshot when
|
|
// the block is formed.
|
|
//
|
|
// We do not do this for things like enum constants, global variables, etc,
|
|
// as they do not get snapshotted.
|
|
//
|
|
if (CurBlock && ShouldSnapshotBlockValueReference(CurBlock, VD)) {
|
|
// The BlocksAttr indicates the variable is bound by-reference.
|
|
if (VD->getAttr<BlocksAttr>())
|
|
return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
|
|
Loc, true);
|
|
|
|
// Variable will be bound by-copy, make it const within the closure.
|
|
VD->getType().addConst();
|
|
return new BlockDeclRefExpr(VD, VD->getType().getNonReferenceType(),
|
|
Loc, false);
|
|
}
|
|
// If this reference is not in a block or if the referenced variable is
|
|
// within the block, create a normal DeclRefExpr.
|
|
|
|
bool TypeDependent = false;
|
|
bool ValueDependent = false;
|
|
if (getLangOptions().CPlusPlus) {
|
|
// C++ [temp.dep.expr]p3:
|
|
// An id-expression is type-dependent if it contains:
|
|
// - an identifier that was declared with a dependent type,
|
|
if (VD->getType()->isDependentType())
|
|
TypeDependent = true;
|
|
// - FIXME: a template-id that is dependent,
|
|
// - a conversion-function-id that specifies a dependent type,
|
|
else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
|
|
Name.getCXXNameType()->isDependentType())
|
|
TypeDependent = true;
|
|
// - a nested-name-specifier that contains a class-name that
|
|
// names a dependent type.
|
|
else if (SS && !SS->isEmpty()) {
|
|
for (DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
|
|
DC; DC = DC->getParent()) {
|
|
// FIXME: could stop early at namespace scope.
|
|
if (DC->isCXXRecord()) {
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
|
if (Context.getTypeDeclType(Record)->isDependentType()) {
|
|
TypeDependent = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++ [temp.dep.constexpr]p2:
|
|
//
|
|
// An identifier is value-dependent if it is:
|
|
// - a name declared with a dependent type,
|
|
if (TypeDependent)
|
|
ValueDependent = true;
|
|
// - the name of a non-type template parameter,
|
|
else if (isa<NonTypeTemplateParmDecl>(VD))
|
|
ValueDependent = true;
|
|
// - a constant with integral or enumeration type and is
|
|
// initialized with an expression that is value-dependent
|
|
// (FIXME!).
|
|
}
|
|
|
|
return new DeclRefExpr(VD, VD->getType().getNonReferenceType(), Loc,
|
|
TypeDependent, ValueDependent);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc,
|
|
tok::TokenKind Kind) {
|
|
PredefinedExpr::IdentType IT;
|
|
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown simple primary expr!");
|
|
case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
|
|
case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
|
|
case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
|
|
}
|
|
|
|
// Pre-defined identifiers are of type char[x], where x is the length of the
|
|
// string.
|
|
unsigned Length;
|
|
if (FunctionDecl *FD = getCurFunctionDecl())
|
|
Length = FD->getIdentifier()->getLength();
|
|
else if (ObjCMethodDecl *MD = getCurMethodDecl())
|
|
Length = MD->getSynthesizedMethodSize();
|
|
else {
|
|
Diag(Loc, diag::ext_predef_outside_function);
|
|
// __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
|
|
Length = IT == PredefinedExpr::PrettyFunction ? strlen("top level") : 0;
|
|
}
|
|
|
|
|
|
llvm::APInt LengthI(32, Length + 1);
|
|
QualType ResTy = Context.CharTy.getQualifiedType(QualType::Const);
|
|
ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
|
|
return new PredefinedExpr(Loc, ResTy, IT);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnCharacterConstant(const Token &Tok) {
|
|
llvm::SmallString<16> CharBuffer;
|
|
CharBuffer.resize(Tok.getLength());
|
|
const char *ThisTokBegin = &CharBuffer[0];
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
CharLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError())
|
|
return ExprResult(true);
|
|
|
|
QualType type = getLangOptions().CPlusPlus ? Context.CharTy : Context.IntTy;
|
|
|
|
return new CharacterLiteral(Literal.getValue(), Literal.isWide(), type,
|
|
Tok.getLocation());
|
|
}
|
|
|
|
Action::ExprResult Sema::ActOnNumericConstant(const Token &Tok) {
|
|
// fast path for a single digit (which is quite common). A single digit
|
|
// cannot have a trigraph, escaped newline, radix prefix, or type suffix.
|
|
if (Tok.getLength() == 1) {
|
|
const char *Ty = PP.getSourceManager().getCharacterData(Tok.getLocation());
|
|
|
|
unsigned IntSize =static_cast<unsigned>(Context.getTypeSize(Context.IntTy));
|
|
return ExprResult(new IntegerLiteral(llvm::APInt(IntSize, *Ty-'0'),
|
|
Context.IntTy,
|
|
Tok.getLocation()));
|
|
}
|
|
llvm::SmallString<512> IntegerBuffer;
|
|
// Add padding so that NumericLiteralParser can overread by one character.
|
|
IntegerBuffer.resize(Tok.getLength()+1);
|
|
const char *ThisTokBegin = &IntegerBuffer[0];
|
|
|
|
// Get the spelling of the token, which eliminates trigraphs, etc.
|
|
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin);
|
|
|
|
NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
|
|
Tok.getLocation(), PP);
|
|
if (Literal.hadError)
|
|
return ExprResult(true);
|
|
|
|
Expr *Res;
|
|
|
|
if (Literal.isFloatingLiteral()) {
|
|
QualType Ty;
|
|
if (Literal.isFloat)
|
|
Ty = Context.FloatTy;
|
|
else if (!Literal.isLong)
|
|
Ty = Context.DoubleTy;
|
|
else
|
|
Ty = Context.LongDoubleTy;
|
|
|
|
const llvm::fltSemantics &Format = Context.getFloatTypeSemantics(Ty);
|
|
|
|
// isExact will be set by GetFloatValue().
|
|
bool isExact = false;
|
|
Res = new FloatingLiteral(Literal.GetFloatValue(Format, &isExact), &isExact,
|
|
Ty, Tok.getLocation());
|
|
|
|
} else if (!Literal.isIntegerLiteral()) {
|
|
return ExprResult(true);
|
|
} else {
|
|
QualType Ty;
|
|
|
|
// long long is a C99 feature.
|
|
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus0x &&
|
|
Literal.isLongLong)
|
|
Diag(Tok.getLocation(), diag::ext_longlong);
|
|
|
|
// Get the value in the widest-possible width.
|
|
llvm::APInt ResultVal(Context.Target.getIntMaxTWidth(), 0);
|
|
|
|
if (Literal.GetIntegerValue(ResultVal)) {
|
|
// If this value didn't fit into uintmax_t, warn and force to ull.
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
|
|
"long long is not intmax_t?");
|
|
} else {
|
|
// If this value fits into a ULL, try to figure out what else it fits into
|
|
// according to the rules of C99 6.4.4.1p5.
|
|
|
|
// Octal, Hexadecimal, and integers with a U suffix are allowed to
|
|
// be an unsigned int.
|
|
bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
|
|
|
|
// Check from smallest to largest, picking the smallest type we can.
|
|
unsigned Width = 0;
|
|
if (!Literal.isLong && !Literal.isLongLong) {
|
|
// Are int/unsigned possibilities?
|
|
unsigned IntSize = Context.Target.getIntWidth();
|
|
|
|
// Does it fit in a unsigned int?
|
|
if (ResultVal.isIntN(IntSize)) {
|
|
// Does it fit in a signed int?
|
|
if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
|
|
Ty = Context.IntTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedIntTy;
|
|
Width = IntSize;
|
|
}
|
|
}
|
|
|
|
// Are long/unsigned long possibilities?
|
|
if (Ty.isNull() && !Literal.isLongLong) {
|
|
unsigned LongSize = Context.Target.getLongWidth();
|
|
|
|
// Does it fit in a unsigned long?
|
|
if (ResultVal.isIntN(LongSize)) {
|
|
// Does it fit in a signed long?
|
|
if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
|
|
Ty = Context.LongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongTy;
|
|
Width = LongSize;
|
|
}
|
|
}
|
|
|
|
// Finally, check long long if needed.
|
|
if (Ty.isNull()) {
|
|
unsigned LongLongSize = Context.Target.getLongLongWidth();
|
|
|
|
// Does it fit in a unsigned long long?
|
|
if (ResultVal.isIntN(LongLongSize)) {
|
|
// Does it fit in a signed long long?
|
|
if (!Literal.isUnsigned && ResultVal[LongLongSize-1] == 0)
|
|
Ty = Context.LongLongTy;
|
|
else if (AllowUnsigned)
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = LongLongSize;
|
|
}
|
|
}
|
|
|
|
// If we still couldn't decide a type, we probably have something that
|
|
// does not fit in a signed long long, but has no U suffix.
|
|
if (Ty.isNull()) {
|
|
Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
|
|
Ty = Context.UnsignedLongLongTy;
|
|
Width = Context.Target.getLongLongWidth();
|
|
}
|
|
|
|
if (ResultVal.getBitWidth() != Width)
|
|
ResultVal.trunc(Width);
|
|
}
|
|
|
|
Res = new IntegerLiteral(ResultVal, Ty, Tok.getLocation());
|
|
}
|
|
|
|
// If this is an imaginary literal, create the ImaginaryLiteral wrapper.
|
|
if (Literal.isImaginary)
|
|
Res = new ImaginaryLiteral(Res, Context.getComplexType(Res->getType()));
|
|
|
|
return Res;
|
|
}
|
|
|
|
Action::ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R,
|
|
ExprTy *Val) {
|
|
Expr *E = (Expr *)Val;
|
|
assert((E != 0) && "ActOnParenExpr() missing expr");
|
|
return new ParenExpr(L, R, E);
|
|
}
|
|
|
|
/// The UsualUnaryConversions() function is *not* called by this routine.
|
|
/// See C99 6.3.2.1p[2-4] for more details.
|
|
bool Sema::CheckSizeOfAlignOfOperand(QualType exprType,
|
|
SourceLocation OpLoc,
|
|
const SourceRange &ExprRange,
|
|
bool isSizeof) {
|
|
// C99 6.5.3.4p1:
|
|
if (isa<FunctionType>(exprType) && isSizeof)
|
|
// alignof(function) is allowed.
|
|
Diag(OpLoc, diag::ext_sizeof_function_type) << ExprRange;
|
|
else if (exprType->isVoidType())
|
|
Diag(OpLoc, diag::ext_sizeof_void_type)
|
|
<< (isSizeof ? "sizeof" : "__alignof") << ExprRange;
|
|
else if (exprType->isIncompleteType())
|
|
return Diag(OpLoc, isSizeof ? diag::err_sizeof_incomplete_type :
|
|
diag::err_alignof_incomplete_type)
|
|
<< exprType << ExprRange;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnSizeOfAlignOfExpr - Handle @c sizeof(type) and @c sizeof @c expr and
|
|
/// the same for @c alignof and @c __alignof
|
|
/// Note that the ArgRange is invalid if isType is false.
|
|
Action::ExprResult
|
|
Sema::ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
|
|
void *TyOrEx, const SourceRange &ArgRange) {
|
|
// If error parsing type, ignore.
|
|
if (TyOrEx == 0) return true;
|
|
|
|
QualType ArgTy;
|
|
SourceRange Range;
|
|
if (isType) {
|
|
ArgTy = QualType::getFromOpaquePtr(TyOrEx);
|
|
Range = ArgRange;
|
|
} else {
|
|
// Get the end location.
|
|
Expr *ArgEx = (Expr *)TyOrEx;
|
|
Range = ArgEx->getSourceRange();
|
|
ArgTy = ArgEx->getType();
|
|
}
|
|
|
|
// Verify that the operand is valid.
|
|
if (CheckSizeOfAlignOfOperand(ArgTy, OpLoc, Range, isSizeof))
|
|
return true;
|
|
|
|
// C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
|
|
return new SizeOfAlignOfExpr(isSizeof, isType, TyOrEx, Context.getSizeType(),
|
|
OpLoc, Range.getEnd());
|
|
}
|
|
|
|
QualType Sema::CheckRealImagOperand(Expr *&V, SourceLocation Loc) {
|
|
DefaultFunctionArrayConversion(V);
|
|
|
|
// These operators return the element type of a complex type.
|
|
if (const ComplexType *CT = V->getType()->getAsComplexType())
|
|
return CT->getElementType();
|
|
|
|
// Otherwise they pass through real integer and floating point types here.
|
|
if (V->getType()->isArithmeticType())
|
|
return V->getType();
|
|
|
|
// Reject anything else.
|
|
Diag(Loc, diag::err_realimag_invalid_type) << V->getType();
|
|
return QualType();
|
|
}
|
|
|
|
|
|
|
|
Action::ExprResult Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Kind,
|
|
ExprTy *Input) {
|
|
Expr *Arg = (Expr *)Input;
|
|
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PostInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PostDec; break;
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(Arg->getType()->isRecordType() || Arg->getType()->isEnumeralType())) {
|
|
// Which overloaded operator?
|
|
OverloadedOperatorKind OverOp =
|
|
(Opc == UnaryOperator::PostInc)? OO_PlusPlus : OO_MinusMinus;
|
|
|
|
// C++ [over.inc]p1:
|
|
//
|
|
// [...] If the function is a member function with one
|
|
// parameter (which shall be of type int) or a non-member
|
|
// function with two parameters (the second of which shall be
|
|
// of type int), it defines the postfix increment operator ++
|
|
// for objects of that type. When the postfix increment is
|
|
// called as a result of using the ++ operator, the int
|
|
// argument will have value zero.
|
|
Expr *Args[2] = {
|
|
Arg,
|
|
new IntegerLiteral(llvm::APInt(Context.Target.getIntWidth(), 0,
|
|
/*isSigned=*/true),
|
|
Context.IntTy, SourceLocation())
|
|
};
|
|
|
|
// Build the candidate set for overloading
|
|
OverloadCandidateSet CandidateSet;
|
|
AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(Arg, Method))
|
|
return true;
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(Arg,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return true;
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, OpLoc);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(Arg, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing"))
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Arg->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return true;
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
QualType result = CheckIncrementDecrementOperand(Arg, OpLoc,
|
|
Opc == UnaryOperator::PostInc);
|
|
if (result.isNull())
|
|
return true;
|
|
return new UnaryOperator(Arg, Opc, result, OpLoc);
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnArraySubscriptExpr(Scope *S, ExprTy *Base, SourceLocation LLoc,
|
|
ExprTy *Idx, SourceLocation RLoc) {
|
|
Expr *LHSExp = static_cast<Expr*>(Base), *RHSExp = static_cast<Expr*>(Idx);
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(LHSExp->getType()->isRecordType() ||
|
|
LHSExp->getType()->isEnumeralType() ||
|
|
RHSExp->getType()->isRecordType() ||
|
|
RHSExp->getType()->isEnumeralType())) {
|
|
// Add the appropriate overloaded operators (C++ [over.match.oper])
|
|
// to the candidate set.
|
|
OverloadCandidateSet CandidateSet;
|
|
Expr *Args[2] = { LHSExp, RHSExp };
|
|
AddOperatorCandidates(OO_Subscript, S, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(LHSExp, Method) ||
|
|
PerformCopyInitialization(RHSExp,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return true;
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(LHSExp,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing") ||
|
|
PerformCopyInitialization(RHSExp,
|
|
FnDecl->getParamDecl(1)->getType(),
|
|
"passing"))
|
|
return true;
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, LLoc);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(LHSExp, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing") ||
|
|
PerformCopyInitialization(RHSExp, Best->BuiltinTypes.ParamTypes[1],
|
|
"passing"))
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(LLoc, diag::err_ovl_ambiguous_oper)
|
|
<< "[]"
|
|
<< LHSExp->getSourceRange() << RHSExp->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return true;
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(LHSExp);
|
|
DefaultFunctionArrayConversion(RHSExp);
|
|
|
|
QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
|
|
|
|
// C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
|
|
// to the expression *((e1)+(e2)). This means the array "Base" may actually be
|
|
// in the subscript position. As a result, we need to derive the array base
|
|
// and index from the expression types.
|
|
Expr *BaseExpr, *IndexExpr;
|
|
QualType ResultType;
|
|
if (const PointerType *PTy = LHSTy->getAsPointerType()) {
|
|
BaseExpr = LHSExp;
|
|
IndexExpr = RHSExp;
|
|
// FIXME: need to deal with const...
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const PointerType *PTy = RHSTy->getAsPointerType()) {
|
|
// Handle the uncommon case of "123[Ptr]".
|
|
BaseExpr = RHSExp;
|
|
IndexExpr = LHSExp;
|
|
// FIXME: need to deal with const...
|
|
ResultType = PTy->getPointeeType();
|
|
} else if (const VectorType *VTy = LHSTy->getAsVectorType()) {
|
|
BaseExpr = LHSExp; // vectors: V[123]
|
|
IndexExpr = RHSExp;
|
|
|
|
// Component access limited to variables (reject vec4.rg[1]).
|
|
if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
|
|
!isa<ExtVectorElementExpr>(BaseExpr))
|
|
return Diag(LLoc, diag::err_ext_vector_component_access)
|
|
<< SourceRange(LLoc, RLoc);
|
|
// FIXME: need to deal with const...
|
|
ResultType = VTy->getElementType();
|
|
} else {
|
|
return Diag(LHSExp->getLocStart(), diag::err_typecheck_subscript_value)
|
|
<< RHSExp->getSourceRange();
|
|
}
|
|
// C99 6.5.2.1p1
|
|
if (!IndexExpr->getType()->isIntegerType())
|
|
return Diag(IndexExpr->getLocStart(), diag::err_typecheck_subscript)
|
|
<< IndexExpr->getSourceRange();
|
|
|
|
// C99 6.5.2.1p1: "shall have type "pointer to *object* type". In practice,
|
|
// the following check catches trying to index a pointer to a function (e.g.
|
|
// void (*)(int)) and pointers to incomplete types. Functions are not
|
|
// objects in C99.
|
|
if (!ResultType->isObjectType())
|
|
return Diag(BaseExpr->getLocStart(),
|
|
diag::err_typecheck_subscript_not_object)
|
|
<< BaseExpr->getType() << BaseExpr->getSourceRange();
|
|
|
|
return new ArraySubscriptExpr(LHSExp, RHSExp, ResultType, RLoc);
|
|
}
|
|
|
|
QualType Sema::
|
|
CheckExtVectorComponent(QualType baseType, SourceLocation OpLoc,
|
|
IdentifierInfo &CompName, SourceLocation CompLoc) {
|
|
const ExtVectorType *vecType = baseType->getAsExtVectorType();
|
|
|
|
// This flag determines whether or not the component is to be treated as a
|
|
// special name, or a regular GLSL-style component access.
|
|
bool SpecialComponent = false;
|
|
|
|
// The vector accessor can't exceed the number of elements.
|
|
const char *compStr = CompName.getName();
|
|
if (strlen(compStr) > vecType->getNumElements()) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// Check that we've found one of the special components, or that the component
|
|
// names must come from the same set.
|
|
if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
|
|
!strcmp(compStr, "e") || !strcmp(compStr, "o")) {
|
|
SpecialComponent = true;
|
|
} else if (vecType->getPointAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getPointAccessorIdx(*compStr) != -1);
|
|
} else if (vecType->getColorAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getColorAccessorIdx(*compStr) != -1);
|
|
} else if (vecType->getTextureAccessorIdx(*compStr) != -1) {
|
|
do
|
|
compStr++;
|
|
while (*compStr && vecType->getTextureAccessorIdx(*compStr) != -1);
|
|
}
|
|
|
|
if (!SpecialComponent && *compStr) {
|
|
// We didn't get to the end of the string. This means the component names
|
|
// didn't come from the same set *or* we encountered an illegal name.
|
|
Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
|
|
<< std::string(compStr,compStr+1) << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
// Each component accessor can't exceed the vector type.
|
|
compStr = CompName.getName();
|
|
while (*compStr) {
|
|
if (vecType->isAccessorWithinNumElements(*compStr))
|
|
compStr++;
|
|
else
|
|
break;
|
|
}
|
|
if (!SpecialComponent && *compStr) {
|
|
// We didn't get to the end of the string. This means a component accessor
|
|
// exceeds the number of elements in the vector.
|
|
Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// If we have a special component name, verify that the current vector length
|
|
// is an even number, since all special component names return exactly half
|
|
// the elements.
|
|
if (SpecialComponent && (vecType->getNumElements() & 1U)) {
|
|
Diag(OpLoc, diag::err_ext_vector_component_requires_even)
|
|
<< baseType << SourceRange(CompLoc);
|
|
return QualType();
|
|
}
|
|
|
|
// The component accessor looks fine - now we need to compute the actual type.
|
|
// The vector type is implied by the component accessor. For example,
|
|
// vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
|
|
// vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
|
|
unsigned CompSize = SpecialComponent ? vecType->getNumElements() / 2
|
|
: CompName.getLength();
|
|
if (CompSize == 1)
|
|
return vecType->getElementType();
|
|
|
|
QualType VT = Context.getExtVectorType(vecType->getElementType(), CompSize);
|
|
// Now look up the TypeDefDecl from the vector type. Without this,
|
|
// diagostics look bad. We want extended vector types to appear built-in.
|
|
for (unsigned i = 0, E = ExtVectorDecls.size(); i != E; ++i) {
|
|
if (ExtVectorDecls[i]->getUnderlyingType() == VT)
|
|
return Context.getTypedefType(ExtVectorDecls[i]);
|
|
}
|
|
return VT; // should never get here (a typedef type should always be found).
|
|
}
|
|
|
|
/// constructSetterName - Return the setter name for the given
|
|
/// identifier, i.e. "set" + Name where the initial character of Name
|
|
/// has been capitalized.
|
|
// FIXME: Merge with same routine in Parser. But where should this
|
|
// live?
|
|
static IdentifierInfo *constructSetterName(IdentifierTable &Idents,
|
|
const IdentifierInfo *Name) {
|
|
llvm::SmallString<100> SelectorName;
|
|
SelectorName = "set";
|
|
SelectorName.append(Name->getName(), Name->getName()+Name->getLength());
|
|
SelectorName[3] = toupper(SelectorName[3]);
|
|
return &Idents.get(&SelectorName[0], &SelectorName[SelectorName.size()]);
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnMemberReferenceExpr(ExprTy *Base, SourceLocation OpLoc,
|
|
tok::TokenKind OpKind, SourceLocation MemberLoc,
|
|
IdentifierInfo &Member) {
|
|
Expr *BaseExpr = static_cast<Expr *>(Base);
|
|
assert(BaseExpr && "no record expression");
|
|
|
|
// Perform default conversions.
|
|
DefaultFunctionArrayConversion(BaseExpr);
|
|
|
|
QualType BaseType = BaseExpr->getType();
|
|
assert(!BaseType.isNull() && "no type for member expression");
|
|
|
|
// Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
|
|
// must have pointer type, and the accessed type is the pointee.
|
|
if (OpKind == tok::arrow) {
|
|
if (const PointerType *PT = BaseType->getAsPointerType())
|
|
BaseType = PT->getPointeeType();
|
|
else if (getLangOptions().CPlusPlus && BaseType->isRecordType())
|
|
return BuildOverloadedArrowExpr(BaseExpr, OpLoc, MemberLoc, Member);
|
|
else
|
|
return Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
}
|
|
|
|
// Handle field access to simple records. This also handles access to fields
|
|
// of the ObjC 'id' struct.
|
|
if (const RecordType *RTy = BaseType->getAsRecordType()) {
|
|
RecordDecl *RDecl = RTy->getDecl();
|
|
if (RTy->isIncompleteType())
|
|
return Diag(OpLoc, diag::err_typecheck_incomplete_tag)
|
|
<< RDecl->getDeclName() << BaseExpr->getSourceRange();
|
|
// The record definition is complete, now make sure the member is valid.
|
|
// FIXME: Qualified name lookup for C++ is a bit more complicated
|
|
// than this.
|
|
DeclContext::lookup_result Lookup = RDecl->lookup(Context, &Member);
|
|
if (Lookup.first == Lookup.second) {
|
|
return Diag(MemberLoc, diag::err_typecheck_no_member)
|
|
<< &Member << BaseExpr->getSourceRange();
|
|
}
|
|
|
|
if (FieldDecl *MemberDecl = dyn_cast<FieldDecl>(*Lookup.first)) {
|
|
// Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
|
|
// FIXME: Handle address space modifiers
|
|
QualType MemberType = MemberDecl->getType();
|
|
if (const ReferenceType *Ref = MemberType->getAsReferenceType())
|
|
MemberType = Ref->getPointeeType();
|
|
else {
|
|
unsigned combinedQualifiers =
|
|
MemberType.getCVRQualifiers() | BaseType.getCVRQualifiers();
|
|
if (MemberDecl->isMutable())
|
|
combinedQualifiers &= ~QualType::Const;
|
|
MemberType = MemberType.getQualifiedType(combinedQualifiers);
|
|
}
|
|
|
|
return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberDecl,
|
|
MemberLoc, MemberType);
|
|
} else if (CXXClassVarDecl *Var = dyn_cast<CXXClassVarDecl>(*Lookup.first))
|
|
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Var, MemberLoc,
|
|
Var->getType().getNonReferenceType());
|
|
else if (FunctionDecl *MemberFn = dyn_cast<FunctionDecl>(*Lookup.first))
|
|
return new MemberExpr(BaseExpr, OpKind == tok::arrow, MemberFn, MemberLoc,
|
|
MemberFn->getType());
|
|
else if (OverloadedFunctionDecl *Ovl
|
|
= dyn_cast<OverloadedFunctionDecl>(*Lookup.first))
|
|
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Ovl, MemberLoc,
|
|
Context.OverloadTy);
|
|
else if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(*Lookup.first))
|
|
return new MemberExpr(BaseExpr, OpKind == tok::arrow, Enum, MemberLoc,
|
|
Enum->getType());
|
|
else if (isa<TypeDecl>(*Lookup.first))
|
|
return Diag(MemberLoc, diag::err_typecheck_member_reference_type)
|
|
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
|
|
|
|
// We found a declaration kind that we didn't expect. This is a
|
|
// generic error message that tells the user that she can't refer
|
|
// to this member with '.' or '->'.
|
|
return Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
|
|
<< DeclarationName(&Member) << int(OpKind == tok::arrow);
|
|
}
|
|
|
|
// Handle access to Objective-C instance variables, such as "Obj->ivar" and
|
|
// (*Obj).ivar.
|
|
if (const ObjCInterfaceType *IFTy = BaseType->getAsObjCInterfaceType()) {
|
|
if (ObjCIvarDecl *IV = IFTy->getDecl()->lookupInstanceVariable(&Member)) {
|
|
ObjCIvarRefExpr *MRef= new ObjCIvarRefExpr(IV, IV->getType(), MemberLoc,
|
|
BaseExpr,
|
|
OpKind == tok::arrow);
|
|
Context.setFieldDecl(IFTy->getDecl(), IV, MRef);
|
|
return MRef;
|
|
}
|
|
return Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
|
|
<< IFTy->getDecl()->getDeclName() << &Member
|
|
<< BaseExpr->getSourceRange();
|
|
}
|
|
|
|
// Handle Objective-C property access, which is "Obj.property" where Obj is a
|
|
// pointer to a (potentially qualified) interface type.
|
|
const PointerType *PTy;
|
|
const ObjCInterfaceType *IFTy;
|
|
if (OpKind == tok::period && (PTy = BaseType->getAsPointerType()) &&
|
|
(IFTy = PTy->getPointeeType()->getAsObjCInterfaceType())) {
|
|
ObjCInterfaceDecl *IFace = IFTy->getDecl();
|
|
|
|
// Search for a declared property first.
|
|
if (ObjCPropertyDecl *PD = IFace->FindPropertyDeclaration(&Member))
|
|
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
|
|
|
|
// Check protocols on qualified interfaces.
|
|
for (ObjCInterfaceType::qual_iterator I = IFTy->qual_begin(),
|
|
E = IFTy->qual_end(); I != E; ++I)
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
|
|
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
|
|
|
|
// If that failed, look for an "implicit" property by seeing if the nullary
|
|
// selector is implemented.
|
|
|
|
// FIXME: The logic for looking up nullary and unary selectors should be
|
|
// shared with the code in ActOnInstanceMessage.
|
|
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
ObjCMethodDecl *Getter = IFace->lookupInstanceMethod(Sel);
|
|
|
|
// If this reference is in an @implementation, check for 'private' methods.
|
|
if (!Getter)
|
|
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
|
|
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
|
|
if (ObjCImplementationDecl *ImpDecl =
|
|
ObjCImplementations[ClassDecl->getIdentifier()])
|
|
Getter = ImpDecl->getInstanceMethod(Sel);
|
|
|
|
// Look through local category implementations associated with the class.
|
|
if (!Getter) {
|
|
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Getter; i++) {
|
|
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
|
|
Getter = ObjCCategoryImpls[i]->getInstanceMethod(Sel);
|
|
}
|
|
}
|
|
if (Getter) {
|
|
// If we found a getter then this may be a valid dot-reference, we
|
|
// will look for the matching setter, in case it is needed.
|
|
IdentifierInfo *SetterName = constructSetterName(PP.getIdentifierTable(),
|
|
&Member);
|
|
Selector SetterSel = PP.getSelectorTable().getUnarySelector(SetterName);
|
|
ObjCMethodDecl *Setter = IFace->lookupInstanceMethod(SetterSel);
|
|
if (!Setter) {
|
|
// If this reference is in an @implementation, also check for 'private'
|
|
// methods.
|
|
if (ObjCMethodDecl *CurMeth = getCurMethodDecl())
|
|
if (ObjCInterfaceDecl *ClassDecl = CurMeth->getClassInterface())
|
|
if (ObjCImplementationDecl *ImpDecl =
|
|
ObjCImplementations[ClassDecl->getIdentifier()])
|
|
Setter = ImpDecl->getInstanceMethod(SetterSel);
|
|
}
|
|
// Look through local category implementations associated with the class.
|
|
if (!Setter) {
|
|
for (unsigned i = 0; i < ObjCCategoryImpls.size() && !Setter; i++) {
|
|
if (ObjCCategoryImpls[i]->getClassInterface() == IFace)
|
|
Setter = ObjCCategoryImpls[i]->getInstanceMethod(SetterSel);
|
|
}
|
|
}
|
|
|
|
// FIXME: we must check that the setter has property type.
|
|
return new ObjCKVCRefExpr(Getter, Getter->getResultType(), Setter,
|
|
MemberLoc, BaseExpr);
|
|
}
|
|
|
|
return Diag(MemberLoc, diag::err_property_not_found) <<
|
|
&Member << BaseType;
|
|
}
|
|
// Handle properties on qualified "id" protocols.
|
|
const ObjCQualifiedIdType *QIdTy;
|
|
if (OpKind == tok::period && (QIdTy = BaseType->getAsObjCQualifiedIdType())) {
|
|
// Check protocols on qualified interfaces.
|
|
for (ObjCQualifiedIdType::qual_iterator I = QIdTy->qual_begin(),
|
|
E = QIdTy->qual_end(); I != E; ++I) {
|
|
if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(&Member))
|
|
return new ObjCPropertyRefExpr(PD, PD->getType(), MemberLoc, BaseExpr);
|
|
// Also must look for a getter name which uses property syntax.
|
|
Selector Sel = PP.getSelectorTable().getNullarySelector(&Member);
|
|
if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
|
|
return new ObjCMessageExpr(BaseExpr, Sel, OMD->getResultType(), OMD,
|
|
OpLoc, MemberLoc, NULL, 0);
|
|
}
|
|
}
|
|
|
|
return Diag(MemberLoc, diag::err_property_not_found) <<
|
|
&Member << BaseType;
|
|
}
|
|
// Handle 'field access' to vectors, such as 'V.xx'.
|
|
if (BaseType->isExtVectorType() && OpKind == tok::period) {
|
|
// Component access limited to variables (reject vec4.rg.g).
|
|
if (!isa<DeclRefExpr>(BaseExpr) && !isa<ArraySubscriptExpr>(BaseExpr) &&
|
|
!isa<ExtVectorElementExpr>(BaseExpr))
|
|
return Diag(MemberLoc, diag::err_ext_vector_component_access)
|
|
<< BaseExpr->getSourceRange();
|
|
QualType ret = CheckExtVectorComponent(BaseType, OpLoc, Member, MemberLoc);
|
|
if (ret.isNull())
|
|
return true;
|
|
return new ExtVectorElementExpr(ret, BaseExpr, Member, MemberLoc);
|
|
}
|
|
|
|
return Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
|
|
<< BaseType << BaseExpr->getSourceRange();
|
|
}
|
|
|
|
/// ConvertArgumentsForCall - Converts the arguments specified in
|
|
/// Args/NumArgs to the parameter types of the function FDecl with
|
|
/// function prototype Proto. Call is the call expression itself, and
|
|
/// Fn is the function expression. For a C++ member function, this
|
|
/// routine does not attempt to convert the object argument. Returns
|
|
/// true if the call is ill-formed.
|
|
bool
|
|
Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
|
|
FunctionDecl *FDecl,
|
|
const FunctionTypeProto *Proto,
|
|
Expr **Args, unsigned NumArgs,
|
|
SourceLocation RParenLoc) {
|
|
// C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
|
|
// assignment, to the types of the corresponding parameter, ...
|
|
unsigned NumArgsInProto = Proto->getNumArgs();
|
|
unsigned NumArgsToCheck = NumArgs;
|
|
|
|
// If too few arguments are available (and we don't have default
|
|
// arguments for the remaining parameters), don't make the call.
|
|
if (NumArgs < NumArgsInProto) {
|
|
if (!FDecl || NumArgs < FDecl->getMinRequiredArguments())
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange();
|
|
// Use default arguments for missing arguments
|
|
NumArgsToCheck = NumArgsInProto;
|
|
Call->setNumArgs(NumArgsInProto);
|
|
}
|
|
|
|
// If too many are passed and not variadic, error on the extras and drop
|
|
// them.
|
|
if (NumArgs > NumArgsInProto) {
|
|
if (!Proto->isVariadic()) {
|
|
Diag(Args[NumArgsInProto]->getLocStart(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< Fn->getType()->isBlockPointerType() << Fn->getSourceRange()
|
|
<< SourceRange(Args[NumArgsInProto]->getLocStart(),
|
|
Args[NumArgs-1]->getLocEnd());
|
|
// This deletes the extra arguments.
|
|
Call->setNumArgs(NumArgsInProto);
|
|
}
|
|
NumArgsToCheck = NumArgsInProto;
|
|
}
|
|
|
|
// Continue to check argument types (even if we have too few/many args).
|
|
for (unsigned i = 0; i != NumArgsToCheck; i++) {
|
|
QualType ProtoArgType = Proto->getArgType(i);
|
|
|
|
Expr *Arg;
|
|
if (i < NumArgs)
|
|
Arg = Args[i];
|
|
else
|
|
Arg = new CXXDefaultArgExpr(FDecl->getParamDecl(i));
|
|
QualType ArgType = Arg->getType();
|
|
|
|
// Pass the argument.
|
|
if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
|
|
return true;
|
|
|
|
Call->setArg(i, Arg);
|
|
}
|
|
|
|
// If this is a variadic call, handle args passed through "...".
|
|
if (Proto->isVariadic()) {
|
|
// Promote the arguments (C99 6.5.2.2p7).
|
|
for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
Call->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
|
|
/// This provides the location of the left/right parens and a list of comma
|
|
/// locations.
|
|
Action::ExprResult
|
|
Sema::ActOnCallExpr(Scope *S, ExprTy *fn, SourceLocation LParenLoc,
|
|
ExprTy **args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs, SourceLocation RParenLoc) {
|
|
Expr *Fn = static_cast<Expr *>(fn);
|
|
Expr **Args = reinterpret_cast<Expr**>(args);
|
|
assert(Fn && "no function call expression");
|
|
FunctionDecl *FDecl = NULL;
|
|
OverloadedFunctionDecl *Ovl = NULL;
|
|
|
|
// Determine whether this is a dependent call inside a C++ template,
|
|
// in which case we won't do any semantic analysis now.
|
|
bool Dependent = false;
|
|
if (Fn->isTypeDependent()) {
|
|
if (CXXDependentNameExpr *FnName = dyn_cast<CXXDependentNameExpr>(Fn)) {
|
|
if (Expr::hasAnyTypeDependentArguments(Args, NumArgs))
|
|
Dependent = true;
|
|
else {
|
|
// Resolve the CXXDependentNameExpr to an actual identifier;
|
|
// it wasn't really a dependent name after all.
|
|
ExprResult Resolved
|
|
= ActOnDeclarationNameExpr(S, FnName->getLocation(), FnName->getName(),
|
|
/*HasTrailingLParen=*/true,
|
|
/*SS=*/0,
|
|
/*ForceResolution=*/true);
|
|
if (Resolved.isInvalid)
|
|
return true;
|
|
else {
|
|
delete Fn;
|
|
Fn = (Expr *)Resolved.Val;
|
|
}
|
|
}
|
|
} else
|
|
Dependent = true;
|
|
} else
|
|
Dependent = Expr::hasAnyTypeDependentArguments(Args, NumArgs);
|
|
|
|
// FIXME: Will need to cache the results of name lookup (including
|
|
// ADL) in Fn.
|
|
if (Dependent)
|
|
return new CallExpr(Fn, Args, NumArgs, Context.DependentTy, RParenLoc);
|
|
|
|
// Determine whether this is a call to an object (C++ [over.call.object]).
|
|
if (getLangOptions().CPlusPlus && Fn->getType()->isRecordType())
|
|
return BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc);
|
|
|
|
// Determine whether this is a call to a member function.
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(Fn->IgnoreParens()))
|
|
if (isa<OverloadedFunctionDecl>(MemExpr->getMemberDecl()) ||
|
|
isa<CXXMethodDecl>(MemExpr->getMemberDecl()))
|
|
return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
|
|
CommaLocs, RParenLoc);
|
|
}
|
|
|
|
// If we're directly calling a function or a set of overloaded
|
|
// functions, get the appropriate declaration.
|
|
{
|
|
DeclRefExpr *DRExpr = NULL;
|
|
if (ImplicitCastExpr *IcExpr = dyn_cast<ImplicitCastExpr>(Fn))
|
|
DRExpr = dyn_cast<DeclRefExpr>(IcExpr->getSubExpr());
|
|
else
|
|
DRExpr = dyn_cast<DeclRefExpr>(Fn);
|
|
|
|
if (DRExpr) {
|
|
FDecl = dyn_cast<FunctionDecl>(DRExpr->getDecl());
|
|
Ovl = dyn_cast<OverloadedFunctionDecl>(DRExpr->getDecl());
|
|
}
|
|
}
|
|
|
|
if (Ovl) {
|
|
FDecl = ResolveOverloadedCallFn(Fn, Ovl, LParenLoc, Args, NumArgs, CommaLocs,
|
|
RParenLoc);
|
|
if (!FDecl)
|
|
return true;
|
|
|
|
// Update Fn to refer to the actual function selected.
|
|
Expr *NewFn = new DeclRefExpr(FDecl, FDecl->getType(),
|
|
Fn->getSourceRange().getBegin());
|
|
Fn->Destroy(Context);
|
|
Fn = NewFn;
|
|
}
|
|
|
|
// Promote the function operand.
|
|
UsualUnaryConversions(Fn);
|
|
|
|
// Make the call expr early, before semantic checks. This guarantees cleanup
|
|
// of arguments and function on error.
|
|
llvm::OwningPtr<CallExpr> TheCall(new CallExpr(Fn, Args, NumArgs,
|
|
Context.BoolTy, RParenLoc));
|
|
|
|
const FunctionType *FuncT;
|
|
if (!Fn->getType()->isBlockPointerType()) {
|
|
// C99 6.5.2.2p1 - "The expression that denotes the called function shall
|
|
// have type pointer to function".
|
|
const PointerType *PT = Fn->getType()->getAsPointerType();
|
|
if (PT == 0)
|
|
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange();
|
|
FuncT = PT->getPointeeType()->getAsFunctionType();
|
|
} else { // This is a block call.
|
|
FuncT = Fn->getType()->getAsBlockPointerType()->getPointeeType()->
|
|
getAsFunctionType();
|
|
}
|
|
if (FuncT == 0)
|
|
return Diag(LParenLoc, diag::err_typecheck_call_not_function)
|
|
<< Fn->getType() << Fn->getSourceRange();
|
|
|
|
// We know the result type of the call, set it.
|
|
TheCall->setType(FuncT->getResultType().getNonReferenceType());
|
|
|
|
if (const FunctionTypeProto *Proto = dyn_cast<FunctionTypeProto>(FuncT)) {
|
|
if (ConvertArgumentsForCall(&*TheCall, Fn, FDecl, Proto, Args, NumArgs,
|
|
RParenLoc))
|
|
return true;
|
|
} else {
|
|
assert(isa<FunctionTypeNoProto>(FuncT) && "Unknown FunctionType!");
|
|
|
|
// Promote the arguments (C99 6.5.2.2p6).
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
Expr *Arg = Args[i];
|
|
DefaultArgumentPromotion(Arg);
|
|
TheCall->setArg(i, Arg);
|
|
}
|
|
}
|
|
|
|
if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
|
|
if (!Method->isStatic())
|
|
return Diag(LParenLoc, diag::err_member_call_without_object)
|
|
<< Fn->getSourceRange();
|
|
|
|
// Do special checking on direct calls to functions.
|
|
if (FDecl)
|
|
return CheckFunctionCall(FDecl, TheCall.take());
|
|
|
|
return TheCall.take();
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnCompoundLiteral(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprTy *InitExpr) {
|
|
assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
|
|
QualType literalType = QualType::getFromOpaquePtr(Ty);
|
|
// FIXME: put back this assert when initializers are worked out.
|
|
//assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
|
|
Expr *literalExpr = static_cast<Expr*>(InitExpr);
|
|
|
|
if (literalType->isArrayType()) {
|
|
if (literalType->isVariableArrayType())
|
|
return Diag(LParenLoc, diag::err_variable_object_no_init)
|
|
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
|
|
} else if (literalType->isIncompleteType()) {
|
|
return Diag(LParenLoc, diag::err_typecheck_decl_incomplete_type)
|
|
<< literalType
|
|
<< SourceRange(LParenLoc, literalExpr->getSourceRange().getEnd());
|
|
}
|
|
|
|
if (CheckInitializerTypes(literalExpr, literalType, LParenLoc,
|
|
DeclarationName()))
|
|
return true;
|
|
|
|
bool isFileScope = getCurFunctionOrMethodDecl() == 0;
|
|
if (isFileScope) { // 6.5.2.5p3
|
|
if (CheckForConstantInitializer(literalExpr, literalType))
|
|
return true;
|
|
}
|
|
return new CompoundLiteralExpr(LParenLoc, literalType, literalExpr,
|
|
isFileScope);
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnInitList(SourceLocation LBraceLoc, ExprTy **initlist, unsigned NumInit,
|
|
InitListDesignations &Designators,
|
|
SourceLocation RBraceLoc) {
|
|
Expr **InitList = reinterpret_cast<Expr**>(initlist);
|
|
|
|
// Semantic analysis for initializers is done by ActOnDeclarator() and
|
|
// CheckInitializer() - it requires knowledge of the object being intialized.
|
|
|
|
InitListExpr *E = new InitListExpr(LBraceLoc, InitList, NumInit, RBraceLoc,
|
|
Designators.hasAnyDesignators());
|
|
E->setType(Context.VoidTy); // FIXME: just a place holder for now.
|
|
return E;
|
|
}
|
|
|
|
/// CheckCastTypes - Check type constraints for casting between types.
|
|
bool Sema::CheckCastTypes(SourceRange TyR, QualType castType, Expr *&castExpr) {
|
|
UsualUnaryConversions(castExpr);
|
|
|
|
// C99 6.5.4p2: the cast type needs to be void or scalar and the expression
|
|
// type needs to be scalar.
|
|
if (castType->isVoidType()) {
|
|
// Cast to void allows any expr type.
|
|
} else if (castType->isDependentType() || castExpr->isTypeDependent()) {
|
|
// We can't check any more until template instantiation time.
|
|
} else if (!castType->isScalarType() && !castType->isVectorType()) {
|
|
// GCC struct/union extension: allow cast to self.
|
|
if (Context.getCanonicalType(castType) !=
|
|
Context.getCanonicalType(castExpr->getType()) ||
|
|
(!castType->isStructureType() && !castType->isUnionType())) {
|
|
// Reject any other conversions to non-scalar types.
|
|
return Diag(TyR.getBegin(), diag::err_typecheck_cond_expect_scalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
}
|
|
|
|
// accept this, but emit an ext-warn.
|
|
Diag(TyR.getBegin(), diag::ext_typecheck_cast_nonscalar)
|
|
<< castType << castExpr->getSourceRange();
|
|
} else if (!castExpr->getType()->isScalarType() &&
|
|
!castExpr->getType()->isVectorType()) {
|
|
return Diag(castExpr->getLocStart(),
|
|
diag::err_typecheck_expect_scalar_operand)
|
|
<< castExpr->getType() << castExpr->getSourceRange();
|
|
} else if (castExpr->getType()->isVectorType()) {
|
|
if (CheckVectorCast(TyR, castExpr->getType(), castType))
|
|
return true;
|
|
} else if (castType->isVectorType()) {
|
|
if (CheckVectorCast(TyR, castType, castExpr->getType()))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty) {
|
|
assert(VectorTy->isVectorType() && "Not a vector type!");
|
|
|
|
if (Ty->isVectorType() || Ty->isIntegerType()) {
|
|
if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
|
|
return Diag(R.getBegin(),
|
|
Ty->isVectorType() ?
|
|
diag::err_invalid_conversion_between_vectors :
|
|
diag::err_invalid_conversion_between_vector_and_integer)
|
|
<< VectorTy << Ty << R;
|
|
} else
|
|
return Diag(R.getBegin(),
|
|
diag::err_invalid_conversion_between_vector_and_scalar)
|
|
<< VectorTy << Ty << R;
|
|
|
|
return false;
|
|
}
|
|
|
|
Action::ExprResult Sema::
|
|
ActOnCastExpr(SourceLocation LParenLoc, TypeTy *Ty,
|
|
SourceLocation RParenLoc, ExprTy *Op) {
|
|
assert((Ty != 0) && (Op != 0) && "ActOnCastExpr(): missing type or expr");
|
|
|
|
Expr *castExpr = static_cast<Expr*>(Op);
|
|
QualType castType = QualType::getFromOpaquePtr(Ty);
|
|
|
|
if (CheckCastTypes(SourceRange(LParenLoc, RParenLoc), castType, castExpr))
|
|
return true;
|
|
return new CStyleCastExpr(castType, castExpr, castType, LParenLoc, RParenLoc);
|
|
}
|
|
|
|
/// Note that lex is not null here, even if this is the gnu "x ?: y" extension.
|
|
/// In that case, lex = cond.
|
|
inline QualType Sema::CheckConditionalOperands( // C99 6.5.15
|
|
Expr *&cond, Expr *&lex, Expr *&rex, SourceLocation questionLoc) {
|
|
UsualUnaryConversions(cond);
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
QualType condT = cond->getType();
|
|
QualType lexT = lex->getType();
|
|
QualType rexT = rex->getType();
|
|
|
|
// first, check the condition.
|
|
if (!cond->isTypeDependent()) {
|
|
if (!condT->isScalarType()) { // C99 6.5.15p2
|
|
Diag(cond->getLocStart(), diag::err_typecheck_cond_expect_scalar) << condT;
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Now check the two expressions.
|
|
if ((lex && lex->isTypeDependent()) || (rex && rex->isTypeDependent()))
|
|
return Context.DependentTy;
|
|
|
|
// If both operands have arithmetic type, do the usual arithmetic conversions
|
|
// to find a common type: C99 6.5.15p3,5.
|
|
if (lexT->isArithmeticType() && rexT->isArithmeticType()) {
|
|
UsualArithmeticConversions(lex, rex);
|
|
return lex->getType();
|
|
}
|
|
|
|
// If both operands are the same structure or union type, the result is that
|
|
// type.
|
|
if (const RecordType *LHSRT = lexT->getAsRecordType()) { // C99 6.5.15p3
|
|
if (const RecordType *RHSRT = rexT->getAsRecordType())
|
|
if (LHSRT->getDecl() == RHSRT->getDecl())
|
|
// "If both the operands have structure or union type, the result has
|
|
// that type." This implies that CV qualifiers are dropped.
|
|
return lexT.getUnqualifiedType();
|
|
}
|
|
|
|
// C99 6.5.15p5: "If both operands have void type, the result has void type."
|
|
// The following || allows only one side to be void (a GCC-ism).
|
|
if (lexT->isVoidType() || rexT->isVoidType()) {
|
|
if (!lexT->isVoidType())
|
|
Diag(rex->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< rex->getSourceRange();
|
|
if (!rexT->isVoidType())
|
|
Diag(lex->getLocStart(), diag::ext_typecheck_cond_one_void)
|
|
<< lex->getSourceRange();
|
|
ImpCastExprToType(lex, Context.VoidTy);
|
|
ImpCastExprToType(rex, Context.VoidTy);
|
|
return Context.VoidTy;
|
|
}
|
|
// C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
|
|
// the type of the other operand."
|
|
if ((lexT->isPointerType() || lexT->isBlockPointerType() ||
|
|
Context.isObjCObjectPointerType(lexT)) &&
|
|
rex->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rex, lexT); // promote the null to a pointer.
|
|
return lexT;
|
|
}
|
|
if ((rexT->isPointerType() || rexT->isBlockPointerType() ||
|
|
Context.isObjCObjectPointerType(rexT)) &&
|
|
lex->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(lex, rexT); // promote the null to a pointer.
|
|
return rexT;
|
|
}
|
|
// Handle the case where both operands are pointers before we handle null
|
|
// pointer constants in case both operands are null pointer constants.
|
|
if (const PointerType *LHSPT = lexT->getAsPointerType()) { // C99 6.5.15p3,6
|
|
if (const PointerType *RHSPT = rexT->getAsPointerType()) {
|
|
// get the "pointed to" types
|
|
QualType lhptee = LHSPT->getPointeeType();
|
|
QualType rhptee = RHSPT->getPointeeType();
|
|
|
|
// ignore qualifiers on void (C99 6.5.15p3, clause 6)
|
|
if (lhptee->isVoidType() &&
|
|
rhptee->isIncompleteOrObjectType()) {
|
|
// Figure out necessary qualifiers (C99 6.5.15p6)
|
|
QualType destPointee=lhptee.getQualifiedType(rhptee.getCVRQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
ImpCastExprToType(lex, destType); // add qualifiers if necessary
|
|
ImpCastExprToType(rex, destType); // promote to void*
|
|
return destType;
|
|
}
|
|
if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
|
|
QualType destPointee=rhptee.getQualifiedType(lhptee.getCVRQualifiers());
|
|
QualType destType = Context.getPointerType(destPointee);
|
|
ImpCastExprToType(lex, destType); // add qualifiers if necessary
|
|
ImpCastExprToType(rex, destType); // promote to void*
|
|
return destType;
|
|
}
|
|
|
|
QualType compositeType = lexT;
|
|
|
|
// If either type is an Objective-C object type then check
|
|
// compatibility according to Objective-C.
|
|
if (Context.isObjCObjectPointerType(lexT) ||
|
|
Context.isObjCObjectPointerType(rexT)) {
|
|
// If both operands are interfaces and either operand can be
|
|
// assigned to the other, use that type as the composite
|
|
// type. This allows
|
|
// xxx ? (A*) a : (B*) b
|
|
// where B is a subclass of A.
|
|
//
|
|
// Additionally, as for assignment, if either type is 'id'
|
|
// allow silent coercion. Finally, if the types are
|
|
// incompatible then make sure to use 'id' as the composite
|
|
// type so the result is acceptable for sending messages to.
|
|
|
|
// FIXME: This code should not be localized to here. Also this
|
|
// should use a compatible check instead of abusing the
|
|
// canAssignObjCInterfaces code.
|
|
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
|
|
if (LHSIface && RHSIface &&
|
|
Context.canAssignObjCInterfaces(LHSIface, RHSIface)) {
|
|
compositeType = lexT;
|
|
} else if (LHSIface && RHSIface &&
|
|
Context.canAssignObjCInterfaces(RHSIface, LHSIface)) {
|
|
compositeType = rexT;
|
|
} else if (Context.isObjCIdType(lhptee) ||
|
|
Context.isObjCIdType(rhptee)) {
|
|
// FIXME: This code looks wrong, because isObjCIdType checks
|
|
// the struct but getObjCIdType returns the pointer to
|
|
// struct. This is horrible and should be fixed.
|
|
compositeType = Context.getObjCIdType();
|
|
} else {
|
|
QualType incompatTy = Context.getObjCIdType();
|
|
ImpCastExprToType(lex, incompatTy);
|
|
ImpCastExprToType(rex, incompatTy);
|
|
return incompatTy;
|
|
}
|
|
} else if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType())) {
|
|
Diag(questionLoc, diag::warn_typecheck_cond_incompatible_pointers)
|
|
<< lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
|
|
// In this situation, we assume void* type. No especially good
|
|
// reason, but this is what gcc does, and we do have to pick
|
|
// to get a consistent AST.
|
|
QualType incompatTy = Context.getPointerType(Context.VoidTy);
|
|
ImpCastExprToType(lex, incompatTy);
|
|
ImpCastExprToType(rex, incompatTy);
|
|
return incompatTy;
|
|
}
|
|
// The pointer types are compatible.
|
|
// C99 6.5.15p6: If both operands are pointers to compatible types *or* to
|
|
// differently qualified versions of compatible types, the result type is
|
|
// a pointer to an appropriately qualified version of the *composite*
|
|
// type.
|
|
// FIXME: Need to calculate the composite type.
|
|
// FIXME: Need to add qualifiers
|
|
ImpCastExprToType(lex, compositeType);
|
|
ImpCastExprToType(rex, compositeType);
|
|
return compositeType;
|
|
}
|
|
}
|
|
// Need to handle "id<xx>" explicitly. Unlike "id", whose canonical type
|
|
// evaluates to "struct objc_object *" (and is handled above when comparing
|
|
// id with statically typed objects).
|
|
if (lexT->isObjCQualifiedIdType() || rexT->isObjCQualifiedIdType()) {
|
|
// GCC allows qualified id and any Objective-C type to devolve to
|
|
// id. Currently localizing to here until clear this should be
|
|
// part of ObjCQualifiedIdTypesAreCompatible.
|
|
if (ObjCQualifiedIdTypesAreCompatible(lexT, rexT, true) ||
|
|
(lexT->isObjCQualifiedIdType() &&
|
|
Context.isObjCObjectPointerType(rexT)) ||
|
|
(rexT->isObjCQualifiedIdType() &&
|
|
Context.isObjCObjectPointerType(lexT))) {
|
|
// FIXME: This is not the correct composite type. This only
|
|
// happens to work because id can more or less be used anywhere,
|
|
// however this may change the type of method sends.
|
|
// FIXME: gcc adds some type-checking of the arguments and emits
|
|
// (confusing) incompatible comparison warnings in some
|
|
// cases. Investigate.
|
|
QualType compositeType = Context.getObjCIdType();
|
|
ImpCastExprToType(lex, compositeType);
|
|
ImpCastExprToType(rex, compositeType);
|
|
return compositeType;
|
|
}
|
|
}
|
|
|
|
// Selection between block pointer types is ok as long as they are the same.
|
|
if (lexT->isBlockPointerType() && rexT->isBlockPointerType() &&
|
|
Context.getCanonicalType(lexT) == Context.getCanonicalType(rexT))
|
|
return lexT;
|
|
|
|
// Otherwise, the operands are not compatible.
|
|
Diag(questionLoc, diag::err_typecheck_cond_incompatible_operands)
|
|
<< lexT << rexT << lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
|
|
/// in the case of a the GNU conditional expr extension.
|
|
Action::ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
|
|
SourceLocation ColonLoc,
|
|
ExprTy *Cond, ExprTy *LHS,
|
|
ExprTy *RHS) {
|
|
Expr *CondExpr = (Expr *) Cond;
|
|
Expr *LHSExpr = (Expr *) LHS, *RHSExpr = (Expr *) RHS;
|
|
|
|
// If this is the gnu "x ?: y" extension, analyze the types as though the LHS
|
|
// was the condition.
|
|
bool isLHSNull = LHSExpr == 0;
|
|
if (isLHSNull)
|
|
LHSExpr = CondExpr;
|
|
|
|
QualType result = CheckConditionalOperands(CondExpr, LHSExpr,
|
|
RHSExpr, QuestionLoc);
|
|
if (result.isNull())
|
|
return true;
|
|
return new ConditionalOperator(CondExpr, isLHSNull ? 0 : LHSExpr,
|
|
RHSExpr, result);
|
|
}
|
|
|
|
|
|
// CheckPointerTypesForAssignment - This is a very tricky routine (despite
|
|
// being closely modeled after the C99 spec:-). The odd characteristic of this
|
|
// routine is it effectively iqnores the qualifiers on the top level pointee.
|
|
// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
|
|
// FIXME: add a couple examples in this comment.
|
|
Sema::AssignConvertType
|
|
Sema::CheckPointerTypesForAssignment(QualType lhsType, QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAsPointerType()->getPointeeType();
|
|
rhptee = rhsType->getAsPointerType()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// C99 6.5.16.1p1: This following citation is common to constraints
|
|
// 3 & 4 (below). ...and the type *pointed to* by the left has all the
|
|
// qualifiers of the type *pointed to* by the right;
|
|
// FIXME: Handle ASQualType
|
|
if (!lhptee.isAtLeastAsQualifiedAs(rhptee))
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
// C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
|
|
// incomplete type and the other is a pointer to a qualified or unqualified
|
|
// version of void...
|
|
if (lhptee->isVoidType()) {
|
|
if (rhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(rhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
if (rhptee->isVoidType()) {
|
|
if (lhptee->isIncompleteOrObjectType())
|
|
return ConvTy;
|
|
|
|
// As an extension, we allow cast to/from void* to function pointer.
|
|
assert(lhptee->isFunctionType());
|
|
return FunctionVoidPointer;
|
|
}
|
|
|
|
// Check for ObjC interfaces
|
|
const ObjCInterfaceType* LHSIface = lhptee->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = rhptee->getAsObjCInterfaceType();
|
|
if (LHSIface && RHSIface &&
|
|
Context.canAssignObjCInterfaces(LHSIface, RHSIface))
|
|
return ConvTy;
|
|
|
|
// ID acts sort of like void* for ObjC interfaces
|
|
if (LHSIface && Context.isObjCIdType(rhptee))
|
|
return ConvTy;
|
|
if (RHSIface && Context.isObjCIdType(lhptee))
|
|
return ConvTy;
|
|
|
|
// C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
|
|
// unqualified versions of compatible types, ...
|
|
if (!Context.typesAreCompatible(lhptee.getUnqualifiedType(),
|
|
rhptee.getUnqualifiedType()))
|
|
return IncompatiblePointer; // this "trumps" PointerAssignDiscardsQualifiers
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckBlockPointerTypesForAssignment - This routine determines whether two
|
|
/// block pointer types are compatible or whether a block and normal pointer
|
|
/// are compatible. It is more restrict than comparing two function pointer
|
|
// types.
|
|
Sema::AssignConvertType
|
|
Sema::CheckBlockPointerTypesForAssignment(QualType lhsType,
|
|
QualType rhsType) {
|
|
QualType lhptee, rhptee;
|
|
|
|
// get the "pointed to" type (ignoring qualifiers at the top level)
|
|
lhptee = lhsType->getAsBlockPointerType()->getPointeeType();
|
|
rhptee = rhsType->getAsBlockPointerType()->getPointeeType();
|
|
|
|
// make sure we operate on the canonical type
|
|
lhptee = Context.getCanonicalType(lhptee);
|
|
rhptee = Context.getCanonicalType(rhptee);
|
|
|
|
AssignConvertType ConvTy = Compatible;
|
|
|
|
// For blocks we enforce that qualifiers are identical.
|
|
if (lhptee.getCVRQualifiers() != rhptee.getCVRQualifiers())
|
|
ConvTy = CompatiblePointerDiscardsQualifiers;
|
|
|
|
if (!Context.typesAreBlockCompatible(lhptee, rhptee))
|
|
return IncompatibleBlockPointer;
|
|
return ConvTy;
|
|
}
|
|
|
|
/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
|
|
/// has code to accommodate several GCC extensions when type checking
|
|
/// pointers. Here are some objectionable examples that GCC considers warnings:
|
|
///
|
|
/// int a, *pint;
|
|
/// short *pshort;
|
|
/// struct foo *pfoo;
|
|
///
|
|
/// pint = pshort; // warning: assignment from incompatible pointer type
|
|
/// a = pint; // warning: assignment makes integer from pointer without a cast
|
|
/// pint = a; // warning: assignment makes pointer from integer without a cast
|
|
/// pint = pfoo; // warning: assignment from incompatible pointer type
|
|
///
|
|
/// As a result, the code for dealing with pointers is more complex than the
|
|
/// C99 spec dictates.
|
|
///
|
|
Sema::AssignConvertType
|
|
Sema::CheckAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
// Get canonical types. We're not formatting these types, just comparing
|
|
// them.
|
|
lhsType = Context.getCanonicalType(lhsType).getUnqualifiedType();
|
|
rhsType = Context.getCanonicalType(rhsType).getUnqualifiedType();
|
|
|
|
if (lhsType == rhsType)
|
|
return Compatible; // Common case: fast path an exact match.
|
|
|
|
// If the left-hand side is a reference type, then we are in a
|
|
// (rare!) case where we've allowed the use of references in C,
|
|
// e.g., as a parameter type in a built-in function. In this case,
|
|
// just make sure that the type referenced is compatible with the
|
|
// right-hand side type. The caller is responsible for adjusting
|
|
// lhsType so that the resulting expression does not have reference
|
|
// type.
|
|
if (const ReferenceType *lhsTypeRef = lhsType->getAsReferenceType()) {
|
|
if (Context.typesAreCompatible(lhsTypeRef->getPointeeType(), rhsType))
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isObjCQualifiedIdType() || rhsType->isObjCQualifiedIdType()) {
|
|
if (ObjCQualifiedIdTypesAreCompatible(lhsType, rhsType, false))
|
|
return Compatible;
|
|
// Relax integer conversions like we do for pointers below.
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
return IncompatibleObjCQualifiedId;
|
|
}
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType()) {
|
|
// For ExtVector, allow vector splats; float -> <n x float>
|
|
if (const ExtVectorType *LV = lhsType->getAsExtVectorType())
|
|
if (LV->getElementType() == rhsType)
|
|
return Compatible;
|
|
|
|
// If we are allowing lax vector conversions, and LHS and RHS are both
|
|
// vectors, the total size only needs to be the same. This is a bitcast;
|
|
// no bits are changed but the result type is different.
|
|
if (getLangOptions().LaxVectorConversions &&
|
|
lhsType->isVectorType() && rhsType->isVectorType()) {
|
|
if (Context.getTypeSize(lhsType) == Context.getTypeSize(rhsType))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (lhsType->isArithmeticType() && rhsType->isArithmeticType())
|
|
return Compatible;
|
|
|
|
if (isa<PointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
if (isa<PointerType>(rhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (rhsType->getAsBlockPointerType()) {
|
|
if (lhsType->getAsPointerType()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 &&
|
|
lhsType == Context.getCanonicalType(Context.getObjCIdType()))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<BlockPointerType>(lhsType)) {
|
|
if (rhsType->isIntegerType())
|
|
return IntToPointer;
|
|
|
|
// Treat block pointers as objects.
|
|
if (getLangOptions().ObjC1 &&
|
|
rhsType == Context.getCanonicalType(Context.getObjCIdType()))
|
|
return Compatible;
|
|
|
|
if (rhsType->isBlockPointerType())
|
|
return CheckBlockPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (const PointerType *RHSPT = rhsType->getAsPointerType()) {
|
|
if (RHSPT->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<PointerType>(rhsType)) {
|
|
// C99 6.5.16.1p1: the left operand is _Bool and the right is a pointer.
|
|
if (lhsType == Context.BoolTy)
|
|
return Compatible;
|
|
|
|
if (lhsType->isIntegerType())
|
|
return PointerToInt;
|
|
|
|
if (isa<PointerType>(lhsType))
|
|
return CheckPointerTypesForAssignment(lhsType, rhsType);
|
|
|
|
if (isa<BlockPointerType>(lhsType) &&
|
|
rhsType->getAsPointerType()->getPointeeType()->isVoidType())
|
|
return Compatible;
|
|
return Incompatible;
|
|
}
|
|
|
|
if (isa<TagType>(lhsType) && isa<TagType>(rhsType)) {
|
|
if (Context.typesAreCompatible(lhsType, rhsType))
|
|
return Compatible;
|
|
}
|
|
return Incompatible;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckSingleAssignmentConstraints(QualType lhsType, Expr *&rExpr) {
|
|
if (getLangOptions().CPlusPlus) {
|
|
if (!lhsType->isRecordType()) {
|
|
// C++ 5.17p3: If the left operand is not of class type, the
|
|
// expression is implicitly converted (C++ 4) to the
|
|
// cv-unqualified type of the left operand.
|
|
if (PerformImplicitConversion(rExpr, lhsType.getUnqualifiedType(),
|
|
"assigning"))
|
|
return Incompatible;
|
|
else
|
|
return Compatible;
|
|
}
|
|
|
|
// FIXME: Currently, we fall through and treat C++ classes like C
|
|
// structures.
|
|
}
|
|
|
|
// C99 6.5.16.1p1: the left operand is a pointer and the right is
|
|
// a null pointer constant.
|
|
if ((lhsType->isPointerType() || lhsType->isObjCQualifiedIdType() ||
|
|
lhsType->isBlockPointerType())
|
|
&& rExpr->isNullPointerConstant(Context)) {
|
|
ImpCastExprToType(rExpr, lhsType);
|
|
return Compatible;
|
|
}
|
|
|
|
// We don't allow conversion of non-null-pointer constants to integers.
|
|
if (lhsType->isBlockPointerType() && rExpr->getType()->isIntegerType())
|
|
return IntToBlockPointer;
|
|
|
|
// This check seems unnatural, however it is necessary to ensure the proper
|
|
// conversion of functions/arrays. If the conversion were done for all
|
|
// DeclExpr's (created by ActOnIdentifierExpr), it would mess up the unary
|
|
// expressions that surpress this implicit conversion (&, sizeof).
|
|
//
|
|
// Suppress this for references: C++ 8.5.3p5.
|
|
if (!lhsType->isReferenceType())
|
|
DefaultFunctionArrayConversion(rExpr);
|
|
|
|
Sema::AssignConvertType result =
|
|
CheckAssignmentConstraints(lhsType, rExpr->getType());
|
|
|
|
// C99 6.5.16.1p2: The value of the right operand is converted to the
|
|
// type of the assignment expression.
|
|
// CheckAssignmentConstraints allows the left-hand side to be a reference,
|
|
// so that we can use references in built-in functions even in C.
|
|
// The getNonReferenceType() call makes sure that the resulting expression
|
|
// does not have reference type.
|
|
if (rExpr->getType() != lhsType)
|
|
ImpCastExprToType(rExpr, lhsType.getNonReferenceType());
|
|
return result;
|
|
}
|
|
|
|
Sema::AssignConvertType
|
|
Sema::CheckCompoundAssignmentConstraints(QualType lhsType, QualType rhsType) {
|
|
return CheckAssignmentConstraints(lhsType, rhsType);
|
|
}
|
|
|
|
QualType Sema::InvalidOperands(SourceLocation Loc, Expr *&lex, Expr *&rex) {
|
|
Diag(Loc, diag::err_typecheck_invalid_operands)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckVectorOperands(SourceLocation Loc, Expr *&lex,
|
|
Expr *&rex) {
|
|
// For conversion purposes, we ignore any qualifiers.
|
|
// For example, "const float" and "float" are equivalent.
|
|
QualType lhsType =
|
|
Context.getCanonicalType(lex->getType()).getUnqualifiedType();
|
|
QualType rhsType =
|
|
Context.getCanonicalType(rex->getType()).getUnqualifiedType();
|
|
|
|
// If the vector types are identical, return.
|
|
if (lhsType == rhsType)
|
|
return lhsType;
|
|
|
|
// Handle the case of a vector & extvector type of the same size and element
|
|
// type. It would be nice if we only had one vector type someday.
|
|
if (getLangOptions().LaxVectorConversions)
|
|
if (const VectorType *LV = lhsType->getAsVectorType())
|
|
if (const VectorType *RV = rhsType->getAsVectorType())
|
|
if (LV->getElementType() == RV->getElementType() &&
|
|
LV->getNumElements() == RV->getNumElements())
|
|
return lhsType->isExtVectorType() ? lhsType : rhsType;
|
|
|
|
// If the lhs is an extended vector and the rhs is a scalar of the same type
|
|
// or a literal, promote the rhs to the vector type.
|
|
if (const ExtVectorType *V = lhsType->getAsExtVectorType()) {
|
|
QualType eltType = V->getElementType();
|
|
|
|
if ((eltType->getAsBuiltinType() == rhsType->getAsBuiltinType()) ||
|
|
(eltType->isIntegerType() && isa<IntegerLiteral>(rex)) ||
|
|
(eltType->isFloatingType() && isa<FloatingLiteral>(rex))) {
|
|
ImpCastExprToType(rex, lhsType);
|
|
return lhsType;
|
|
}
|
|
}
|
|
|
|
// If the rhs is an extended vector and the lhs is a scalar of the same type,
|
|
// promote the lhs to the vector type.
|
|
if (const ExtVectorType *V = rhsType->getAsExtVectorType()) {
|
|
QualType eltType = V->getElementType();
|
|
|
|
if ((eltType->getAsBuiltinType() == lhsType->getAsBuiltinType()) ||
|
|
(eltType->isIntegerType() && isa<IntegerLiteral>(lex)) ||
|
|
(eltType->isFloatingType() && isa<FloatingLiteral>(lex))) {
|
|
ImpCastExprToType(lex, rhsType);
|
|
return rhsType;
|
|
}
|
|
}
|
|
|
|
// You cannot convert between vector values of different size.
|
|
Diag(Loc, diag::err_typecheck_vector_not_convertable)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
inline QualType Sema::CheckMultiplyDivideOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
QualType lhsType = lex->getType(), rhsType = rex->getType();
|
|
|
|
if (lhsType->isVectorType() || rhsType->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckRemainderOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
QualType lhsType = lex->getType(), rhsType = rex->getType();
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckAdditionOperands( // C99 6.5.6
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
// handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
|
|
// Put any potential pointer into PExp
|
|
Expr* PExp = lex, *IExp = rex;
|
|
if (IExp->getType()->isPointerType())
|
|
std::swap(PExp, IExp);
|
|
|
|
if (const PointerType* PTy = PExp->getType()->getAsPointerType()) {
|
|
if (IExp->getType()->isIntegerType()) {
|
|
// Check for arithmetic on pointers to incomplete types
|
|
if (!PTy->getPointeeType()->isObjectType()) {
|
|
if (PTy->getPointeeType()->isVoidType()) {
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else {
|
|
Diag(Loc, diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
return PExp->getType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.6
|
|
QualType Sema::CheckSubtractionOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc, bool isCompAssign) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
// Enforce type constraints: C99 6.5.6p3.
|
|
|
|
// Handle the common case first (both operands are arithmetic).
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
return compType;
|
|
|
|
// Either ptr - int or ptr - ptr.
|
|
if (const PointerType *LHSPTy = lex->getType()->getAsPointerType()) {
|
|
QualType lpointee = LHSPTy->getPointeeType();
|
|
|
|
// The LHS must be an object type, not incomplete, function, etc.
|
|
if (!lpointee->isObjectType()) {
|
|
// Handle the GNU void* extension.
|
|
if (lpointee->isVoidType()) {
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_object)
|
|
<< lex->getType() << lex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// The result type of a pointer-int computation is the pointer type.
|
|
if (rex->getType()->isIntegerType())
|
|
return lex->getType();
|
|
|
|
// Handle pointer-pointer subtractions.
|
|
if (const PointerType *RHSPTy = rex->getType()->getAsPointerType()) {
|
|
QualType rpointee = RHSPTy->getPointeeType();
|
|
|
|
// RHS must be an object type, unless void (GNU).
|
|
if (!rpointee->isObjectType()) {
|
|
// Handle the GNU void* extension.
|
|
if (rpointee->isVoidType()) {
|
|
if (!lpointee->isVoidType())
|
|
Diag(Loc, diag::ext_gnu_void_ptr)
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
} else {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_object)
|
|
<< rex->getType() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
|
|
// Pointee types must be compatible.
|
|
if (!Context.typesAreCompatible(
|
|
Context.getCanonicalType(lpointee).getUnqualifiedType(),
|
|
Context.getCanonicalType(rpointee).getUnqualifiedType())) {
|
|
Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
|
|
<< lex->getType() << rex->getType()
|
|
<< lex->getSourceRange() << rex->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
return Context.getPointerDiffType();
|
|
}
|
|
}
|
|
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
// C99 6.5.7
|
|
QualType Sema::CheckShiftOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
bool isCompAssign) {
|
|
// C99 6.5.7p2: Each of the operands shall have integer type.
|
|
if (!lex->getType()->isIntegerType() || !rex->getType()->isIntegerType())
|
|
return InvalidOperands(Loc, lex, rex);
|
|
|
|
// Shifts don't perform usual arithmetic conversions, they just do integer
|
|
// promotions on each operand. C99 6.5.7p3
|
|
if (!isCompAssign)
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
// "The type of the result is that of the promoted left operand."
|
|
return lex->getType();
|
|
}
|
|
|
|
static bool areComparableObjCInterfaces(QualType LHS, QualType RHS,
|
|
ASTContext& Context) {
|
|
const ObjCInterfaceType* LHSIface = LHS->getAsObjCInterfaceType();
|
|
const ObjCInterfaceType* RHSIface = RHS->getAsObjCInterfaceType();
|
|
// ID acts sort of like void* for ObjC interfaces
|
|
if (LHSIface && Context.isObjCIdType(RHS))
|
|
return true;
|
|
if (RHSIface && Context.isObjCIdType(LHS))
|
|
return true;
|
|
if (!LHSIface || !RHSIface)
|
|
return false;
|
|
return Context.canAssignObjCInterfaces(LHSIface, RHSIface) ||
|
|
Context.canAssignObjCInterfaces(RHSIface, LHSIface);
|
|
}
|
|
|
|
// C99 6.5.8
|
|
QualType Sema::CheckCompareOperands(Expr *&lex, Expr *&rex, SourceLocation Loc,
|
|
bool isRelational) {
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorCompareOperands(lex, rex, Loc, isRelational);
|
|
|
|
// C99 6.5.8p3 / C99 6.5.9p4
|
|
if (lex->getType()->isArithmeticType() && rex->getType()->isArithmeticType())
|
|
UsualArithmeticConversions(lex, rex);
|
|
else {
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
}
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->isFloatingType()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
}
|
|
|
|
// The result of comparisons is 'bool' in C++, 'int' in C.
|
|
QualType ResultTy = getLangOptions().CPlusPlus? Context.BoolTy : Context.IntTy;
|
|
|
|
if (isRelational) {
|
|
if (lType->isRealType() && rType->isRealType())
|
|
return ResultTy;
|
|
} else {
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (lType->isFloatingType()) {
|
|
assert (rType->isFloatingType());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
if (lType->isArithmeticType() && rType->isArithmeticType())
|
|
return ResultTy;
|
|
}
|
|
|
|
bool LHSIsNull = lex->isNullPointerConstant(Context);
|
|
bool RHSIsNull = rex->isNullPointerConstant(Context);
|
|
|
|
// All of the following pointer related warnings are GCC extensions, except
|
|
// when handling null pointer constants. One day, we can consider making them
|
|
// errors (when -pedantic-errors is enabled).
|
|
if (lType->isPointerType() && rType->isPointerType()) { // C99 6.5.8p2
|
|
QualType LCanPointeeTy =
|
|
Context.getCanonicalType(lType->getAsPointerType()->getPointeeType());
|
|
QualType RCanPointeeTy =
|
|
Context.getCanonicalType(rType->getAsPointerType()->getPointeeType());
|
|
|
|
if (!LHSIsNull && !RHSIsNull && // C99 6.5.9p2
|
|
!LCanPointeeTy->isVoidType() && !RCanPointeeTy->isVoidType() &&
|
|
!Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
|
|
RCanPointeeTy.getUnqualifiedType()) &&
|
|
!areComparableObjCInterfaces(LCanPointeeTy, RCanPointeeTy, Context)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
// Handle block pointer types.
|
|
if (lType->isBlockPointerType() && rType->isBlockPointerType()) {
|
|
QualType lpointee = lType->getAsBlockPointerType()->getPointeeType();
|
|
QualType rpointee = rType->getAsBlockPointerType()->getPointeeType();
|
|
|
|
if (!LHSIsNull && !RHSIsNull &&
|
|
!Context.typesAreBlockCompatible(lpointee, rpointee)) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
// Allow block pointers to be compared with null pointer constants.
|
|
if ((lType->isBlockPointerType() && rType->isPointerType()) ||
|
|
(lType->isPointerType() && rType->isBlockPointerType())) {
|
|
if (!LHSIsNull && !RHSIsNull) {
|
|
Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
}
|
|
ImpCastExprToType(rex, lType); // promote the pointer to pointer
|
|
return ResultTy;
|
|
}
|
|
|
|
if ((lType->isObjCQualifiedIdType() || rType->isObjCQualifiedIdType())) {
|
|
if (lType->isPointerType() || rType->isPointerType()) {
|
|
const PointerType *LPT = lType->getAsPointerType();
|
|
const PointerType *RPT = rType->getAsPointerType();
|
|
bool LPtrToVoid = LPT ?
|
|
Context.getCanonicalType(LPT->getPointeeType())->isVoidType() : false;
|
|
bool RPtrToVoid = RPT ?
|
|
Context.getCanonicalType(RPT->getPointeeType())->isVoidType() : false;
|
|
|
|
if (!LPtrToVoid && !RPtrToVoid &&
|
|
!Context.typesAreCompatible(lType, rType)) {
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
if (ObjCQualifiedIdTypesAreCompatible(lType, rType, true)) {
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
} else {
|
|
if ((lType->isObjCQualifiedIdType() && rType->isObjCQualifiedIdType())) {
|
|
Diag(Loc, diag::warn_incompatible_qualified_id_operands)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType);
|
|
return ResultTy;
|
|
}
|
|
}
|
|
}
|
|
if ((lType->isPointerType() || lType->isObjCQualifiedIdType()) &&
|
|
rType->isIntegerType()) {
|
|
if (!RHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
if (lType->isIntegerType() &&
|
|
(rType->isPointerType() || rType->isObjCQualifiedIdType())) {
|
|
if (!LHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(lex, rType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
// Handle block pointers.
|
|
if (lType->isBlockPointerType() && rType->isIntegerType()) {
|
|
if (!RHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(rex, lType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
if (lType->isIntegerType() && rType->isBlockPointerType()) {
|
|
if (!LHSIsNull)
|
|
Diag(Loc, diag::ext_typecheck_comparison_of_pointer_integer)
|
|
<< lType << rType << lex->getSourceRange() << rex->getSourceRange();
|
|
ImpCastExprToType(lex, rType); // promote the integer to pointer
|
|
return ResultTy;
|
|
}
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// CheckVectorCompareOperands - vector comparisons are a clang extension that
|
|
/// operates on extended vector types. Instead of producing an IntTy result,
|
|
/// like a scalar comparison, a vector comparison produces a vector of integer
|
|
/// types.
|
|
QualType Sema::CheckVectorCompareOperands(Expr *&lex, Expr *&rex,
|
|
SourceLocation Loc,
|
|
bool isRelational) {
|
|
// Check to make sure we're operating on vectors of the same type and width,
|
|
// Allowing one side to be a scalar of element type.
|
|
QualType vType = CheckVectorOperands(Loc, lex, rex);
|
|
if (vType.isNull())
|
|
return vType;
|
|
|
|
QualType lType = lex->getType();
|
|
QualType rType = rex->getType();
|
|
|
|
// For non-floating point types, check for self-comparisons of the form
|
|
// x == x, x != x, x < x, etc. These always evaluate to a constant, and
|
|
// often indicate logic errors in the program.
|
|
if (!lType->isFloatingType()) {
|
|
if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(lex->IgnoreParens()))
|
|
if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(rex->IgnoreParens()))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
Diag(Loc, diag::warn_selfcomparison);
|
|
}
|
|
|
|
// Check for comparisons of floating point operands using != and ==.
|
|
if (!isRelational && lType->isFloatingType()) {
|
|
assert (rType->isFloatingType());
|
|
CheckFloatComparison(Loc,lex,rex);
|
|
}
|
|
|
|
// Return the type for the comparison, which is the same as vector type for
|
|
// integer vectors, or an integer type of identical size and number of
|
|
// elements for floating point vectors.
|
|
if (lType->isIntegerType())
|
|
return lType;
|
|
|
|
const VectorType *VTy = lType->getAsVectorType();
|
|
|
|
// FIXME: need to deal with non-32b int / non-64b long long
|
|
unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
|
|
if (TypeSize == 32) {
|
|
return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
|
|
}
|
|
assert(TypeSize == 64 && "Unhandled vector element size in vector compare");
|
|
return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
|
|
}
|
|
|
|
inline QualType Sema::CheckBitwiseOperands(
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc, bool isCompAssign)
|
|
{
|
|
if (lex->getType()->isVectorType() || rex->getType()->isVectorType())
|
|
return CheckVectorOperands(Loc, lex, rex);
|
|
|
|
QualType compType = UsualArithmeticConversions(lex, rex, isCompAssign);
|
|
|
|
if (lex->getType()->isIntegerType() && rex->getType()->isIntegerType())
|
|
return compType;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
|
|
Expr *&lex, Expr *&rex, SourceLocation Loc)
|
|
{
|
|
UsualUnaryConversions(lex);
|
|
UsualUnaryConversions(rex);
|
|
|
|
if (lex->getType()->isScalarType() && rex->getType()->isScalarType())
|
|
return Context.IntTy;
|
|
return InvalidOperands(Loc, lex, rex);
|
|
}
|
|
|
|
/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
|
|
/// emit an error and return true. If so, return false.
|
|
static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
|
|
Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context);
|
|
if (IsLV == Expr::MLV_Valid)
|
|
return false;
|
|
|
|
unsigned Diag = 0;
|
|
bool NeedType = false;
|
|
switch (IsLV) { // C99 6.5.16p2
|
|
default: assert(0 && "Unknown result from isModifiableLvalue!");
|
|
case Expr::MLV_ConstQualified: Diag = diag::err_typecheck_assign_const; break;
|
|
case Expr::MLV_ArrayType:
|
|
Diag = diag::err_typecheck_array_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_NotObjectType:
|
|
Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_LValueCast:
|
|
Diag = diag::err_typecheck_lvalue_casts_not_supported;
|
|
break;
|
|
case Expr::MLV_InvalidExpression:
|
|
Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_IncompleteType:
|
|
case Expr::MLV_IncompleteVoidType:
|
|
Diag = diag::err_typecheck_incomplete_type_not_modifiable_lvalue;
|
|
NeedType = true;
|
|
break;
|
|
case Expr::MLV_DuplicateVectorComponents:
|
|
Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
|
|
break;
|
|
case Expr::MLV_NotBlockQualified:
|
|
Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
|
|
break;
|
|
case Expr::MLV_ReadonlyProperty:
|
|
Diag = diag::error_readonly_property_assignment;
|
|
break;
|
|
case Expr::MLV_NoSetterProperty:
|
|
Diag = diag::error_nosetter_property_assignment;
|
|
break;
|
|
}
|
|
|
|
if (NeedType)
|
|
S.Diag(Loc, Diag) << E->getType() << E->getSourceRange();
|
|
else
|
|
S.Diag(Loc, Diag) << E->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
// C99 6.5.16.1
|
|
QualType Sema::CheckAssignmentOperands(Expr *LHS, Expr *&RHS,
|
|
SourceLocation Loc,
|
|
QualType CompoundType) {
|
|
// Verify that LHS is a modifiable lvalue, and emit error if not.
|
|
if (CheckForModifiableLvalue(LHS, Loc, *this))
|
|
return QualType();
|
|
|
|
QualType LHSType = LHS->getType();
|
|
QualType RHSType = CompoundType.isNull() ? RHS->getType() : CompoundType;
|
|
|
|
AssignConvertType ConvTy;
|
|
if (CompoundType.isNull()) {
|
|
// Simple assignment "x = y".
|
|
ConvTy = CheckSingleAssignmentConstraints(LHSType, RHS);
|
|
|
|
// If the RHS is a unary plus or minus, check to see if they = and + are
|
|
// right next to each other. If so, the user may have typo'd "x =+ 4"
|
|
// instead of "x += 4".
|
|
Expr *RHSCheck = RHS;
|
|
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
|
|
RHSCheck = ICE->getSubExpr();
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
|
|
if ((UO->getOpcode() == UnaryOperator::Plus ||
|
|
UO->getOpcode() == UnaryOperator::Minus) &&
|
|
Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
|
|
// Only if the two operators are exactly adjacent.
|
|
Loc.getFileLocWithOffset(1) == UO->getOperatorLoc())
|
|
Diag(Loc, diag::warn_not_compound_assign)
|
|
<< (UO->getOpcode() == UnaryOperator::Plus ? "+" : "-")
|
|
<< SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
|
|
}
|
|
} else {
|
|
// Compound assignment "x += y"
|
|
ConvTy = CheckCompoundAssignmentConstraints(LHSType, RHSType);
|
|
}
|
|
|
|
if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
|
|
RHS, "assigning"))
|
|
return QualType();
|
|
|
|
// C99 6.5.16p3: The type of an assignment expression is the type of the
|
|
// left operand unless the left operand has qualified type, in which case
|
|
// it is the unqualified version of the type of the left operand.
|
|
// C99 6.5.16.1p2: In simple assignment, the value of the right operand
|
|
// is converted to the type of the assignment expression (above).
|
|
// C++ 5.17p1: the type of the assignment expression is that of its left
|
|
// oprdu.
|
|
return LHSType.getUnqualifiedType();
|
|
}
|
|
|
|
// C99 6.5.17
|
|
QualType Sema::CheckCommaOperands(Expr *LHS, Expr *&RHS, SourceLocation Loc) {
|
|
// FIXME: what is required for LHS?
|
|
|
|
// Comma performs lvalue conversion (C99 6.3.2.1), but not unary conversions.
|
|
DefaultFunctionArrayConversion(RHS);
|
|
return RHS->getType();
|
|
}
|
|
|
|
/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
|
|
/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
|
|
QualType Sema::CheckIncrementDecrementOperand(Expr *Op, SourceLocation OpLoc,
|
|
bool isInc) {
|
|
QualType ResType = Op->getType();
|
|
assert(!ResType.isNull() && "no type for increment/decrement expression");
|
|
|
|
if (getLangOptions().CPlusPlus && ResType->isBooleanType()) {
|
|
// Decrement of bool is not allowed.
|
|
if (!isInc) {
|
|
Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// Increment of bool sets it to true, but is deprecated.
|
|
Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
|
|
} else if (ResType->isRealType()) {
|
|
// OK!
|
|
} else if (const PointerType *PT = ResType->getAsPointerType()) {
|
|
// C99 6.5.2.4p2, 6.5.6p2
|
|
if (PT->getPointeeType()->isObjectType()) {
|
|
// Pointer to object is ok!
|
|
} else if (PT->getPointeeType()->isVoidType()) {
|
|
// Pointer to void is extension.
|
|
Diag(OpLoc, diag::ext_gnu_void_ptr) << Op->getSourceRange();
|
|
} else {
|
|
Diag(OpLoc, diag::err_typecheck_arithmetic_incomplete_type)
|
|
<< ResType << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (ResType->isComplexType()) {
|
|
// C99 does not support ++/-- on complex types, we allow as an extension.
|
|
Diag(OpLoc, diag::ext_integer_increment_complex)
|
|
<< ResType << Op->getSourceRange();
|
|
} else {
|
|
Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
|
|
<< ResType << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
// At this point, we know we have a real, complex or pointer type.
|
|
// Now make sure the operand is a modifiable lvalue.
|
|
if (CheckForModifiableLvalue(Op, OpLoc, *this))
|
|
return QualType();
|
|
return ResType;
|
|
}
|
|
|
|
/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
|
|
/// This routine allows us to typecheck complex/recursive expressions
|
|
/// where the declaration is needed for type checking. We only need to
|
|
/// handle cases when the expression references a function designator
|
|
/// or is an lvalue. Here are some examples:
|
|
/// - &(x) => x
|
|
/// - &*****f => f for f a function designator.
|
|
/// - &s.xx => s
|
|
/// - &s.zz[1].yy -> s, if zz is an array
|
|
/// - *(x + 1) -> x, if x is an array
|
|
/// - &"123"[2] -> 0
|
|
/// - & __real__ x -> x
|
|
static NamedDecl *getPrimaryDecl(Expr *E) {
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return cast<DeclRefExpr>(E)->getDecl();
|
|
case Stmt::MemberExprClass:
|
|
// Fields cannot be declared with a 'register' storage class.
|
|
// &X->f is always ok, even if X is declared register.
|
|
if (cast<MemberExpr>(E)->isArrow())
|
|
return 0;
|
|
return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
// &X[4] and &4[X] refers to X if X is not a pointer.
|
|
|
|
NamedDecl *D = getPrimaryDecl(cast<ArraySubscriptExpr>(E)->getBase());
|
|
ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D);
|
|
if (!VD || VD->getType()->isPointerType())
|
|
return 0;
|
|
else
|
|
return VD;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
UnaryOperator *UO = cast<UnaryOperator>(E);
|
|
|
|
switch(UO->getOpcode()) {
|
|
case UnaryOperator::Deref: {
|
|
// *(X + 1) refers to X if X is not a pointer.
|
|
if (NamedDecl *D = getPrimaryDecl(UO->getSubExpr())) {
|
|
ValueDecl *VD = dyn_cast<ValueDecl>(D);
|
|
if (!VD || VD->getType()->isPointerType())
|
|
return 0;
|
|
return VD;
|
|
}
|
|
return 0;
|
|
}
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
case UnaryOperator::Extension:
|
|
return getPrimaryDecl(UO->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
case Stmt::BinaryOperatorClass: {
|
|
BinaryOperator *BO = cast<BinaryOperator>(E);
|
|
|
|
// Handle cases involving pointer arithmetic. The result of an
|
|
// Assign or AddAssign is not an lvalue so they can be ignored.
|
|
|
|
// (x + n) or (n + x) => x
|
|
if (BO->getOpcode() == BinaryOperator::Add) {
|
|
if (BO->getLHS()->getType()->isPointerType()) {
|
|
return getPrimaryDecl(BO->getLHS());
|
|
} else if (BO->getRHS()->getType()->isPointerType()) {
|
|
return getPrimaryDecl(BO->getRHS());
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
case Stmt::ParenExprClass:
|
|
return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
|
|
case Stmt::ImplicitCastExprClass:
|
|
// &X[4] when X is an array, has an implicit cast from array to pointer.
|
|
return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/// CheckAddressOfOperand - The operand of & must be either a function
|
|
/// designator or an lvalue designating an object. If it is an lvalue, the
|
|
/// object cannot be declared with storage class register or be a bit field.
|
|
/// Note: The usual conversions are *not* applied to the operand of the &
|
|
/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
|
|
/// In C++, the operand might be an overloaded function name, in which case
|
|
/// we allow the '&' but retain the overloaded-function type.
|
|
QualType Sema::CheckAddressOfOperand(Expr *op, SourceLocation OpLoc) {
|
|
if (op->isTypeDependent())
|
|
return Context.DependentTy;
|
|
|
|
if (getLangOptions().C99) {
|
|
// Implement C99-only parts of addressof rules.
|
|
if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
|
|
if (uOp->getOpcode() == UnaryOperator::Deref)
|
|
// Per C99 6.5.3.2, the address of a deref always returns a valid result
|
|
// (assuming the deref expression is valid).
|
|
return uOp->getSubExpr()->getType();
|
|
}
|
|
// Technically, there should be a check for array subscript
|
|
// expressions here, but the result of one is always an lvalue anyway.
|
|
}
|
|
NamedDecl *dcl = getPrimaryDecl(op);
|
|
Expr::isLvalueResult lval = op->isLvalue(Context);
|
|
|
|
if (lval != Expr::LV_Valid) { // C99 6.5.3.2p1
|
|
if (!dcl || !isa<FunctionDecl>(dcl)) {// allow function designators
|
|
// FIXME: emit more specific diag...
|
|
Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
|
|
<< op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (MemberExpr *MemExpr = dyn_cast<MemberExpr>(op)) { // C99 6.5.3.2p1
|
|
if (FieldDecl *Field = dyn_cast<FieldDecl>(MemExpr->getMemberDecl())) {
|
|
if (Field->isBitField()) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "bit-field" << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
}
|
|
// Check for Apple extension for accessing vector components.
|
|
} else if (isa<ArraySubscriptExpr>(op) &&
|
|
cast<ArraySubscriptExpr>(op)->getBase()->getType()->isVectorType()) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "vector" << op->getSourceRange();
|
|
return QualType();
|
|
} else if (dcl) { // C99 6.5.3.2p1
|
|
// We have an lvalue with a decl. Make sure the decl is not declared
|
|
// with the register storage-class specifier.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
|
|
if (vd->getStorageClass() == VarDecl::Register) {
|
|
Diag(OpLoc, diag::err_typecheck_address_of)
|
|
<< "register variable" << op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
} else if (isa<OverloadedFunctionDecl>(dcl)) {
|
|
return Context.OverloadTy;
|
|
} else if (isa<FieldDecl>(dcl)) {
|
|
// Okay: we can take the address of a field.
|
|
} else if (isa<FunctionDecl>(dcl)) {
|
|
// Okay: we can take the address of a function.
|
|
}
|
|
else
|
|
assert(0 && "Unknown/unexpected decl type");
|
|
}
|
|
|
|
// If the operand has type "type", the result has type "pointer to type".
|
|
return Context.getPointerType(op->getType());
|
|
}
|
|
|
|
QualType Sema::CheckIndirectionOperand(Expr *Op, SourceLocation OpLoc) {
|
|
UsualUnaryConversions(Op);
|
|
QualType Ty = Op->getType();
|
|
|
|
// Note that per both C89 and C99, this is always legal, even if ptype is an
|
|
// incomplete type or void. It would be possible to warn about dereferencing
|
|
// a void pointer, but it's completely well-defined, and such a warning is
|
|
// unlikely to catch any mistakes.
|
|
if (const PointerType *PT = Ty->getAsPointerType())
|
|
return PT->getPointeeType();
|
|
|
|
Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
|
|
<< Ty << Op->getSourceRange();
|
|
return QualType();
|
|
}
|
|
|
|
static inline BinaryOperator::Opcode ConvertTokenKindToBinaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
BinaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown binop!");
|
|
case tok::star: Opc = BinaryOperator::Mul; break;
|
|
case tok::slash: Opc = BinaryOperator::Div; break;
|
|
case tok::percent: Opc = BinaryOperator::Rem; break;
|
|
case tok::plus: Opc = BinaryOperator::Add; break;
|
|
case tok::minus: Opc = BinaryOperator::Sub; break;
|
|
case tok::lessless: Opc = BinaryOperator::Shl; break;
|
|
case tok::greatergreater: Opc = BinaryOperator::Shr; break;
|
|
case tok::lessequal: Opc = BinaryOperator::LE; break;
|
|
case tok::less: Opc = BinaryOperator::LT; break;
|
|
case tok::greaterequal: Opc = BinaryOperator::GE; break;
|
|
case tok::greater: Opc = BinaryOperator::GT; break;
|
|
case tok::exclaimequal: Opc = BinaryOperator::NE; break;
|
|
case tok::equalequal: Opc = BinaryOperator::EQ; break;
|
|
case tok::amp: Opc = BinaryOperator::And; break;
|
|
case tok::caret: Opc = BinaryOperator::Xor; break;
|
|
case tok::pipe: Opc = BinaryOperator::Or; break;
|
|
case tok::ampamp: Opc = BinaryOperator::LAnd; break;
|
|
case tok::pipepipe: Opc = BinaryOperator::LOr; break;
|
|
case tok::equal: Opc = BinaryOperator::Assign; break;
|
|
case tok::starequal: Opc = BinaryOperator::MulAssign; break;
|
|
case tok::slashequal: Opc = BinaryOperator::DivAssign; break;
|
|
case tok::percentequal: Opc = BinaryOperator::RemAssign; break;
|
|
case tok::plusequal: Opc = BinaryOperator::AddAssign; break;
|
|
case tok::minusequal: Opc = BinaryOperator::SubAssign; break;
|
|
case tok::lesslessequal: Opc = BinaryOperator::ShlAssign; break;
|
|
case tok::greatergreaterequal: Opc = BinaryOperator::ShrAssign; break;
|
|
case tok::ampequal: Opc = BinaryOperator::AndAssign; break;
|
|
case tok::caretequal: Opc = BinaryOperator::XorAssign; break;
|
|
case tok::pipeequal: Opc = BinaryOperator::OrAssign; break;
|
|
case tok::comma: Opc = BinaryOperator::Comma; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
static inline UnaryOperator::Opcode ConvertTokenKindToUnaryOpcode(
|
|
tok::TokenKind Kind) {
|
|
UnaryOperator::Opcode Opc;
|
|
switch (Kind) {
|
|
default: assert(0 && "Unknown unary op!");
|
|
case tok::plusplus: Opc = UnaryOperator::PreInc; break;
|
|
case tok::minusminus: Opc = UnaryOperator::PreDec; break;
|
|
case tok::amp: Opc = UnaryOperator::AddrOf; break;
|
|
case tok::star: Opc = UnaryOperator::Deref; break;
|
|
case tok::plus: Opc = UnaryOperator::Plus; break;
|
|
case tok::minus: Opc = UnaryOperator::Minus; break;
|
|
case tok::tilde: Opc = UnaryOperator::Not; break;
|
|
case tok::exclaim: Opc = UnaryOperator::LNot; break;
|
|
case tok::kw___real: Opc = UnaryOperator::Real; break;
|
|
case tok::kw___imag: Opc = UnaryOperator::Imag; break;
|
|
case tok::kw___extension__: Opc = UnaryOperator::Extension; break;
|
|
}
|
|
return Opc;
|
|
}
|
|
|
|
/// CreateBuiltinBinOp - Creates a new built-in binary operation with
|
|
/// operator @p Opc at location @c TokLoc. This routine only supports
|
|
/// built-in operations; ActOnBinOp handles overloaded operators.
|
|
Action::ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
|
|
unsigned Op,
|
|
Expr *lhs, Expr *rhs) {
|
|
QualType ResultTy; // Result type of the binary operator.
|
|
QualType CompTy; // Computation type for compound assignments (e.g. '+=')
|
|
BinaryOperator::Opcode Opc = (BinaryOperator::Opcode)Op;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
assert(0 && "Unknown binary expr!");
|
|
case BinaryOperator::Assign:
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, QualType());
|
|
break;
|
|
case BinaryOperator::Mul:
|
|
case BinaryOperator::Div:
|
|
ResultTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Rem:
|
|
ResultTy = CheckRemainderOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Add:
|
|
ResultTy = CheckAdditionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Sub:
|
|
ResultTy = CheckSubtractionOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::Shl:
|
|
case BinaryOperator::Shr:
|
|
ResultTy = CheckShiftOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LE:
|
|
case BinaryOperator::LT:
|
|
case BinaryOperator::GE:
|
|
case BinaryOperator::GT:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, true);
|
|
break;
|
|
case BinaryOperator::EQ:
|
|
case BinaryOperator::NE:
|
|
ResultTy = CheckCompareOperands(lhs, rhs, OpLoc, false);
|
|
break;
|
|
case BinaryOperator::And:
|
|
case BinaryOperator::Xor:
|
|
case BinaryOperator::Or:
|
|
ResultTy = CheckBitwiseOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::LAnd:
|
|
case BinaryOperator::LOr:
|
|
ResultTy = CheckLogicalOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
case BinaryOperator::MulAssign:
|
|
case BinaryOperator::DivAssign:
|
|
CompTy = CheckMultiplyDivideOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::RemAssign:
|
|
CompTy = CheckRemainderOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::AddAssign:
|
|
CompTy = CheckAdditionOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::SubAssign:
|
|
CompTy = CheckSubtractionOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::ShlAssign:
|
|
case BinaryOperator::ShrAssign:
|
|
CompTy = CheckShiftOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::AndAssign:
|
|
case BinaryOperator::XorAssign:
|
|
case BinaryOperator::OrAssign:
|
|
CompTy = CheckBitwiseOperands(lhs, rhs, OpLoc, true);
|
|
if (!CompTy.isNull())
|
|
ResultTy = CheckAssignmentOperands(lhs, rhs, OpLoc, CompTy);
|
|
break;
|
|
case BinaryOperator::Comma:
|
|
ResultTy = CheckCommaOperands(lhs, rhs, OpLoc);
|
|
break;
|
|
}
|
|
if (ResultTy.isNull())
|
|
return true;
|
|
if (CompTy.isNull())
|
|
return new BinaryOperator(lhs, rhs, Opc, ResultTy, OpLoc);
|
|
else
|
|
return new CompoundAssignOperator(lhs, rhs, Opc, ResultTy, CompTy, OpLoc);
|
|
}
|
|
|
|
// Binary Operators. 'Tok' is the token for the operator.
|
|
Action::ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
|
|
tok::TokenKind Kind,
|
|
ExprTy *LHS, ExprTy *RHS) {
|
|
BinaryOperator::Opcode Opc = ConvertTokenKindToBinaryOpcode(Kind);
|
|
Expr *lhs = (Expr *)LHS, *rhs = (Expr*)RHS;
|
|
|
|
assert((lhs != 0) && "ActOnBinOp(): missing left expression");
|
|
assert((rhs != 0) && "ActOnBinOp(): missing right expression");
|
|
|
|
// If either expression is type-dependent, just build the AST.
|
|
// FIXME: We'll need to perform some caching of the result of name
|
|
// lookup for operator+.
|
|
if (lhs->isTypeDependent() || rhs->isTypeDependent()) {
|
|
if (Opc > BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign)
|
|
return new CompoundAssignOperator(lhs, rhs, Opc, Context.DependentTy,
|
|
Context.DependentTy, TokLoc);
|
|
else
|
|
return new BinaryOperator(lhs, rhs, Opc, Context.DependentTy, TokLoc);
|
|
}
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType() ||
|
|
rhs->getType()->isRecordType() || rhs->getType()->isEnumeralType())) {
|
|
// If this is one of the assignment operators, we only perform
|
|
// overload resolution if the left-hand side is a class or
|
|
// enumeration type (C++ [expr.ass]p3).
|
|
if (Opc >= BinaryOperator::Assign && Opc <= BinaryOperator::OrAssign &&
|
|
!(lhs->getType()->isRecordType() || lhs->getType()->isEnumeralType())) {
|
|
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
// Determine which overloaded operator we're dealing with.
|
|
static const OverloadedOperatorKind OverOps[] = {
|
|
OO_Star, OO_Slash, OO_Percent,
|
|
OO_Plus, OO_Minus,
|
|
OO_LessLess, OO_GreaterGreater,
|
|
OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
|
|
OO_EqualEqual, OO_ExclaimEqual,
|
|
OO_Amp,
|
|
OO_Caret,
|
|
OO_Pipe,
|
|
OO_AmpAmp,
|
|
OO_PipePipe,
|
|
OO_Equal, OO_StarEqual,
|
|
OO_SlashEqual, OO_PercentEqual,
|
|
OO_PlusEqual, OO_MinusEqual,
|
|
OO_LessLessEqual, OO_GreaterGreaterEqual,
|
|
OO_AmpEqual, OO_CaretEqual,
|
|
OO_PipeEqual,
|
|
OO_Comma
|
|
};
|
|
OverloadedOperatorKind OverOp = OverOps[Opc];
|
|
|
|
// Add the appropriate overloaded operators (C++ [over.match.oper])
|
|
// to the candidate set.
|
|
OverloadCandidateSet CandidateSet;
|
|
Expr *Args[2] = { lhs, rhs };
|
|
AddOperatorCandidates(OverOp, S, Args, 2, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(lhs, Method) ||
|
|
PerformCopyInitialization(rhs, FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return true;
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(lhs, FnDecl->getParamDecl(0)->getType(),
|
|
"passing") ||
|
|
PerformCopyInitialization(rhs, FnDecl->getParamDecl(1)->getType(),
|
|
"passing"))
|
|
return true;
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
return new CXXOperatorCallExpr(FnExpr, Args, 2, ResultTy, TokLoc);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(lhs, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing") ||
|
|
PerformCopyInitialization(rhs, Best->BuiltinTypes.ParamTypes[1],
|
|
"passing"))
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(TokLoc, diag::err_ovl_ambiguous_oper)
|
|
<< BinaryOperator::getOpcodeStr(Opc)
|
|
<< lhs->getSourceRange() << rhs->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return true;
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
// Build a built-in binary operation.
|
|
return CreateBuiltinBinOp(TokLoc, Opc, lhs, rhs);
|
|
}
|
|
|
|
// Unary Operators. 'Tok' is the token for the operator.
|
|
Action::ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
|
|
tok::TokenKind Op, ExprTy *input) {
|
|
Expr *Input = (Expr*)input;
|
|
UnaryOperator::Opcode Opc = ConvertTokenKindToUnaryOpcode(Op);
|
|
|
|
if (getLangOptions().CPlusPlus &&
|
|
(Input->getType()->isRecordType()
|
|
|| Input->getType()->isEnumeralType())) {
|
|
// Determine which overloaded operator we're dealing with.
|
|
static const OverloadedOperatorKind OverOps[] = {
|
|
OO_None, OO_None,
|
|
OO_PlusPlus, OO_MinusMinus,
|
|
OO_Amp, OO_Star,
|
|
OO_Plus, OO_Minus,
|
|
OO_Tilde, OO_Exclaim,
|
|
OO_None, OO_None,
|
|
OO_None,
|
|
OO_None
|
|
};
|
|
OverloadedOperatorKind OverOp = OverOps[Opc];
|
|
|
|
// Add the appropriate overloaded operators (C++ [over.match.oper])
|
|
// to the candidate set.
|
|
OverloadCandidateSet CandidateSet;
|
|
if (OverOp != OO_None)
|
|
AddOperatorCandidates(OverOp, S, &Input, 1, CandidateSet);
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (BestViableFunction(CandidateSet, Best)) {
|
|
case OR_Success: {
|
|
// We found a built-in operator or an overloaded operator.
|
|
FunctionDecl *FnDecl = Best->Function;
|
|
|
|
if (FnDecl) {
|
|
// We matched an overloaded operator. Build a call to that
|
|
// operator.
|
|
|
|
// Convert the arguments.
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
|
if (PerformObjectArgumentInitialization(Input, Method))
|
|
return true;
|
|
} else {
|
|
// Convert the arguments.
|
|
if (PerformCopyInitialization(Input,
|
|
FnDecl->getParamDecl(0)->getType(),
|
|
"passing"))
|
|
return true;
|
|
}
|
|
|
|
// Determine the result type
|
|
QualType ResultTy
|
|
= FnDecl->getType()->getAsFunctionType()->getResultType();
|
|
ResultTy = ResultTy.getNonReferenceType();
|
|
|
|
// Build the actual expression node.
|
|
Expr *FnExpr = new DeclRefExpr(FnDecl, FnDecl->getType(),
|
|
SourceLocation());
|
|
UsualUnaryConversions(FnExpr);
|
|
|
|
return new CXXOperatorCallExpr(FnExpr, &Input, 1, ResultTy, OpLoc);
|
|
} else {
|
|
// We matched a built-in operator. Convert the arguments, then
|
|
// break out so that we will build the appropriate built-in
|
|
// operator node.
|
|
if (PerformCopyInitialization(Input, Best->BuiltinTypes.ParamTypes[0],
|
|
"passing"))
|
|
return true;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
case OR_No_Viable_Function:
|
|
// No viable function; fall through to handling this as a
|
|
// built-in operator, which will produce an error message for us.
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
Diag(OpLoc, diag::err_ovl_ambiguous_oper)
|
|
<< UnaryOperator::getOpcodeStr(Opc)
|
|
<< Input->getSourceRange();
|
|
PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
|
|
return true;
|
|
}
|
|
|
|
// Either we found no viable overloaded operator or we matched a
|
|
// built-in operator. In either case, fall through to trying to
|
|
// build a built-in operation.
|
|
}
|
|
|
|
QualType resultType;
|
|
switch (Opc) {
|
|
default:
|
|
assert(0 && "Unimplemented unary expr!");
|
|
case UnaryOperator::PreInc:
|
|
case UnaryOperator::PreDec:
|
|
resultType = CheckIncrementDecrementOperand(Input, OpLoc,
|
|
Opc == UnaryOperator::PreInc);
|
|
break;
|
|
case UnaryOperator::AddrOf:
|
|
resultType = CheckAddressOfOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Deref:
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = CheckIndirectionOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Plus:
|
|
case UnaryOperator::Minus:
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
if (resultType->isArithmeticType()) // C99 6.5.3.3p1
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6-7
|
|
resultType->isEnumeralType())
|
|
break;
|
|
else if (getLangOptions().CPlusPlus && // C++ [expr.unary.op]p6
|
|
Opc == UnaryOperator::Plus &&
|
|
resultType->isPointerType())
|
|
break;
|
|
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange();
|
|
case UnaryOperator::Not: // bitwise complement
|
|
UsualUnaryConversions(Input);
|
|
resultType = Input->getType();
|
|
// C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
|
|
if (resultType->isComplexType() || resultType->isComplexIntegerType())
|
|
// C99 does not support '~' for complex conjugation.
|
|
Diag(OpLoc, diag::ext_integer_complement_complex)
|
|
<< resultType << Input->getSourceRange();
|
|
else if (!resultType->isIntegerType())
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange();
|
|
break;
|
|
case UnaryOperator::LNot: // logical negation
|
|
// Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
|
|
DefaultFunctionArrayConversion(Input);
|
|
resultType = Input->getType();
|
|
if (!resultType->isScalarType()) // C99 6.5.3.3p1
|
|
return Diag(OpLoc, diag::err_typecheck_unary_expr)
|
|
<< resultType << Input->getSourceRange();
|
|
// LNot always has type int. C99 6.5.3.3p5.
|
|
resultType = Context.IntTy;
|
|
break;
|
|
case UnaryOperator::Real:
|
|
case UnaryOperator::Imag:
|
|
resultType = CheckRealImagOperand(Input, OpLoc);
|
|
break;
|
|
case UnaryOperator::Extension:
|
|
resultType = Input->getType();
|
|
break;
|
|
}
|
|
if (resultType.isNull())
|
|
return true;
|
|
return new UnaryOperator(Input, Opc, resultType, OpLoc);
|
|
}
|
|
|
|
/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
|
|
Sema::ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc,
|
|
SourceLocation LabLoc,
|
|
IdentifierInfo *LabelII) {
|
|
// Look up the record for this label identifier.
|
|
LabelStmt *&LabelDecl = LabelMap[LabelII];
|
|
|
|
// If we haven't seen this label yet, create a forward reference. It
|
|
// will be validated and/or cleaned up in ActOnFinishFunctionBody.
|
|
if (LabelDecl == 0)
|
|
LabelDecl = new LabelStmt(LabLoc, LabelII, 0);
|
|
|
|
// Create the AST node. The address of a label always has type 'void*'.
|
|
return new AddrLabelExpr(OpLoc, LabLoc, LabelDecl,
|
|
Context.getPointerType(Context.VoidTy));
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnStmtExpr(SourceLocation LPLoc, StmtTy *substmt,
|
|
SourceLocation RPLoc) { // "({..})"
|
|
Stmt *SubStmt = static_cast<Stmt*>(substmt);
|
|
assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
|
|
CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
|
|
|
|
// FIXME: there are a variety of strange constraints to enforce here, for
|
|
// example, it is not possible to goto into a stmt expression apparently.
|
|
// More semantic analysis is needed.
|
|
|
|
// FIXME: the last statement in the compount stmt has its value used. We
|
|
// should not warn about it being unused.
|
|
|
|
// If there are sub stmts in the compound stmt, take the type of the last one
|
|
// as the type of the stmtexpr.
|
|
QualType Ty = Context.VoidTy;
|
|
|
|
if (!Compound->body_empty()) {
|
|
Stmt *LastStmt = Compound->body_back();
|
|
// If LastStmt is a label, skip down through into the body.
|
|
while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt))
|
|
LastStmt = Label->getSubStmt();
|
|
|
|
if (Expr *LastExpr = dyn_cast<Expr>(LastStmt))
|
|
Ty = LastExpr->getType();
|
|
}
|
|
|
|
return new StmtExpr(Compound, Ty, LPLoc, RPLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnBuiltinOffsetOf(SourceLocation BuiltinLoc,
|
|
SourceLocation TypeLoc,
|
|
TypeTy *argty,
|
|
OffsetOfComponent *CompPtr,
|
|
unsigned NumComponents,
|
|
SourceLocation RPLoc) {
|
|
QualType ArgTy = QualType::getFromOpaquePtr(argty);
|
|
assert(!ArgTy.isNull() && "Missing type argument!");
|
|
|
|
// We must have at least one component that refers to the type, and the first
|
|
// one is known to be a field designator. Verify that the ArgTy represents
|
|
// a struct/union/class.
|
|
if (!ArgTy->isRecordType())
|
|
return Diag(TypeLoc, diag::err_offsetof_record_type) << ArgTy;
|
|
|
|
// Otherwise, create a compound literal expression as the base, and
|
|
// iteratively process the offsetof designators.
|
|
Expr *Res = new CompoundLiteralExpr(SourceLocation(), ArgTy, 0, false);
|
|
|
|
// offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
|
|
// GCC extension, diagnose them.
|
|
if (NumComponents != 1)
|
|
Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
|
|
<< SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
|
|
|
|
for (unsigned i = 0; i != NumComponents; ++i) {
|
|
const OffsetOfComponent &OC = CompPtr[i];
|
|
if (OC.isBrackets) {
|
|
// Offset of an array sub-field. TODO: Should we allow vector elements?
|
|
const ArrayType *AT = Context.getAsArrayType(Res->getType());
|
|
if (!AT) {
|
|
delete Res;
|
|
return Diag(OC.LocEnd, diag::err_offsetof_array_type) << Res->getType();
|
|
}
|
|
|
|
// FIXME: C++: Verify that operator[] isn't overloaded.
|
|
|
|
// C99 6.5.2.1p1
|
|
Expr *Idx = static_cast<Expr*>(OC.U.E);
|
|
if (!Idx->getType()->isIntegerType())
|
|
return Diag(Idx->getLocStart(), diag::err_typecheck_subscript)
|
|
<< Idx->getSourceRange();
|
|
|
|
Res = new ArraySubscriptExpr(Res, Idx, AT->getElementType(), OC.LocEnd);
|
|
continue;
|
|
}
|
|
|
|
const RecordType *RC = Res->getType()->getAsRecordType();
|
|
if (!RC) {
|
|
delete Res;
|
|
return Diag(OC.LocEnd, diag::err_offsetof_record_type) << Res->getType();
|
|
}
|
|
|
|
// Get the decl corresponding to this.
|
|
RecordDecl *RD = RC->getDecl();
|
|
FieldDecl *MemberDecl = 0;
|
|
DeclContext::lookup_result Lookup = RD->lookup(Context, OC.U.IdentInfo);
|
|
if (Lookup.first != Lookup.second)
|
|
MemberDecl = dyn_cast<FieldDecl>(*Lookup.first);
|
|
|
|
if (!MemberDecl)
|
|
return Diag(BuiltinLoc, diag::err_typecheck_no_member)
|
|
<< OC.U.IdentInfo << SourceRange(OC.LocStart, OC.LocEnd);
|
|
|
|
// FIXME: C++: Verify that MemberDecl isn't a static field.
|
|
// FIXME: Verify that MemberDecl isn't a bitfield.
|
|
// MemberDecl->getType() doesn't get the right qualifiers, but it doesn't
|
|
// matter here.
|
|
Res = new MemberExpr(Res, false, MemberDecl, OC.LocEnd,
|
|
MemberDecl->getType().getNonReferenceType());
|
|
}
|
|
|
|
return new UnaryOperator(Res, UnaryOperator::OffsetOf, Context.getSizeType(),
|
|
BuiltinLoc);
|
|
}
|
|
|
|
|
|
Sema::ExprResult Sema::ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
|
|
TypeTy *arg1, TypeTy *arg2,
|
|
SourceLocation RPLoc) {
|
|
QualType argT1 = QualType::getFromOpaquePtr(arg1);
|
|
QualType argT2 = QualType::getFromOpaquePtr(arg2);
|
|
|
|
assert((!argT1.isNull() && !argT2.isNull()) && "Missing type argument(s)");
|
|
|
|
return new TypesCompatibleExpr(Context.IntTy, BuiltinLoc, argT1, argT2,RPLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc, ExprTy *cond,
|
|
ExprTy *expr1, ExprTy *expr2,
|
|
SourceLocation RPLoc) {
|
|
Expr *CondExpr = static_cast<Expr*>(cond);
|
|
Expr *LHSExpr = static_cast<Expr*>(expr1);
|
|
Expr *RHSExpr = static_cast<Expr*>(expr2);
|
|
|
|
assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
|
|
|
|
// The conditional expression is required to be a constant expression.
|
|
llvm::APSInt condEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!CondExpr->isIntegerConstantExpr(condEval, Context, &ExpLoc))
|
|
return Diag(ExpLoc, diag::err_typecheck_choose_expr_requires_constant)
|
|
<< CondExpr->getSourceRange();
|
|
|
|
// If the condition is > zero, then the AST type is the same as the LSHExpr.
|
|
QualType resType = condEval.getZExtValue() ? LHSExpr->getType() :
|
|
RHSExpr->getType();
|
|
return new ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, RPLoc);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Clang Extensions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ActOnBlockStart - This callback is invoked when a block literal is started.
|
|
void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *BlockScope) {
|
|
// Analyze block parameters.
|
|
BlockSemaInfo *BSI = new BlockSemaInfo();
|
|
|
|
// Add BSI to CurBlock.
|
|
BSI->PrevBlockInfo = CurBlock;
|
|
CurBlock = BSI;
|
|
|
|
BSI->ReturnType = 0;
|
|
BSI->TheScope = BlockScope;
|
|
|
|
BSI->TheDecl = BlockDecl::Create(Context, CurContext, CaretLoc);
|
|
PushDeclContext(BlockScope, BSI->TheDecl);
|
|
}
|
|
|
|
void Sema::ActOnBlockArguments(Declarator &ParamInfo) {
|
|
// Analyze arguments to block.
|
|
assert(ParamInfo.getTypeObject(0).Kind == DeclaratorChunk::Function &&
|
|
"Not a function declarator!");
|
|
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getTypeObject(0).Fun;
|
|
|
|
CurBlock->hasPrototype = FTI.hasPrototype;
|
|
CurBlock->isVariadic = true;
|
|
|
|
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes
|
|
// no arguments, not a function that takes a single void argument.
|
|
if (FTI.hasPrototype &&
|
|
FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
|
(!((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
|
|
((ParmVarDecl *)FTI.ArgInfo[0].Param)->getType()->isVoidType())) {
|
|
// empty arg list, don't push any params.
|
|
CurBlock->isVariadic = false;
|
|
} else if (FTI.hasPrototype) {
|
|
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
|
|
CurBlock->Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
|
|
CurBlock->isVariadic = FTI.isVariadic;
|
|
}
|
|
CurBlock->TheDecl->setArgs(&CurBlock->Params[0], CurBlock->Params.size());
|
|
|
|
for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
|
|
E = CurBlock->TheDecl->param_end(); AI != E; ++AI)
|
|
// If this has an identifier, add it to the scope stack.
|
|
if ((*AI)->getIdentifier())
|
|
PushOnScopeChains(*AI, CurBlock->TheScope);
|
|
}
|
|
|
|
/// ActOnBlockError - If there is an error parsing a block, this callback
|
|
/// is invoked to pop the information about the block from the action impl.
|
|
void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> CC(CurBlock);
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
|
|
// FIXME: Delete the ParmVarDecl objects as well???
|
|
|
|
}
|
|
|
|
/// ActOnBlockStmtExpr - This is called when the body of a block statement
|
|
/// literal was successfully completed. ^(int x){...}
|
|
Sema::ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc, StmtTy *body,
|
|
Scope *CurScope) {
|
|
// Ensure that CurBlock is deleted.
|
|
llvm::OwningPtr<BlockSemaInfo> BSI(CurBlock);
|
|
llvm::OwningPtr<CompoundStmt> Body(static_cast<CompoundStmt*>(body));
|
|
|
|
PopDeclContext();
|
|
|
|
// Pop off CurBlock, handle nested blocks.
|
|
CurBlock = CurBlock->PrevBlockInfo;
|
|
|
|
QualType RetTy = Context.VoidTy;
|
|
if (BSI->ReturnType)
|
|
RetTy = QualType(BSI->ReturnType, 0);
|
|
|
|
llvm::SmallVector<QualType, 8> ArgTypes;
|
|
for (unsigned i = 0, e = BSI->Params.size(); i != e; ++i)
|
|
ArgTypes.push_back(BSI->Params[i]->getType());
|
|
|
|
QualType BlockTy;
|
|
if (!BSI->hasPrototype)
|
|
BlockTy = Context.getFunctionTypeNoProto(RetTy);
|
|
else
|
|
BlockTy = Context.getFunctionType(RetTy, &ArgTypes[0], ArgTypes.size(),
|
|
BSI->isVariadic, 0);
|
|
|
|
BlockTy = Context.getBlockPointerType(BlockTy);
|
|
|
|
BSI->TheDecl->setBody(Body.take());
|
|
return new BlockExpr(BSI->TheDecl, BlockTy);
|
|
}
|
|
|
|
/// ExprsMatchFnType - return true if the Exprs in array Args have
|
|
/// QualTypes that match the QualTypes of the arguments of the FnType.
|
|
/// The number of arguments has already been validated to match the number of
|
|
/// arguments in FnType.
|
|
static bool ExprsMatchFnType(Expr **Args, const FunctionTypeProto *FnType,
|
|
ASTContext &Context) {
|
|
unsigned NumParams = FnType->getNumArgs();
|
|
for (unsigned i = 0; i != NumParams; ++i) {
|
|
QualType ExprTy = Context.getCanonicalType(Args[i]->getType());
|
|
QualType ParmTy = Context.getCanonicalType(FnType->getArgType(i));
|
|
|
|
if (ExprTy.getUnqualifiedType() != ParmTy.getUnqualifiedType())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnOverloadExpr(ExprTy **args, unsigned NumArgs,
|
|
SourceLocation *CommaLocs,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc) {
|
|
// __builtin_overload requires at least 2 arguments
|
|
if (NumArgs < 2)
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< SourceRange(BuiltinLoc, RParenLoc);
|
|
|
|
// The first argument is required to be a constant expression. It tells us
|
|
// the number of arguments to pass to each of the functions to be overloaded.
|
|
Expr **Args = reinterpret_cast<Expr**>(args);
|
|
Expr *NParamsExpr = Args[0];
|
|
llvm::APSInt constEval(32);
|
|
SourceLocation ExpLoc;
|
|
if (!NParamsExpr->isIntegerConstantExpr(constEval, Context, &ExpLoc))
|
|
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
|
|
<< NParamsExpr->getSourceRange();
|
|
|
|
// Verify that the number of parameters is > 0
|
|
unsigned NumParams = constEval.getZExtValue();
|
|
if (NumParams == 0)
|
|
return Diag(ExpLoc, diag::err_overload_expr_requires_non_zero_constant)
|
|
<< NParamsExpr->getSourceRange();
|
|
// Verify that we have at least 1 + NumParams arguments to the builtin.
|
|
if ((NumParams + 1) > NumArgs)
|
|
return Diag(RParenLoc, diag::err_typecheck_call_too_few_args)
|
|
<< SourceRange(BuiltinLoc, RParenLoc);
|
|
|
|
// Figure out the return type, by matching the args to one of the functions
|
|
// listed after the parameters.
|
|
OverloadExpr *OE = 0;
|
|
for (unsigned i = NumParams + 1; i < NumArgs; ++i) {
|
|
// UsualUnaryConversions will convert the function DeclRefExpr into a
|
|
// pointer to function.
|
|
Expr *Fn = UsualUnaryConversions(Args[i]);
|
|
const FunctionTypeProto *FnType = 0;
|
|
if (const PointerType *PT = Fn->getType()->getAsPointerType())
|
|
FnType = PT->getPointeeType()->getAsFunctionTypeProto();
|
|
|
|
// The Expr type must be FunctionTypeProto, since FunctionTypeProto has no
|
|
// parameters, and the number of parameters must match the value passed to
|
|
// the builtin.
|
|
if (!FnType || (FnType->getNumArgs() != NumParams))
|
|
return Diag(Fn->getExprLoc(), diag::err_overload_incorrect_fntype)
|
|
<< Fn->getSourceRange();
|
|
|
|
// Scan the parameter list for the FunctionType, checking the QualType of
|
|
// each parameter against the QualTypes of the arguments to the builtin.
|
|
// If they match, return a new OverloadExpr.
|
|
if (ExprsMatchFnType(Args+1, FnType, Context)) {
|
|
if (OE)
|
|
return Diag(Fn->getExprLoc(), diag::err_overload_multiple_match)
|
|
<< OE->getFn()->getSourceRange();
|
|
// Remember our match, and continue processing the remaining arguments
|
|
// to catch any errors.
|
|
OE = new OverloadExpr(Args, NumArgs, i,
|
|
FnType->getResultType().getNonReferenceType(),
|
|
BuiltinLoc, RParenLoc);
|
|
}
|
|
}
|
|
// Return the newly created OverloadExpr node, if we succeded in matching
|
|
// exactly one of the candidate functions.
|
|
if (OE)
|
|
return OE;
|
|
|
|
// If we didn't find a matching function Expr in the __builtin_overload list
|
|
// the return an error.
|
|
std::string typeNames;
|
|
for (unsigned i = 0; i != NumParams; ++i) {
|
|
if (i != 0) typeNames += ", ";
|
|
typeNames += Args[i+1]->getType().getAsString();
|
|
}
|
|
|
|
return Diag(BuiltinLoc, diag::err_overload_no_match)
|
|
<< typeNames << SourceRange(BuiltinLoc, RParenLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
|
|
ExprTy *expr, TypeTy *type,
|
|
SourceLocation RPLoc) {
|
|
Expr *E = static_cast<Expr*>(expr);
|
|
QualType T = QualType::getFromOpaquePtr(type);
|
|
|
|
InitBuiltinVaListType();
|
|
|
|
// Get the va_list type
|
|
QualType VaListType = Context.getBuiltinVaListType();
|
|
// Deal with implicit array decay; for example, on x86-64,
|
|
// va_list is an array, but it's supposed to decay to
|
|
// a pointer for va_arg.
|
|
if (VaListType->isArrayType())
|
|
VaListType = Context.getArrayDecayedType(VaListType);
|
|
// Make sure the input expression also decays appropriately.
|
|
UsualUnaryConversions(E);
|
|
|
|
if (CheckAssignmentConstraints(VaListType, E->getType()) != Compatible)
|
|
return Diag(E->getLocStart(),
|
|
diag::err_first_argument_to_va_arg_not_of_type_va_list)
|
|
<< E->getType() << E->getSourceRange();
|
|
|
|
// FIXME: Warn if a non-POD type is passed in.
|
|
|
|
return new VAArgExpr(BuiltinLoc, E, T.getNonReferenceType(), RPLoc);
|
|
}
|
|
|
|
Sema::ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
|
|
// The type of __null will be int or long, depending on the size of
|
|
// pointers on the target.
|
|
QualType Ty;
|
|
if (Context.Target.getPointerWidth(0) == Context.Target.getIntWidth())
|
|
Ty = Context.IntTy;
|
|
else
|
|
Ty = Context.LongTy;
|
|
|
|
return new GNUNullExpr(Ty, TokenLoc);
|
|
}
|
|
|
|
bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
|
|
SourceLocation Loc,
|
|
QualType DstType, QualType SrcType,
|
|
Expr *SrcExpr, const char *Flavor) {
|
|
// Decode the result (notice that AST's are still created for extensions).
|
|
bool isInvalid = false;
|
|
unsigned DiagKind;
|
|
switch (ConvTy) {
|
|
default: assert(0 && "Unknown conversion type");
|
|
case Compatible: return false;
|
|
case PointerToInt:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_int;
|
|
break;
|
|
case IntToPointer:
|
|
DiagKind = diag::ext_typecheck_convert_int_pointer;
|
|
break;
|
|
case IncompatiblePointer:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
|
|
break;
|
|
case FunctionVoidPointer:
|
|
DiagKind = diag::ext_typecheck_convert_pointer_void_func;
|
|
break;
|
|
case CompatiblePointerDiscardsQualifiers:
|
|
// If the qualifiers lost were because we were applying the
|
|
// (deprecated) C++ conversion from a string literal to a char*
|
|
// (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
|
|
// Ideally, this check would be performed in
|
|
// CheckPointerTypesForAssignment. However, that would require a
|
|
// bit of refactoring (so that the second argument is an
|
|
// expression, rather than a type), which should be done as part
|
|
// of a larger effort to fix CheckPointerTypesForAssignment for
|
|
// C++ semantics.
|
|
if (getLangOptions().CPlusPlus &&
|
|
IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
|
|
return false;
|
|
DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
|
|
break;
|
|
case IntToBlockPointer:
|
|
DiagKind = diag::err_int_to_block_pointer;
|
|
break;
|
|
case IncompatibleBlockPointer:
|
|
DiagKind = diag::ext_typecheck_convert_incompatible_block_pointer;
|
|
break;
|
|
case IncompatibleObjCQualifiedId:
|
|
// FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
|
|
// it can give a more specific diagnostic.
|
|
DiagKind = diag::warn_incompatible_qualified_id;
|
|
break;
|
|
case Incompatible:
|
|
DiagKind = diag::err_typecheck_convert_incompatible;
|
|
isInvalid = true;
|
|
break;
|
|
}
|
|
|
|
Diag(Loc, DiagKind) << DstType << SrcType << Flavor
|
|
<< SrcExpr->getSourceRange();
|
|
return isInvalid;
|
|
}
|
|
|
|
bool Sema::VerifyIntegerConstantExpression(const Expr* E, llvm::APSInt *Result)
|
|
{
|
|
Expr::EvalResult EvalResult;
|
|
|
|
if (!E->Evaluate(EvalResult, Context) || !EvalResult.Val.isInt() ||
|
|
EvalResult.HasSideEffects) {
|
|
Diag(E->getExprLoc(), diag::err_expr_not_ice) << E->getSourceRange();
|
|
|
|
if (EvalResult.Diag) {
|
|
// We only show the note if it's not the usual "invalid subexpression"
|
|
// or if it's actually in a subexpression.
|
|
if (EvalResult.Diag != diag::note_invalid_subexpr_in_ice ||
|
|
E->IgnoreParens() != EvalResult.DiagExpr->IgnoreParens())
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (EvalResult.Diag) {
|
|
Diag(E->getExprLoc(), diag::ext_expr_not_ice) <<
|
|
E->getSourceRange();
|
|
|
|
// Print the reason it's not a constant.
|
|
if (Diags.getDiagnosticLevel(diag::ext_expr_not_ice) != Diagnostic::Ignored)
|
|
Diag(EvalResult.DiagLoc, EvalResult.Diag);
|
|
}
|
|
|
|
if (Result)
|
|
*Result = EvalResult.Val.getInt();
|
|
return false;
|
|
}
|