llvm-project/clang/lib/AST/DeclCXX.cpp

3354 lines
129 KiB
C++

//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTUnresolvedSet.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/LambdaCapture.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/ODRHash.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
void AccessSpecDecl::anchor() {}
AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) AccessSpecDecl(EmptyShell());
}
void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const {
ExternalASTSource *Source = C.getExternalSource();
assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set");
assert(Source && "getFromExternalSource with no external source");
for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I)
I.setDecl(cast<NamedDecl>(Source->GetExternalDecl(
reinterpret_cast<uintptr_t>(I.getDecl()) >> 2)));
Impl.Decls.setLazy(false);
}
CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
: UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0),
Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true),
HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false),
HasPrivateFields(false), HasProtectedFields(false),
HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false),
HasOnlyCMembers(true), HasInClassInitializer(false),
HasUninitializedReferenceMember(false), HasUninitializedFields(false),
HasInheritedConstructor(false), HasInheritedAssignment(false),
NeedOverloadResolutionForCopyConstructor(false),
NeedOverloadResolutionForMoveConstructor(false),
NeedOverloadResolutionForCopyAssignment(false),
NeedOverloadResolutionForMoveAssignment(false),
NeedOverloadResolutionForDestructor(false),
DefaultedCopyConstructorIsDeleted(false),
DefaultedMoveConstructorIsDeleted(false),
DefaultedCopyAssignmentIsDeleted(false),
DefaultedMoveAssignmentIsDeleted(false),
DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All),
HasTrivialSpecialMembersForCall(SMF_All),
DeclaredNonTrivialSpecialMembers(0),
DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true),
HasConstexprNonCopyMoveConstructor(false),
HasDefaultedDefaultConstructor(false),
DefaultedDefaultConstructorIsConstexpr(true),
HasConstexprDefaultConstructor(false),
DefaultedDestructorIsConstexpr(true),
HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true),
UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0),
ImplicitCopyConstructorCanHaveConstParamForVBase(true),
ImplicitCopyConstructorCanHaveConstParamForNonVBase(true),
ImplicitCopyAssignmentHasConstParam(true),
HasDeclaredCopyConstructorWithConstParam(false),
HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false),
IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false),
HasODRHash(false), Definition(D) {}
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const {
return Bases.get(Definition->getASTContext().getExternalSource());
}
CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const {
return VBases.get(Definition->getASTContext().getExternalSource());
}
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
CXXRecordDecl *PrevDecl)
: RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl),
DefinitionData(PrevDecl ? PrevDecl->DefinitionData
: nullptr) {}
CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK,
DeclContext *DC, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
CXXRecordDecl *PrevDecl,
bool DelayTypeCreation) {
auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id,
PrevDecl);
R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
// FIXME: DelayTypeCreation seems like such a hack
if (!DelayTypeCreation)
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl *
CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC,
TypeSourceInfo *Info, SourceLocation Loc,
bool Dependent, bool IsGeneric,
LambdaCaptureDefault CaptureDefault) {
auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc,
nullptr, nullptr);
R->setBeingDefined(true);
R->DefinitionData =
new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric,
CaptureDefault);
R->setMayHaveOutOfDateDef(false);
R->setImplicit(true);
C.getTypeDeclType(R, /*PrevDecl=*/nullptr);
return R;
}
CXXRecordDecl *
CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
auto *R = new (C, ID) CXXRecordDecl(
CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(),
nullptr, nullptr);
R->setMayHaveOutOfDateDef(false);
return R;
}
/// Determine whether a class has a repeated base class. This is intended for
/// use when determining if a class is standard-layout, so makes no attempt to
/// handle virtual bases.
static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) {
llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes;
SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD};
while (!WorkList.empty()) {
const CXXRecordDecl *RD = WorkList.pop_back_val();
for (const CXXBaseSpecifier &BaseSpec : RD->bases()) {
if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) {
if (!SeenBaseTypes.insert(B).second)
return true;
WorkList.push_back(B);
}
}
}
return false;
}
void
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
ASTContext &C = getASTContext();
if (!data().Bases.isOffset() && data().NumBases > 0)
C.Deallocate(data().getBases());
if (NumBases) {
if (!C.getLangOpts().CPlusPlus17) {
// C++ [dcl.init.aggr]p1:
// An aggregate is [...] a class with [...] no base classes [...].
data().Aggregate = false;
}
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
}
// The set of seen virtual base types.
llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes;
// The virtual bases of this class.
SmallVector<const CXXBaseSpecifier *, 8> VBases;
data().Bases = new(C) CXXBaseSpecifier [NumBases];
data().NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i) {
data().getBases()[i] = *Bases[i];
// Keep track of inherited vbases for this base class.
const CXXBaseSpecifier *Base = Bases[i];
QualType BaseType = Base->getType();
// Skip dependent types; we can't do any checking on them now.
if (BaseType->isDependentType())
continue;
auto *BaseClassDecl =
cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
// C++2a [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has all non-static data members and bit-fields in the class and
// its base classes first declared in the same class
if (BaseClassDecl->data().HasBasesWithFields ||
!BaseClassDecl->field_empty()) {
if (data().HasBasesWithFields)
// Two bases have members or bit-fields: not standard-layout.
data().IsStandardLayout = false;
data().HasBasesWithFields = true;
}
// C++11 [class]p7:
// A standard-layout class is a class that:
// -- [...] has [...] at most one base class with non-static data
// members
if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers ||
BaseClassDecl->hasDirectFields()) {
if (data().HasBasesWithNonStaticDataMembers)
data().IsCXX11StandardLayout = false;
data().HasBasesWithNonStaticDataMembers = true;
}
if (!BaseClassDecl->isEmpty()) {
// C++14 [meta.unary.prop]p4:
// T is a class type [...] with [...] no base class B for which
// is_empty<B>::value is false.
data().Empty = false;
}
// C++1z [dcl.init.agg]p1:
// An aggregate is a class with [...] no private or protected base classes
if (Base->getAccessSpecifier() != AS_public) {
data().Aggregate = false;
// C++20 [temp.param]p7:
// A structural type is [...] a literal class type with [...] all base
// classes [...] public
data().StructuralIfLiteral = false;
}
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
if (BaseClassDecl->isPolymorphic()) {
data().Polymorphic = true;
// An aggregate is a class with [...] no virtual functions.
data().Aggregate = false;
}
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no non-standard-layout base classes
if (!BaseClassDecl->isStandardLayout())
data().IsStandardLayout = false;
if (!BaseClassDecl->isCXX11StandardLayout())
data().IsCXX11StandardLayout = false;
// Record if this base is the first non-literal field or base.
if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C))
data().HasNonLiteralTypeFieldsOrBases = true;
// Now go through all virtual bases of this base and add them.
for (const auto &VBase : BaseClassDecl->vbases()) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) {
VBases.push_back(&VBase);
// C++11 [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each [...] virtual base class B of X
// has a copy constructor whose first parameter is of type
// 'const B&' or 'const volatile B&' [...]
if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl())
if (!VBaseDecl->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
// C++1z [dcl.init.agg]p1:
// An aggregate is a class with [...] no virtual base classes
data().Aggregate = false;
}
}
if (Base->isVirtual()) {
// Add this base if it's not already in the list.
if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second)
VBases.push_back(Base);
// C++14 [meta.unary.prop] is_empty:
// T is a class type, but not a union type, with ... no virtual base
// classes
data().Empty = false;
// C++1z [dcl.init.agg]p1:
// An aggregate is a class with [...] no virtual base classes
data().Aggregate = false;
// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
// A [default constructor, copy/move constructor, or copy/move assignment
// operator for a class X] is trivial [...] if:
// -- class X has [...] no virtual base classes
data().HasTrivialSpecialMembers &= SMF_Destructor;
data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has [...] no virtual base classes
data().IsStandardLayout = false;
data().IsCXX11StandardLayout = false;
// C++20 [dcl.constexpr]p3:
// In the definition of a constexpr function [...]
// -- if the function is a constructor or destructor,
// its class shall not have any virtual base classes
data().DefaultedDefaultConstructorIsConstexpr = false;
data().DefaultedDestructorIsConstexpr = false;
// C++1z [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each potentially constructed subobject
// has a copy constructor whose first parameter is of type
// 'const B&' or 'const volatile B&' [...]
if (!BaseClassDecl->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorCanHaveConstParamForVBase = false;
} else {
// C++ [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- all the direct base classes of its class have trivial default
// constructors.
if (!BaseClassDecl->hasTrivialDefaultConstructor())
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- the constructor selected to copy/move each direct base class
// subobject is trivial, and
if (!BaseClassDecl->hasTrivialCopyConstructor())
data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
if (!BaseClassDecl->hasTrivialCopyConstructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
// If the base class doesn't have a simple move constructor, we'll eagerly
// declare it and perform overload resolution to determine which function
// it actually calls. If it does have a simple move constructor, this
// check is correct.
if (!BaseClassDecl->hasTrivialMoveConstructor())
data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
if (!BaseClassDecl->hasTrivialMoveConstructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- the assignment operator selected to copy/move each direct base
// class subobject is trivial, and
if (!BaseClassDecl->hasTrivialCopyAssignment())
data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
// If the base class doesn't have a simple move assignment, we'll eagerly
// declare it and perform overload resolution to determine which function
// it actually calls. If it does have a simple move assignment, this
// check is correct.
if (!BaseClassDecl->hasTrivialMoveAssignment())
data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
// C++11 [class.ctor]p6:
// If that user-written default constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// default constructor is constexpr.
if (!BaseClassDecl->hasConstexprDefaultConstructor())
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++1z [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each potentially constructed subobject
// has a copy constructor whose first parameter is of type
// 'const B&' or 'const volatile B&' [...]
if (!BaseClassDecl->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
}
// C++ [class.ctor]p3:
// A destructor is trivial if all the direct base classes of its class
// have trivial destructors.
if (!BaseClassDecl->hasTrivialDestructor())
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
if (!BaseClassDecl->hasTrivialDestructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
if (!BaseClassDecl->hasIrrelevantDestructor())
data().HasIrrelevantDestructor = false;
// C++11 [class.copy]p18:
// The implicitly-declared copy assignment operator for a class X will
// have the form 'X& X::operator=(const X&)' if each direct base class B
// of X has a copy assignment operator whose parameter is of type 'const
// B&', 'const volatile B&', or 'B' [...]
if (!BaseClassDecl->hasCopyAssignmentWithConstParam())
data().ImplicitCopyAssignmentHasConstParam = false;
// A class has an Objective-C object member if... or any of its bases
// has an Objective-C object member.
if (BaseClassDecl->hasObjectMember())
setHasObjectMember(true);
if (BaseClassDecl->hasVolatileMember())
setHasVolatileMember(true);
if (BaseClassDecl->getArgPassingRestrictions() ==
RecordDecl::APK_CanNeverPassInRegs)
setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
// Keep track of the presence of mutable fields.
if (BaseClassDecl->hasMutableFields())
data().HasMutableFields = true;
if (BaseClassDecl->hasUninitializedReferenceMember())
data().HasUninitializedReferenceMember = true;
if (!BaseClassDecl->allowConstDefaultInit())
data().HasUninitializedFields = true;
addedClassSubobject(BaseClassDecl);
}
// C++2a [class]p7:
// A class S is a standard-layout class if it:
// -- has at most one base class subobject of any given type
//
// Note that we only need to check this for classes with more than one base
// class. If there's only one base class, and it's standard layout, then
// we know there are no repeated base classes.
if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this))
data().IsStandardLayout = false;
if (VBases.empty()) {
data().IsParsingBaseSpecifiers = false;
return;
}
// Create base specifier for any direct or indirect virtual bases.
data().VBases = new (C) CXXBaseSpecifier[VBases.size()];
data().NumVBases = VBases.size();
for (int I = 0, E = VBases.size(); I != E; ++I) {
QualType Type = VBases[I]->getType();
if (!Type->isDependentType())
addedClassSubobject(Type->getAsCXXRecordDecl());
data().getVBases()[I] = *VBases[I];
}
data().IsParsingBaseSpecifiers = false;
}
unsigned CXXRecordDecl::getODRHash() const {
assert(hasDefinition() && "ODRHash only for records with definitions");
// Previously calculated hash is stored in DefinitionData.
if (DefinitionData->HasODRHash)
return DefinitionData->ODRHash;
// Only calculate hash on first call of getODRHash per record.
ODRHash Hash;
Hash.AddCXXRecordDecl(getDefinition());
DefinitionData->HasODRHash = true;
DefinitionData->ODRHash = Hash.CalculateHash();
return DefinitionData->ODRHash;
}
void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) {
// C++11 [class.copy]p11:
// A defaulted copy/move constructor for a class X is defined as
// deleted if X has:
// -- a direct or virtual base class B that cannot be copied/moved [...]
// -- a non-static data member of class type M (or array thereof)
// that cannot be copied or moved [...]
if (!Subobj->hasSimpleCopyConstructor())
data().NeedOverloadResolutionForCopyConstructor = true;
if (!Subobj->hasSimpleMoveConstructor())
data().NeedOverloadResolutionForMoveConstructor = true;
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined as
// deleted if X has:
// -- a direct or virtual base class B that cannot be copied/moved [...]
// -- a non-static data member of class type M (or array thereof)
// that cannot be copied or moved [...]
if (!Subobj->hasSimpleCopyAssignment())
data().NeedOverloadResolutionForCopyAssignment = true;
if (!Subobj->hasSimpleMoveAssignment())
data().NeedOverloadResolutionForMoveAssignment = true;
// C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
// A defaulted [ctor or dtor] for a class X is defined as
// deleted if X has:
// -- any direct or virtual base class [...] has a type with a destructor
// that is deleted or inaccessible from the defaulted [ctor or dtor].
// -- any non-static data member has a type with a destructor
// that is deleted or inaccessible from the defaulted [ctor or dtor].
if (!Subobj->hasSimpleDestructor()) {
data().NeedOverloadResolutionForCopyConstructor = true;
data().NeedOverloadResolutionForMoveConstructor = true;
data().NeedOverloadResolutionForDestructor = true;
}
// C++2a [dcl.constexpr]p4:
// The definition of a constexpr destructor [shall] satisfy the
// following requirement:
// -- for every subobject of class type or (possibly multi-dimensional)
// array thereof, that class type shall have a constexpr destructor
if (!Subobj->hasConstexprDestructor())
data().DefaultedDestructorIsConstexpr = false;
// C++20 [temp.param]p7:
// A structural type is [...] a literal class type [for which] the types
// of all base classes and non-static data members are structural types or
// (possibly multi-dimensional) array thereof
if (!Subobj->data().StructuralIfLiteral)
data().StructuralIfLiteral = false;
}
bool CXXRecordDecl::hasConstexprDestructor() const {
auto *Dtor = getDestructor();
return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr();
}
bool CXXRecordDecl::hasAnyDependentBases() const {
if (!isDependentContext())
return false;
return !forallBases([](const CXXRecordDecl *) { return true; });
}
bool CXXRecordDecl::isTriviallyCopyable() const {
// C++0x [class]p5:
// A trivially copyable class is a class that:
// -- has no non-trivial copy constructors,
if (hasNonTrivialCopyConstructor()) return false;
// -- has no non-trivial move constructors,
if (hasNonTrivialMoveConstructor()) return false;
// -- has no non-trivial copy assignment operators,
if (hasNonTrivialCopyAssignment()) return false;
// -- has no non-trivial move assignment operators, and
if (hasNonTrivialMoveAssignment()) return false;
// -- has a trivial destructor.
if (!hasTrivialDestructor()) return false;
return true;
}
void CXXRecordDecl::markedVirtualFunctionPure() {
// C++ [class.abstract]p2:
// A class is abstract if it has at least one pure virtual function.
data().Abstract = true;
}
bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType(
ASTContext &Ctx, const CXXRecordDecl *XFirst) {
if (!getNumBases())
return false;
llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases;
llvm::SmallPtrSet<const CXXRecordDecl*, 8> M;
SmallVector<const CXXRecordDecl*, 8> WorkList;
// Visit a type that we have determined is an element of M(S).
auto Visit = [&](const CXXRecordDecl *RD) -> bool {
RD = RD->getCanonicalDecl();
// C++2a [class]p8:
// A class S is a standard-layout class if it [...] has no element of the
// set M(S) of types as a base class.
//
// If we find a subobject of an empty type, it might also be a base class,
// so we'll need to walk the base classes to check.
if (!RD->data().HasBasesWithFields) {
// Walk the bases the first time, stopping if we find the type. Build a
// set of them so we don't need to walk them again.
if (Bases.empty()) {
bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool {
Base = Base->getCanonicalDecl();
if (RD == Base)
return false;
Bases.insert(Base);
return true;
});
if (RDIsBase)
return true;
} else {
if (Bases.count(RD))
return true;
}
}
if (M.insert(RD).second)
WorkList.push_back(RD);
return false;
};
if (Visit(XFirst))
return true;
while (!WorkList.empty()) {
const CXXRecordDecl *X = WorkList.pop_back_val();
// FIXME: We don't check the bases of X. That matches the standard, but
// that sure looks like a wording bug.
// -- If X is a non-union class type with a non-static data member
// [recurse to each field] that is either of zero size or is the
// first non-static data member of X
// -- If X is a union type, [recurse to union members]
bool IsFirstField = true;
for (auto *FD : X->fields()) {
// FIXME: Should we really care about the type of the first non-static
// data member of a non-union if there are preceding unnamed bit-fields?
if (FD->isUnnamedBitfield())
continue;
if (!IsFirstField && !FD->isZeroSize(Ctx))
continue;
// -- If X is n array type, [visit the element type]
QualType T = Ctx.getBaseElementType(FD->getType());
if (auto *RD = T->getAsCXXRecordDecl())
if (Visit(RD))
return true;
if (!X->isUnion())
IsFirstField = false;
}
}
return false;
}
bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const {
assert(isLambda() && "not a lambda");
// C++2a [expr.prim.lambda.capture]p11:
// The closure type associated with a lambda-expression has no default
// constructor if the lambda-expression has a lambda-capture and a
// defaulted default constructor otherwise. It has a deleted copy
// assignment operator if the lambda-expression has a lambda-capture and
// defaulted copy and move assignment operators otherwise.
//
// C++17 [expr.prim.lambda]p21:
// The closure type associated with a lambda-expression has no default
// constructor and a deleted copy assignment operator.
if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0)
return false;
return getASTContext().getLangOpts().CPlusPlus20;
}
void CXXRecordDecl::addedMember(Decl *D) {
if (!D->isImplicit() &&
!isa<FieldDecl>(D) &&
!isa<IndirectFieldDecl>(D) &&
(!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class ||
cast<TagDecl>(D)->getTagKind() == TTK_Interface))
data().HasOnlyCMembers = false;
// Ignore friends and invalid declarations.
if (D->getFriendObjectKind() || D->isInvalidDecl())
return;
auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
if (FunTmpl)
D = FunTmpl->getTemplatedDecl();
// FIXME: Pass NamedDecl* to addedMember?
Decl *DUnderlying = D;
if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) {
DUnderlying = ND->getUnderlyingDecl();
if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying))
DUnderlying = UnderlyingFunTmpl->getTemplatedDecl();
}
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isVirtual()) {
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class with [...] no virtual functions.
data().Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class...
data().PlainOldData = false;
// C++14 [meta.unary.prop]p4:
// T is a class type [...] with [...] no virtual member functions...
data().Empty = false;
// C++ [class.virtual]p1:
// A class that declares or inherits a virtual function is called a
// polymorphic class.
data().Polymorphic = true;
// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
// A [default constructor, copy/move constructor, or copy/move
// assignment operator for a class X] is trivial [...] if:
// -- class X has no virtual functions [...]
data().HasTrivialSpecialMembers &= SMF_Destructor;
data().HasTrivialSpecialMembersForCall &= SMF_Destructor;
// C++0x [class]p7:
// A standard-layout class is a class that: [...]
// -- has no virtual functions
data().IsStandardLayout = false;
data().IsCXX11StandardLayout = false;
}
}
// Notify the listener if an implicit member was added after the definition
// was completed.
if (!isBeingDefined() && D->isImplicit())
if (ASTMutationListener *L = getASTMutationListener())
L->AddedCXXImplicitMember(data().Definition, D);
// The kind of special member this declaration is, if any.
unsigned SMKind = 0;
// Handle constructors.
if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isInheritingConstructor()) {
// Ignore constructor shadow declarations. They are lazily created and
// so shouldn't affect any properties of the class.
} else {
if (!Constructor->isImplicit()) {
// Note that we have a user-declared constructor.
data().UserDeclaredConstructor = true;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
// Since the POD bit is meant to be C++03 POD-ness, clear it even if
// the type is technically an aggregate in C++0x since it wouldn't be
// in 03.
data().PlainOldData = false;
}
if (Constructor->isDefaultConstructor()) {
SMKind |= SMF_DefaultConstructor;
if (Constructor->isUserProvided())
data().UserProvidedDefaultConstructor = true;
if (Constructor->isConstexpr())
data().HasConstexprDefaultConstructor = true;
if (Constructor->isDefaulted())
data().HasDefaultedDefaultConstructor = true;
}
if (!FunTmpl) {
unsigned Quals;
if (Constructor->isCopyConstructor(Quals)) {
SMKind |= SMF_CopyConstructor;
if (Quals & Qualifiers::Const)
data().HasDeclaredCopyConstructorWithConstParam = true;
} else if (Constructor->isMoveConstructor())
SMKind |= SMF_MoveConstructor;
}
// C++11 [dcl.init.aggr]p1: DR1518
// An aggregate is an array or a class with no user-provided [or]
// explicit [...] constructors
// C++20 [dcl.init.aggr]p1:
// An aggregate is an array or a class with no user-declared [...]
// constructors
if (getASTContext().getLangOpts().CPlusPlus20
? !Constructor->isImplicit()
: (Constructor->isUserProvided() || Constructor->isExplicit()))
data().Aggregate = false;
}
}
// Handle constructors, including those inherited from base classes.
if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) {
// Record if we see any constexpr constructors which are neither copy
// nor move constructors.
// C++1z [basic.types]p10:
// [...] has at least one constexpr constructor or constructor template
// (possibly inherited from a base class) that is not a copy or move
// constructor [...]
if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor())
data().HasConstexprNonCopyMoveConstructor = true;
}
// Handle destructors.
if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
SMKind |= SMF_Destructor;
if (DD->isUserProvided())
data().HasIrrelevantDestructor = false;
// If the destructor is explicitly defaulted and not trivial or not public
// or if the destructor is deleted, we clear HasIrrelevantDestructor in
// finishedDefaultedOrDeletedMember.
// C++11 [class.dtor]p5:
// A destructor is trivial if [...] the destructor is not virtual.
if (DD->isVirtual()) {
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
}
}
// Handle member functions.
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->isCopyAssignmentOperator()) {
SMKind |= SMF_CopyAssignment;
const auto *ParamTy =
Method->getParamDecl(0)->getType()->getAs<ReferenceType>();
if (!ParamTy || ParamTy->getPointeeType().isConstQualified())
data().HasDeclaredCopyAssignmentWithConstParam = true;
}
if (Method->isMoveAssignmentOperator())
SMKind |= SMF_MoveAssignment;
// Keep the list of conversion functions up-to-date.
if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) {
// FIXME: We use the 'unsafe' accessor for the access specifier here,
// because Sema may not have set it yet. That's really just a misdesign
// in Sema. However, LLDB *will* have set the access specifier correctly,
// and adds declarations after the class is technically completed,
// so completeDefinition()'s overriding of the access specifiers doesn't
// work.
AccessSpecifier AS = Conversion->getAccessUnsafe();
if (Conversion->getPrimaryTemplate()) {
// We don't record specializations.
} else {
ASTContext &Ctx = getASTContext();
ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx);
NamedDecl *Primary =
FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion);
if (Primary->getPreviousDecl())
Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()),
Primary, AS);
else
Conversions.addDecl(Ctx, Primary, AS);
}
}
if (SMKind) {
// If this is the first declaration of a special member, we no longer have
// an implicit trivial special member.
data().HasTrivialSpecialMembers &=
data().DeclaredSpecialMembers | ~SMKind;
data().HasTrivialSpecialMembersForCall &=
data().DeclaredSpecialMembers | ~SMKind;
if (!Method->isImplicit() && !Method->isUserProvided()) {
// This method is user-declared but not user-provided. We can't work out
// whether it's trivial yet (not until we get to the end of the class).
// We'll handle this method in finishedDefaultedOrDeletedMember.
} else if (Method->isTrivial()) {
data().HasTrivialSpecialMembers |= SMKind;
data().HasTrivialSpecialMembersForCall |= SMKind;
} else if (Method->isTrivialForCall()) {
data().HasTrivialSpecialMembersForCall |= SMKind;
data().DeclaredNonTrivialSpecialMembers |= SMKind;
} else {
data().DeclaredNonTrivialSpecialMembers |= SMKind;
// If this is a user-provided function, do not set
// DeclaredNonTrivialSpecialMembersForCall here since we don't know
// yet whether the method would be considered non-trivial for the
// purpose of calls (attribute "trivial_abi" can be dropped from the
// class later, which can change the special method's triviality).
if (!Method->isUserProvided())
data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
}
// Note when we have declared a declared special member, and suppress the
// implicit declaration of this special member.
data().DeclaredSpecialMembers |= SMKind;
if (!Method->isImplicit()) {
data().UserDeclaredSpecialMembers |= SMKind;
// C++03 [class]p4:
// A POD-struct is an aggregate class that has [...] no user-defined
// copy assignment operator and no user-defined destructor.
//
// Since the POD bit is meant to be C++03 POD-ness, and in C++03,
// aggregates could not have any constructors, clear it even for an
// explicitly defaulted or deleted constructor.
// type is technically an aggregate in C++0x since it wouldn't be in 03.
//
// Also, a user-declared move assignment operator makes a class non-POD.
// This is an extension in C++03.
data().PlainOldData = false;
}
}
return;
}
// Handle non-static data members.
if (const auto *Field = dyn_cast<FieldDecl>(D)) {
ASTContext &Context = getASTContext();
// C++2a [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has all non-static data members and bit-fields in the class and
// its base classes first declared in the same class
if (data().HasBasesWithFields)
data().IsStandardLayout = false;
// C++ [class.bit]p2:
// A declaration for a bit-field that omits the identifier declares an
// unnamed bit-field. Unnamed bit-fields are not members and cannot be
// initialized.
if (Field->isUnnamedBitfield()) {
// C++ [meta.unary.prop]p4: [LWG2358]
// T is a class type [...] with [...] no unnamed bit-fields of non-zero
// length
if (data().Empty && !Field->isZeroLengthBitField(Context) &&
Context.getLangOpts().getClangABICompat() >
LangOptions::ClangABI::Ver6)
data().Empty = false;
return;
}
// C++11 [class]p7:
// A standard-layout class is a class that:
// -- either has no non-static data members in the most derived class
// [...] or has no base classes with non-static data members
if (data().HasBasesWithNonStaticDataMembers)
data().IsCXX11StandardLayout = false;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...] no
// private or protected non-static data members (clause 11).
//
// A POD must be an aggregate.
if (D->getAccess() == AS_private || D->getAccess() == AS_protected) {
data().Aggregate = false;
data().PlainOldData = false;
// C++20 [temp.param]p7:
// A structural type is [...] a literal class type [for which] all
// non-static data members are public
data().StructuralIfLiteral = false;
}
// Track whether this is the first field. We use this when checking
// whether the class is standard-layout below.
bool IsFirstField = !data().HasPrivateFields &&
!data().HasProtectedFields && !data().HasPublicFields;
// C++0x [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has the same access control for all non-static data members,
switch (D->getAccess()) {
case AS_private: data().HasPrivateFields = true; break;
case AS_protected: data().HasProtectedFields = true; break;
case AS_public: data().HasPublicFields = true; break;
case AS_none: llvm_unreachable("Invalid access specifier");
};
if ((data().HasPrivateFields + data().HasProtectedFields +
data().HasPublicFields) > 1) {
data().IsStandardLayout = false;
data().IsCXX11StandardLayout = false;
}
// Keep track of the presence of mutable fields.
if (Field->isMutable()) {
data().HasMutableFields = true;
// C++20 [temp.param]p7:
// A structural type is [...] a literal class type [for which] all
// non-static data members are public
data().StructuralIfLiteral = false;
}
// C++11 [class.union]p8, DR1460:
// If X is a union, a non-static data member of X that is not an anonymous
// union is a variant member of X.
if (isUnion() && !Field->isAnonymousStructOrUnion())
data().HasVariantMembers = true;
// C++0x [class]p9:
// A POD struct is a class that is both a trivial class and a
// standard-layout class, and has no non-static data members of type
// non-POD struct, non-POD union (or array of such types).
//
// Automatic Reference Counting: the presence of a member of Objective-C pointer type
// that does not explicitly have no lifetime makes the class a non-POD.
QualType T = Context.getBaseElementType(Field->getType());
if (T->isObjCRetainableType() || T.isObjCGCStrong()) {
if (T.hasNonTrivialObjCLifetime()) {
// Objective-C Automatic Reference Counting:
// If a class has a non-static data member of Objective-C pointer
// type (or array thereof), it is a non-POD type and its
// default constructor (if any), copy constructor, move constructor,
// copy assignment operator, move assignment operator, and destructor are
// non-trivial.
setHasObjectMember(true);
struct DefinitionData &Data = data();
Data.PlainOldData = false;
Data.HasTrivialSpecialMembers = 0;
// __strong or __weak fields do not make special functions non-trivial
// for the purpose of calls.
Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime();
if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak)
data().HasTrivialSpecialMembersForCall = 0;
// Structs with __weak fields should never be passed directly.
if (LT == Qualifiers::OCL_Weak)
setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
Data.HasIrrelevantDestructor = false;
if (isUnion()) {
data().DefaultedCopyConstructorIsDeleted = true;
data().DefaultedMoveConstructorIsDeleted = true;
data().DefaultedCopyAssignmentIsDeleted = true;
data().DefaultedMoveAssignmentIsDeleted = true;
data().DefaultedDestructorIsDeleted = true;
data().NeedOverloadResolutionForCopyConstructor = true;
data().NeedOverloadResolutionForMoveConstructor = true;
data().NeedOverloadResolutionForCopyAssignment = true;
data().NeedOverloadResolutionForMoveAssignment = true;
data().NeedOverloadResolutionForDestructor = true;
}
} else if (!Context.getLangOpts().ObjCAutoRefCount) {
setHasObjectMember(true);
}
} else if (!T.isCXX98PODType(Context))
data().PlainOldData = false;
if (T->isReferenceType()) {
if (!Field->hasInClassInitializer())
data().HasUninitializedReferenceMember = true;
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type [...] reference,
data().IsStandardLayout = false;
data().IsCXX11StandardLayout = false;
// C++1z [class.copy.ctor]p10:
// A defaulted copy constructor for a class X is defined as deleted if X has:
// -- a non-static data member of rvalue reference type
if (T->isRValueReferenceType())
data().DefaultedCopyConstructorIsDeleted = true;
}
if (!Field->hasInClassInitializer() && !Field->isMutable()) {
if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) {
if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit())
data().HasUninitializedFields = true;
} else {
data().HasUninitializedFields = true;
}
}
// Record if this field is the first non-literal or volatile field or base.
if (!T->isLiteralType(Context) || T.isVolatileQualified())
data().HasNonLiteralTypeFieldsOrBases = true;
if (Field->hasInClassInitializer() ||
(Field->isAnonymousStructOrUnion() &&
Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) {
data().HasInClassInitializer = true;
// C++11 [class]p5:
// A default constructor is trivial if [...] no non-static data member
// of its class has a brace-or-equal-initializer.
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++11 [dcl.init.aggr]p1:
// An aggregate is a [...] class with [...] no
// brace-or-equal-initializers for non-static data members.
//
// This rule was removed in C++14.
if (!getASTContext().getLangOpts().CPlusPlus14)
data().Aggregate = false;
// C++11 [class]p10:
// A POD struct is [...] a trivial class.
data().PlainOldData = false;
}
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined
// as deleted if X has:
// -- a non-static data member of reference type
if (T->isReferenceType()) {
data().DefaultedCopyAssignmentIsDeleted = true;
data().DefaultedMoveAssignmentIsDeleted = true;
}
// Bitfields of length 0 are also zero-sized, but we already bailed out for
// those because they are always unnamed.
bool IsZeroSize = Field->isZeroSize(Context);
if (const auto *RecordTy = T->getAs<RecordType>()) {
auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl());
if (FieldRec->getDefinition()) {
addedClassSubobject(FieldRec);
// We may need to perform overload resolution to determine whether a
// field can be moved if it's const or volatile qualified.
if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) {
// We need to care about 'const' for the copy constructor because an
// implicit copy constructor might be declared with a non-const
// parameter.
data().NeedOverloadResolutionForCopyConstructor = true;
data().NeedOverloadResolutionForMoveConstructor = true;
data().NeedOverloadResolutionForCopyAssignment = true;
data().NeedOverloadResolutionForMoveAssignment = true;
}
// C++11 [class.ctor]p5, C++11 [class.copy]p11:
// A defaulted [special member] for a class X is defined as
// deleted if:
// -- X is a union-like class that has a variant member with a
// non-trivial [corresponding special member]
if (isUnion()) {
if (FieldRec->hasNonTrivialCopyConstructor())
data().DefaultedCopyConstructorIsDeleted = true;
if (FieldRec->hasNonTrivialMoveConstructor())
data().DefaultedMoveConstructorIsDeleted = true;
if (FieldRec->hasNonTrivialCopyAssignment())
data().DefaultedCopyAssignmentIsDeleted = true;
if (FieldRec->hasNonTrivialMoveAssignment())
data().DefaultedMoveAssignmentIsDeleted = true;
if (FieldRec->hasNonTrivialDestructor())
data().DefaultedDestructorIsDeleted = true;
}
// For an anonymous union member, our overload resolution will perform
// overload resolution for its members.
if (Field->isAnonymousStructOrUnion()) {
data().NeedOverloadResolutionForCopyConstructor |=
FieldRec->data().NeedOverloadResolutionForCopyConstructor;
data().NeedOverloadResolutionForMoveConstructor |=
FieldRec->data().NeedOverloadResolutionForMoveConstructor;
data().NeedOverloadResolutionForCopyAssignment |=
FieldRec->data().NeedOverloadResolutionForCopyAssignment;
data().NeedOverloadResolutionForMoveAssignment |=
FieldRec->data().NeedOverloadResolutionForMoveAssignment;
data().NeedOverloadResolutionForDestructor |=
FieldRec->data().NeedOverloadResolutionForDestructor;
}
// C++0x [class.ctor]p5:
// A default constructor is trivial [...] if:
// -- for all the non-static data members of its class that are of
// class type (or array thereof), each such class has a trivial
// default constructor.
if (!FieldRec->hasTrivialDefaultConstructor())
data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor;
// C++0x [class.copy]p13:
// A copy/move constructor for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the constructor selected to copy/move that
// member is trivial;
if (!FieldRec->hasTrivialCopyConstructor())
data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor;
if (!FieldRec->hasTrivialCopyConstructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor;
// If the field doesn't have a simple move constructor, we'll eagerly
// declare the move constructor for this class and we'll decide whether
// it's trivial then.
if (!FieldRec->hasTrivialMoveConstructor())
data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor;
if (!FieldRec->hasTrivialMoveConstructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor;
// C++0x [class.copy]p27:
// A copy/move assignment operator for class X is trivial if [...]
// [...]
// -- for each non-static data member of X that is of class type (or
// an array thereof), the assignment operator selected to
// copy/move that member is trivial;
if (!FieldRec->hasTrivialCopyAssignment())
data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment;
// If the field doesn't have a simple move assignment, we'll eagerly
// declare the move assignment for this class and we'll decide whether
// it's trivial then.
if (!FieldRec->hasTrivialMoveAssignment())
data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment;
if (!FieldRec->hasTrivialDestructor())
data().HasTrivialSpecialMembers &= ~SMF_Destructor;
if (!FieldRec->hasTrivialDestructorForCall())
data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor;
if (!FieldRec->hasIrrelevantDestructor())
data().HasIrrelevantDestructor = false;
if (FieldRec->hasObjectMember())
setHasObjectMember(true);
if (FieldRec->hasVolatileMember())
setHasVolatileMember(true);
if (FieldRec->getArgPassingRestrictions() ==
RecordDecl::APK_CanNeverPassInRegs)
setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
// C++0x [class]p7:
// A standard-layout class is a class that:
// -- has no non-static data members of type non-standard-layout
// class (or array of such types) [...]
if (!FieldRec->isStandardLayout())
data().IsStandardLayout = false;
if (!FieldRec->isCXX11StandardLayout())
data().IsCXX11StandardLayout = false;
// C++2a [class]p7:
// A standard-layout class is a class that:
// [...]
// -- has no element of the set M(S) of types as a base class.
if (data().IsStandardLayout &&
(isUnion() || IsFirstField || IsZeroSize) &&
hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec))
data().IsStandardLayout = false;
// C++11 [class]p7:
// A standard-layout class is a class that:
// -- has no base classes of the same type as the first non-static
// data member
if (data().IsCXX11StandardLayout && IsFirstField) {
// FIXME: We should check all base classes here, not just direct
// base classes.
for (const auto &BI : bases()) {
if (Context.hasSameUnqualifiedType(BI.getType(), T)) {
data().IsCXX11StandardLayout = false;
break;
}
}
}
// Keep track of the presence of mutable fields.
if (FieldRec->hasMutableFields())
data().HasMutableFields = true;
if (Field->isMutable()) {
// Our copy constructor/assignment might call something other than
// the subobject's copy constructor/assignment if it's mutable and of
// class type.
data().NeedOverloadResolutionForCopyConstructor = true;
data().NeedOverloadResolutionForCopyAssignment = true;
}
// C++11 [class.copy]p13:
// If the implicitly-defined constructor would satisfy the
// requirements of a constexpr constructor, the implicitly-defined
// constructor is constexpr.
// C++11 [dcl.constexpr]p4:
// -- every constructor involved in initializing non-static data
// members [...] shall be a constexpr constructor
if (!Field->hasInClassInitializer() &&
!FieldRec->hasConstexprDefaultConstructor() && !isUnion())
// The standard requires any in-class initializer to be a constant
// expression. We consider this to be a defect.
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++11 [class.copy]p8:
// The implicitly-declared copy constructor for a class X will have
// the form 'X::X(const X&)' if each potentially constructed subobject
// of a class type M (or array thereof) has a copy constructor whose
// first parameter is of type 'const M&' or 'const volatile M&'.
if (!FieldRec->hasCopyConstructorWithConstParam())
data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false;
// C++11 [class.copy]p18:
// The implicitly-declared copy assignment oeprator for a class X will
// have the form 'X& X::operator=(const X&)' if [...] for all the
// non-static data members of X that are of a class type M (or array
// thereof), each such class type has a copy assignment operator whose
// parameter is of type 'const M&', 'const volatile M&' or 'M'.
if (!FieldRec->hasCopyAssignmentWithConstParam())
data().ImplicitCopyAssignmentHasConstParam = false;
if (FieldRec->hasUninitializedReferenceMember() &&
!Field->hasInClassInitializer())
data().HasUninitializedReferenceMember = true;
// C++11 [class.union]p8, DR1460:
// a non-static data member of an anonymous union that is a member of
// X is also a variant member of X.
if (FieldRec->hasVariantMembers() &&
Field->isAnonymousStructOrUnion())
data().HasVariantMembers = true;
}
} else {
// Base element type of field is a non-class type.
if (!T->isLiteralType(Context) ||
(!Field->hasInClassInitializer() && !isUnion() &&
!Context.getLangOpts().CPlusPlus20))
data().DefaultedDefaultConstructorIsConstexpr = false;
// C++11 [class.copy]p23:
// A defaulted copy/move assignment operator for a class X is defined
// as deleted if X has:
// -- a non-static data member of const non-class type (or array
// thereof)
if (T.isConstQualified()) {
data().DefaultedCopyAssignmentIsDeleted = true;
data().DefaultedMoveAssignmentIsDeleted = true;
}
// C++20 [temp.param]p7:
// A structural type is [...] a literal class type [for which] the
// types of all non-static data members are structural types or
// (possibly multidimensional) array thereof
// We deal with class types elsewhere.
if (!T->isStructuralType())
data().StructuralIfLiteral = false;
}
// C++14 [meta.unary.prop]p4:
// T is a class type [...] with [...] no non-static data members other
// than subobjects of zero size
if (data().Empty && !IsZeroSize)
data().Empty = false;
}
// Handle using declarations of conversion functions.
if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) {
if (Shadow->getDeclName().getNameKind()
== DeclarationName::CXXConversionFunctionName) {
ASTContext &Ctx = getASTContext();
data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess());
}
}
if (const auto *Using = dyn_cast<UsingDecl>(D)) {
if (Using->getDeclName().getNameKind() ==
DeclarationName::CXXConstructorName) {
data().HasInheritedConstructor = true;
// C++1z [dcl.init.aggr]p1:
// An aggregate is [...] a class [...] with no inherited constructors
data().Aggregate = false;
}
if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal)
data().HasInheritedAssignment = true;
}
}
void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) {
assert(!D->isImplicit() && !D->isUserProvided());
// The kind of special member this declaration is, if any.
unsigned SMKind = 0;
if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isDefaultConstructor()) {
SMKind |= SMF_DefaultConstructor;
if (Constructor->isConstexpr())
data().HasConstexprDefaultConstructor = true;
}
if (Constructor->isCopyConstructor())
SMKind |= SMF_CopyConstructor;
else if (Constructor->isMoveConstructor())
SMKind |= SMF_MoveConstructor;
else if (Constructor->isConstexpr())
// We may now know that the constructor is constexpr.
data().HasConstexprNonCopyMoveConstructor = true;
} else if (isa<CXXDestructorDecl>(D)) {
SMKind |= SMF_Destructor;
if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted())
data().HasIrrelevantDestructor = false;
} else if (D->isCopyAssignmentOperator())
SMKind |= SMF_CopyAssignment;
else if (D->isMoveAssignmentOperator())
SMKind |= SMF_MoveAssignment;
// Update which trivial / non-trivial special members we have.
// addedMember will have skipped this step for this member.
if (D->isTrivial())
data().HasTrivialSpecialMembers |= SMKind;
else
data().DeclaredNonTrivialSpecialMembers |= SMKind;
}
void CXXRecordDecl::setCaptures(ASTContext &Context,
ArrayRef<LambdaCapture> Captures) {
CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData();
// Copy captures.
Data.NumCaptures = Captures.size();
Data.NumExplicitCaptures = 0;
Data.Captures = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) *
Captures.size());
LambdaCapture *ToCapture = Data.Captures;
for (unsigned I = 0, N = Captures.size(); I != N; ++I) {
if (Captures[I].isExplicit())
++Data.NumExplicitCaptures;
*ToCapture++ = Captures[I];
}
if (!lambdaIsDefaultConstructibleAndAssignable())
Data.DefaultedCopyAssignmentIsDeleted = true;
}
void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) {
unsigned SMKind = 0;
if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
if (Constructor->isCopyConstructor())
SMKind = SMF_CopyConstructor;
else if (Constructor->isMoveConstructor())
SMKind = SMF_MoveConstructor;
} else if (isa<CXXDestructorDecl>(D))
SMKind = SMF_Destructor;
if (D->isTrivialForCall())
data().HasTrivialSpecialMembersForCall |= SMKind;
else
data().DeclaredNonTrivialSpecialMembersForCall |= SMKind;
}
bool CXXRecordDecl::isCLike() const {
if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface ||
!TemplateOrInstantiation.isNull())
return false;
if (!hasDefinition())
return true;
return isPOD() && data().HasOnlyCMembers;
}
bool CXXRecordDecl::isGenericLambda() const {
if (!isLambda()) return false;
return getLambdaData().IsGenericLambda;
}
#ifndef NDEBUG
static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) {
for (auto *D : R)
if (!declaresSameEntity(D, R.front()))
return false;
return true;
}
#endif
static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) {
if (!RD.isLambda()) return nullptr;
DeclarationName Name =
RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call);
DeclContext::lookup_result Calls = RD.lookup(Name);
assert(!Calls.empty() && "Missing lambda call operator!");
assert(allLookupResultsAreTheSame(Calls) &&
"More than one lambda call operator!");
return Calls.front();
}
FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const {
NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
return dyn_cast_or_null<FunctionTemplateDecl>(CallOp);
}
CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const {
NamedDecl *CallOp = getLambdaCallOperatorHelper(*this);
if (CallOp == nullptr)
return nullptr;
if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp))
return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl());
return cast<CXXMethodDecl>(CallOp);
}
CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const {
CXXMethodDecl *CallOp = getLambdaCallOperator();
CallingConv CC = CallOp->getType()->getAs<FunctionType>()->getCallConv();
return getLambdaStaticInvoker(CC);
}
static DeclContext::lookup_result
getLambdaStaticInvokers(const CXXRecordDecl &RD) {
assert(RD.isLambda() && "Must be a lambda");
DeclarationName Name =
&RD.getASTContext().Idents.get(getLambdaStaticInvokerName());
return RD.lookup(Name);
}
static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) {
if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(ND))
return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl());
return cast<CXXMethodDecl>(ND);
}
CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const {
if (!isLambda())
return nullptr;
DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this);
for (NamedDecl *ND : Invoker) {
const FunctionType *FTy =
cast<ValueDecl>(ND->getAsFunction())->getType()->getAs<FunctionType>();
if (FTy->getCallConv() == CC)
return getInvokerAsMethod(ND);
}
return nullptr;
}
void CXXRecordDecl::getCaptureFields(
llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
FieldDecl *&ThisCapture) const {
Captures.clear();
ThisCapture = nullptr;
LambdaDefinitionData &Lambda = getLambdaData();
RecordDecl::field_iterator Field = field_begin();
for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures;
C != CEnd; ++C, ++Field) {
if (C->capturesThis())
ThisCapture = *Field;
else if (C->capturesVariable())
Captures[C->getCapturedVar()] = *Field;
}
assert(Field == field_end());
}
TemplateParameterList *
CXXRecordDecl::getGenericLambdaTemplateParameterList() const {
if (!isGenericLambda()) return nullptr;
CXXMethodDecl *CallOp = getLambdaCallOperator();
if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate())
return Tmpl->getTemplateParameters();
return nullptr;
}
ArrayRef<NamedDecl *>
CXXRecordDecl::getLambdaExplicitTemplateParameters() const {
TemplateParameterList *List = getGenericLambdaTemplateParameterList();
if (!List)
return {};
assert(std::is_partitioned(List->begin(), List->end(),
[](const NamedDecl *D) { return !D->isImplicit(); })
&& "Explicit template params should be ordered before implicit ones");
const auto ExplicitEnd = llvm::partition_point(
*List, [](const NamedDecl *D) { return !D->isImplicit(); });
return llvm::makeArrayRef(List->begin(), ExplicitEnd);
}
Decl *CXXRecordDecl::getLambdaContextDecl() const {
assert(isLambda() && "Not a lambda closure type!");
ExternalASTSource *Source = getParentASTContext().getExternalSource();
return getLambdaData().ContextDecl.get(Source);
}
static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) {
QualType T =
cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction())
->getConversionType();
return Context.getCanonicalType(T);
}
/// Collect the visible conversions of a base class.
///
/// \param Record a base class of the class we're considering
/// \param InVirtual whether this base class is a virtual base (or a base
/// of a virtual base)
/// \param Access the access along the inheritance path to this base
/// \param ParentHiddenTypes the conversions provided by the inheritors
/// of this base
/// \param Output the set to which to add conversions from non-virtual bases
/// \param VOutput the set to which to add conversions from virtual bases
/// \param HiddenVBaseCs the set of conversions which were hidden in a
/// virtual base along some inheritance path
static void CollectVisibleConversions(
ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual,
AccessSpecifier Access,
const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes,
ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput,
llvm::SmallPtrSet<NamedDecl *, 8> &HiddenVBaseCs) {
// The set of types which have conversions in this class or its
// subclasses. As an optimization, we don't copy the derived set
// unless it might change.
const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes;
llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer;
// Collect the direct conversions and figure out which conversions
// will be hidden in the subclasses.
CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
if (ConvI != ConvE) {
HiddenTypesBuffer = ParentHiddenTypes;
HiddenTypes = &HiddenTypesBuffer;
for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) {
CanQualType ConvType(GetConversionType(Context, I.getDecl()));
bool Hidden = ParentHiddenTypes.count(ConvType);
if (!Hidden)
HiddenTypesBuffer.insert(ConvType);
// If this conversion is hidden and we're in a virtual base,
// remember that it's hidden along some inheritance path.
if (Hidden && InVirtual)
HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()));
// If this conversion isn't hidden, add it to the appropriate output.
else if (!Hidden) {
AccessSpecifier IAccess
= CXXRecordDecl::MergeAccess(Access, I.getAccess());
if (InVirtual)
VOutput.addDecl(I.getDecl(), IAccess);
else
Output.addDecl(Context, I.getDecl(), IAccess);
}
}
}
// Collect information recursively from any base classes.
for (const auto &I : Record->bases()) {
const auto *RT = I.getType()->getAs<RecordType>();
if (!RT) continue;
AccessSpecifier BaseAccess
= CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier());
bool BaseInVirtual = InVirtual || I.isVirtual();
auto *Base = cast<CXXRecordDecl>(RT->getDecl());
CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess,
*HiddenTypes, Output, VOutput, HiddenVBaseCs);
}
}
/// Collect the visible conversions of a class.
///
/// This would be extremely straightforward if it weren't for virtual
/// bases. It might be worth special-casing that, really.
static void CollectVisibleConversions(ASTContext &Context,
const CXXRecordDecl *Record,
ASTUnresolvedSet &Output) {
// The collection of all conversions in virtual bases that we've
// found. These will be added to the output as long as they don't
// appear in the hidden-conversions set.
UnresolvedSet<8> VBaseCs;
// The set of conversions in virtual bases that we've determined to
// be hidden.
llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs;
// The set of types hidden by classes derived from this one.
llvm::SmallPtrSet<CanQualType, 8> HiddenTypes;
// Go ahead and collect the direct conversions and add them to the
// hidden-types set.
CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin();
CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end();
Output.append(Context, ConvI, ConvE);
for (; ConvI != ConvE; ++ConvI)
HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl()));
// Recursively collect conversions from base classes.
for (const auto &I : Record->bases()) {
const auto *RT = I.getType()->getAs<RecordType>();
if (!RT) continue;
CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()),
I.isVirtual(), I.getAccessSpecifier(),
HiddenTypes, Output, VBaseCs, HiddenVBaseCs);
}
// Add any unhidden conversions provided by virtual bases.
for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end();
I != E; ++I) {
if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())))
Output.addDecl(Context, I.getDecl(), I.getAccess());
}
}
/// getVisibleConversionFunctions - get all conversion functions visible
/// in current class; including conversion function templates.
llvm::iterator_range<CXXRecordDecl::conversion_iterator>
CXXRecordDecl::getVisibleConversionFunctions() const {
ASTContext &Ctx = getASTContext();
ASTUnresolvedSet *Set;
if (bases_begin() == bases_end()) {
// If root class, all conversions are visible.
Set = &data().Conversions.get(Ctx);
} else {
Set = &data().VisibleConversions.get(Ctx);
// If visible conversion list is not evaluated, evaluate it.
if (!data().ComputedVisibleConversions) {
CollectVisibleConversions(Ctx, this, *Set);
data().ComputedVisibleConversions = true;
}
}
return llvm::make_range(Set->begin(), Set->end());
}
void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) {
// This operation is O(N) but extremely rare. Sema only uses it to
// remove UsingShadowDecls in a class that were followed by a direct
// declaration, e.g.:
// class A : B {
// using B::operator int;
// operator int();
// };
// This is uncommon by itself and even more uncommon in conjunction
// with sufficiently large numbers of directly-declared conversions
// that asymptotic behavior matters.
ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext());
for (unsigned I = 0, E = Convs.size(); I != E; ++I) {
if (Convs[I].getDecl() == ConvDecl) {
Convs.erase(I);
assert(llvm::find(Convs, ConvDecl) == Convs.end() &&
"conversion was found multiple times in unresolved set");
return;
}
}
llvm_unreachable("conversion not found in set!");
}
CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
return nullptr;
}
MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
}
void
CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
TemplateSpecializationKind TSK) {
assert(TemplateOrInstantiation.isNull() &&
"Previous template or instantiation?");
assert(!isa<ClassTemplatePartialSpecializationDecl>(this));
TemplateOrInstantiation
= new (getASTContext()) MemberSpecializationInfo(RD, TSK);
}
ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const {
return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>();
}
void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) {
TemplateOrInstantiation = Template;
}
TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this))
return Spec->getSpecializationKind();
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
return MSInfo->getTemplateSpecializationKind();
return TSK_Undeclared;
}
void
CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
Spec->setSpecializationKind(TSK);
return;
}
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
MSInfo->setTemplateSpecializationKind(TSK);
return;
}
llvm_unreachable("Not a class template or member class specialization");
}
const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const {
auto GetDefinitionOrSelf =
[](const CXXRecordDecl *D) -> const CXXRecordDecl * {
if (auto *Def = D->getDefinition())
return Def;
return D;
};
// If it's a class template specialization, find the template or partial
// specialization from which it was instantiated.
if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
auto From = TD->getInstantiatedFrom();
if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) {
while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) {
if (NewCTD->isMemberSpecialization())
break;
CTD = NewCTD;
}
return GetDefinitionOrSelf(CTD->getTemplatedDecl());
}
if (auto *CTPSD =
From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) {
if (NewCTPSD->isMemberSpecialization())
break;
CTPSD = NewCTPSD;
}
return GetDefinitionOrSelf(CTPSD);
}
}
if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
const CXXRecordDecl *RD = this;
while (auto *NewRD = RD->getInstantiatedFromMemberClass())
RD = NewRD;
return GetDefinitionOrSelf(RD);
}
}
assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) &&
"couldn't find pattern for class template instantiation");
return nullptr;
}
CXXDestructorDecl *CXXRecordDecl::getDestructor() const {
ASTContext &Context = getASTContext();
QualType ClassType = Context.getTypeDeclType(this);
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(
Context.getCanonicalType(ClassType));
DeclContext::lookup_result R = lookup(Name);
return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front());
}
bool CXXRecordDecl::isAnyDestructorNoReturn() const {
// Destructor is noreturn.
if (const CXXDestructorDecl *Destructor = getDestructor())
if (Destructor->isNoReturn())
return true;
// Check base classes destructor for noreturn.
for (const auto &Base : bases())
if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl())
if (RD->isAnyDestructorNoReturn())
return true;
// Check fields for noreturn.
for (const auto *Field : fields())
if (const CXXRecordDecl *RD =
Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
if (RD->isAnyDestructorNoReturn())
return true;
// All destructors are not noreturn.
return false;
}
static bool isDeclContextInNamespace(const DeclContext *DC) {
while (!DC->isTranslationUnit()) {
if (DC->isNamespace())
return true;
DC = DC->getParent();
}
return false;
}
bool CXXRecordDecl::isInterfaceLike() const {
assert(hasDefinition() && "checking for interface-like without a definition");
// All __interfaces are inheritently interface-like.
if (isInterface())
return true;
// Interface-like types cannot have a user declared constructor, destructor,
// friends, VBases, conversion functions, or fields. Additionally, lambdas
// cannot be interface types.
if (isLambda() || hasUserDeclaredConstructor() ||
hasUserDeclaredDestructor() || !field_empty() || hasFriends() ||
getNumVBases() > 0 || conversion_end() - conversion_begin() > 0)
return false;
// No interface-like type can have a method with a definition.
for (const auto *const Method : methods())
if (Method->isDefined() && !Method->isImplicit())
return false;
// Check "Special" types.
const auto *Uuid = getAttr<UuidAttr>();
// MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an
// extern C++ block directly in the TU. These are only valid if in one
// of these two situations.
if (Uuid && isStruct() && !getDeclContext()->isExternCContext() &&
!isDeclContextInNamespace(getDeclContext()) &&
((getName() == "IUnknown" &&
Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") ||
(getName() == "IDispatch" &&
Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) {
if (getNumBases() > 0)
return false;
return true;
}
// FIXME: Any access specifiers is supposed to make this no longer interface
// like.
// If this isn't a 'special' type, it must have a single interface-like base.
if (getNumBases() != 1)
return false;
const auto BaseSpec = *bases_begin();
if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public)
return false;
const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl();
if (Base->isInterface() || !Base->isInterfaceLike())
return false;
return true;
}
void CXXRecordDecl::completeDefinition() {
completeDefinition(nullptr);
}
void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) {
RecordDecl::completeDefinition();
// If the class may be abstract (but hasn't been marked as such), check for
// any pure final overriders.
if (mayBeAbstract()) {
CXXFinalOverriderMap MyFinalOverriders;
if (!FinalOverriders) {
getFinalOverriders(MyFinalOverriders);
FinalOverriders = &MyFinalOverriders;
}
bool Done = false;
for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(),
MEnd = FinalOverriders->end();
M != MEnd && !Done; ++M) {
for (OverridingMethods::iterator SO = M->second.begin(),
SOEnd = M->second.end();
SO != SOEnd && !Done; ++SO) {
assert(SO->second.size() > 0 &&
"All virtual functions have overriding virtual functions");
// C++ [class.abstract]p4:
// A class is abstract if it contains or inherits at least one
// pure virtual function for which the final overrider is pure
// virtual.
if (SO->second.front().Method->isPure()) {
data().Abstract = true;
Done = true;
break;
}
}
}
}
// Set access bits correctly on the directly-declared conversions.
for (conversion_iterator I = conversion_begin(), E = conversion_end();
I != E; ++I)
I.setAccess((*I)->getAccess());
}
bool CXXRecordDecl::mayBeAbstract() const {
if (data().Abstract || isInvalidDecl() || !data().Polymorphic ||
isDependentContext())
return false;
for (const auto &B : bases()) {
const auto *BaseDecl =
cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl());
if (BaseDecl->isAbstract())
return true;
}
return false;
}
bool CXXRecordDecl::isEffectivelyFinal() const {
auto *Def = getDefinition();
if (!Def)
return false;
if (Def->hasAttr<FinalAttr>())
return true;
if (const auto *Dtor = Def->getDestructor())
if (Dtor->hasAttr<FinalAttr>())
return true;
return false;
}
void CXXDeductionGuideDecl::anchor() {}
bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const {
if ((getKind() != Other.getKind() ||
getKind() == ExplicitSpecKind::Unresolved)) {
if (getKind() == ExplicitSpecKind::Unresolved &&
Other.getKind() == ExplicitSpecKind::Unresolved) {
ODRHash SelfHash, OtherHash;
SelfHash.AddStmt(getExpr());
OtherHash.AddStmt(Other.getExpr());
return SelfHash.CalculateHash() == OtherHash.CalculateHash();
} else
return false;
}
return true;
}
ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) {
switch (Function->getDeclKind()) {
case Decl::Kind::CXXConstructor:
return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier();
case Decl::Kind::CXXConversion:
return cast<CXXConversionDecl>(Function)->getExplicitSpecifier();
case Decl::Kind::CXXDeductionGuide:
return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier();
default:
return {};
}
}
CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create(
ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T,
TypeSourceInfo *TInfo, SourceLocation EndLocation) {
return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T,
TInfo, EndLocation);
}
CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) CXXDeductionGuideDecl(
C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(),
QualType(), nullptr, SourceLocation());
}
RequiresExprBodyDecl *RequiresExprBodyDecl::Create(
ASTContext &C, DeclContext *DC, SourceLocation StartLoc) {
return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc);
}
RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation());
}
void CXXMethodDecl::anchor() {}
bool CXXMethodDecl::isStatic() const {
const CXXMethodDecl *MD = getCanonicalDecl();
if (MD->getStorageClass() == SC_Static)
return true;
OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator();
return isStaticOverloadedOperator(OOK);
}
static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD,
const CXXMethodDecl *BaseMD) {
for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) {
if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl())
return true;
if (recursivelyOverrides(MD, BaseMD))
return true;
}
return false;
}
CXXMethodDecl *
CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD,
bool MayBeBase) {
if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl())
return this;
// Lookup doesn't work for destructors, so handle them separately.
if (isa<CXXDestructorDecl>(this)) {
CXXMethodDecl *MD = RD->getDestructor();
if (MD) {
if (recursivelyOverrides(MD, this))
return MD;
if (MayBeBase && recursivelyOverrides(this, MD))
return MD;
}
return nullptr;
}
for (auto *ND : RD->lookup(getDeclName())) {
auto *MD = dyn_cast<CXXMethodDecl>(ND);
if (!MD)
continue;
if (recursivelyOverrides(MD, this))
return MD;
if (MayBeBase && recursivelyOverrides(this, MD))
return MD;
}
return nullptr;
}
CXXMethodDecl *
CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD,
bool MayBeBase) {
if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase))
return MD;
llvm::SmallVector<CXXMethodDecl*, 4> FinalOverriders;
auto AddFinalOverrider = [&](CXXMethodDecl *D) {
// If this function is overridden by a candidate final overrider, it is not
// a final overrider.
for (CXXMethodDecl *OtherD : FinalOverriders) {
if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D))
return;
}
// Other candidate final overriders might be overridden by this function.
FinalOverriders.erase(
std::remove_if(FinalOverriders.begin(), FinalOverriders.end(),
[&](CXXMethodDecl *OtherD) {
return recursivelyOverrides(D, OtherD);
}),
FinalOverriders.end());
FinalOverriders.push_back(D);
};
for (const auto &I : RD->bases()) {
const RecordType *RT = I.getType()->getAs<RecordType>();
if (!RT)
continue;
const auto *Base = cast<CXXRecordDecl>(RT->getDecl());
if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base))
AddFinalOverrider(D);
}
return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr;
}
CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC, bool isInline,
ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation,
Expr *TrailingRequiresClause) {
return new (C, RD)
CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC,
isInline, ConstexprKind, EndLocation,
TrailingRequiresClause);
}
CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) CXXMethodDecl(
CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(),
QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation(),
nullptr);
}
CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base,
bool IsAppleKext) {
assert(isVirtual() && "this method is expected to be virtual");
// When building with -fapple-kext, all calls must go through the vtable since
// the kernel linker can do runtime patching of vtables.
if (IsAppleKext)
return nullptr;
// If the member function is marked 'final', we know that it can't be
// overridden and can therefore devirtualize it unless it's pure virtual.
if (hasAttr<FinalAttr>())
return isPure() ? nullptr : this;
// If Base is unknown, we cannot devirtualize.
if (!Base)
return nullptr;
// If the base expression (after skipping derived-to-base conversions) is a
// class prvalue, then we can devirtualize.
Base = Base->getBestDynamicClassTypeExpr();
if (Base->isRValue() && Base->getType()->isRecordType())
return this;
// If we don't even know what we would call, we can't devirtualize.
const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
if (!BestDynamicDecl)
return nullptr;
// There may be a method corresponding to MD in a derived class.
CXXMethodDecl *DevirtualizedMethod =
getCorrespondingMethodInClass(BestDynamicDecl);
// If there final overrider in the dynamic type is ambiguous, we can't
// devirtualize this call.
if (!DevirtualizedMethod)
return nullptr;
// If that method is pure virtual, we can't devirtualize. If this code is
// reached, the result would be UB, not a direct call to the derived class
// function, and we can't assume the derived class function is defined.
if (DevirtualizedMethod->isPure())
return nullptr;
// If that method is marked final, we can devirtualize it.
if (DevirtualizedMethod->hasAttr<FinalAttr>())
return DevirtualizedMethod;
// Similarly, if the class itself or its destructor is marked 'final',
// the class can't be derived from and we can therefore devirtualize the
// member function call.
if (BestDynamicDecl->isEffectivelyFinal())
return DevirtualizedMethod;
if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) {
if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
if (VD->getType()->isRecordType())
// This is a record decl. We know the type and can devirtualize it.
return DevirtualizedMethod;
return nullptr;
}
// We can devirtualize calls on an object accessed by a class member access
// expression, since by C++11 [basic.life]p6 we know that it can't refer to
// a derived class object constructed in the same location.
if (const auto *ME = dyn_cast<MemberExpr>(Base)) {
const ValueDecl *VD = ME->getMemberDecl();
return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr;
}
// Likewise for calls on an object accessed by a (non-reference) pointer to
// member access.
if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
if (BO->isPtrMemOp()) {
auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
if (MPT->getPointeeType()->isRecordType())
return DevirtualizedMethod;
}
}
// We can't devirtualize the call.
return nullptr;
}
bool CXXMethodDecl::isUsualDeallocationFunction(
SmallVectorImpl<const FunctionDecl *> &PreventedBy) const {
assert(PreventedBy.empty() && "PreventedBy is expected to be empty");
if (getOverloadedOperator() != OO_Delete &&
getOverloadedOperator() != OO_Array_Delete)
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// A template instance is never a usual deallocation function,
// regardless of its signature.
if (getPrimaryTemplate())
return false;
// C++ [basic.stc.dynamic.deallocation]p2:
// If a class T has a member deallocation function named operator delete
// with exactly one parameter, then that function is a usual (non-placement)
// deallocation function. [...]
if (getNumParams() == 1)
return true;
unsigned UsualParams = 1;
// C++ P0722:
// A destroying operator delete is a usual deallocation function if
// removing the std::destroying_delete_t parameter and changing the
// first parameter type from T* to void* results in the signature of
// a usual deallocation function.
if (isDestroyingOperatorDelete())
++UsualParams;
// C++ <=14 [basic.stc.dynamic.deallocation]p2:
// [...] If class T does not declare such an operator delete but does
// declare a member deallocation function named operator delete with
// exactly two parameters, the second of which has type std::size_t (18.1),
// then this function is a usual deallocation function.
//
// C++17 says a usual deallocation function is one with the signature
// (void* [, size_t] [, std::align_val_t] [, ...])
// and all such functions are usual deallocation functions. It's not clear
// that allowing varargs functions was intentional.
ASTContext &Context = getASTContext();
if (UsualParams < getNumParams() &&
Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(),
Context.getSizeType()))
++UsualParams;
if (UsualParams < getNumParams() &&
getParamDecl(UsualParams)->getType()->isAlignValT())
++UsualParams;
if (UsualParams != getNumParams())
return false;
// In C++17 onwards, all potential usual deallocation functions are actual
// usual deallocation functions. Honor this behavior when post-C++14
// deallocation functions are offered as extensions too.
// FIXME(EricWF): Destrying Delete should be a language option. How do we
// handle when destroying delete is used prior to C++17?
if (Context.getLangOpts().CPlusPlus17 ||
Context.getLangOpts().AlignedAllocation ||
isDestroyingOperatorDelete())
return true;
// This function is a usual deallocation function if there are no
// single-parameter deallocation functions of the same kind.
DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName());
bool Result = true;
for (const auto *D : R) {
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->getNumParams() == 1) {
PreventedBy.push_back(FD);
Result = false;
}
}
}
return Result;
}
bool CXXMethodDecl::isCopyAssignmentOperator() const {
// C++0x [class.copy]p17:
// A user-declared copy assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of
// type X, X&, const X&, volatile X& or const volatile X&.
if (/*operator=*/getOverloadedOperator() != OO_Equal ||
/*non-static*/ isStatic() ||
/*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() ||
getNumParams() != 1)
return false;
QualType ParamType = getParamDecl(0)->getType();
if (const auto *Ref = ParamType->getAs<LValueReferenceType>())
ParamType = Ref->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
bool CXXMethodDecl::isMoveAssignmentOperator() const {
// C++0x [class.copy]p19:
// A user-declared move assignment operator X::operator= is a non-static
// non-template member function of class X with exactly one parameter of type
// X&&, const X&&, volatile X&&, or const volatile X&&.
if (getOverloadedOperator() != OO_Equal || isStatic() ||
getPrimaryTemplate() || getDescribedFunctionTemplate() ||
getNumParams() != 1)
return false;
QualType ParamType = getParamDecl(0)->getType();
if (!isa<RValueReferenceType>(ParamType))
return false;
ParamType = ParamType->getPointeeType();
ASTContext &Context = getASTContext();
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(getParent()));
return Context.hasSameUnqualifiedType(ClassType, ParamType);
}
void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
assert(MD->isCanonicalDecl() && "Method is not canonical!");
assert(!MD->getParent()->isDependentContext() &&
"Can't add an overridden method to a class template!");
assert(MD->isVirtual() && "Method is not virtual!");
getASTContext().addOverriddenMethod(this, MD);
}
CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return nullptr;
return getASTContext().overridden_methods_begin(this);
}
CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return nullptr;
return getASTContext().overridden_methods_end(this);
}
unsigned CXXMethodDecl::size_overridden_methods() const {
if (isa<CXXConstructorDecl>(this)) return 0;
return getASTContext().overridden_methods_size(this);
}
CXXMethodDecl::overridden_method_range
CXXMethodDecl::overridden_methods() const {
if (isa<CXXConstructorDecl>(this))
return overridden_method_range(nullptr, nullptr);
return getASTContext().overridden_methods(this);
}
static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT,
const CXXRecordDecl *Decl) {
QualType ClassTy = C.getTypeDeclType(Decl);
return C.getQualifiedType(ClassTy, FPT->getMethodQuals());
}
QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl) {
ASTContext &C = Decl->getASTContext();
QualType ObjectTy = ::getThisObjectType(C, FPT, Decl);
return C.getPointerType(ObjectTy);
}
QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT,
const CXXRecordDecl *Decl) {
ASTContext &C = Decl->getASTContext();
return ::getThisObjectType(C, FPT, Decl);
}
QualType CXXMethodDecl::getThisType() const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
return CXXMethodDecl::getThisType(getType()->castAs<FunctionProtoType>(),
getParent());
}
QualType CXXMethodDecl::getThisObjectType() const {
// Ditto getThisType.
assert(isInstance() && "No 'this' for static methods!");
return CXXMethodDecl::getThisObjectType(
getType()->castAs<FunctionProtoType>(), getParent());
}
bool CXXMethodDecl::hasInlineBody() const {
// If this function is a template instantiation, look at the template from
// which it was instantiated.
const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
if (!CheckFn)
CheckFn = this;
const FunctionDecl *fn;
return CheckFn->isDefined(fn) && !fn->isOutOfLine() &&
(fn->doesThisDeclarationHaveABody() || fn->willHaveBody());
}
bool CXXMethodDecl::isLambdaStaticInvoker() const {
const CXXRecordDecl *P = getParent();
return P->isLambda() && getDeclName().isIdentifier() &&
getName() == getLambdaStaticInvokerName();
}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo, bool IsVirtual,
SourceLocation L, Expr *Init,
SourceLocation R,
SourceLocation EllipsisLoc)
: Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual),
IsWritten(false), SourceOrder(0) {}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
FieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrder(0) {}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
IndirectFieldDecl *Member,
SourceLocation MemberLoc,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init),
LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false),
IsWritten(false), SourceOrder(0) {}
CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context,
TypeSourceInfo *TInfo,
SourceLocation L, Expr *Init,
SourceLocation R)
: Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R),
IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {}
int64_t CXXCtorInitializer::getID(const ASTContext &Context) const {
return Context.getAllocator()
.identifyKnownAlignedObject<CXXCtorInitializer>(this);
}
TypeLoc CXXCtorInitializer::getBaseClassLoc() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getTypeLoc();
else
return {};
}
const Type *CXXCtorInitializer::getBaseClass() const {
if (isBaseInitializer())
return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr();
else
return nullptr;
}
SourceLocation CXXCtorInitializer::getSourceLocation() const {
if (isInClassMemberInitializer())
return getAnyMember()->getLocation();
if (isAnyMemberInitializer())
return getMemberLocation();
if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>())
return TSInfo->getTypeLoc().getLocalSourceRange().getBegin();
return {};
}
SourceRange CXXCtorInitializer::getSourceRange() const {
if (isInClassMemberInitializer()) {
FieldDecl *D = getAnyMember();
if (Expr *I = D->getInClassInitializer())
return I->getSourceRange();
return {};
}
return SourceRange(getSourceLocation(), getRParenLoc());
}
CXXConstructorDecl::CXXConstructorDecl(
ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
Expr *TrailingRequiresClause)
: CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
SC_None, isInline, ConstexprKind, SourceLocation(),
TrailingRequiresClause) {
setNumCtorInitializers(0);
setInheritingConstructor(static_cast<bool>(Inherited));
setImplicit(isImplicitlyDeclared);
CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0;
if (Inherited)
*getTrailingObjects<InheritedConstructor>() = Inherited;
setExplicitSpecifier(ES);
}
void CXXConstructorDecl::anchor() {}
CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C,
unsigned ID,
uint64_t AllocKind) {
bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit);
bool isInheritingConstructor =
static_cast<bool>(AllocKind & TAKInheritsConstructor);
unsigned Extra =
additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
isInheritingConstructor, hasTraillingExplicit);
auto *Result = new (C, ID, Extra)
CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
QualType(), nullptr, ExplicitSpecifier(), false, false,
CSK_unspecified, InheritedConstructor(), nullptr);
Result->setInheritingConstructor(isInheritingConstructor);
Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier =
hasTraillingExplicit;
Result->setExplicitSpecifier(ExplicitSpecifier());
return Result;
}
CXXConstructorDecl *CXXConstructorDecl::Create(
ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared,
ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited,
Expr *TrailingRequiresClause) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
unsigned Extra =
additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>(
Inherited ? 1 : 0, ES.getExpr() ? 1 : 0);
return new (C, RD, Extra)
CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline,
isImplicitlyDeclared, ConstexprKind, Inherited,
TrailingRequiresClause);
}
CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const {
return CtorInitializers.get(getASTContext().getExternalSource());
}
CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const {
assert(isDelegatingConstructor() && "Not a delegating constructor!");
Expr *E = (*init_begin())->getInit()->IgnoreImplicit();
if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
return Construct->getConstructor();
return nullptr;
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.default.ctor]p1:
// A default constructor for a class X is a constructor of class X for
// which each parameter that is not a function parameter pack has a default
// argument (including the case of a constructor with no parameters)
return getMinRequiredArguments() == 0;
}
bool
CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isLValueReferenceType();
}
bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const {
return isCopyOrMoveConstructor(TypeQuals) &&
getParamDecl(0)->getType()->isRValueReferenceType();
}
/// Determine whether this is a copy or move constructor.
bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
// C++0x [class.copy]p3:
// A non-template constructor for class X is a move constructor if its
// first parameter is of type X&&, const X&&, volatile X&&, or
// const volatile X&&, and either there are no other parameters or else
// all other parameters have default arguments.
if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr ||
getDescribedFunctionTemplate() != nullptr)
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type?
const auto *ParamRefType = Param->getType()->getAs<ReferenceType>();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
ASTContext &Context = getASTContext();
CanQualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// FIXME: other qualifiers?
// We have a copy or move constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit() && !AllowExplicit)
return false;
// FIXME: This has nothing to do with the definition of converting
// constructor, but is convenient for how we use this function in overload
// resolution.
return getNumParams() == 0
? getType()->castAs<FunctionProtoType>()->isVariadic()
: getMinRequiredArguments() <= 1;
}
bool CXXConstructorDecl::isSpecializationCopyingObject() const {
if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr)
return false;
const ParmVarDecl *Param = getParamDecl(0);
ASTContext &Context = getASTContext();
CanQualType ParamType = Context.getCanonicalType(Param->getType());
// Is it the same as our class type?
CanQualType ClassTy
= Context.getCanonicalType(Context.getTagDeclType(getParent()));
if (ParamType.getUnqualifiedType() != ClassTy)
return false;
return true;
}
void CXXDestructorDecl::anchor() {}
CXXDestructorDecl *
CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID)
CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(),
QualType(), nullptr, false, false, CSK_unspecified,
nullptr);
}
CXXDestructorDecl *CXXDestructorDecl::Create(
ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind,
Expr *TrailingRequiresClause) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C, RD)
CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline,
isImplicitlyDeclared, ConstexprKind,
TrailingRequiresClause);
}
void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) {
auto *First = cast<CXXDestructorDecl>(getFirstDecl());
if (OD && !First->OperatorDelete) {
First->OperatorDelete = OD;
First->OperatorDeleteThisArg = ThisArg;
if (auto *L = getASTMutationListener())
L->ResolvedOperatorDelete(First, OD, ThisArg);
}
}
void CXXConversionDecl::anchor() {}
CXXConversionDecl *
CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) CXXConversionDecl(
C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr,
false, ExplicitSpecifier(), CSK_unspecified, SourceLocation(), nullptr);
}
CXXConversionDecl *CXXConversionDecl::Create(
ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo,
bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind,
SourceLocation EndLocation, Expr *TrailingRequiresClause) {
assert(NameInfo.getName().getNameKind()
== DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C, RD)
CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES,
ConstexprKind, EndLocation, TrailingRequiresClause);
}
bool CXXConversionDecl::isLambdaToBlockPointerConversion() const {
return isImplicit() && getParent()->isLambda() &&
getConversionType()->isBlockPointerType();
}
LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
SourceLocation LangLoc, LanguageIDs lang,
bool HasBraces)
: Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) {
setLanguage(lang);
LinkageSpecDeclBits.HasBraces = HasBraces;
}
void LinkageSpecDecl::anchor() {}
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation ExternLoc,
SourceLocation LangLoc,
LanguageIDs Lang,
bool HasBraces) {
return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces);
}
LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(),
SourceLocation(), lang_c, false);
}
void UsingDirectiveDecl::anchor() {}
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Used,
DeclContext *CommonAncestor) {
if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used))
Used = NS->getOriginalNamespace();
return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc,
IdentLoc, Used, CommonAncestor);
}
UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(),
SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(), nullptr, nullptr);
}
NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
return NA->getNamespace();
return cast_or_null<NamespaceDecl>(NominatedNamespace);
}
NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
SourceLocation StartLoc, SourceLocation IdLoc,
IdentifierInfo *Id, NamespaceDecl *PrevDecl)
: NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace),
redeclarable_base(C), LocStart(StartLoc),
AnonOrFirstNamespaceAndInline(nullptr, Inline) {
setPreviousDecl(PrevDecl);
if (PrevDecl)
AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace());
}
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
bool Inline, SourceLocation StartLoc,
SourceLocation IdLoc, IdentifierInfo *Id,
NamespaceDecl *PrevDecl) {
return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id,
PrevDecl);
}
NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(),
SourceLocation(), nullptr, nullptr);
}
NamespaceDecl *NamespaceDecl::getOriginalNamespace() {
if (isFirstDecl())
return this;
return AnonOrFirstNamespaceAndInline.getPointer();
}
const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const {
if (isFirstDecl())
return this;
return AnonOrFirstNamespaceAndInline.getPointer();
}
bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); }
NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() {
return getNextRedeclaration();
}
NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() {
return getPreviousDecl();
}
NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() {
return getMostRecentDecl();
}
void NamespaceAliasDecl::anchor() {}
NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() {
return getNextRedeclaration();
}
NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() {
return getPreviousDecl();
}
NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() {
return getMostRecentDecl();
}
NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation IdentLoc,
NamedDecl *Namespace) {
// FIXME: Preserve the aliased namespace as written.
if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
Namespace = NS->getOriginalNamespace();
return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias,
QualifierLoc, IdentLoc, Namespace);
}
NamespaceAliasDecl *
NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(),
SourceLocation(), nullptr,
NestedNameSpecifierLoc(),
SourceLocation(), nullptr);
}
void LifetimeExtendedTemporaryDecl::anchor() {}
/// Retrieve the storage duration for the materialized temporary.
StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const {
const ValueDecl *ExtendingDecl = getExtendingDecl();
if (!ExtendingDecl)
return SD_FullExpression;
// FIXME: This is not necessarily correct for a temporary materialized
// within a default initializer.
if (isa<FieldDecl>(ExtendingDecl))
return SD_Automatic;
// FIXME: This only works because storage class specifiers are not allowed
// on decomposition declarations.
if (isa<BindingDecl>(ExtendingDecl))
return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic
: SD_Static;
return cast<VarDecl>(ExtendingDecl)->getStorageDuration();
}
APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const {
assert(getStorageDuration() == SD_Static &&
"don't need to cache the computed value for this temporary");
if (MayCreate && !Value) {
Value = (new (getASTContext()) APValue);
getASTContext().addDestruction(Value);
}
assert(Value && "may not be null");
return Value;
}
void UsingShadowDecl::anchor() {}
UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target)
: NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()),
redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) {
if (Target)
setTargetDecl(Target);
setImplicit();
}
UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty)
: NamedDecl(K, nullptr, SourceLocation(), DeclarationName()),
redeclarable_base(C) {}
UsingShadowDecl *
UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell());
}
UsingDecl *UsingShadowDecl::getUsingDecl() const {
const UsingShadowDecl *Shadow = this;
while (const auto *NextShadow =
dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow))
Shadow = NextShadow;
return cast<UsingDecl>(Shadow->UsingOrNextShadow);
}
void ConstructorUsingShadowDecl::anchor() {}
ConstructorUsingShadowDecl *
ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation Loc, UsingDecl *Using,
NamedDecl *Target, bool IsVirtual) {
return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target,
IsVirtual);
}
ConstructorUsingShadowDecl *
ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell());
}
CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const {
return getUsingDecl()->getQualifier()->getAsRecordDecl();
}
void UsingDecl::anchor() {}
void UsingDecl::addShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() &&
"declaration already in set");
assert(S->getUsingDecl() == this);
if (FirstUsingShadow.getPointer())
S->UsingOrNextShadow = FirstUsingShadow.getPointer();
FirstUsingShadow.setPointer(S);
}
void UsingDecl::removeShadowDecl(UsingShadowDecl *S) {
assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() &&
"declaration not in set");
assert(S->getUsingDecl() == this);
// Remove S from the shadow decl chain. This is O(n) but hopefully rare.
if (FirstUsingShadow.getPointer() == S) {
FirstUsingShadow.setPointer(
dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow));
S->UsingOrNextShadow = this;
return;
}
UsingShadowDecl *Prev = FirstUsingShadow.getPointer();
while (Prev->UsingOrNextShadow != S)
Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow);
Prev->UsingOrNextShadow = S->UsingOrNextShadow;
S->UsingOrNextShadow = this;
}
UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
bool HasTypename) {
return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename);
}
UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) UsingDecl(nullptr, SourceLocation(),
NestedNameSpecifierLoc(), DeclarationNameInfo(),
false);
}
SourceRange UsingDecl::getSourceRange() const {
SourceLocation Begin = isAccessDeclaration()
? getQualifierLoc().getBeginLoc() : UsingLocation;
return SourceRange(Begin, getNameInfo().getEndLoc());
}
void UsingPackDecl::anchor() {}
UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC,
NamedDecl *InstantiatedFrom,
ArrayRef<NamedDecl *> UsingDecls) {
size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size());
return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls);
}
UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID,
unsigned NumExpansions) {
size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions);
auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None);
Result->NumExpansions = NumExpansions;
auto *Trail = Result->getTrailingObjects<NamedDecl *>();
for (unsigned I = 0; I != NumExpansions; ++I)
new (Trail + I) NamedDecl*(nullptr);
return Result;
}
void UnresolvedUsingValueDecl::anchor() {}
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
NestedNameSpecifierLoc QualifierLoc,
const DeclarationNameInfo &NameInfo,
SourceLocation EllipsisLoc) {
return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
QualifierLoc, NameInfo,
EllipsisLoc);
}
UnresolvedUsingValueDecl *
UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(),
SourceLocation(),
NestedNameSpecifierLoc(),
DeclarationNameInfo(),
SourceLocation());
}
SourceRange UnresolvedUsingValueDecl::getSourceRange() const {
SourceLocation Begin = isAccessDeclaration()
? getQualifierLoc().getBeginLoc() : UsingLocation;
return SourceRange(Begin, getNameInfo().getEndLoc());
}
void UnresolvedUsingTypenameDecl::anchor() {}
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation UsingLoc,
SourceLocation TypenameLoc,
NestedNameSpecifierLoc QualifierLoc,
SourceLocation TargetNameLoc,
DeclarationName TargetName,
SourceLocation EllipsisLoc) {
return new (C, DC) UnresolvedUsingTypenameDecl(
DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc,
TargetName.getAsIdentifierInfo(), EllipsisLoc);
}
UnresolvedUsingTypenameDecl *
UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) UnresolvedUsingTypenameDecl(
nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(),
SourceLocation(), nullptr, SourceLocation());
}
void StaticAssertDecl::anchor() {}
StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StaticAssertLoc,
Expr *AssertExpr,
StringLiteral *Message,
SourceLocation RParenLoc,
bool Failed) {
return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message,
RParenLoc, Failed);
}
StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr,
nullptr, SourceLocation(), false);
}
void BindingDecl::anchor() {}
BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation IdLoc, IdentifierInfo *Id) {
return new (C, DC) BindingDecl(DC, IdLoc, Id);
}
BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr);
}
ValueDecl *BindingDecl::getDecomposedDecl() const {
ExternalASTSource *Source =
Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr;
return cast_or_null<ValueDecl>(Decomp.get(Source));
}
VarDecl *BindingDecl::getHoldingVar() const {
Expr *B = getBinding();
if (!B)
return nullptr;
auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit());
if (!DRE)
return nullptr;
auto *VD = cast<VarDecl>(DRE->getDecl());
assert(VD->isImplicit() && "holding var for binding decl not implicit");
return VD;
}
void DecompositionDecl::anchor() {}
DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation StartLoc,
SourceLocation LSquareLoc,
QualType T, TypeSourceInfo *TInfo,
StorageClass SC,
ArrayRef<BindingDecl *> Bindings) {
size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size());
return new (C, DC, Extra)
DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings);
}
DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C,
unsigned ID,
unsigned NumBindings) {
size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings);
auto *Result = new (C, ID, Extra)
DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(),
QualType(), nullptr, StorageClass(), None);
// Set up and clean out the bindings array.
Result->NumBindings = NumBindings;
auto *Trail = Result->getTrailingObjects<BindingDecl *>();
for (unsigned I = 0; I != NumBindings; ++I)
new (Trail + I) BindingDecl*(nullptr);
return Result;
}
void DecompositionDecl::printName(llvm::raw_ostream &os) const {
os << '[';
bool Comma = false;
for (const auto *B : bindings()) {
if (Comma)
os << ", ";
B->printName(os);
Comma = true;
}
os << ']';
}
void MSPropertyDecl::anchor() {}
MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, DeclarationName N,
QualType T, TypeSourceInfo *TInfo,
SourceLocation StartL,
IdentifierInfo *Getter,
IdentifierInfo *Setter) {
return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter);
}
MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C,
unsigned ID) {
return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(),
DeclarationName(), QualType(), nullptr,
SourceLocation(), nullptr, nullptr);
}
void MSGuidDecl::anchor() {}
MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P)
: ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T),
PartVal(P), APVal() {}
MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) {
DeclContext *DC = C.getTranslationUnitDecl();
return new (C, DC) MSGuidDecl(DC, T, P);
}
MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts());
}
void MSGuidDecl::printName(llvm::raw_ostream &OS) const {
OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-",
PartVal.Part1, PartVal.Part2, PartVal.Part3);
unsigned I = 0;
for (uint8_t Byte : PartVal.Part4And5) {
OS << llvm::format("%02" PRIx8, Byte);
if (++I == 2)
OS << '-';
}
OS << '}';
}
/// Determine if T is a valid 'struct _GUID' of the shape that we expect.
static bool isValidStructGUID(ASTContext &Ctx, QualType T) {
// FIXME: We only need to check this once, not once each time we compute a
// GUID APValue.
using MatcherRef = llvm::function_ref<bool(QualType)>;
auto IsInt = [&Ctx](unsigned N) {
return [&Ctx, N](QualType T) {
return T->isUnsignedIntegerOrEnumerationType() &&
Ctx.getIntWidth(T) == N;
};
};
auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) {
return [&Ctx, Elem, N](QualType T) {
const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T);
return CAT && CAT->getSize() == N && Elem(CAT->getElementType());
};
};
auto IsStruct = [](std::initializer_list<MatcherRef> Fields) {
return [Fields](QualType T) {
const RecordDecl *RD = T->getAsRecordDecl();
if (!RD || RD->isUnion())
return false;
RD = RD->getDefinition();
if (!RD)
return false;
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
if (CXXRD->getNumBases())
return false;
auto MatcherIt = Fields.begin();
for (const FieldDecl *FD : RD->fields()) {
if (FD->isUnnamedBitfield()) continue;
if (FD->isBitField() || MatcherIt == Fields.end() ||
!(*MatcherIt)(FD->getType()))
return false;
++MatcherIt;
}
return MatcherIt == Fields.end();
};
};
// We expect an {i32, i16, i16, [8 x i8]}.
return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T);
}
APValue &MSGuidDecl::getAsAPValue() const {
if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) {
using llvm::APInt;
using llvm::APSInt;
APVal = APValue(APValue::UninitStruct(), 0, 4);
APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true));
APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true));
APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true));
APValue &Arr = APVal.getStructField(3) =
APValue(APValue::UninitArray(), 8, 8);
for (unsigned I = 0; I != 8; ++I) {
Arr.getArrayInitializedElt(I) =
APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true));
}
// Register this APValue to be destroyed if necessary. (Note that the
// MSGuidDecl destructor is never run.)
getASTContext().addDestruction(&APVal);
}
return APVal;
}
static const char *getAccessName(AccessSpecifier AS) {
switch (AS) {
case AS_none:
llvm_unreachable("Invalid access specifier!");
case AS_public:
return "public";
case AS_private:
return "private";
case AS_protected:
return "protected";
}
llvm_unreachable("Invalid access specifier!");
}
const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB,
AccessSpecifier AS) {
return DB << getAccessName(AS);
}