forked from OSchip/llvm-project
1117 lines
35 KiB
C++
1117 lines
35 KiB
C++
//===--- APValue.cpp - Union class for APFloat/APSInt/Complex -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the APValue class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/APValue.h"
|
|
#include "Linkage.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace clang;
|
|
|
|
/// The identity of a type_info object depends on the canonical unqualified
|
|
/// type only.
|
|
TypeInfoLValue::TypeInfoLValue(const Type *T)
|
|
: T(T->getCanonicalTypeUnqualified().getTypePtr()) {}
|
|
|
|
void TypeInfoLValue::print(llvm::raw_ostream &Out,
|
|
const PrintingPolicy &Policy) const {
|
|
Out << "typeid(";
|
|
QualType(getType(), 0).print(Out, Policy);
|
|
Out << ")";
|
|
}
|
|
|
|
static_assert(
|
|
1 << llvm::PointerLikeTypeTraits<TypeInfoLValue>::NumLowBitsAvailable <=
|
|
alignof(Type),
|
|
"Type is insufficiently aligned");
|
|
|
|
APValue::LValueBase::LValueBase(const ValueDecl *P, unsigned I, unsigned V)
|
|
: Ptr(P ? cast<ValueDecl>(P->getCanonicalDecl()) : nullptr), Local{I, V} {}
|
|
APValue::LValueBase::LValueBase(const Expr *P, unsigned I, unsigned V)
|
|
: Ptr(P), Local{I, V} {}
|
|
|
|
APValue::LValueBase APValue::LValueBase::getDynamicAlloc(DynamicAllocLValue LV,
|
|
QualType Type) {
|
|
LValueBase Base;
|
|
Base.Ptr = LV;
|
|
Base.DynamicAllocType = Type.getAsOpaquePtr();
|
|
return Base;
|
|
}
|
|
|
|
APValue::LValueBase APValue::LValueBase::getTypeInfo(TypeInfoLValue LV,
|
|
QualType TypeInfo) {
|
|
LValueBase Base;
|
|
Base.Ptr = LV;
|
|
Base.TypeInfoType = TypeInfo.getAsOpaquePtr();
|
|
return Base;
|
|
}
|
|
|
|
QualType APValue::LValueBase::getType() const {
|
|
if (!*this) return QualType();
|
|
if (const ValueDecl *D = dyn_cast<const ValueDecl*>()) {
|
|
// FIXME: It's unclear where we're supposed to take the type from, and
|
|
// this actually matters for arrays of unknown bound. Eg:
|
|
//
|
|
// extern int arr[]; void f() { extern int arr[3]; };
|
|
// constexpr int *p = &arr[1]; // valid?
|
|
//
|
|
// For now, we take the most complete type we can find.
|
|
for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
|
|
Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
|
|
QualType T = Redecl->getType();
|
|
if (!T->isIncompleteArrayType())
|
|
return T;
|
|
}
|
|
return D->getType();
|
|
}
|
|
|
|
if (is<TypeInfoLValue>())
|
|
return getTypeInfoType();
|
|
|
|
if (is<DynamicAllocLValue>())
|
|
return getDynamicAllocType();
|
|
|
|
const Expr *Base = get<const Expr*>();
|
|
|
|
// For a materialized temporary, the type of the temporary we materialized
|
|
// may not be the type of the expression.
|
|
if (const MaterializeTemporaryExpr *MTE =
|
|
clang::dyn_cast<MaterializeTemporaryExpr>(Base)) {
|
|
SmallVector<const Expr *, 2> CommaLHSs;
|
|
SmallVector<SubobjectAdjustment, 2> Adjustments;
|
|
const Expr *Temp = MTE->getSubExpr();
|
|
const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
|
|
Adjustments);
|
|
// Keep any cv-qualifiers from the reference if we generated a temporary
|
|
// for it directly. Otherwise use the type after adjustment.
|
|
if (!Adjustments.empty())
|
|
return Inner->getType();
|
|
}
|
|
|
|
return Base->getType();
|
|
}
|
|
|
|
unsigned APValue::LValueBase::getCallIndex() const {
|
|
return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0
|
|
: Local.CallIndex;
|
|
}
|
|
|
|
unsigned APValue::LValueBase::getVersion() const {
|
|
return (is<TypeInfoLValue>() || is<DynamicAllocLValue>()) ? 0 : Local.Version;
|
|
}
|
|
|
|
QualType APValue::LValueBase::getTypeInfoType() const {
|
|
assert(is<TypeInfoLValue>() && "not a type_info lvalue");
|
|
return QualType::getFromOpaquePtr(TypeInfoType);
|
|
}
|
|
|
|
QualType APValue::LValueBase::getDynamicAllocType() const {
|
|
assert(is<DynamicAllocLValue>() && "not a dynamic allocation lvalue");
|
|
return QualType::getFromOpaquePtr(DynamicAllocType);
|
|
}
|
|
|
|
void APValue::LValueBase::Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddPointer(Ptr.getOpaqueValue());
|
|
if (is<TypeInfoLValue>() || is<DynamicAllocLValue>())
|
|
return;
|
|
ID.AddInteger(Local.CallIndex);
|
|
ID.AddInteger(Local.Version);
|
|
}
|
|
|
|
namespace clang {
|
|
bool operator==(const APValue::LValueBase &LHS,
|
|
const APValue::LValueBase &RHS) {
|
|
if (LHS.Ptr != RHS.Ptr)
|
|
return false;
|
|
if (LHS.is<TypeInfoLValue>() || LHS.is<DynamicAllocLValue>())
|
|
return true;
|
|
return LHS.Local.CallIndex == RHS.Local.CallIndex &&
|
|
LHS.Local.Version == RHS.Local.Version;
|
|
}
|
|
}
|
|
|
|
APValue::LValuePathEntry::LValuePathEntry(BaseOrMemberType BaseOrMember) {
|
|
if (const Decl *D = BaseOrMember.getPointer())
|
|
BaseOrMember.setPointer(D->getCanonicalDecl());
|
|
Value = reinterpret_cast<uintptr_t>(BaseOrMember.getOpaqueValue());
|
|
}
|
|
|
|
void APValue::LValuePathEntry::Profile(llvm::FoldingSetNodeID &ID) const {
|
|
ID.AddInteger(Value);
|
|
}
|
|
|
|
namespace {
|
|
struct LVBase {
|
|
APValue::LValueBase Base;
|
|
CharUnits Offset;
|
|
unsigned PathLength;
|
|
bool IsNullPtr : 1;
|
|
bool IsOnePastTheEnd : 1;
|
|
};
|
|
}
|
|
|
|
void *APValue::LValueBase::getOpaqueValue() const {
|
|
return Ptr.getOpaqueValue();
|
|
}
|
|
|
|
bool APValue::LValueBase::isNull() const {
|
|
return Ptr.isNull();
|
|
}
|
|
|
|
APValue::LValueBase::operator bool () const {
|
|
return static_cast<bool>(Ptr);
|
|
}
|
|
|
|
clang::APValue::LValueBase
|
|
llvm::DenseMapInfo<clang::APValue::LValueBase>::getEmptyKey() {
|
|
clang::APValue::LValueBase B;
|
|
B.Ptr = DenseMapInfo<const ValueDecl*>::getEmptyKey();
|
|
return B;
|
|
}
|
|
|
|
clang::APValue::LValueBase
|
|
llvm::DenseMapInfo<clang::APValue::LValueBase>::getTombstoneKey() {
|
|
clang::APValue::LValueBase B;
|
|
B.Ptr = DenseMapInfo<const ValueDecl*>::getTombstoneKey();
|
|
return B;
|
|
}
|
|
|
|
namespace clang {
|
|
llvm::hash_code hash_value(const APValue::LValueBase &Base) {
|
|
if (Base.is<TypeInfoLValue>() || Base.is<DynamicAllocLValue>())
|
|
return llvm::hash_value(Base.getOpaqueValue());
|
|
return llvm::hash_combine(Base.getOpaqueValue(), Base.getCallIndex(),
|
|
Base.getVersion());
|
|
}
|
|
}
|
|
|
|
unsigned llvm::DenseMapInfo<clang::APValue::LValueBase>::getHashValue(
|
|
const clang::APValue::LValueBase &Base) {
|
|
return hash_value(Base);
|
|
}
|
|
|
|
bool llvm::DenseMapInfo<clang::APValue::LValueBase>::isEqual(
|
|
const clang::APValue::LValueBase &LHS,
|
|
const clang::APValue::LValueBase &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
|
|
struct APValue::LV : LVBase {
|
|
static const unsigned InlinePathSpace =
|
|
(DataSize - sizeof(LVBase)) / sizeof(LValuePathEntry);
|
|
|
|
/// Path - The sequence of base classes, fields and array indices to follow to
|
|
/// walk from Base to the subobject. When performing GCC-style folding, there
|
|
/// may not be such a path.
|
|
union {
|
|
LValuePathEntry Path[InlinePathSpace];
|
|
LValuePathEntry *PathPtr;
|
|
};
|
|
|
|
LV() { PathLength = (unsigned)-1; }
|
|
~LV() { resizePath(0); }
|
|
|
|
void resizePath(unsigned Length) {
|
|
if (Length == PathLength)
|
|
return;
|
|
if (hasPathPtr())
|
|
delete [] PathPtr;
|
|
PathLength = Length;
|
|
if (hasPathPtr())
|
|
PathPtr = new LValuePathEntry[Length];
|
|
}
|
|
|
|
bool hasPath() const { return PathLength != (unsigned)-1; }
|
|
bool hasPathPtr() const { return hasPath() && PathLength > InlinePathSpace; }
|
|
|
|
LValuePathEntry *getPath() { return hasPathPtr() ? PathPtr : Path; }
|
|
const LValuePathEntry *getPath() const {
|
|
return hasPathPtr() ? PathPtr : Path;
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
struct MemberPointerBase {
|
|
llvm::PointerIntPair<const ValueDecl*, 1, bool> MemberAndIsDerivedMember;
|
|
unsigned PathLength;
|
|
};
|
|
}
|
|
|
|
struct APValue::MemberPointerData : MemberPointerBase {
|
|
static const unsigned InlinePathSpace =
|
|
(DataSize - sizeof(MemberPointerBase)) / sizeof(const CXXRecordDecl*);
|
|
typedef const CXXRecordDecl *PathElem;
|
|
union {
|
|
PathElem Path[InlinePathSpace];
|
|
PathElem *PathPtr;
|
|
};
|
|
|
|
MemberPointerData() { PathLength = 0; }
|
|
~MemberPointerData() { resizePath(0); }
|
|
|
|
void resizePath(unsigned Length) {
|
|
if (Length == PathLength)
|
|
return;
|
|
if (hasPathPtr())
|
|
delete [] PathPtr;
|
|
PathLength = Length;
|
|
if (hasPathPtr())
|
|
PathPtr = new PathElem[Length];
|
|
}
|
|
|
|
bool hasPathPtr() const { return PathLength > InlinePathSpace; }
|
|
|
|
PathElem *getPath() { return hasPathPtr() ? PathPtr : Path; }
|
|
const PathElem *getPath() const {
|
|
return hasPathPtr() ? PathPtr : Path;
|
|
}
|
|
};
|
|
|
|
// FIXME: Reduce the malloc traffic here.
|
|
|
|
APValue::Arr::Arr(unsigned NumElts, unsigned Size) :
|
|
Elts(new APValue[NumElts + (NumElts != Size ? 1 : 0)]),
|
|
NumElts(NumElts), ArrSize(Size) {}
|
|
APValue::Arr::~Arr() { delete [] Elts; }
|
|
|
|
APValue::StructData::StructData(unsigned NumBases, unsigned NumFields) :
|
|
Elts(new APValue[NumBases+NumFields]),
|
|
NumBases(NumBases), NumFields(NumFields) {}
|
|
APValue::StructData::~StructData() {
|
|
delete [] Elts;
|
|
}
|
|
|
|
APValue::UnionData::UnionData() : Field(nullptr), Value(new APValue) {}
|
|
APValue::UnionData::~UnionData () {
|
|
delete Value;
|
|
}
|
|
|
|
APValue::APValue(const APValue &RHS) : Kind(None) {
|
|
switch (RHS.getKind()) {
|
|
case None:
|
|
case Indeterminate:
|
|
Kind = RHS.getKind();
|
|
break;
|
|
case Int:
|
|
MakeInt();
|
|
setInt(RHS.getInt());
|
|
break;
|
|
case Float:
|
|
MakeFloat();
|
|
setFloat(RHS.getFloat());
|
|
break;
|
|
case FixedPoint: {
|
|
APFixedPoint FXCopy = RHS.getFixedPoint();
|
|
MakeFixedPoint(std::move(FXCopy));
|
|
break;
|
|
}
|
|
case Vector:
|
|
MakeVector();
|
|
setVector(((const Vec *)(const char *)RHS.Data.buffer)->Elts,
|
|
RHS.getVectorLength());
|
|
break;
|
|
case ComplexInt:
|
|
MakeComplexInt();
|
|
setComplexInt(RHS.getComplexIntReal(), RHS.getComplexIntImag());
|
|
break;
|
|
case ComplexFloat:
|
|
MakeComplexFloat();
|
|
setComplexFloat(RHS.getComplexFloatReal(), RHS.getComplexFloatImag());
|
|
break;
|
|
case LValue:
|
|
MakeLValue();
|
|
if (RHS.hasLValuePath())
|
|
setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), RHS.getLValuePath(),
|
|
RHS.isLValueOnePastTheEnd(), RHS.isNullPointer());
|
|
else
|
|
setLValue(RHS.getLValueBase(), RHS.getLValueOffset(), NoLValuePath(),
|
|
RHS.isNullPointer());
|
|
break;
|
|
case Array:
|
|
MakeArray(RHS.getArrayInitializedElts(), RHS.getArraySize());
|
|
for (unsigned I = 0, N = RHS.getArrayInitializedElts(); I != N; ++I)
|
|
getArrayInitializedElt(I) = RHS.getArrayInitializedElt(I);
|
|
if (RHS.hasArrayFiller())
|
|
getArrayFiller() = RHS.getArrayFiller();
|
|
break;
|
|
case Struct:
|
|
MakeStruct(RHS.getStructNumBases(), RHS.getStructNumFields());
|
|
for (unsigned I = 0, N = RHS.getStructNumBases(); I != N; ++I)
|
|
getStructBase(I) = RHS.getStructBase(I);
|
|
for (unsigned I = 0, N = RHS.getStructNumFields(); I != N; ++I)
|
|
getStructField(I) = RHS.getStructField(I);
|
|
break;
|
|
case Union:
|
|
MakeUnion();
|
|
setUnion(RHS.getUnionField(), RHS.getUnionValue());
|
|
break;
|
|
case MemberPointer:
|
|
MakeMemberPointer(RHS.getMemberPointerDecl(),
|
|
RHS.isMemberPointerToDerivedMember(),
|
|
RHS.getMemberPointerPath());
|
|
break;
|
|
case AddrLabelDiff:
|
|
MakeAddrLabelDiff();
|
|
setAddrLabelDiff(RHS.getAddrLabelDiffLHS(), RHS.getAddrLabelDiffRHS());
|
|
break;
|
|
}
|
|
}
|
|
|
|
APValue::APValue(APValue &&RHS) : Kind(RHS.Kind), Data(RHS.Data) {
|
|
RHS.Kind = None;
|
|
}
|
|
|
|
APValue &APValue::operator=(const APValue &RHS) {
|
|
if (this != &RHS)
|
|
*this = APValue(RHS);
|
|
return *this;
|
|
}
|
|
|
|
APValue &APValue::operator=(APValue &&RHS) {
|
|
if (Kind != None && Kind != Indeterminate)
|
|
DestroyDataAndMakeUninit();
|
|
Kind = RHS.Kind;
|
|
Data = RHS.Data;
|
|
RHS.Kind = None;
|
|
return *this;
|
|
}
|
|
|
|
void APValue::DestroyDataAndMakeUninit() {
|
|
if (Kind == Int)
|
|
((APSInt*)(char*)Data.buffer)->~APSInt();
|
|
else if (Kind == Float)
|
|
((APFloat*)(char*)Data.buffer)->~APFloat();
|
|
else if (Kind == FixedPoint)
|
|
((APFixedPoint *)(char *)Data.buffer)->~APFixedPoint();
|
|
else if (Kind == Vector)
|
|
((Vec*)(char*)Data.buffer)->~Vec();
|
|
else if (Kind == ComplexInt)
|
|
((ComplexAPSInt*)(char*)Data.buffer)->~ComplexAPSInt();
|
|
else if (Kind == ComplexFloat)
|
|
((ComplexAPFloat*)(char*)Data.buffer)->~ComplexAPFloat();
|
|
else if (Kind == LValue)
|
|
((LV*)(char*)Data.buffer)->~LV();
|
|
else if (Kind == Array)
|
|
((Arr*)(char*)Data.buffer)->~Arr();
|
|
else if (Kind == Struct)
|
|
((StructData*)(char*)Data.buffer)->~StructData();
|
|
else if (Kind == Union)
|
|
((UnionData*)(char*)Data.buffer)->~UnionData();
|
|
else if (Kind == MemberPointer)
|
|
((MemberPointerData*)(char*)Data.buffer)->~MemberPointerData();
|
|
else if (Kind == AddrLabelDiff)
|
|
((AddrLabelDiffData*)(char*)Data.buffer)->~AddrLabelDiffData();
|
|
Kind = None;
|
|
}
|
|
|
|
bool APValue::needsCleanup() const {
|
|
switch (getKind()) {
|
|
case None:
|
|
case Indeterminate:
|
|
case AddrLabelDiff:
|
|
return false;
|
|
case Struct:
|
|
case Union:
|
|
case Array:
|
|
case Vector:
|
|
return true;
|
|
case Int:
|
|
return getInt().needsCleanup();
|
|
case Float:
|
|
return getFloat().needsCleanup();
|
|
case FixedPoint:
|
|
return getFixedPoint().getValue().needsCleanup();
|
|
case ComplexFloat:
|
|
assert(getComplexFloatImag().needsCleanup() ==
|
|
getComplexFloatReal().needsCleanup() &&
|
|
"In _Complex float types, real and imaginary values always have the "
|
|
"same size.");
|
|
return getComplexFloatReal().needsCleanup();
|
|
case ComplexInt:
|
|
assert(getComplexIntImag().needsCleanup() ==
|
|
getComplexIntReal().needsCleanup() &&
|
|
"In _Complex int types, real and imaginary values must have the "
|
|
"same size.");
|
|
return getComplexIntReal().needsCleanup();
|
|
case LValue:
|
|
return reinterpret_cast<const LV *>(Data.buffer)->hasPathPtr();
|
|
case MemberPointer:
|
|
return reinterpret_cast<const MemberPointerData *>(Data.buffer)
|
|
->hasPathPtr();
|
|
}
|
|
llvm_unreachable("Unknown APValue kind!");
|
|
}
|
|
|
|
void APValue::swap(APValue &RHS) {
|
|
std::swap(Kind, RHS.Kind);
|
|
std::swap(Data, RHS.Data);
|
|
}
|
|
|
|
/// Profile the value of an APInt, excluding its bit-width.
|
|
static void profileIntValue(llvm::FoldingSetNodeID &ID, const llvm::APInt &V) {
|
|
for (unsigned I = 0, N = V.getBitWidth(); I < N; I += 32)
|
|
ID.AddInteger((uint32_t)V.extractBitsAsZExtValue(std::min(32u, N - I), I));
|
|
}
|
|
|
|
void APValue::Profile(llvm::FoldingSetNodeID &ID) const {
|
|
// Note that our profiling assumes that only APValues of the same type are
|
|
// ever compared. As a result, we don't consider collisions that could only
|
|
// happen if the types are different. (For example, structs with different
|
|
// numbers of members could profile the same.)
|
|
|
|
ID.AddInteger(Kind);
|
|
|
|
switch (Kind) {
|
|
case None:
|
|
case Indeterminate:
|
|
return;
|
|
|
|
case AddrLabelDiff:
|
|
ID.AddPointer(getAddrLabelDiffLHS()->getLabel()->getCanonicalDecl());
|
|
ID.AddPointer(getAddrLabelDiffRHS()->getLabel()->getCanonicalDecl());
|
|
return;
|
|
|
|
case Struct:
|
|
for (unsigned I = 0, N = getStructNumBases(); I != N; ++I)
|
|
getStructBase(I).Profile(ID);
|
|
for (unsigned I = 0, N = getStructNumFields(); I != N; ++I)
|
|
getStructField(I).Profile(ID);
|
|
return;
|
|
|
|
case Union:
|
|
if (!getUnionField()) {
|
|
ID.AddInteger(0);
|
|
return;
|
|
}
|
|
ID.AddInteger(getUnionField()->getFieldIndex() + 1);
|
|
getUnionValue().Profile(ID);
|
|
return;
|
|
|
|
case Array: {
|
|
if (getArraySize() == 0)
|
|
return;
|
|
|
|
// The profile should not depend on whether the array is expanded or
|
|
// not, but we don't want to profile the array filler many times for
|
|
// a large array. So treat all equal trailing elements as the filler.
|
|
// Elements are profiled in reverse order to support this, and the
|
|
// first profiled element is followed by a count. For example:
|
|
//
|
|
// ['a', 'c', 'x', 'x', 'x'] is profiled as
|
|
// [5, 'x', 3, 'c', 'a']
|
|
llvm::FoldingSetNodeID FillerID;
|
|
(hasArrayFiller() ? getArrayFiller()
|
|
: getArrayInitializedElt(getArrayInitializedElts() - 1))
|
|
.Profile(FillerID);
|
|
ID.AddNodeID(FillerID);
|
|
unsigned NumFillers = getArraySize() - getArrayInitializedElts();
|
|
unsigned N = getArrayInitializedElts();
|
|
|
|
// Count the number of elements equal to the last one. This loop ends
|
|
// by adding an integer indicating the number of such elements, with
|
|
// N set to the number of elements left to profile.
|
|
while (true) {
|
|
if (N == 0) {
|
|
// All elements are fillers.
|
|
assert(NumFillers == getArraySize());
|
|
ID.AddInteger(NumFillers);
|
|
break;
|
|
}
|
|
|
|
// No need to check if the last element is equal to the last
|
|
// element.
|
|
if (N != getArraySize()) {
|
|
llvm::FoldingSetNodeID ElemID;
|
|
getArrayInitializedElt(N - 1).Profile(ElemID);
|
|
if (ElemID != FillerID) {
|
|
ID.AddInteger(NumFillers);
|
|
ID.AddNodeID(ElemID);
|
|
--N;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// This is a filler.
|
|
++NumFillers;
|
|
--N;
|
|
}
|
|
|
|
// Emit the remaining elements.
|
|
for (; N != 0; --N)
|
|
getArrayInitializedElt(N - 1).Profile(ID);
|
|
return;
|
|
}
|
|
|
|
case Vector:
|
|
for (unsigned I = 0, N = getVectorLength(); I != N; ++I)
|
|
getVectorElt(I).Profile(ID);
|
|
return;
|
|
|
|
case Int:
|
|
profileIntValue(ID, getInt());
|
|
return;
|
|
|
|
case Float:
|
|
profileIntValue(ID, getFloat().bitcastToAPInt());
|
|
return;
|
|
|
|
case FixedPoint:
|
|
profileIntValue(ID, getFixedPoint().getValue());
|
|
return;
|
|
|
|
case ComplexFloat:
|
|
profileIntValue(ID, getComplexFloatReal().bitcastToAPInt());
|
|
profileIntValue(ID, getComplexFloatImag().bitcastToAPInt());
|
|
return;
|
|
|
|
case ComplexInt:
|
|
profileIntValue(ID, getComplexIntReal());
|
|
profileIntValue(ID, getComplexIntImag());
|
|
return;
|
|
|
|
case LValue:
|
|
getLValueBase().Profile(ID);
|
|
ID.AddInteger(getLValueOffset().getQuantity());
|
|
ID.AddInteger((isNullPointer() ? 1 : 0) |
|
|
(isLValueOnePastTheEnd() ? 2 : 0) |
|
|
(hasLValuePath() ? 4 : 0));
|
|
if (hasLValuePath()) {
|
|
ID.AddInteger(getLValuePath().size());
|
|
// For uniqueness, we only need to profile the entries corresponding
|
|
// to union members, but we don't have the type here so we don't know
|
|
// how to interpret the entries.
|
|
for (LValuePathEntry E : getLValuePath())
|
|
E.Profile(ID);
|
|
}
|
|
return;
|
|
|
|
case MemberPointer:
|
|
ID.AddPointer(getMemberPointerDecl());
|
|
ID.AddInteger(isMemberPointerToDerivedMember());
|
|
for (const CXXRecordDecl *D : getMemberPointerPath())
|
|
ID.AddPointer(D);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown APValue kind!");
|
|
}
|
|
|
|
static double GetApproxValue(const llvm::APFloat &F) {
|
|
llvm::APFloat V = F;
|
|
bool ignored;
|
|
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
return V.convertToDouble();
|
|
}
|
|
|
|
void APValue::printPretty(raw_ostream &Out, const ASTContext &Ctx,
|
|
QualType Ty) const {
|
|
// There are no objects of type 'void', but values of this type can be
|
|
// returned from functions.
|
|
if (Ty->isVoidType()) {
|
|
Out << "void()";
|
|
return;
|
|
}
|
|
|
|
switch (getKind()) {
|
|
case APValue::None:
|
|
Out << "<out of lifetime>";
|
|
return;
|
|
case APValue::Indeterminate:
|
|
Out << "<uninitialized>";
|
|
return;
|
|
case APValue::Int:
|
|
if (Ty->isBooleanType())
|
|
Out << (getInt().getBoolValue() ? "true" : "false");
|
|
else
|
|
Out << getInt();
|
|
return;
|
|
case APValue::Float:
|
|
Out << GetApproxValue(getFloat());
|
|
return;
|
|
case APValue::FixedPoint:
|
|
Out << getFixedPoint();
|
|
return;
|
|
case APValue::Vector: {
|
|
Out << '{';
|
|
QualType ElemTy = Ty->castAs<VectorType>()->getElementType();
|
|
getVectorElt(0).printPretty(Out, Ctx, ElemTy);
|
|
for (unsigned i = 1; i != getVectorLength(); ++i) {
|
|
Out << ", ";
|
|
getVectorElt(i).printPretty(Out, Ctx, ElemTy);
|
|
}
|
|
Out << '}';
|
|
return;
|
|
}
|
|
case APValue::ComplexInt:
|
|
Out << getComplexIntReal() << "+" << getComplexIntImag() << "i";
|
|
return;
|
|
case APValue::ComplexFloat:
|
|
Out << GetApproxValue(getComplexFloatReal()) << "+"
|
|
<< GetApproxValue(getComplexFloatImag()) << "i";
|
|
return;
|
|
case APValue::LValue: {
|
|
bool IsReference = Ty->isReferenceType();
|
|
QualType InnerTy
|
|
= IsReference ? Ty.getNonReferenceType() : Ty->getPointeeType();
|
|
if (InnerTy.isNull())
|
|
InnerTy = Ty;
|
|
|
|
LValueBase Base = getLValueBase();
|
|
if (!Base) {
|
|
if (isNullPointer()) {
|
|
Out << (Ctx.getLangOpts().CPlusPlus11 ? "nullptr" : "0");
|
|
} else if (IsReference) {
|
|
Out << "*(" << InnerTy.stream(Ctx.getPrintingPolicy()) << "*)"
|
|
<< getLValueOffset().getQuantity();
|
|
} else {
|
|
Out << "(" << Ty.stream(Ctx.getPrintingPolicy()) << ")"
|
|
<< getLValueOffset().getQuantity();
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (!hasLValuePath()) {
|
|
// No lvalue path: just print the offset.
|
|
CharUnits O = getLValueOffset();
|
|
CharUnits S = Ctx.getTypeSizeInChars(InnerTy);
|
|
if (!O.isZero()) {
|
|
if (IsReference)
|
|
Out << "*(";
|
|
if (O % S) {
|
|
Out << "(char*)";
|
|
S = CharUnits::One();
|
|
}
|
|
Out << '&';
|
|
} else if (!IsReference) {
|
|
Out << '&';
|
|
}
|
|
|
|
if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>())
|
|
Out << *VD;
|
|
else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
|
|
TI.print(Out, Ctx.getPrintingPolicy());
|
|
} else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
|
|
Out << "{*new "
|
|
<< Base.getDynamicAllocType().stream(Ctx.getPrintingPolicy()) << "#"
|
|
<< DA.getIndex() << "}";
|
|
} else {
|
|
assert(Base.get<const Expr *>() != nullptr &&
|
|
"Expecting non-null Expr");
|
|
Base.get<const Expr*>()->printPretty(Out, nullptr,
|
|
Ctx.getPrintingPolicy());
|
|
}
|
|
|
|
if (!O.isZero()) {
|
|
Out << " + " << (O / S);
|
|
if (IsReference)
|
|
Out << ')';
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We have an lvalue path. Print it out nicely.
|
|
if (!IsReference)
|
|
Out << '&';
|
|
else if (isLValueOnePastTheEnd())
|
|
Out << "*(&";
|
|
|
|
QualType ElemTy = Base.getType();
|
|
if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
|
|
Out << *VD;
|
|
} else if (TypeInfoLValue TI = Base.dyn_cast<TypeInfoLValue>()) {
|
|
TI.print(Out, Ctx.getPrintingPolicy());
|
|
} else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) {
|
|
Out << "{*new "
|
|
<< Base.getDynamicAllocType().stream(Ctx.getPrintingPolicy()) << "#"
|
|
<< DA.getIndex() << "}";
|
|
} else {
|
|
const Expr *E = Base.get<const Expr*>();
|
|
assert(E != nullptr && "Expecting non-null Expr");
|
|
E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
|
|
}
|
|
|
|
ArrayRef<LValuePathEntry> Path = getLValuePath();
|
|
const CXXRecordDecl *CastToBase = nullptr;
|
|
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
|
|
if (ElemTy->isRecordType()) {
|
|
// The lvalue refers to a class type, so the next path entry is a base
|
|
// or member.
|
|
const Decl *BaseOrMember = Path[I].getAsBaseOrMember().getPointer();
|
|
if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(BaseOrMember)) {
|
|
CastToBase = RD;
|
|
ElemTy = Ctx.getRecordType(RD);
|
|
} else {
|
|
const ValueDecl *VD = cast<ValueDecl>(BaseOrMember);
|
|
Out << ".";
|
|
if (CastToBase)
|
|
Out << *CastToBase << "::";
|
|
Out << *VD;
|
|
ElemTy = VD->getType();
|
|
}
|
|
} else {
|
|
// The lvalue must refer to an array.
|
|
Out << '[' << Path[I].getAsArrayIndex() << ']';
|
|
ElemTy = Ctx.getAsArrayType(ElemTy)->getElementType();
|
|
}
|
|
}
|
|
|
|
// Handle formatting of one-past-the-end lvalues.
|
|
if (isLValueOnePastTheEnd()) {
|
|
// FIXME: If CastToBase is non-0, we should prefix the output with
|
|
// "(CastToBase*)".
|
|
Out << " + 1";
|
|
if (IsReference)
|
|
Out << ')';
|
|
}
|
|
return;
|
|
}
|
|
case APValue::Array: {
|
|
const ArrayType *AT = Ctx.getAsArrayType(Ty);
|
|
QualType ElemTy = AT->getElementType();
|
|
Out << '{';
|
|
if (unsigned N = getArrayInitializedElts()) {
|
|
getArrayInitializedElt(0).printPretty(Out, Ctx, ElemTy);
|
|
for (unsigned I = 1; I != N; ++I) {
|
|
Out << ", ";
|
|
if (I == 10) {
|
|
// Avoid printing out the entire contents of large arrays.
|
|
Out << "...";
|
|
break;
|
|
}
|
|
getArrayInitializedElt(I).printPretty(Out, Ctx, ElemTy);
|
|
}
|
|
}
|
|
Out << '}';
|
|
return;
|
|
}
|
|
case APValue::Struct: {
|
|
Out << '{';
|
|
const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
|
|
bool First = true;
|
|
if (unsigned N = getStructNumBases()) {
|
|
const CXXRecordDecl *CD = cast<CXXRecordDecl>(RD);
|
|
CXXRecordDecl::base_class_const_iterator BI = CD->bases_begin();
|
|
for (unsigned I = 0; I != N; ++I, ++BI) {
|
|
assert(BI != CD->bases_end());
|
|
if (!First)
|
|
Out << ", ";
|
|
getStructBase(I).printPretty(Out, Ctx, BI->getType());
|
|
First = false;
|
|
}
|
|
}
|
|
for (const auto *FI : RD->fields()) {
|
|
if (!First)
|
|
Out << ", ";
|
|
if (FI->isUnnamedBitfield()) continue;
|
|
getStructField(FI->getFieldIndex()).
|
|
printPretty(Out, Ctx, FI->getType());
|
|
First = false;
|
|
}
|
|
Out << '}';
|
|
return;
|
|
}
|
|
case APValue::Union:
|
|
Out << '{';
|
|
if (const FieldDecl *FD = getUnionField()) {
|
|
Out << "." << *FD << " = ";
|
|
getUnionValue().printPretty(Out, Ctx, FD->getType());
|
|
}
|
|
Out << '}';
|
|
return;
|
|
case APValue::MemberPointer:
|
|
// FIXME: This is not enough to unambiguously identify the member in a
|
|
// multiple-inheritance scenario.
|
|
if (const ValueDecl *VD = getMemberPointerDecl()) {
|
|
Out << '&' << *cast<CXXRecordDecl>(VD->getDeclContext()) << "::" << *VD;
|
|
return;
|
|
}
|
|
Out << "0";
|
|
return;
|
|
case APValue::AddrLabelDiff:
|
|
Out << "&&" << getAddrLabelDiffLHS()->getLabel()->getName();
|
|
Out << " - ";
|
|
Out << "&&" << getAddrLabelDiffRHS()->getLabel()->getName();
|
|
return;
|
|
}
|
|
llvm_unreachable("Unknown APValue kind!");
|
|
}
|
|
|
|
std::string APValue::getAsString(const ASTContext &Ctx, QualType Ty) const {
|
|
std::string Result;
|
|
llvm::raw_string_ostream Out(Result);
|
|
printPretty(Out, Ctx, Ty);
|
|
Out.flush();
|
|
return Result;
|
|
}
|
|
|
|
bool APValue::toIntegralConstant(APSInt &Result, QualType SrcTy,
|
|
const ASTContext &Ctx) const {
|
|
if (isInt()) {
|
|
Result = getInt();
|
|
return true;
|
|
}
|
|
|
|
if (isLValue() && isNullPointer()) {
|
|
Result = Ctx.MakeIntValue(Ctx.getTargetNullPointerValue(SrcTy), SrcTy);
|
|
return true;
|
|
}
|
|
|
|
if (isLValue() && !getLValueBase()) {
|
|
Result = Ctx.MakeIntValue(getLValueOffset().getQuantity(), SrcTy);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const APValue::LValueBase APValue::getLValueBase() const {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((const LV*)(const void*)Data.buffer)->Base;
|
|
}
|
|
|
|
bool APValue::isLValueOnePastTheEnd() const {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((const LV*)(const void*)Data.buffer)->IsOnePastTheEnd;
|
|
}
|
|
|
|
CharUnits &APValue::getLValueOffset() {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((LV*)(void*)Data.buffer)->Offset;
|
|
}
|
|
|
|
bool APValue::hasLValuePath() const {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((const LV*)(const char*)Data.buffer)->hasPath();
|
|
}
|
|
|
|
ArrayRef<APValue::LValuePathEntry> APValue::getLValuePath() const {
|
|
assert(isLValue() && hasLValuePath() && "Invalid accessor");
|
|
const LV &LVal = *((const LV*)(const char*)Data.buffer);
|
|
return llvm::makeArrayRef(LVal.getPath(), LVal.PathLength);
|
|
}
|
|
|
|
unsigned APValue::getLValueCallIndex() const {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((const LV*)(const char*)Data.buffer)->Base.getCallIndex();
|
|
}
|
|
|
|
unsigned APValue::getLValueVersion() const {
|
|
assert(isLValue() && "Invalid accessor");
|
|
return ((const LV*)(const char*)Data.buffer)->Base.getVersion();
|
|
}
|
|
|
|
bool APValue::isNullPointer() const {
|
|
assert(isLValue() && "Invalid usage");
|
|
return ((const LV*)(const char*)Data.buffer)->IsNullPtr;
|
|
}
|
|
|
|
void APValue::setLValue(LValueBase B, const CharUnits &O, NoLValuePath,
|
|
bool IsNullPtr) {
|
|
assert(isLValue() && "Invalid accessor");
|
|
LV &LVal = *((LV*)(char*)Data.buffer);
|
|
LVal.Base = B;
|
|
LVal.IsOnePastTheEnd = false;
|
|
LVal.Offset = O;
|
|
LVal.resizePath((unsigned)-1);
|
|
LVal.IsNullPtr = IsNullPtr;
|
|
}
|
|
|
|
MutableArrayRef<APValue::LValuePathEntry>
|
|
APValue::setLValueUninit(LValueBase B, const CharUnits &O, unsigned Size,
|
|
bool IsOnePastTheEnd, bool IsNullPtr) {
|
|
assert(isLValue() && "Invalid accessor");
|
|
LV &LVal = *((LV *)(char *)Data.buffer);
|
|
LVal.Base = B;
|
|
LVal.IsOnePastTheEnd = IsOnePastTheEnd;
|
|
LVal.Offset = O;
|
|
LVal.IsNullPtr = IsNullPtr;
|
|
LVal.resizePath(Size);
|
|
return {LVal.getPath(), Size};
|
|
}
|
|
|
|
void APValue::setLValue(LValueBase B, const CharUnits &O,
|
|
ArrayRef<LValuePathEntry> Path, bool IsOnePastTheEnd,
|
|
bool IsNullPtr) {
|
|
MutableArrayRef<APValue::LValuePathEntry> InternalPath =
|
|
setLValueUninit(B, O, Path.size(), IsOnePastTheEnd, IsNullPtr);
|
|
memcpy(InternalPath.data(), Path.data(),
|
|
Path.size() * sizeof(LValuePathEntry));
|
|
}
|
|
|
|
void APValue::setUnion(const FieldDecl *Field, const APValue &Value) {
|
|
assert(isUnion() && "Invalid accessor");
|
|
((UnionData *)(char *)Data.buffer)->Field =
|
|
Field ? Field->getCanonicalDecl() : nullptr;
|
|
*((UnionData*)(char*)Data.buffer)->Value = Value;
|
|
}
|
|
|
|
const ValueDecl *APValue::getMemberPointerDecl() const {
|
|
assert(isMemberPointer() && "Invalid accessor");
|
|
const MemberPointerData &MPD =
|
|
*((const MemberPointerData *)(const char *)Data.buffer);
|
|
return MPD.MemberAndIsDerivedMember.getPointer();
|
|
}
|
|
|
|
bool APValue::isMemberPointerToDerivedMember() const {
|
|
assert(isMemberPointer() && "Invalid accessor");
|
|
const MemberPointerData &MPD =
|
|
*((const MemberPointerData *)(const char *)Data.buffer);
|
|
return MPD.MemberAndIsDerivedMember.getInt();
|
|
}
|
|
|
|
ArrayRef<const CXXRecordDecl*> APValue::getMemberPointerPath() const {
|
|
assert(isMemberPointer() && "Invalid accessor");
|
|
const MemberPointerData &MPD =
|
|
*((const MemberPointerData *)(const char *)Data.buffer);
|
|
return llvm::makeArrayRef(MPD.getPath(), MPD.PathLength);
|
|
}
|
|
|
|
void APValue::MakeLValue() {
|
|
assert(isAbsent() && "Bad state change");
|
|
static_assert(sizeof(LV) <= DataSize, "LV too big");
|
|
new ((void*)(char*)Data.buffer) LV();
|
|
Kind = LValue;
|
|
}
|
|
|
|
void APValue::MakeArray(unsigned InitElts, unsigned Size) {
|
|
assert(isAbsent() && "Bad state change");
|
|
new ((void*)(char*)Data.buffer) Arr(InitElts, Size);
|
|
Kind = Array;
|
|
}
|
|
|
|
MutableArrayRef<APValue::LValuePathEntry>
|
|
setLValueUninit(APValue::LValueBase B, const CharUnits &O, unsigned Size,
|
|
bool OnePastTheEnd, bool IsNullPtr);
|
|
|
|
MutableArrayRef<const CXXRecordDecl *>
|
|
APValue::setMemberPointerUninit(const ValueDecl *Member, bool IsDerivedMember,
|
|
unsigned Size) {
|
|
assert(isAbsent() && "Bad state change");
|
|
MemberPointerData *MPD = new ((void *)(char *)Data.buffer) MemberPointerData;
|
|
Kind = MemberPointer;
|
|
MPD->MemberAndIsDerivedMember.setPointer(
|
|
Member ? cast<ValueDecl>(Member->getCanonicalDecl()) : nullptr);
|
|
MPD->MemberAndIsDerivedMember.setInt(IsDerivedMember);
|
|
MPD->resizePath(Size);
|
|
return {MPD->getPath(), MPD->PathLength};
|
|
}
|
|
|
|
void APValue::MakeMemberPointer(const ValueDecl *Member, bool IsDerivedMember,
|
|
ArrayRef<const CXXRecordDecl *> Path) {
|
|
MutableArrayRef<const CXXRecordDecl *> InternalPath =
|
|
setMemberPointerUninit(Member, IsDerivedMember, Path.size());
|
|
for (unsigned I = 0; I != Path.size(); ++I)
|
|
InternalPath[I] = Path[I]->getCanonicalDecl();
|
|
}
|
|
|
|
LinkageInfo LinkageComputer::getLVForValue(const APValue &V,
|
|
LVComputationKind computation) {
|
|
LinkageInfo LV = LinkageInfo::external();
|
|
|
|
auto MergeLV = [&](LinkageInfo MergeLV) {
|
|
LV.merge(MergeLV);
|
|
return LV.getLinkage() == InternalLinkage;
|
|
};
|
|
auto Merge = [&](const APValue &V) {
|
|
return MergeLV(getLVForValue(V, computation));
|
|
};
|
|
|
|
switch (V.getKind()) {
|
|
case APValue::None:
|
|
case APValue::Indeterminate:
|
|
case APValue::Int:
|
|
case APValue::Float:
|
|
case APValue::FixedPoint:
|
|
case APValue::ComplexInt:
|
|
case APValue::ComplexFloat:
|
|
case APValue::Vector:
|
|
break;
|
|
|
|
case APValue::AddrLabelDiff:
|
|
// Even for an inline function, it's not reasonable to treat a difference
|
|
// between the addresses of labels as an external value.
|
|
return LinkageInfo::internal();
|
|
|
|
case APValue::Struct: {
|
|
for (unsigned I = 0, N = V.getStructNumBases(); I != N; ++I)
|
|
if (Merge(V.getStructBase(I)))
|
|
break;
|
|
for (unsigned I = 0, N = V.getStructNumFields(); I != N; ++I)
|
|
if (Merge(V.getStructField(I)))
|
|
break;
|
|
break;
|
|
}
|
|
|
|
case APValue::Union:
|
|
if (const auto *FD = V.getUnionField())
|
|
Merge(V.getUnionValue());
|
|
break;
|
|
|
|
case APValue::Array: {
|
|
for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
|
|
if (Merge(V.getArrayInitializedElt(I)))
|
|
break;
|
|
if (V.hasArrayFiller())
|
|
Merge(V.getArrayFiller());
|
|
break;
|
|
}
|
|
|
|
case APValue::LValue: {
|
|
if (!V.getLValueBase()) {
|
|
// Null or absolute address: this is external.
|
|
} else if (const auto *VD =
|
|
V.getLValueBase().dyn_cast<const ValueDecl *>()) {
|
|
if (VD && MergeLV(getLVForDecl(VD, computation)))
|
|
break;
|
|
} else if (const auto TI = V.getLValueBase().dyn_cast<TypeInfoLValue>()) {
|
|
if (MergeLV(getLVForType(*TI.getType(), computation)))
|
|
break;
|
|
} else if (const Expr *E = V.getLValueBase().dyn_cast<const Expr *>()) {
|
|
// Almost all expression bases are internal. The exception is
|
|
// lifetime-extended temporaries.
|
|
// FIXME: These should be modeled as having the
|
|
// LifetimeExtendedTemporaryDecl itself as the base.
|
|
// FIXME: If we permit Objective-C object literals in template arguments,
|
|
// they should not imply internal linkage.
|
|
auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
|
|
if (!MTE || MTE->getStorageDuration() == SD_FullExpression)
|
|
return LinkageInfo::internal();
|
|
if (MergeLV(getLVForDecl(MTE->getExtendingDecl(), computation)))
|
|
break;
|
|
} else {
|
|
assert(V.getLValueBase().is<DynamicAllocLValue>() &&
|
|
"unexpected LValueBase kind");
|
|
return LinkageInfo::internal();
|
|
}
|
|
// The lvalue path doesn't matter: pointers to all subobjects always have
|
|
// the same visibility as pointers to the complete object.
|
|
break;
|
|
}
|
|
|
|
case APValue::MemberPointer:
|
|
if (const NamedDecl *D = V.getMemberPointerDecl())
|
|
MergeLV(getLVForDecl(D, computation));
|
|
// Note that we could have a base-to-derived conversion here to a member of
|
|
// a derived class with less linkage/visibility. That's covered by the
|
|
// linkage and visibility of the value's type.
|
|
break;
|
|
}
|
|
|
|
return LV;
|
|
}
|