llvm-project/mlir/test/EDSC/builder-api-test.cpp

1013 lines
42 KiB
C++

//===- builder-api-test.cpp - Tests for Declarative Builder APIs ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// RUN: mlir-edsc-builder-api-test | FileCheck %s
#include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
#include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
#include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "APITest.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
static MLIRContext &globalContext() {
static bool init_once = []() {
registerDialect<AffineDialect>();
registerDialect<linalg::LinalgDialect>();
registerDialect<scf::SCFDialect>();
registerDialect<StandardOpsDialect>();
registerDialect<vector::VectorDialect>();
return true;
}();
(void)init_once;
static thread_local MLIRContext context;
context.allowUnregisteredDialects();
return context;
}
static FuncOp makeFunction(StringRef name, ArrayRef<Type> results = {},
ArrayRef<Type> args = {}) {
auto &ctx = globalContext();
auto function = FuncOp::create(UnknownLoc::get(&ctx), name,
FunctionType::get(args, results, &ctx));
function.addEntryBlock();
return function;
}
TEST_FUNC(builder_dynamic_for_func_args) {
auto indexType = IndexType::get(&globalContext());
auto f32Type = FloatType::getF32(&globalContext());
auto f =
makeFunction("builder_dynamic_for_func_args", {}, {indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value lb(f.getArgument(0)), ub(f.getArgument(1));
Value f7(std_constant_float(llvm::APFloat(7.0f), f32Type));
Value f13(std_constant_float(llvm::APFloat(13.0f), f32Type));
Value i7(std_constant_int(7, 32));
Value i13(std_constant_int(13, 32));
affineLoopBuilder(lb, ub, 3, [&](Value i) {
using namespace edsc::op;
lb *std_constant_index(3) + ub;
lb + std_constant_index(3);
affineLoopBuilder(lb, ub, 2, [&](Value j) {
ceilDiv(std_constant_index(31) * floorDiv(i + j * std_constant_index(3),
std_constant_index(32)),
std_constant_index(32));
((f7 + f13) / f7) % f13 - f7 *f13;
((i7 + i13) / i7) % i13 - i7 *i13;
});
});
// clang-format off
// CHECK-LABEL: func @builder_dynamic_for_func_args(%{{.*}}: index, %{{.*}}: index) {
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 3 {
// CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 * 3)>()[%{{.*}}]
// CHECK: {{.*}} = affine.apply affine_map<()[s0, s1] -> (s1 + s0 * 3)>()[%{{.*}}, %{{.*}}]
// CHECK: {{.*}} = affine.apply affine_map<()[s0] -> (s0 + 3)>()[%{{.*}}]
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) step 2 {
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((d0 + d1 * 3) floordiv 32)>(%{{.*}}, %{{.*}})
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> (((d0 + d1 * 3) floordiv 32) * 31)>(%{{.*}}, %{{.*}})
// CHECK: {{.*}} = affine.apply affine_map<(d0, d1) -> ((((d0 + d1 * 3) floordiv 32) * 31) ceildiv 32)>(%{{.*}}, %{{.*}})
// CHECK-DAG: [[rf1:%[0-9]+]] = addf {{.*}}, {{.*}} : f32
// CHECK-DAG: [[rf2:%[0-9]+]] = divf [[rf1]], {{.*}} : f32
// CHECK-DAG: [[rf3:%[0-9]+]] = remf [[rf2]], {{.*}} : f32
// CHECK-DAG: [[rf4:%[0-9]+]] = mulf {{.*}}, {{.*}} : f32
// CHECK: {{.*}} = subf [[rf3]], [[rf4]] : f32
// CHECK-DAG: [[ri1:%[0-9]+]] = addi {{.*}}, {{.*}} : i32
// CHECK-DAG: [[ri2:%[0-9]+]] = divi_signed [[ri1]], {{.*}} : i32
// CHECK-DAG: [[ri3:%[0-9]+]] = remi_signed [[ri2]], {{.*}} : i32
// CHECK-DAG: [[ri4:%[0-9]+]] = muli {{.*}}, {{.*}} : i32
// CHECK: {{.*}} = subi [[ri3]], [[ri4]] : i32
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_dynamic_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_dynamic_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value i, a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
affineLoopBuilder(a - b, c + d, 2);
// clang-format off
// CHECK-LABEL: func @builder_dynamic_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>([[r0]]) to affine_map<(d0) -> (d0)>([[r1]]) step 2 {
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_loop_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_loop_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
loopNestBuilder(a - b, c + d, a);
// clang-format off
// CHECK-LABEL: func @builder_loop_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: scf.for %{{.*}} = [[r0]] to [[r1]] step {{.*}} {
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_max_min_for) {
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("builder_max_min_for", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value lb1(f.getArgument(0)), lb2(f.getArgument(1)), ub1(f.getArgument(2)),
ub2(f.getArgument(3));
affineLoopBuilder({lb1, lb2}, {ub1, ub2}, 1);
std_ret();
// clang-format off
// CHECK-LABEL: func @builder_max_min_for(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK: affine.for %{{.*}} = max affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1) -> (d0, d1)>(%{{.*}}, %{{.*}}) {
// CHECK: return
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_block_append) {
using namespace edsc::op;
auto f = makeFunction("builder_blocks");
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Block *b =
buildInNewBlock(TypeRange(), [&](ValueRange) { std_constant_index(0); });
appendToBlock(b, [&](ValueRange) { std_constant_index(1); });
appendToBlock(b, [&](ValueRange) { std_ret(); });
// Get back to entry block and add a branch into "b".
appendToBlock(&f.front(), [&](ValueRange) { std_br(b, {}); });
// clang-format off
// CHECK-LABEL: @builder_blocks
// CHECK-NEXT: br ^bb1
// CHECK-NEXT: ^bb1: // pred: ^bb0
// CHECK-NEXT: constant 0 : index
// CHECK-NEXT: constant 1 : index
// CHECK-NEXT: return
// CHECK-NEXT: }
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_blocks) {
using namespace edsc::op;
auto f = makeFunction("builder_blocks");
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value c1(std_constant_int(42, 32)), c2(std_constant_int(1234, 32));
ReturnOp ret = std_ret();
Block *b1 = createBlock({c1.getType(), c1.getType()});
Block *b2 = buildInNewBlock({c1.getType(), c1.getType()},
[&](ValueRange args) { std_br(b1, args); });
// The insertion point within the toplevel function is now past b2, we will
// need to get back the entry block.
// This is what happens with unstructured control-flow.
appendToBlock(b1, [&](ValueRange args) {
Value r = args[0] + args[1];
std_br(b2, {args[0], r});
});
// Get back to entry block and add a branch into b1.
appendToBlock(&f.front(), [&](ValueRange) { std_br(b1, {c1, c2}); });
ret.erase();
// clang-format off
// CHECK-LABEL: @builder_blocks
// CHECK: %{{.*}} = constant 42 : i32
// CHECK-NEXT: %{{.*}} = constant 1234 : i32
// CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: ^bb1(%{{.*}}: i32, %{{.*}}: i32): // 2 preds: ^bb0, ^bb2
// CHECK-NEXT: %{{.*}} = addi %{{.*}}, %{{.*}} : i32
// CHECK-NEXT: br ^bb2(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: ^bb2(%{{.*}}: i32, %{{.*}}: i32): // pred: ^bb1
// CHECK-NEXT: br ^bb1(%{{.*}}, %{{.*}} : i32, i32)
// CHECK-NEXT: }
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_cond_branch) {
auto f = makeFunction("builder_cond_branch", {},
{IntegerType::get(1, &globalContext())});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value c32(std_constant_int(32, 32)), c64(std_constant_int(64, 64)),
c42(std_constant_int(42, 32));
ReturnOp ret = std_ret();
Block *b1 = buildInNewBlock(c32.getType(), [&](ValueRange) { std_ret(); });
Block *b2 = buildInNewBlock({c64.getType(), c32.getType()},
[&](ValueRange) { std_ret(); });
// Get back to entry block and add a conditional branch.
appendToBlock(&f.front(), [&](ValueRange args) {
std_cond_br(args[0], b1, {c32}, b2, {c64, c42});
});
ret.erase();
// clang-format off
// CHECK-LABEL: @builder_cond_branch
// CHECK: %{{.*}} = constant 32 : i32
// CHECK-NEXT: %{{.*}} = constant 64 : i64
// CHECK-NEXT: %{{.*}} = constant 42 : i32
// CHECK-NEXT: cond_br %{{.*}}, ^bb1(%{{.*}} : i32), ^bb2(%{{.*}}, %{{.*}} : i64, i32)
// CHECK-NEXT: ^bb1(%{{.*}}: i32): // pred: ^bb0
// CHECK-NEXT: return
// CHECK-NEXT: ^bb2(%{{.*}}: i64, %{{.*}}: i32): // pred: ^bb0
// CHECK-NEXT: return
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_helpers) {
using namespace edsc::op;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f =
makeFunction("builder_helpers", {}, {memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
// clang-format off
Value f7 = std_constant_float(llvm::APFloat(7.0f), f32Type);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1)),
vC(f.getArgument(2));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
Value lb0, lb1, lb2, ub0, ub1, ub2;
int64_t step0, step1, step2;
std::tie(lb0, ub0, step0) = vA.range(0);
std::tie(lb1, ub1, step1) = vA.range(1);
lb2 = vA.lb(2);
ub2 = vA.ub(2);
step2 = vA.step(2);
affineLoopNestBuilder({lb0, lb1}, {ub0, ub1}, {step0, step1}, [&](ValueRange ivs) {
Value i = ivs[0];
Value j = ivs[1];
affineLoopBuilder(lb2, ub2, step2, [&](Value k1){
C(i, j, k1) = f7 + A(i, j, k1) + B(i, j, k1);
});
affineLoopBuilder(lb2, ub2, step2, [&](Value k2){
C(i, j, k2) += A(i, j, k2) + B(i, j, k2);
});
});
// CHECK-LABEL: @builder_helpers
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>({{.*}}) to affine_map<(d0) -> (d0)>({{.*}}) {
// CHECK-DAG: [[a:%.*]] = affine.load %arg0[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[b:%.*]] = addf {{.*}}, [[a]] : f32
// CHECK-DAG: [[c:%.*]] = affine.load %arg1[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[d:%.*]] = addf [[b]], [[c]] : f32
// CHECK-NEXT: affine.store [[d]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%{{.*}}) to affine_map<(d0) -> (d0)>(%{{.*}}) {
// CHECK-DAG: [[a:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[b:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[c:%.*]] = addf [[b]], [[a]] : f32
// CHECK-DAG: [[d:%.*]] = affine.load %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-DAG: [[e:%.*]] = addf [[d]], [[c]] : f32
// CHECK-NEXT: affine.store [[e]], %{{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(insertion_in_block) {
using namespace edsc::op;
auto indexType = IndexType::get(&globalContext());
auto f = makeFunction("insertion_in_block", {}, {indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
std_constant_int(0, 32);
buildInNewBlock({}, [&](ValueRange) { std_constant_int(1, 32); });
std_constant_int(2, 32);
// clang-format off
// CHECK-LABEL: @insertion_in_block
// CHECK: {{.*}} = constant 0 : i32
// CHECK: {{.*}} = constant 2 : i32
// CHECK: ^bb1: // no predecessors
// CHECK: {{.*}} = constant 1 : i32
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(zero_and_std_sign_extendi_op_i1_to_i8) {
using namespace edsc::op;
auto i1Type = IntegerType::get(1, &globalContext());
auto i8Type = IntegerType::get(8, &globalContext());
auto memrefType = MemRefType::get({}, i1Type, {}, 0);
auto f = makeFunction("zero_and_std_sign_extendi_op", {},
{memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
AffineIndexedValue A(f.getArgument(0));
AffineIndexedValue B(f.getArgument(1));
// clang-format off
edsc::intrinsics::std_zero_extendi(A, i8Type);
edsc::intrinsics::std_sign_extendi(B, i8Type);
// CHECK-LABEL: @zero_and_std_sign_extendi_op
// CHECK: %[[SRC1:.*]] = affine.load
// CHECK: zexti %[[SRC1]] : i1 to i8
// CHECK: %[[SRC2:.*]] = affine.load
// CHECK: sexti %[[SRC2]] : i1 to i8
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(operator_or) {
auto i1Type = IntegerType::get(/*width=*/1, &globalContext());
auto f = makeFunction("operator_or", {}, {i1Type, i1Type});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
using op::operator||;
Value lhs(f.getArgument(0));
Value rhs(f.getArgument(1));
lhs || rhs;
// CHECK-LABEL: @operator_or
// CHECK: [[ARG0:%.*]]: i1, [[ARG1:%.*]]: i1
// CHECK: or [[ARG0]], [[ARG1]]
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(operator_and) {
auto i1Type = IntegerType::get(/*width=*/1, &globalContext());
auto f = makeFunction("operator_and", {}, {i1Type, i1Type});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
using op::operator&&;
using op::negate;
Value lhs(f.getArgument(0));
Value rhs(f.getArgument(1));
negate(lhs && rhs);
// CHECK-LABEL: @operator_and
// CHECK: [[ARG0:%.*]]: i1, [[ARG1:%.*]]: i1
// CHECK: [[AND:%.*]] = and [[ARG0]], [[ARG1]]
// CHECK: [[TRUE:%.*]] = constant true
// CHECK: subi [[TRUE]], [[AND]] : i1
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(select_op_i32) {
using namespace edsc::op;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("select_op", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0), one = std_constant_index(1);
MemRefBoundsCapture vA(f.getArgument(0));
AffineIndexedValue A(f.getArgument(0));
affineLoopNestBuilder({zero, zero}, {one, one}, {1, 1}, [&](ValueRange ivs) {
std_select(eq(ivs[0], zero), A(zero, zero), A(ivs[0], ivs[1]));
});
// clang-format off
// CHECK-LABEL: @select_op
// CHECK: affine.for %{{.*}} = 0 to 1 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1 {
// CHECK-DAG: {{.*}} = cmpi "eq"
// CHECK-DAG: {{.*}} = affine.load
// CHECK-DAG: {{.*}} = affine.load
// CHECK-NEXT: {{.*}} = select
// clang-format on
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(select_op_f32) {
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("select_op", {}, {memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
// clang-format off
Value zero = std_constant_index(0), one = std_constant_index(1);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1));
affineLoopNestBuilder({zero, zero}, {one, one}, {1, 1}, [&](ValueRange ivs) {
using namespace edsc::op;
Value i = ivs[0], j = ivs[1];
std_select(eq(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(ne(B(i, j), B(i + one, j)), A(zero, zero), A(i, j));
std_select(B(i, j) >= B(i + one, j), A(zero, zero), A(i, j));
std_select(B(i, j) <= B(i + one, j), A(zero, zero), A(i, j));
std_select(B(i, j) < B(i + one, j), A(zero, zero), A(i, j));
std_select(B(i, j) > B(i + one, j), A(zero, zero), A(i, j));
});
// CHECK-LABEL: @select_op
// CHECK: affine.for %{{.*}} = 0 to 1 {
// CHECK-NEXT: affine.for %{{.*}} = 0 to 1 {
// CHECK-DAG: cmpf "oeq"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "one"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "oge"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ole"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "olt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// CHECK-DAG: cmpf "ogt"
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.load
// CHECK-DAG: affine.apply
// CHECK-NEXT: select
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Inject an EDSC-constructed computation to exercise imperfectly nested 2-d
// tiling.
TEST_FUNC(tile_2d) {
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize},
FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("tile_2d", {}, {memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
MemRefBoundsCapture vA(f.getArgument(0)), vB(f.getArgument(1)),
vC(f.getArgument(2));
AffineIndexedValue A(f.getArgument(0)), B(f.getArgument(1)),
C(f.getArgument(2));
Value i, j, k1, k2;
Value M(vC.ub(0)), N(vC.ub(1)), O(vC.ub(2));
// clang-format off
using namespace edsc::op;
affineLoopNestBuilder({zero, zero}, {M, N}, {1, 1}, [&](ValueRange ivs) {
i = ivs[0];
j = ivs[1];
affineLoopBuilder(zero, O, 1, [&](Value k) {
k1 = k;
C(i, j, k1) = A(i, j, k1) + B(i, j, k1);
});
affineLoopBuilder(zero, O, 1, [&](Value k) {
k2 = k;
C(i, j, k2) = A(i, j, k2) + B(i, j, k2);
});
});
// clang-format on
auto li = getForInductionVarOwner(i), lj = getForInductionVarOwner(j),
lk1 = getForInductionVarOwner(k1), lk2 = getForInductionVarOwner(k2);
auto indicesL1 = mlir::tile({li, lj}, {512, 1024}, {lk1, lk2});
auto lii1 = indicesL1[0][0], ljj1 = indicesL1[1][0];
mlir::tile({ljj1, lii1}, {32, 16}, ljj1);
// clang-format off
// CHECK-LABEL: func @tile_2d
// CHECK: %[[ZERO:.*]] = constant 0 : index
// CHECK: %[[M:[0-9]+]] = dim %arg2, %c0{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: %[[N:[0-9]+]] = dim %arg2, %c1{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: %[[P:[0-9]+]] = dim %arg2, %c2{{[_0-9]*}} : memref<?x?x?xf32>
// CHECK: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[M]]) step 512 {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[N]]) step 1024 {
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] step 16 {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] step 32 {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 1024, d1 + 32)>(%{{.*}}, %{{.*}})[%[[N]]] {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0, d1) -> (0, d0, d1)>(%{{.*}}, %{{.*}}) to min affine_map<(d0, d1)[s0] -> (s0, d0 + 512, d1 + 16)>(%{{.*}}, %{{.*}})[%[[M]]] {
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = addf {{.*}}, {{.*}} : f32
// CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.for %{{.*}} = affine_map<(d0) -> (d0)>(%[[ZERO]]) to affine_map<(d0) -> (d0)>(%[[P]]) {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 512)>(%{{.*}})[%[[M]]] {
// CHECK-NEXT: affine.for %{{.*}} = max affine_map<(d0) -> (0, d0)>(%{{.*}}) to min affine_map<(d0)[s0] -> (s0, d0 + 1024)>(%{{.*}})[%[[N]]] {
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}} = affine.load {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// CHECK-NEXT: {{.*}}= addf {{.*}}, {{.*}} : f32
// CHECK-NEXT: affine.store {{.*}}, {{.*}}[%{{.*}}, %{{.*}}, %{{.*}}] : memref<?x?x?xf32>
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Exercise StdIndexedValue for loads and stores.
TEST_FUNC(indirect_access) {
using namespace edsc::op;
auto memrefType = MemRefType::get({ShapedType::kDynamicSize},
FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("indirect_access", {},
{memrefType, memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
MemRefBoundsCapture vC(f.getArgument(2));
AffineIndexedValue B(f.getArgument(1)), D(f.getArgument(3));
StdIndexedValue A(f.getArgument(0)), C(f.getArgument(2));
Value N(vC.ub(0));
// clang-format off
affineLoopBuilder(zero, N, 1, [&](Value i) {
C((Value)D(i)) = A((Value)B(i));
});
// clang-format on
// clang-format off
// CHECK-LABEL: func @indirect_access
// CHECK-SAME: (%[[ARG0:.*]]: memref<?xf32>, %[[ARG1:.*]]: memref<?xf32>, %[[ARG2:.*]]: memref<?xf32>, %[[ARG3:.*]]: memref<?xf32>)
// CHECK-DAG: [[B:%.*]] = affine.load %[[ARG1]]
// CHECK-DAG: [[D:%.*]] = affine.load %[[ARG3]]
// CHECK: load %{{.*}}{{\[}}[[B]]{{\]}}
// CHECK: store %{{.*}}, %{{.*}}{{\[}}[[D]]{{\]}}
// clang-format on
f.print(llvm::outs());
f.erase();
}
// Exercise affine loads and stores build with empty maps.
TEST_FUNC(empty_map_load_store) {
using namespace edsc::op;
auto memrefType =
MemRefType::get({}, FloatType::getF32(&globalContext()), {}, 0);
auto f = makeFunction("empty_map_load_store", {},
{memrefType, memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0);
Value one = std_constant_index(1);
AffineIndexedValue input(f.getArgument(0)), res(f.getArgument(1));
// clang-format off
affineLoopBuilder(zero, one, 1, [&](Value) {
res() = input();
});
// clang-format on
// clang-format off
// CHECK-LABEL: func @empty_map_load_store(
// CHECK: [[A:%.*]] = affine.load %{{.*}}[]
// CHECK: affine.store [[A]], %{{.*}}[]
// clang-format on
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @affine_if_op
// CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}}
// CHECK-NOT: else
// CHECK: affine.if affine_set<([[d0:.*]], [[d1:.*]]){{\[}}[[s0:.*]], [[s1:.*]]{{\]}}
// CHECK-NEXT: } else {
// clang-format on
TEST_FUNC(affine_if_op) {
using namespace edsc::op;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("affine_if_op", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value zero = std_constant_index(0), ten = std_constant_index(10);
SmallVector<bool, 4> isEq = {false, false, false, false};
SmallVector<AffineExpr, 4> affineExprs = {
builder.getAffineDimExpr(0), // d0 >= 0
builder.getAffineDimExpr(1), // d1 >= 0
builder.getAffineSymbolExpr(0), // s0 >= 0
builder.getAffineSymbolExpr(1) // s1 >= 0
};
auto intSet = IntegerSet::get(2, 2, affineExprs, isEq);
SmallVector<Value, 4> affineIfArgs = {zero, zero, ten, ten};
intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/false);
intrinsics::affine_if(intSet, affineIfArgs, /*withElseRegion=*/true);
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_pointwise
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: addf
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: cmpf "ogt"
// CHECK: select
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// CHECK: linalg.generic {args_in = 1 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: tanh
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_pointwise_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("linalg_generic_pointwise", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
AffineExpr i, j;
bindDims(&globalContext(), i, j);
StructuredIndexed SA(A), SB(B), SC(C);
linalg_generic_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_max(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_tanh(SA({i, j}), SC({i, j}));
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_matmul
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>, affine_map<(d0, d1, d2) -> (d2, d1)>, affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]}
/// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?xf32>, memref<?x?xf32>, memref<?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_matmul_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto f = makeFunction("linalg_generic_matmul", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_matmul(f.getArguments());
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_conv_nhwc
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2 * 3 + d4 * 5, d3 * 4 + d5 * 6, d6)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d4, d5, d6, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d2, d3, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "reduction", "reduction", "reduction"]}
/// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?x?x?xf32>, memref<?x?x?x?xf32>, memref<?x?x?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_conv_nhwc) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize, ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f = makeFunction("linalg_generic_conv_nhwc", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_conv_nhwc(f.getArguments(),
/*strides=*/{3, 4}, /*dilations=*/{5, 6});
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_generic_dilated_conv_nhwc
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3 * 3 + d5 * 5, d4 * 4 + d6 * 6, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d5, d6, d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2, d3, d4, d5, d6) -> (d0, d3, d4, d1 + d2 * 7)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "parallel", "parallel", "reduction", "reduction"]}
// CHECK: ^bb0(%[[a0:.*]]: f32, %[[a1:.*]]: f32, %[[a2:.*]]: f32):
// CHECK: %[[a3:.*]] = mulf %[[a0]], %[[a1]] : f32
// CHECK: %[[a4:.*]] = addf %[[a2]], %[[a3]] : f32
// CHECK: linalg.yield %[[a4]] : f32
// CHECK: }: memref<?x?x?x?xf32>, memref<?x?x?x?xf32>, memref<?x?x?x?xf32>
// clang-format on
TEST_FUNC(linalg_generic_dilated_conv_nhwc) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize,
ShapedType::kDynamicSize, ShapedType::kDynamicSize},
f32Type, {}, 0);
auto f = makeFunction("linalg_generic_dilated_conv_nhwc", {},
{memrefType, memrefType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
linalg_generic_dilated_conv_nhwc(f.getArguments(),
/*depth_multiplier=*/7,
/*strides=*/{3, 4}, /*dilations=*/{5, 6});
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_metadata_ops
// CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<4x8x16xf32> into memref<32x16xf32>
// CHECK: linalg.reshape {{.*}} [affine_map<(d0, d1, d2) -> (d0, d1)>, affine_map<(d0, d1, d2) -> (d2)>] : memref<32x16xf32> into memref<4x8x16xf32>
// clang-format on
TEST_FUNC(linalg_metadata_ops) {
using linalg::ReassociationExprs;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get({4, 8, 16}, f32Type, {}, 0);
auto f = makeFunction("linalg_metadata_ops", {}, {memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
AffineExpr i, j, k;
bindDims(&globalContext(), i, j, k);
Value v(f.getArgument(0));
SmallVector<ReassociationExprs, 2> maps = {ReassociationExprs({i, j}),
ReassociationExprs({k})};
auto reshaped = linalg_reshape(v, maps);
linalg_reshape(memrefType, reshaped, maps);
f.print(llvm::outs());
f.erase();
}
// clang-format off
// CHECK-LABEL: func @linalg_tensors
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: addf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: cmpf "ogt"
// CHECK: select
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 1 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel"]}
// CHECK: tanh
// CHECK: }: tensor<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 2 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK: mulf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32> -> tensor<?x?xf32>
// CHECK: linalg.generic {args_in = 3 : i64, args_out = 1 : i64,
// CHECK-SAME: indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: iterator_types = ["parallel", "parallel", "reduction"]
// CHECK: mulf
// CHECK: addf
// CHECK: }: tensor<?x?xf32>, memref<?x?xf32>, tensor<?x?xf32> -> tensor<?x?xf32>
// clang-format on
TEST_FUNC(linalg_tensors_test) {
using namespace edsc;
using namespace edsc::ops;
auto f32Type = FloatType::getF32(&globalContext());
auto memrefType = MemRefType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type, {}, 0);
auto tensorType = RankedTensorType::get(
{ShapedType::kDynamicSize, ShapedType::kDynamicSize}, f32Type);
auto f = makeFunction("linalg_tensors", {}, {tensorType, memrefType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1));
AffineExpr i, j;
bindDims(&globalContext(), i, j);
StructuredIndexed SA(A), SB(B), SC(tensorType);
linalg_generic_pointwise_add(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_max(SA({i, j}), SB({i, j}), SC({i, j}));
linalg_generic_pointwise_tanh(SA({i, j}), SC({i, j}));
Value o1 = linalg_generic_matmul(A, B, tensorType)->getResult(0);
linalg_generic_matmul(A, B, o1, tensorType);
f.print(llvm::outs());
f.erase();
}
// CHECK-LABEL: func @memref_vector_matmul_test(
// CHECK-SAME: %[[A:.*]]: memref<?x?xvector<4x16xf32>>,
// CHECK-SAME: %[[B:.*]]: memref<?x?xvector<16x8xf32>>,
// CHECK-SAME: %[[C:.*]]: memref<?x?xvector<4x8xf32>>)
// CHECK: linalg.generic {{.*}} %[[A]], %[[B]], %[[C]]
// CHECK: vector.contract{{.*}}[affine_map<(d0, d1, d2) -> (d0,
// d2)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d2, d1)>,
// CHECK-SAME: affine_map<(d0, d1, d2) -> (d0, d1)>],
// CHECK-SAME: {{.*}}["parallel", "parallel", "reduction"]
// CHECK-SAME: vector<4x16xf32>, vector<16x8xf32> into vector<4x8xf32>
// CHECK: memref<?x?xvector<4x16xf32>>, memref<?x?xvector<16x8xf32>>,
// CHECK-SAME: memref<?x?xvector<4x8xf32>>
TEST_FUNC(memref_vector_matmul_test) {
using namespace edsc;
using namespace edsc::ops;
int64_t M = 4, N = 8, K = 16;
auto f32Type = FloatType::getF32(&globalContext());
auto mkVectorType = VectorType::get({M, K}, f32Type);
auto knVectorType = VectorType::get({K, N}, f32Type);
auto mnVectorType = VectorType::get({M, N}, f32Type);
auto typeA =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
mkVectorType, {}, 0);
auto typeB =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
knVectorType, {}, 0);
auto typeC =
MemRefType::get({ShapedType::kDynamicSize, ShapedType::kDynamicSize},
mnVectorType, {}, 0);
auto f = makeFunction("memref_vector_matmul_test", {}, {typeA, typeB, typeC});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value A(f.getArgument(0)), B(f.getArgument(1)), C(f.getArgument(2));
auto contractionBuilder = [](ValueRange args) {
assert(args.size() == 3 && "expected 3 block arguments");
(linalg_yield(vector_contraction_matmul(args[0], args[1], args[2])));
};
linalg_generic_matmul(A, B, C, contractionBuilder);
f.print(llvm::outs());
f.erase();
}
TEST_FUNC(builder_loop_for_yield) {
auto indexType = IndexType::get(&globalContext());
auto f32Type = FloatType::getF32(&globalContext());
auto f = makeFunction("builder_loop_for_yield", {},
{indexType, indexType, indexType, indexType});
OpBuilder builder(f.getBody());
ScopedContext scope(builder, f.getLoc());
Value init0 = std_constant_float(llvm::APFloat(1.0f), f32Type);
Value init1 = std_constant_float(llvm::APFloat(2.0f), f32Type);
Value a(f.getArgument(0)), b(f.getArgument(1)), c(f.getArgument(2)),
d(f.getArgument(3));
using namespace edsc::op;
auto results = loopNestBuilder(a - b, c + d, a, {init0, init1},
[&](Value iv, ValueRange args) {
Value sum = args[0] + args[1];
return scf::ValueVector{args[1], sum};
});
results[0] + results[1];
// clang-format off
// CHECK-LABEL: func @builder_loop_for_yield(%{{.*}}: index, %{{.*}}: index, %{{.*}}: index, %{{.*}}: index) {
// CHECK: [[init0:%.*]] = constant
// CHECK: [[init1:%.*]] = constant
// CHECK-DAG: [[r0:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 - s1)>()[%{{.*}}, %{{.*}}]
// CHECK-DAG: [[r1:%[0-9]+]] = affine.apply affine_map<()[s0, s1] -> (s0 + s1)>()[%{{.*}}, %{{.*}}]
// CHECK-NEXT: [[res:%[0-9]+]]:2 = scf.for %{{.*}} = [[r0]] to [[r1]] step {{.*}} iter_args([[arg0:%.*]] = [[init0]], [[arg1:%.*]] = [[init1]]) -> (f32, f32) {
// CHECK: [[sum:%[0-9]+]] = addf [[arg0]], [[arg1]] : f32
// CHECK: scf.yield [[arg1]], [[sum]] : f32, f32
// CHECK: addf [[res]]#0, [[res]]#1 : f32
// clang-format on
f.print(llvm::outs());
f.erase();
}
int main() {
RUN_TESTS();
return 0;
}