llvm-project/lld/ELF/MarkLive.cpp

405 lines
15 KiB
C++

//===- MarkLive.cpp -------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements --gc-sections, which is a feature to remove unused
// sections from output. Unused sections are sections that are not reachable
// from known GC-root symbols or sections. Naturally the feature is
// implemented as a mark-sweep garbage collector.
//
// Here's how it works. Each InputSectionBase has a "Live" bit. The bit is off
// by default. Starting with GC-root symbols or sections, markLive function
// defined in this file visits all reachable sections to set their Live
// bits. Writer will then ignore sections whose Live bits are off, so that
// such sections are not included into output.
//
//===----------------------------------------------------------------------===//
#include "MarkLive.h"
#include "InputFiles.h"
#include "InputSection.h"
#include "LinkerScript.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/CommonLinkerContext.h"
#include "lld/Common/Strings.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Object/ELF.h"
#include "llvm/Support/TimeProfiler.h"
#include <vector>
using namespace llvm;
using namespace llvm::ELF;
using namespace llvm::object;
using namespace llvm::support::endian;
using namespace lld;
using namespace lld::elf;
namespace {
template <class ELFT> class MarkLive {
public:
MarkLive(unsigned partition) : partition(partition) {}
void run();
void moveToMain();
private:
void enqueue(InputSectionBase *sec, uint64_t offset);
void markSymbol(Symbol *sym);
void mark();
template <class RelTy>
void resolveReloc(InputSectionBase &sec, RelTy &rel, bool fromFDE);
template <class RelTy>
void scanEhFrameSection(EhInputSection &eh, ArrayRef<RelTy> rels);
// The index of the partition that we are currently processing.
unsigned partition;
// A list of sections to visit.
SmallVector<InputSection *, 0> queue;
// There are normally few input sections whose names are valid C
// identifiers, so we just store a SmallVector instead of a multimap.
DenseMap<StringRef, SmallVector<InputSectionBase *, 0>> cNamedSections;
};
} // namespace
template <class ELFT>
static uint64_t getAddend(InputSectionBase &sec,
const typename ELFT::Rel &rel) {
return target->getImplicitAddend(sec.rawData.begin() + rel.r_offset,
rel.getType(config->isMips64EL));
}
template <class ELFT>
static uint64_t getAddend(InputSectionBase &sec,
const typename ELFT::Rela &rel) {
return rel.r_addend;
}
template <class ELFT>
template <class RelTy>
void MarkLive<ELFT>::resolveReloc(InputSectionBase &sec, RelTy &rel,
bool fromFDE) {
Symbol &sym = sec.getFile<ELFT>()->getRelocTargetSym(rel);
// If a symbol is referenced in a live section, it is used.
sym.used = true;
if (auto *d = dyn_cast<Defined>(&sym)) {
auto *relSec = dyn_cast_or_null<InputSectionBase>(d->section);
if (!relSec)
return;
uint64_t offset = d->value;
if (d->isSection())
offset += getAddend<ELFT>(sec, rel);
// fromFDE being true means this is referenced by a FDE in a .eh_frame
// piece. The relocation points to the described function or to a LSDA. We
// only need to keep the LSDA live, so ignore anything that points to
// executable sections. If the LSDA is in a section group or has the
// SHF_LINK_ORDER flag, we ignore the relocation as well because (a) if the
// associated text section is live, the LSDA will be retained due to section
// group/SHF_LINK_ORDER rules (b) if the associated text section should be
// discarded, marking the LSDA will unnecessarily retain the text section.
if (!(fromFDE && ((relSec->flags & (SHF_EXECINSTR | SHF_LINK_ORDER)) ||
relSec->nextInSectionGroup)))
enqueue(relSec, offset);
return;
}
if (auto *ss = dyn_cast<SharedSymbol>(&sym))
if (!ss->isWeak())
cast<SharedFile>(ss->file)->isNeeded = true;
for (InputSectionBase *sec : cNamedSections.lookup(sym.getName()))
enqueue(sec, 0);
}
// The .eh_frame section is an unfortunate special case.
// The section is divided in CIEs and FDEs and the relocations it can have are
// * CIEs can refer to a personality function.
// * FDEs can refer to a LSDA
// * FDEs refer to the function they contain information about
// The last kind of relocation cannot keep the referred section alive, or they
// would keep everything alive in a common object file. In fact, each FDE is
// alive if the section it refers to is alive.
// To keep things simple, in here we just ignore the last relocation kind. The
// other two keep the referred section alive.
//
// A possible improvement would be to fully process .eh_frame in the middle of
// the gc pass. With that we would be able to also gc some sections holding
// LSDAs and personality functions if we found that they were unused.
template <class ELFT>
template <class RelTy>
void MarkLive<ELFT>::scanEhFrameSection(EhInputSection &eh,
ArrayRef<RelTy> rels) {
for (size_t i = 0, end = eh.pieces.size(); i < end; ++i) {
EhSectionPiece &piece = eh.pieces[i];
size_t firstRelI = piece.firstRelocation;
if (firstRelI == (unsigned)-1)
continue;
if (read32<ELFT::TargetEndianness>(piece.data().data() + 4) == 0) {
// This is a CIE, we only need to worry about the first relocation. It is
// known to point to the personality function.
resolveReloc(eh, rels[firstRelI], false);
continue;
}
uint64_t pieceEnd = piece.inputOff + piece.size;
for (size_t j = firstRelI, end2 = rels.size();
j < end2 && rels[j].r_offset < pieceEnd; ++j)
resolveReloc(eh, rels[j], true);
}
}
// Some sections are used directly by the loader, so they should never be
// garbage-collected. This function returns true if a given section is such
// section.
static bool isReserved(InputSectionBase *sec) {
switch (sec->type) {
case SHT_FINI_ARRAY:
case SHT_INIT_ARRAY:
case SHT_PREINIT_ARRAY:
return true;
case SHT_NOTE:
// SHT_NOTE sections in a group are subject to garbage collection.
return !sec->nextInSectionGroup;
default:
// Support SHT_PROGBITS .init_array (https://golang.org/issue/50295) and
// .init_array.N (https://github.com/rust-lang/rust/issues/92181) for a
// while.
StringRef s = sec->name;
return s == ".init" || s == ".fini" || s.startswith(".init_array") ||
s == ".jcr" || s.startswith(".ctors") || s.startswith(".dtors");
}
}
template <class ELFT>
void MarkLive<ELFT>::enqueue(InputSectionBase *sec, uint64_t offset) {
// Skip over discarded sections. This in theory shouldn't happen, because
// the ELF spec doesn't allow a relocation to point to a deduplicated
// COMDAT section directly. Unfortunately this happens in practice (e.g.
// .eh_frame) so we need to add a check.
if (sec == &InputSection::discarded)
return;
// Usually, a whole section is marked as live or dead, but in mergeable
// (splittable) sections, each piece of data has independent liveness bit.
// So we explicitly tell it which offset is in use.
if (auto *ms = dyn_cast<MergeInputSection>(sec))
ms->getSectionPiece(offset).live = true;
// Set Sec->Partition to the meet (i.e. the "minimum") of Partition and
// Sec->Partition in the following lattice: 1 < other < 0. If Sec->Partition
// doesn't change, we don't need to do anything.
if (sec->partition == 1 || sec->partition == partition)
return;
sec->partition = sec->partition ? 1 : partition;
// Add input section to the queue.
if (InputSection *s = dyn_cast<InputSection>(sec))
queue.push_back(s);
}
template <class ELFT> void MarkLive<ELFT>::markSymbol(Symbol *sym) {
if (auto *d = dyn_cast_or_null<Defined>(sym))
if (auto *isec = dyn_cast_or_null<InputSectionBase>(d->section))
enqueue(isec, d->value);
}
// This is the main function of the garbage collector.
// Starting from GC-root sections, this function visits all reachable
// sections to set their "Live" bits.
template <class ELFT> void MarkLive<ELFT>::run() {
// Add GC root symbols.
// Preserve externally-visible symbols if the symbols defined by this
// file can interrupt other ELF file's symbols at runtime.
for (Symbol *sym : symtab->symbols())
if (sym->includeInDynsym() && sym->partition == partition)
markSymbol(sym);
// If this isn't the main partition, that's all that we need to preserve.
if (partition != 1) {
mark();
return;
}
markSymbol(symtab->find(config->entry));
markSymbol(symtab->find(config->init));
markSymbol(symtab->find(config->fini));
for (StringRef s : config->undefined)
markSymbol(symtab->find(s));
for (StringRef s : script->referencedSymbols)
markSymbol(symtab->find(s));
for (InputSectionBase *sec : inputSections) {
// Mark .eh_frame sections as live because there are usually no relocations
// that point to .eh_frames. Otherwise, the garbage collector would drop
// all of them. We also want to preserve personality routines and LSDA
// referenced by .eh_frame sections, so we scan them for that here.
if (auto *eh = dyn_cast<EhInputSection>(sec)) {
eh->markLive();
const RelsOrRelas<ELFT> rels = eh->template relsOrRelas<ELFT>();
if (rels.areRelocsRel())
scanEhFrameSection(*eh, rels.rels);
else if (rels.relas.size())
scanEhFrameSection(*eh, rels.relas);
continue;
}
if (sec->flags & SHF_GNU_RETAIN) {
enqueue(sec, 0);
continue;
}
if (sec->flags & SHF_LINK_ORDER)
continue;
// Usually, non-SHF_ALLOC sections are not removed even if they are
// unreachable through relocations because reachability is not a good signal
// whether they are garbage or not (e.g. there is usually no section
// referring to a .comment section, but we want to keep it.) When a
// non-SHF_ALLOC section is retained, we also retain sections dependent on
// it.
//
// Note on SHF_LINK_ORDER: Such sections contain metadata and they
// have a reverse dependency on the InputSection they are linked with.
// We are able to garbage collect them.
//
// Note on SHF_REL{,A}: Such sections reach here only when -r
// or --emit-reloc were given. And they are subject of garbage
// collection because, if we remove a text section, we also
// remove its relocation section.
//
// Note on nextInSectionGroup: The ELF spec says that group sections are
// included or omitted as a unit. We take the interpretation that:
//
// - Group members (nextInSectionGroup != nullptr) are subject to garbage
// collection.
// - Groups members are retained or discarded as a unit.
if (!(sec->flags & SHF_ALLOC)) {
bool isRel = sec->type == SHT_REL || sec->type == SHT_RELA;
if (!isRel && !sec->nextInSectionGroup) {
sec->markLive();
for (InputSection *isec : sec->dependentSections)
isec->markLive();
}
}
// Preserve special sections and those which are specified in linker
// script KEEP command.
if (isReserved(sec) || script->shouldKeep(sec)) {
enqueue(sec, 0);
} else if ((!config->zStartStopGC || sec->name.startswith("__libc_")) &&
isValidCIdentifier(sec->name)) {
// As a workaround for glibc libc.a before 2.34
// (https://sourceware.org/PR27492), retain __libc_atexit and similar
// sections regardless of zStartStopGC.
cNamedSections[saver().save("__start_" + sec->name)].push_back(sec);
cNamedSections[saver().save("__stop_" + sec->name)].push_back(sec);
}
}
mark();
}
template <class ELFT> void MarkLive<ELFT>::mark() {
// Mark all reachable sections.
while (!queue.empty()) {
InputSectionBase &sec = *queue.pop_back_val();
const RelsOrRelas<ELFT> rels = sec.template relsOrRelas<ELFT>();
for (const typename ELFT::Rel &rel : rels.rels)
resolveReloc(sec, rel, false);
for (const typename ELFT::Rela &rel : rels.relas)
resolveReloc(sec, rel, false);
for (InputSectionBase *isec : sec.dependentSections)
enqueue(isec, 0);
// Mark the next group member.
if (sec.nextInSectionGroup)
enqueue(sec.nextInSectionGroup, 0);
}
}
// Move the sections for some symbols to the main partition, specifically ifuncs
// (because they can result in an IRELATIVE being added to the main partition's
// GOT, which means that the ifunc must be available when the main partition is
// loaded) and TLS symbols (because we only know how to correctly process TLS
// relocations for the main partition).
//
// We also need to move sections whose names are C identifiers that are referred
// to from __start_/__stop_ symbols because there will only be one set of
// symbols for the whole program.
template <class ELFT> void MarkLive<ELFT>::moveToMain() {
for (ELFFileBase *file : ctx->objectFiles)
for (Symbol *s : file->getSymbols())
if (auto *d = dyn_cast<Defined>(s))
if ((d->type == STT_GNU_IFUNC || d->type == STT_TLS) && d->section &&
d->section->isLive())
markSymbol(s);
for (InputSectionBase *sec : inputSections) {
if (!sec->isLive() || !isValidCIdentifier(sec->name))
continue;
if (symtab->find(("__start_" + sec->name).str()) ||
symtab->find(("__stop_" + sec->name).str()))
enqueue(sec, 0);
}
mark();
}
// Before calling this function, Live bits are off for all
// input sections. This function make some or all of them on
// so that they are emitted to the output file.
template <class ELFT> void elf::markLive() {
llvm::TimeTraceScope timeScope("markLive");
// If --gc-sections is not given, retain all input sections.
if (!config->gcSections) {
// If a DSO defines a symbol referenced in a regular object, it is needed.
for (Symbol *sym : symtab->symbols())
if (auto *s = dyn_cast<SharedSymbol>(sym))
if (s->isUsedInRegularObj && !s->isWeak())
cast<SharedFile>(s->file)->isNeeded = true;
return;
}
for (InputSectionBase *sec : inputSections)
sec->markDead();
// Follow the graph to mark all live sections.
for (unsigned curPart = 1; curPart <= partitions.size(); ++curPart)
MarkLive<ELFT>(curPart).run();
// If we have multiple partitions, some sections need to live in the main
// partition even if they were allocated to a loadable partition. Move them
// there now.
if (partitions.size() != 1)
MarkLive<ELFT>(1).moveToMain();
// Report garbage-collected sections.
if (config->printGcSections)
for (InputSectionBase *sec : inputSections)
if (!sec->isLive())
message("removing unused section " + toString(sec));
}
template void elf::markLive<ELF32LE>();
template void elf::markLive<ELF32BE>();
template void elf::markLive<ELF64LE>();
template void elf::markLive<ELF64BE>();