llvm-project/polly/lib/CodeGen/IslCodeGeneration.cpp

670 lines
23 KiB
C++

//===------ IslCodeGeneration.cpp - Code generate the Scops using ISL. ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The IslCodeGeneration pass takes a Scop created by ScopInfo and translates it
// back to LLVM-IR using the ISL code generator.
//
// The Scop describes the high level memory behaviour of a control flow region.
// Transformation passes can update the schedule (execution order) of statements
// in the Scop. ISL is used to generate an abstract syntax tree that reflects
// the updated execution order. This clast is used to create new LLVM-IR that is
// computationally equivalent to the original control flow region, but executes
// its code in the new execution order defined by the changed scattering.
//
//===----------------------------------------------------------------------===//
#include "polly/Config/config.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/LoopGenerators.h"
#include "polly/CodeGen/Utils.h"
#include "polly/Dependences.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ScopHelper.h"
#include "polly/TempScopInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/union_map.h"
#include "isl/list.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
using namespace polly;
using namespace llvm;
#define DEBUG_TYPE "polly-codegen-isl"
class IslNodeBuilder {
public:
IslNodeBuilder(PollyIRBuilder &Builder, LoopAnnotator &Annotator, Pass *P,
LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT)
: Builder(Builder), Annotator(Annotator), ExprBuilder(Builder, IDToValue),
P(P), LI(LI), SE(SE), DT(DT) {}
/// @brief Add the mappings from array id's to array llvm::Value's.
void addMemoryAccesses(Scop &S);
void addParameters(__isl_take isl_set *Context);
void create(__isl_take isl_ast_node *Node);
IslExprBuilder &getExprBuilder() { return ExprBuilder; }
private:
PollyIRBuilder &Builder;
LoopAnnotator &Annotator;
IslExprBuilder ExprBuilder;
Pass *P;
LoopInfo &LI;
ScalarEvolution &SE;
DominatorTree &DT;
// This maps an isl_id* to the Value* it has in the generated program. For now
// on, the only isl_ids that are stored here are the newly calculated loop
// ivs.
IslExprBuilder::IDToValueTy IDToValue;
// Extract the upper bound of this loop
//
// The isl code generation can generate arbitrary expressions to check if the
// upper bound of a loop is reached, but it provides an option to enforce
// 'atomic' upper bounds. An 'atomic upper bound is always of the form
// iv <= expr, where expr is an (arbitrary) expression not containing iv.
//
// This function extracts 'atomic' upper bounds. Polly, in general, requires
// atomic upper bounds for the following reasons:
//
// 1. An atomic upper bound is loop invariant
//
// It must not be calculated at each loop iteration and can often even be
// hoisted out further by the loop invariant code motion.
//
// 2. OpenMP needs a loop invarient upper bound to calculate the number
// of loop iterations.
//
// 3. With the existing code, upper bounds have been easier to implement.
__isl_give isl_ast_expr *getUpperBound(__isl_keep isl_ast_node *For,
CmpInst::Predicate &Predicate);
unsigned getNumberOfIterations(__isl_keep isl_ast_node *For);
void createFor(__isl_take isl_ast_node *For);
void createForVector(__isl_take isl_ast_node *For, int VectorWidth);
void createForSequential(__isl_take isl_ast_node *For);
/// Generate LLVM-IR that computes the values of the original induction
/// variables in function of the newly generated loop induction variables.
///
/// Example:
///
/// // Original
/// for i
/// for j
/// S(i)
///
/// Schedule: [i,j] -> [i+j, j]
///
/// // New
/// for c0
/// for c1
/// S(c0 - c1, c1)
///
/// Assuming the original code consists of two loops which are
/// transformed according to a schedule [i,j] -> [c0=i+j,c1=j]. The resulting
/// ast models the original statement as a call expression where each argument
/// is an expression that computes the old induction variables from the new
/// ones, ordered such that the first argument computes the value of induction
/// variable that was outermost in the original code.
///
/// @param Expr The call expression that represents the statement.
/// @param Stmt The statement that is called.
/// @param VMap The value map into which the mapping from the old induction
/// variable to the new one is inserted. This mapping is used
/// for the classical code generation (not scev-based) and
/// gives an explicit mapping from an original, materialized
/// induction variable. It consequently can only be expressed
/// if there was an explicit induction variable.
/// @param LTS The loop to SCEV map in which the mapping from the original
/// loop to a SCEV representing the new loop iv is added. This
/// mapping does not require an explicit induction variable.
/// Instead, we think in terms of an implicit induction variable
/// that counts the number of times a loop is executed. For each
/// original loop this count, expressed in function of the new
/// induction variables, is added to the LTS map.
void createSubstitutions(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
ValueMapT &VMap, LoopToScevMapT &LTS);
void createSubstitutionsVector(__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
VectorValueMapT &VMap,
std::vector<LoopToScevMapT> &VLTS,
std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID);
void createIf(__isl_take isl_ast_node *If);
void createUserVector(__isl_take isl_ast_node *User,
std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID,
__isl_take isl_union_map *Schedule);
void createUser(__isl_take isl_ast_node *User);
void createBlock(__isl_take isl_ast_node *Block);
};
__isl_give isl_ast_expr *
IslNodeBuilder::getUpperBound(__isl_keep isl_ast_node *For,
ICmpInst::Predicate &Predicate) {
isl_id *UBID, *IteratorID;
isl_ast_expr *Cond, *Iterator, *UB, *Arg0;
isl_ast_op_type Type;
Cond = isl_ast_node_for_get_cond(For);
Iterator = isl_ast_node_for_get_iterator(For);
Type = isl_ast_expr_get_op_type(Cond);
assert(isl_ast_expr_get_type(Cond) == isl_ast_expr_op &&
"conditional expression is not an atomic upper bound");
switch (Type) {
case isl_ast_op_le:
Predicate = ICmpInst::ICMP_SLE;
break;
case isl_ast_op_lt:
Predicate = ICmpInst::ICMP_SLT;
break;
default:
llvm_unreachable("Unexpected comparision type in loop conditon");
}
Arg0 = isl_ast_expr_get_op_arg(Cond, 0);
assert(isl_ast_expr_get_type(Arg0) == isl_ast_expr_id &&
"conditional expression is not an atomic upper bound");
UBID = isl_ast_expr_get_id(Arg0);
assert(isl_ast_expr_get_type(Iterator) == isl_ast_expr_id &&
"Could not get the iterator");
IteratorID = isl_ast_expr_get_id(Iterator);
assert(UBID == IteratorID &&
"conditional expression is not an atomic upper bound");
UB = isl_ast_expr_get_op_arg(Cond, 1);
isl_ast_expr_free(Cond);
isl_ast_expr_free(Iterator);
isl_ast_expr_free(Arg0);
isl_id_free(IteratorID);
isl_id_free(UBID);
return UB;
}
unsigned IslNodeBuilder::getNumberOfIterations(__isl_keep isl_ast_node *For) {
isl_union_map *Schedule = IslAstInfo::getSchedule(For);
isl_set *LoopDomain = isl_set_from_union_set(isl_union_map_range(Schedule));
int NumberOfIterations = polly::getNumberOfIterations(LoopDomain);
if (NumberOfIterations == -1)
return -1;
return NumberOfIterations + 1;
}
void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID,
__isl_take isl_union_map *Schedule) {
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
isl_id *Id = isl_ast_expr_get_id(StmtExpr);
isl_ast_expr_free(StmtExpr);
ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
VectorValueMapT VectorMap(IVS.size());
std::vector<LoopToScevMapT> VLTS(IVS.size());
isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain());
Schedule = isl_union_map_intersect_domain(Schedule, Domain);
isl_map *S = isl_map_from_union_map(Schedule);
createSubstitutionsVector(Expr, Stmt, VectorMap, VLTS, IVS, IteratorID);
VectorBlockGenerator::generate(Builder, *Stmt, VectorMap, VLTS, S, P, LI, SE);
isl_map_free(S);
isl_id_free(Id);
isl_ast_node_free(User);
}
void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
int VectorWidth) {
isl_ast_node *Body = isl_ast_node_for_get_body(For);
isl_ast_expr *Init = isl_ast_node_for_get_init(For);
isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
Value *ValueLB = ExprBuilder.create(Init);
Value *ValueInc = ExprBuilder.create(Inc);
Type *MaxType = ExprBuilder.getType(Iterator);
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
std::vector<Value *> IVS(VectorWidth);
IVS[0] = ValueLB;
for (int i = 1; i < VectorWidth; i++)
IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
isl_union_map *Schedule = IslAstInfo::getSchedule(For);
assert(Schedule && "For statement annotation does not contain its schedule");
IDToValue[IteratorID] = ValueLB;
switch (isl_ast_node_get_type(Body)) {
case isl_ast_node_user:
createUserVector(Body, IVS, isl_id_copy(IteratorID),
isl_union_map_copy(Schedule));
break;
case isl_ast_node_block: {
isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
isl_ast_node_free(Body);
isl_ast_node_list_free(List);
break;
}
default:
isl_ast_node_dump(Body);
llvm_unreachable("Unhandled isl_ast_node in vectorizer");
}
IDToValue.erase(IteratorID);
isl_id_free(IteratorID);
isl_union_map_free(Schedule);
isl_ast_node_free(For);
isl_ast_expr_free(Iterator);
}
void IslNodeBuilder::createForSequential(__isl_take isl_ast_node *For) {
isl_ast_node *Body;
isl_ast_expr *Init, *Inc, *Iterator, *UB;
isl_id *IteratorID;
Value *ValueLB, *ValueUB, *ValueInc;
Type *MaxType;
BasicBlock *ExitBlock;
Value *IV;
CmpInst::Predicate Predicate;
bool Parallel;
Parallel =
IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For);
Body = isl_ast_node_for_get_body(For);
// isl_ast_node_for_is_degenerate(For)
//
// TODO: For degenerated loops we could generate a plain assignment.
// However, for now we just reuse the logic for normal loops, which will
// create a loop with a single iteration.
Init = isl_ast_node_for_get_init(For);
Inc = isl_ast_node_for_get_inc(For);
Iterator = isl_ast_node_for_get_iterator(For);
IteratorID = isl_ast_expr_get_id(Iterator);
UB = getUpperBound(For, Predicate);
ValueLB = ExprBuilder.create(Init);
ValueUB = ExprBuilder.create(UB);
ValueInc = ExprBuilder.create(Inc);
MaxType = ExprBuilder.getType(Iterator);
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueUB->getType())
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
// If we can show that LB <Predicate> UB holds at least once, we can
// omit the GuardBB in front of the loop.
bool UseGuardBB =
!SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, P, LI, DT, ExitBlock,
Predicate, &Annotator, Parallel, UseGuardBB);
IDToValue[IteratorID] = IV;
create(Body);
Annotator.popLoop(Parallel);
IDToValue.erase(IteratorID);
Builder.SetInsertPoint(ExitBlock->begin());
isl_ast_node_free(For);
isl_ast_expr_free(Iterator);
isl_id_free(IteratorID);
}
void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
bool Vector = PollyVectorizerChoice != VECTORIZER_NONE;
if (Vector && IslAstInfo::isInnermostParallel(For) &&
!IslAstInfo::isReductionParallel(For)) {
int VectorWidth = getNumberOfIterations(For);
if (1 < VectorWidth && VectorWidth <= 16) {
createForVector(For, VectorWidth);
return;
}
}
createForSequential(For);
}
void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
Function *F = Builder.GetInsertBlock()->getParent();
LLVMContext &Context = F->getContext();
BasicBlock *CondBB =
SplitBlock(Builder.GetInsertBlock(), Builder.GetInsertPoint(), P);
CondBB->setName("polly.cond");
BasicBlock *MergeBB = SplitBlock(CondBB, CondBB->begin(), P);
MergeBB->setName("polly.merge");
BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
DT.addNewBlock(ThenBB, CondBB);
DT.addNewBlock(ElseBB, CondBB);
DT.changeImmediateDominator(MergeBB, CondBB);
Loop *L = LI.getLoopFor(CondBB);
if (L) {
L->addBasicBlockToLoop(ThenBB, LI.getBase());
L->addBasicBlockToLoop(ElseBB, LI.getBase());
}
CondBB->getTerminator()->eraseFromParent();
Builder.SetInsertPoint(CondBB);
Value *Predicate = ExprBuilder.create(Cond);
Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
Builder.SetInsertPoint(ThenBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ElseBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ThenBB->begin());
create(isl_ast_node_if_get_then(If));
Builder.SetInsertPoint(ElseBB->begin());
if (isl_ast_node_if_has_else(If))
create(isl_ast_node_if_get_else(If));
Builder.SetInsertPoint(MergeBB->begin());
isl_ast_node_free(If);
}
void IslNodeBuilder::createSubstitutions(isl_ast_expr *Expr, ScopStmt *Stmt,
ValueMapT &VMap, LoopToScevMapT &LTS) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expression of type 'op' expected");
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
"Opertation of type 'call' expected");
for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
isl_ast_expr *SubExpr;
Value *V;
SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
V = ExprBuilder.create(SubExpr);
ScalarEvolution *SE = Stmt->getParent()->getSE();
LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
// CreateIntCast can introduce trunc expressions. This is correct, as the
// result will always fit into the type of the original induction variable
// (because we calculate a value of the original induction variable).
const Value *OldIV = Stmt->getInductionVariableForDimension(i);
if (OldIV) {
V = Builder.CreateIntCast(V, OldIV->getType(), true);
VMap[OldIV] = V;
}
}
isl_ast_expr_free(Expr);
}
void IslNodeBuilder::createSubstitutionsVector(
__isl_take isl_ast_expr *Expr, ScopStmt *Stmt, VectorValueMapT &VMap,
std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID) {
int i = 0;
Value *OldValue = IDToValue[IteratorID];
for (Value *IV : IVS) {
IDToValue[IteratorID] = IV;
createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VMap[i], VLTS[i]);
i++;
}
IDToValue[IteratorID] = OldValue;
isl_id_free(IteratorID);
isl_ast_expr_free(Expr);
}
void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
ValueMapT VMap;
LoopToScevMapT LTS;
isl_id *Id;
ScopStmt *Stmt;
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
Id = isl_ast_expr_get_id(StmtExpr);
isl_ast_expr_free(StmtExpr);
Stmt = (ScopStmt *)isl_id_get_user(Id);
createSubstitutions(Expr, Stmt, VMap, LTS);
BlockGenerator::generate(Builder, *Stmt, VMap, LTS, P, LI, SE,
IslAstInfo::getBuild(User), &ExprBuilder);
isl_ast_node_free(User);
isl_id_free(Id);
}
void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
create(isl_ast_node_list_get_ast_node(List, i));
isl_ast_node_free(Block);
isl_ast_node_list_free(List);
}
void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
switch (isl_ast_node_get_type(Node)) {
case isl_ast_node_error:
llvm_unreachable("code generation error");
case isl_ast_node_for:
createFor(Node);
return;
case isl_ast_node_if:
createIf(Node);
return;
case isl_ast_node_user:
createUser(Node);
return;
case isl_ast_node_block:
createBlock(Node);
return;
}
llvm_unreachable("Unknown isl_ast_node type");
}
void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
SCEVExpander Rewriter(SE, "polly");
for (unsigned i = 0; i < isl_set_dim(Context, isl_dim_param); ++i) {
isl_id *Id;
const SCEV *Scev;
IntegerType *T;
Instruction *InsertLocation;
Id = isl_set_get_dim_id(Context, isl_dim_param, i);
Scev = (const SCEV *)isl_id_get_user(Id);
T = dyn_cast<IntegerType>(Scev->getType());
InsertLocation = --(Builder.GetInsertBlock()->end());
Value *V = Rewriter.expandCodeFor(Scev, T, InsertLocation);
IDToValue[Id] = V;
isl_id_free(Id);
}
isl_set_free(Context);
}
void IslNodeBuilder::addMemoryAccesses(Scop &S) {
for (ScopStmt *Stmt : S)
for (MemoryAccess *MA : *Stmt) {
isl_id *Id = MA->getArrayId();
IDToValue[Id] = MA->getBaseAddr();
isl_id_free(Id);
}
}
namespace {
class IslCodeGeneration : public ScopPass {
public:
static char ID;
IslCodeGeneration() : ScopPass(ID) {}
/// @name The analysis passes we need to generate code.
///
///{
LoopInfo *LI;
IslAstInfo *AI;
DominatorTree *DT;
ScalarEvolution *SE;
///}
/// @brief The loop annotator to generate llvm.loop metadata.
LoopAnnotator Annotator;
/// @brief Build the runtime condition.
///
/// Build the condition that evaluates at run-time to true iff all
/// assumptions taken for the SCoP hold, and to false otherwise.
///
/// @return A value evaluating to true/false if execution is save/unsafe.
Value *buildRTC(PollyIRBuilder &Builder, IslExprBuilder &ExprBuilder) {
Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
Value *RTC = ExprBuilder.create(AI->getRunCondition());
if (!RTC->getType()->isIntegerTy(1))
RTC = Builder.CreateIsNotNull(RTC);
return RTC;
}
bool runOnScop(Scop &S) {
LI = &getAnalysis<LoopInfo>();
AI = &getAnalysis<IslAstInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
assert(!S.getRegion().isTopLevelRegion() &&
"Top level regions are not supported");
// Build the alias scopes for annotations first.
if (PollyAnnotateAliasScopes)
Annotator.buildAliasScopes(S);
BasicBlock *EnteringBB = simplifyRegion(&S, this);
PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
IslNodeBuilder NodeBuilder(Builder, Annotator, this, *LI, *SE, *DT);
NodeBuilder.addMemoryAccesses(S);
NodeBuilder.addParameters(S.getContext());
Value *RTC = buildRTC(Builder, NodeBuilder.getExprBuilder());
BasicBlock *StartBlock = executeScopConditionally(S, this, RTC);
Builder.SetInsertPoint(StartBlock->begin());
NodeBuilder.create(AI->getAst());
return true;
}
virtual void printScop(raw_ostream &OS) const {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<IslAstInfo>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<ScalarEvolution>();
AU.addRequired<ScopDetection>();
AU.addRequired<ScopInfo>();
AU.addRequired<LoopInfo>();
AU.addPreserved<Dependences>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<IslAstInfo>();
AU.addPreserved<ScopDetection>();
AU.addPreserved<ScalarEvolution>();
// FIXME: We do not yet add regions for the newly generated code to the
// region tree.
AU.addPreserved<RegionInfoPass>();
AU.addPreserved<TempScopInfo>();
AU.addPreserved<ScopInfo>();
AU.addPreservedID(IndependentBlocksID);
}
};
}
char IslCodeGeneration::ID = 1;
Pass *polly::createIslCodeGenerationPass() { return new IslCodeGeneration(); }
INITIALIZE_PASS_BEGIN(IslCodeGeneration, "polly-codegen-isl",
"Polly - Create LLVM-IR from SCoPs", false, false);
INITIALIZE_PASS_DEPENDENCY(Dependences);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfo);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
INITIALIZE_PASS_DEPENDENCY(ScopDetection);
INITIALIZE_PASS_END(IslCodeGeneration, "polly-codegen-isl",
"Polly - Create LLVM-IR from SCoPs", false, false)