forked from OSchip/llvm-project
6177 lines
241 KiB
C++
6177 lines
241 KiB
C++
//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for C++ declarations.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "Sema.h"
|
||
#include "SemaInit.h"
|
||
#include "Lookup.h"
|
||
#include "clang/AST/ASTConsumer.h"
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/CharUnits.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/DeclVisitor.h"
|
||
#include "clang/AST/RecordLayout.h"
|
||
#include "clang/AST/StmtVisitor.h"
|
||
#include "clang/AST/TypeLoc.h"
|
||
#include "clang/AST/TypeOrdering.h"
|
||
#include "clang/Parse/DeclSpec.h"
|
||
#include "clang/Parse/Template.h"
|
||
#include "clang/Basic/PartialDiagnostic.h"
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include <map>
|
||
#include <set>
|
||
|
||
using namespace clang;
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// CheckDefaultArgumentVisitor
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
namespace {
|
||
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
|
||
/// the default argument of a parameter to determine whether it
|
||
/// contains any ill-formed subexpressions. For example, this will
|
||
/// diagnose the use of local variables or parameters within the
|
||
/// default argument expression.
|
||
class CheckDefaultArgumentVisitor
|
||
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
|
||
Expr *DefaultArg;
|
||
Sema *S;
|
||
|
||
public:
|
||
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
|
||
: DefaultArg(defarg), S(s) {}
|
||
|
||
bool VisitExpr(Expr *Node);
|
||
bool VisitDeclRefExpr(DeclRefExpr *DRE);
|
||
bool VisitCXXThisExpr(CXXThisExpr *ThisE);
|
||
};
|
||
|
||
/// VisitExpr - Visit all of the children of this expression.
|
||
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
|
||
bool IsInvalid = false;
|
||
for (Stmt::child_iterator I = Node->child_begin(),
|
||
E = Node->child_end(); I != E; ++I)
|
||
IsInvalid |= Visit(*I);
|
||
return IsInvalid;
|
||
}
|
||
|
||
/// VisitDeclRefExpr - Visit a reference to a declaration, to
|
||
/// determine whether this declaration can be used in the default
|
||
/// argument expression.
|
||
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
|
||
NamedDecl *Decl = DRE->getDecl();
|
||
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
|
||
// C++ [dcl.fct.default]p9
|
||
// Default arguments are evaluated each time the function is
|
||
// called. The order of evaluation of function arguments is
|
||
// unspecified. Consequently, parameters of a function shall not
|
||
// be used in default argument expressions, even if they are not
|
||
// evaluated. Parameters of a function declared before a default
|
||
// argument expression are in scope and can hide namespace and
|
||
// class member names.
|
||
return S->Diag(DRE->getSourceRange().getBegin(),
|
||
diag::err_param_default_argument_references_param)
|
||
<< Param->getDeclName() << DefaultArg->getSourceRange();
|
||
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
|
||
// C++ [dcl.fct.default]p7
|
||
// Local variables shall not be used in default argument
|
||
// expressions.
|
||
if (VDecl->isBlockVarDecl())
|
||
return S->Diag(DRE->getSourceRange().getBegin(),
|
||
diag::err_param_default_argument_references_local)
|
||
<< VDecl->getDeclName() << DefaultArg->getSourceRange();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// VisitCXXThisExpr - Visit a C++ "this" expression.
|
||
bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
|
||
// C++ [dcl.fct.default]p8:
|
||
// The keyword this shall not be used in a default argument of a
|
||
// member function.
|
||
return S->Diag(ThisE->getSourceRange().getBegin(),
|
||
diag::err_param_default_argument_references_this)
|
||
<< ThisE->getSourceRange();
|
||
}
|
||
}
|
||
|
||
bool
|
||
Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
|
||
SourceLocation EqualLoc) {
|
||
if (RequireCompleteType(Param->getLocation(), Param->getType(),
|
||
diag::err_typecheck_decl_incomplete_type)) {
|
||
Param->setInvalidDecl();
|
||
return true;
|
||
}
|
||
|
||
Expr *Arg = (Expr *)DefaultArg.get();
|
||
|
||
// C++ [dcl.fct.default]p5
|
||
// A default argument expression is implicitly converted (clause
|
||
// 4) to the parameter type. The default argument expression has
|
||
// the same semantic constraints as the initializer expression in
|
||
// a declaration of a variable of the parameter type, using the
|
||
// copy-initialization semantics (8.5).
|
||
InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
|
||
InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
|
||
EqualLoc);
|
||
InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
|
||
OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
|
||
MultiExprArg(*this, (void**)&Arg, 1));
|
||
if (Result.isInvalid())
|
||
return true;
|
||
Arg = Result.takeAs<Expr>();
|
||
|
||
Arg = MaybeCreateCXXExprWithTemporaries(Arg);
|
||
|
||
// Okay: add the default argument to the parameter
|
||
Param->setDefaultArg(Arg);
|
||
|
||
DefaultArg.release();
|
||
|
||
return false;
|
||
}
|
||
|
||
/// ActOnParamDefaultArgument - Check whether the default argument
|
||
/// provided for a function parameter is well-formed. If so, attach it
|
||
/// to the parameter declaration.
|
||
void
|
||
Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
|
||
ExprArg defarg) {
|
||
if (!param || !defarg.get())
|
||
return;
|
||
|
||
ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
|
||
UnparsedDefaultArgLocs.erase(Param);
|
||
|
||
ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
|
||
|
||
// Default arguments are only permitted in C++
|
||
if (!getLangOptions().CPlusPlus) {
|
||
Diag(EqualLoc, diag::err_param_default_argument)
|
||
<< DefaultArg->getSourceRange();
|
||
Param->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// Check that the default argument is well-formed
|
||
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
|
||
if (DefaultArgChecker.Visit(DefaultArg.get())) {
|
||
Param->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
|
||
}
|
||
|
||
/// ActOnParamUnparsedDefaultArgument - We've seen a default
|
||
/// argument for a function parameter, but we can't parse it yet
|
||
/// because we're inside a class definition. Note that this default
|
||
/// argument will be parsed later.
|
||
void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
|
||
SourceLocation EqualLoc,
|
||
SourceLocation ArgLoc) {
|
||
if (!param)
|
||
return;
|
||
|
||
ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
|
||
if (Param)
|
||
Param->setUnparsedDefaultArg();
|
||
|
||
UnparsedDefaultArgLocs[Param] = ArgLoc;
|
||
}
|
||
|
||
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
|
||
/// the default argument for the parameter param failed.
|
||
void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
|
||
if (!param)
|
||
return;
|
||
|
||
ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
|
||
|
||
Param->setInvalidDecl();
|
||
|
||
UnparsedDefaultArgLocs.erase(Param);
|
||
}
|
||
|
||
/// CheckExtraCXXDefaultArguments - Check for any extra default
|
||
/// arguments in the declarator, which is not a function declaration
|
||
/// or definition and therefore is not permitted to have default
|
||
/// arguments. This routine should be invoked for every declarator
|
||
/// that is not a function declaration or definition.
|
||
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
|
||
// C++ [dcl.fct.default]p3
|
||
// A default argument expression shall be specified only in the
|
||
// parameter-declaration-clause of a function declaration or in a
|
||
// template-parameter (14.1). It shall not be specified for a
|
||
// parameter pack. If it is specified in a
|
||
// parameter-declaration-clause, it shall not occur within a
|
||
// declarator or abstract-declarator of a parameter-declaration.
|
||
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
|
||
DeclaratorChunk &chunk = D.getTypeObject(i);
|
||
if (chunk.Kind == DeclaratorChunk::Function) {
|
||
for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
|
||
ParmVarDecl *Param =
|
||
cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
|
||
if (Param->hasUnparsedDefaultArg()) {
|
||
CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
|
||
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
||
<< SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
|
||
delete Toks;
|
||
chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
|
||
} else if (Param->getDefaultArg()) {
|
||
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
|
||
<< Param->getDefaultArg()->getSourceRange();
|
||
Param->setDefaultArg(0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// MergeCXXFunctionDecl - Merge two declarations of the same C++
|
||
// function, once we already know that they have the same
|
||
// type. Subroutine of MergeFunctionDecl. Returns true if there was an
|
||
// error, false otherwise.
|
||
bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
|
||
bool Invalid = false;
|
||
|
||
// C++ [dcl.fct.default]p4:
|
||
// For non-template functions, default arguments can be added in
|
||
// later declarations of a function in the same
|
||
// scope. Declarations in different scopes have completely
|
||
// distinct sets of default arguments. That is, declarations in
|
||
// inner scopes do not acquire default arguments from
|
||
// declarations in outer scopes, and vice versa. In a given
|
||
// function declaration, all parameters subsequent to a
|
||
// parameter with a default argument shall have default
|
||
// arguments supplied in this or previous declarations. A
|
||
// default argument shall not be redefined by a later
|
||
// declaration (not even to the same value).
|
||
//
|
||
// C++ [dcl.fct.default]p6:
|
||
// Except for member functions of class templates, the default arguments
|
||
// in a member function definition that appears outside of the class
|
||
// definition are added to the set of default arguments provided by the
|
||
// member function declaration in the class definition.
|
||
for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
|
||
ParmVarDecl *OldParam = Old->getParamDecl(p);
|
||
ParmVarDecl *NewParam = New->getParamDecl(p);
|
||
|
||
if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
|
||
// FIXME: If we knew where the '=' was, we could easily provide a fix-it
|
||
// hint here. Alternatively, we could walk the type-source information
|
||
// for NewParam to find the last source location in the type... but it
|
||
// isn't worth the effort right now. This is the kind of test case that
|
||
// is hard to get right:
|
||
|
||
// int f(int);
|
||
// void g(int (*fp)(int) = f);
|
||
// void g(int (*fp)(int) = &f);
|
||
Diag(NewParam->getLocation(),
|
||
diag::err_param_default_argument_redefinition)
|
||
<< NewParam->getDefaultArgRange();
|
||
|
||
// Look for the function declaration where the default argument was
|
||
// actually written, which may be a declaration prior to Old.
|
||
for (FunctionDecl *Older = Old->getPreviousDeclaration();
|
||
Older; Older = Older->getPreviousDeclaration()) {
|
||
if (!Older->getParamDecl(p)->hasDefaultArg())
|
||
break;
|
||
|
||
OldParam = Older->getParamDecl(p);
|
||
}
|
||
|
||
Diag(OldParam->getLocation(), diag::note_previous_definition)
|
||
<< OldParam->getDefaultArgRange();
|
||
Invalid = true;
|
||
} else if (OldParam->hasDefaultArg()) {
|
||
// Merge the old default argument into the new parameter.
|
||
// It's important to use getInit() here; getDefaultArg()
|
||
// strips off any top-level CXXExprWithTemporaries.
|
||
NewParam->setHasInheritedDefaultArg();
|
||
if (OldParam->hasUninstantiatedDefaultArg())
|
||
NewParam->setUninstantiatedDefaultArg(
|
||
OldParam->getUninstantiatedDefaultArg());
|
||
else
|
||
NewParam->setDefaultArg(OldParam->getInit());
|
||
} else if (NewParam->hasDefaultArg()) {
|
||
if (New->getDescribedFunctionTemplate()) {
|
||
// Paragraph 4, quoted above, only applies to non-template functions.
|
||
Diag(NewParam->getLocation(),
|
||
diag::err_param_default_argument_template_redecl)
|
||
<< NewParam->getDefaultArgRange();
|
||
Diag(Old->getLocation(), diag::note_template_prev_declaration)
|
||
<< false;
|
||
} else if (New->getTemplateSpecializationKind()
|
||
!= TSK_ImplicitInstantiation &&
|
||
New->getTemplateSpecializationKind() != TSK_Undeclared) {
|
||
// C++ [temp.expr.spec]p21:
|
||
// Default function arguments shall not be specified in a declaration
|
||
// or a definition for one of the following explicit specializations:
|
||
// - the explicit specialization of a function template;
|
||
// - the explicit specialization of a member function template;
|
||
// - the explicit specialization of a member function of a class
|
||
// template where the class template specialization to which the
|
||
// member function specialization belongs is implicitly
|
||
// instantiated.
|
||
Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
|
||
<< (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
|
||
<< New->getDeclName()
|
||
<< NewParam->getDefaultArgRange();
|
||
} else if (New->getDeclContext()->isDependentContext()) {
|
||
// C++ [dcl.fct.default]p6 (DR217):
|
||
// Default arguments for a member function of a class template shall
|
||
// be specified on the initial declaration of the member function
|
||
// within the class template.
|
||
//
|
||
// Reading the tea leaves a bit in DR217 and its reference to DR205
|
||
// leads me to the conclusion that one cannot add default function
|
||
// arguments for an out-of-line definition of a member function of a
|
||
// dependent type.
|
||
int WhichKind = 2;
|
||
if (CXXRecordDecl *Record
|
||
= dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
|
||
if (Record->getDescribedClassTemplate())
|
||
WhichKind = 0;
|
||
else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
|
||
WhichKind = 1;
|
||
else
|
||
WhichKind = 2;
|
||
}
|
||
|
||
Diag(NewParam->getLocation(),
|
||
diag::err_param_default_argument_member_template_redecl)
|
||
<< WhichKind
|
||
<< NewParam->getDefaultArgRange();
|
||
}
|
||
}
|
||
}
|
||
|
||
if (CheckEquivalentExceptionSpec(Old, New))
|
||
Invalid = true;
|
||
|
||
return Invalid;
|
||
}
|
||
|
||
/// CheckCXXDefaultArguments - Verify that the default arguments for a
|
||
/// function declaration are well-formed according to C++
|
||
/// [dcl.fct.default].
|
||
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
|
||
unsigned NumParams = FD->getNumParams();
|
||
unsigned p;
|
||
|
||
// Find first parameter with a default argument
|
||
for (p = 0; p < NumParams; ++p) {
|
||
ParmVarDecl *Param = FD->getParamDecl(p);
|
||
if (Param->hasDefaultArg())
|
||
break;
|
||
}
|
||
|
||
// C++ [dcl.fct.default]p4:
|
||
// In a given function declaration, all parameters
|
||
// subsequent to a parameter with a default argument shall
|
||
// have default arguments supplied in this or previous
|
||
// declarations. A default argument shall not be redefined
|
||
// by a later declaration (not even to the same value).
|
||
unsigned LastMissingDefaultArg = 0;
|
||
for (; p < NumParams; ++p) {
|
||
ParmVarDecl *Param = FD->getParamDecl(p);
|
||
if (!Param->hasDefaultArg()) {
|
||
if (Param->isInvalidDecl())
|
||
/* We already complained about this parameter. */;
|
||
else if (Param->getIdentifier())
|
||
Diag(Param->getLocation(),
|
||
diag::err_param_default_argument_missing_name)
|
||
<< Param->getIdentifier();
|
||
else
|
||
Diag(Param->getLocation(),
|
||
diag::err_param_default_argument_missing);
|
||
|
||
LastMissingDefaultArg = p;
|
||
}
|
||
}
|
||
|
||
if (LastMissingDefaultArg > 0) {
|
||
// Some default arguments were missing. Clear out all of the
|
||
// default arguments up to (and including) the last missing
|
||
// default argument, so that we leave the function parameters
|
||
// in a semantically valid state.
|
||
for (p = 0; p <= LastMissingDefaultArg; ++p) {
|
||
ParmVarDecl *Param = FD->getParamDecl(p);
|
||
if (Param->hasDefaultArg()) {
|
||
if (!Param->hasUnparsedDefaultArg())
|
||
Param->getDefaultArg()->Destroy(Context);
|
||
Param->setDefaultArg(0);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// isCurrentClassName - Determine whether the identifier II is the
|
||
/// name of the class type currently being defined. In the case of
|
||
/// nested classes, this will only return true if II is the name of
|
||
/// the innermost class.
|
||
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
|
||
const CXXScopeSpec *SS) {
|
||
assert(getLangOptions().CPlusPlus && "No class names in C!");
|
||
|
||
CXXRecordDecl *CurDecl;
|
||
if (SS && SS->isSet() && !SS->isInvalid()) {
|
||
DeclContext *DC = computeDeclContext(*SS, true);
|
||
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
|
||
} else
|
||
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
|
||
|
||
if (CurDecl && CurDecl->getIdentifier())
|
||
return &II == CurDecl->getIdentifier();
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/// \brief Check the validity of a C++ base class specifier.
|
||
///
|
||
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
|
||
/// and returns NULL otherwise.
|
||
CXXBaseSpecifier *
|
||
Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
|
||
SourceRange SpecifierRange,
|
||
bool Virtual, AccessSpecifier Access,
|
||
QualType BaseType,
|
||
SourceLocation BaseLoc) {
|
||
// C++ [class.union]p1:
|
||
// A union shall not have base classes.
|
||
if (Class->isUnion()) {
|
||
Diag(Class->getLocation(), diag::err_base_clause_on_union)
|
||
<< SpecifierRange;
|
||
return 0;
|
||
}
|
||
|
||
if (BaseType->isDependentType())
|
||
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
||
Class->getTagKind() == TTK_Class,
|
||
Access, BaseType);
|
||
|
||
// Base specifiers must be record types.
|
||
if (!BaseType->isRecordType()) {
|
||
Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
|
||
return 0;
|
||
}
|
||
|
||
// C++ [class.union]p1:
|
||
// A union shall not be used as a base class.
|
||
if (BaseType->isUnionType()) {
|
||
Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
|
||
return 0;
|
||
}
|
||
|
||
// C++ [class.derived]p2:
|
||
// The class-name in a base-specifier shall not be an incompletely
|
||
// defined class.
|
||
if (RequireCompleteType(BaseLoc, BaseType,
|
||
PDiag(diag::err_incomplete_base_class)
|
||
<< SpecifierRange))
|
||
return 0;
|
||
|
||
// If the base class is polymorphic or isn't empty, the new one is/isn't, too.
|
||
RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
|
||
assert(BaseDecl && "Record type has no declaration");
|
||
BaseDecl = BaseDecl->getDefinition();
|
||
assert(BaseDecl && "Base type is not incomplete, but has no definition");
|
||
CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
|
||
assert(CXXBaseDecl && "Base type is not a C++ type");
|
||
|
||
// C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
|
||
if (CXXBaseDecl->hasAttr<FinalAttr>()) {
|
||
Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
|
||
Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
|
||
<< BaseType;
|
||
return 0;
|
||
}
|
||
|
||
SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
|
||
|
||
// Create the base specifier.
|
||
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
|
||
Class->getTagKind() == TTK_Class,
|
||
Access, BaseType);
|
||
}
|
||
|
||
void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
|
||
const CXXRecordDecl *BaseClass,
|
||
bool BaseIsVirtual) {
|
||
// A class with a non-empty base class is not empty.
|
||
// FIXME: Standard ref?
|
||
if (!BaseClass->isEmpty())
|
||
Class->setEmpty(false);
|
||
|
||
// C++ [class.virtual]p1:
|
||
// A class that [...] inherits a virtual function is called a polymorphic
|
||
// class.
|
||
if (BaseClass->isPolymorphic())
|
||
Class->setPolymorphic(true);
|
||
|
||
// C++ [dcl.init.aggr]p1:
|
||
// An aggregate is [...] a class with [...] no base classes [...].
|
||
Class->setAggregate(false);
|
||
|
||
// C++ [class]p4:
|
||
// A POD-struct is an aggregate class...
|
||
Class->setPOD(false);
|
||
|
||
if (BaseIsVirtual) {
|
||
// C++ [class.ctor]p5:
|
||
// A constructor is trivial if its class has no virtual base classes.
|
||
Class->setHasTrivialConstructor(false);
|
||
|
||
// C++ [class.copy]p6:
|
||
// A copy constructor is trivial if its class has no virtual base classes.
|
||
Class->setHasTrivialCopyConstructor(false);
|
||
|
||
// C++ [class.copy]p11:
|
||
// A copy assignment operator is trivial if its class has no virtual
|
||
// base classes.
|
||
Class->setHasTrivialCopyAssignment(false);
|
||
|
||
// C++0x [meta.unary.prop] is_empty:
|
||
// T is a class type, but not a union type, with ... no virtual base
|
||
// classes
|
||
Class->setEmpty(false);
|
||
} else {
|
||
// C++ [class.ctor]p5:
|
||
// A constructor is trivial if all the direct base classes of its
|
||
// class have trivial constructors.
|
||
if (!BaseClass->hasTrivialConstructor())
|
||
Class->setHasTrivialConstructor(false);
|
||
|
||
// C++ [class.copy]p6:
|
||
// A copy constructor is trivial if all the direct base classes of its
|
||
// class have trivial copy constructors.
|
||
if (!BaseClass->hasTrivialCopyConstructor())
|
||
Class->setHasTrivialCopyConstructor(false);
|
||
|
||
// C++ [class.copy]p11:
|
||
// A copy assignment operator is trivial if all the direct base classes
|
||
// of its class have trivial copy assignment operators.
|
||
if (!BaseClass->hasTrivialCopyAssignment())
|
||
Class->setHasTrivialCopyAssignment(false);
|
||
}
|
||
|
||
// C++ [class.ctor]p3:
|
||
// A destructor is trivial if all the direct base classes of its class
|
||
// have trivial destructors.
|
||
if (!BaseClass->hasTrivialDestructor())
|
||
Class->setHasTrivialDestructor(false);
|
||
}
|
||
|
||
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
|
||
/// one entry in the base class list of a class specifier, for
|
||
/// example:
|
||
/// class foo : public bar, virtual private baz {
|
||
/// 'public bar' and 'virtual private baz' are each base-specifiers.
|
||
Sema::BaseResult
|
||
Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
|
||
bool Virtual, AccessSpecifier Access,
|
||
TypeTy *basetype, SourceLocation BaseLoc) {
|
||
if (!classdecl)
|
||
return true;
|
||
|
||
AdjustDeclIfTemplate(classdecl);
|
||
CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
|
||
if (!Class)
|
||
return true;
|
||
|
||
QualType BaseType = GetTypeFromParser(basetype);
|
||
if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
|
||
Virtual, Access,
|
||
BaseType, BaseLoc))
|
||
return BaseSpec;
|
||
|
||
return true;
|
||
}
|
||
|
||
/// \brief Performs the actual work of attaching the given base class
|
||
/// specifiers to a C++ class.
|
||
bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
|
||
unsigned NumBases) {
|
||
if (NumBases == 0)
|
||
return false;
|
||
|
||
// Used to keep track of which base types we have already seen, so
|
||
// that we can properly diagnose redundant direct base types. Note
|
||
// that the key is always the unqualified canonical type of the base
|
||
// class.
|
||
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
|
||
|
||
// Copy non-redundant base specifiers into permanent storage.
|
||
unsigned NumGoodBases = 0;
|
||
bool Invalid = false;
|
||
for (unsigned idx = 0; idx < NumBases; ++idx) {
|
||
QualType NewBaseType
|
||
= Context.getCanonicalType(Bases[idx]->getType());
|
||
NewBaseType = NewBaseType.getLocalUnqualifiedType();
|
||
|
||
if (KnownBaseTypes[NewBaseType]) {
|
||
// C++ [class.mi]p3:
|
||
// A class shall not be specified as a direct base class of a
|
||
// derived class more than once.
|
||
Diag(Bases[idx]->getSourceRange().getBegin(),
|
||
diag::err_duplicate_base_class)
|
||
<< KnownBaseTypes[NewBaseType]->getType()
|
||
<< Bases[idx]->getSourceRange();
|
||
|
||
// Delete the duplicate base class specifier; we're going to
|
||
// overwrite its pointer later.
|
||
Context.Deallocate(Bases[idx]);
|
||
|
||
Invalid = true;
|
||
} else {
|
||
// Okay, add this new base class.
|
||
KnownBaseTypes[NewBaseType] = Bases[idx];
|
||
Bases[NumGoodBases++] = Bases[idx];
|
||
}
|
||
}
|
||
|
||
// Attach the remaining base class specifiers to the derived class.
|
||
Class->setBases(Bases, NumGoodBases);
|
||
|
||
// Delete the remaining (good) base class specifiers, since their
|
||
// data has been copied into the CXXRecordDecl.
|
||
for (unsigned idx = 0; idx < NumGoodBases; ++idx)
|
||
Context.Deallocate(Bases[idx]);
|
||
|
||
return Invalid;
|
||
}
|
||
|
||
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
|
||
/// class, after checking whether there are any duplicate base
|
||
/// classes.
|
||
void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
|
||
unsigned NumBases) {
|
||
if (!ClassDecl || !Bases || !NumBases)
|
||
return;
|
||
|
||
AdjustDeclIfTemplate(ClassDecl);
|
||
AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
|
||
(CXXBaseSpecifier**)(Bases), NumBases);
|
||
}
|
||
|
||
static CXXRecordDecl *GetClassForType(QualType T) {
|
||
if (const RecordType *RT = T->getAs<RecordType>())
|
||
return cast<CXXRecordDecl>(RT->getDecl());
|
||
else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
|
||
return ICT->getDecl();
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/// \brief Determine whether the type \p Derived is a C++ class that is
|
||
/// derived from the type \p Base.
|
||
bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
|
||
if (!getLangOptions().CPlusPlus)
|
||
return false;
|
||
|
||
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
|
||
if (!DerivedRD)
|
||
return false;
|
||
|
||
CXXRecordDecl *BaseRD = GetClassForType(Base);
|
||
if (!BaseRD)
|
||
return false;
|
||
|
||
// FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
|
||
return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
|
||
}
|
||
|
||
/// \brief Determine whether the type \p Derived is a C++ class that is
|
||
/// derived from the type \p Base.
|
||
bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
|
||
if (!getLangOptions().CPlusPlus)
|
||
return false;
|
||
|
||
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
|
||
if (!DerivedRD)
|
||
return false;
|
||
|
||
CXXRecordDecl *BaseRD = GetClassForType(Base);
|
||
if (!BaseRD)
|
||
return false;
|
||
|
||
return DerivedRD->isDerivedFrom(BaseRD, Paths);
|
||
}
|
||
|
||
void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
|
||
CXXBaseSpecifierArray &BasePathArray) {
|
||
assert(BasePathArray.empty() && "Base path array must be empty!");
|
||
assert(Paths.isRecordingPaths() && "Must record paths!");
|
||
|
||
const CXXBasePath &Path = Paths.front();
|
||
|
||
// We first go backward and check if we have a virtual base.
|
||
// FIXME: It would be better if CXXBasePath had the base specifier for
|
||
// the nearest virtual base.
|
||
unsigned Start = 0;
|
||
for (unsigned I = Path.size(); I != 0; --I) {
|
||
if (Path[I - 1].Base->isVirtual()) {
|
||
Start = I - 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Now add all bases.
|
||
for (unsigned I = Start, E = Path.size(); I != E; ++I)
|
||
BasePathArray.push_back(Path[I].Base);
|
||
}
|
||
|
||
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
|
||
/// conversion (where Derived and Base are class types) is
|
||
/// well-formed, meaning that the conversion is unambiguous (and
|
||
/// that all of the base classes are accessible). Returns true
|
||
/// and emits a diagnostic if the code is ill-formed, returns false
|
||
/// otherwise. Loc is the location where this routine should point to
|
||
/// if there is an error, and Range is the source range to highlight
|
||
/// if there is an error.
|
||
bool
|
||
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
||
unsigned InaccessibleBaseID,
|
||
unsigned AmbigiousBaseConvID,
|
||
SourceLocation Loc, SourceRange Range,
|
||
DeclarationName Name,
|
||
CXXBaseSpecifierArray *BasePath) {
|
||
// First, determine whether the path from Derived to Base is
|
||
// ambiguous. This is slightly more expensive than checking whether
|
||
// the Derived to Base conversion exists, because here we need to
|
||
// explore multiple paths to determine if there is an ambiguity.
|
||
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
||
/*DetectVirtual=*/false);
|
||
bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
|
||
assert(DerivationOkay &&
|
||
"Can only be used with a derived-to-base conversion");
|
||
(void)DerivationOkay;
|
||
|
||
if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
|
||
if (InaccessibleBaseID) {
|
||
// Check that the base class can be accessed.
|
||
switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
|
||
InaccessibleBaseID)) {
|
||
case AR_inaccessible:
|
||
return true;
|
||
case AR_accessible:
|
||
case AR_dependent:
|
||
case AR_delayed:
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Build a base path if necessary.
|
||
if (BasePath)
|
||
BuildBasePathArray(Paths, *BasePath);
|
||
return false;
|
||
}
|
||
|
||
// We know that the derived-to-base conversion is ambiguous, and
|
||
// we're going to produce a diagnostic. Perform the derived-to-base
|
||
// search just one more time to compute all of the possible paths so
|
||
// that we can print them out. This is more expensive than any of
|
||
// the previous derived-to-base checks we've done, but at this point
|
||
// performance isn't as much of an issue.
|
||
Paths.clear();
|
||
Paths.setRecordingPaths(true);
|
||
bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
|
||
assert(StillOkay && "Can only be used with a derived-to-base conversion");
|
||
(void)StillOkay;
|
||
|
||
// Build up a textual representation of the ambiguous paths, e.g.,
|
||
// D -> B -> A, that will be used to illustrate the ambiguous
|
||
// conversions in the diagnostic. We only print one of the paths
|
||
// to each base class subobject.
|
||
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
|
||
|
||
Diag(Loc, AmbigiousBaseConvID)
|
||
<< Derived << Base << PathDisplayStr << Range << Name;
|
||
return true;
|
||
}
|
||
|
||
bool
|
||
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
|
||
SourceLocation Loc, SourceRange Range,
|
||
CXXBaseSpecifierArray *BasePath,
|
||
bool IgnoreAccess) {
|
||
return CheckDerivedToBaseConversion(Derived, Base,
|
||
IgnoreAccess ? 0
|
||
: diag::err_upcast_to_inaccessible_base,
|
||
diag::err_ambiguous_derived_to_base_conv,
|
||
Loc, Range, DeclarationName(),
|
||
BasePath);
|
||
}
|
||
|
||
|
||
/// @brief Builds a string representing ambiguous paths from a
|
||
/// specific derived class to different subobjects of the same base
|
||
/// class.
|
||
///
|
||
/// This function builds a string that can be used in error messages
|
||
/// to show the different paths that one can take through the
|
||
/// inheritance hierarchy to go from the derived class to different
|
||
/// subobjects of a base class. The result looks something like this:
|
||
/// @code
|
||
/// struct D -> struct B -> struct A
|
||
/// struct D -> struct C -> struct A
|
||
/// @endcode
|
||
std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
|
||
std::string PathDisplayStr;
|
||
std::set<unsigned> DisplayedPaths;
|
||
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
||
Path != Paths.end(); ++Path) {
|
||
if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
|
||
// We haven't displayed a path to this particular base
|
||
// class subobject yet.
|
||
PathDisplayStr += "\n ";
|
||
PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
|
||
for (CXXBasePath::const_iterator Element = Path->begin();
|
||
Element != Path->end(); ++Element)
|
||
PathDisplayStr += " -> " + Element->Base->getType().getAsString();
|
||
}
|
||
}
|
||
|
||
return PathDisplayStr;
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// C++ class member Handling
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
|
||
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
|
||
/// bitfield width if there is one and 'InitExpr' specifies the initializer if
|
||
/// any.
|
||
Sema::DeclPtrTy
|
||
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
|
||
MultiTemplateParamsArg TemplateParameterLists,
|
||
ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
|
||
bool Deleted) {
|
||
const DeclSpec &DS = D.getDeclSpec();
|
||
DeclarationName Name = GetNameForDeclarator(D);
|
||
Expr *BitWidth = static_cast<Expr*>(BW);
|
||
Expr *Init = static_cast<Expr*>(InitExpr);
|
||
SourceLocation Loc = D.getIdentifierLoc();
|
||
|
||
bool isFunc = D.isFunctionDeclarator();
|
||
|
||
assert(!DS.isFriendSpecified());
|
||
|
||
// C++ 9.2p6: A member shall not be declared to have automatic storage
|
||
// duration (auto, register) or with the extern storage-class-specifier.
|
||
// C++ 7.1.1p8: The mutable specifier can be applied only to names of class
|
||
// data members and cannot be applied to names declared const or static,
|
||
// and cannot be applied to reference members.
|
||
switch (DS.getStorageClassSpec()) {
|
||
case DeclSpec::SCS_unspecified:
|
||
case DeclSpec::SCS_typedef:
|
||
case DeclSpec::SCS_static:
|
||
// FALL THROUGH.
|
||
break;
|
||
case DeclSpec::SCS_mutable:
|
||
if (isFunc) {
|
||
if (DS.getStorageClassSpecLoc().isValid())
|
||
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
|
||
else
|
||
Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
|
||
|
||
// FIXME: It would be nicer if the keyword was ignored only for this
|
||
// declarator. Otherwise we could get follow-up errors.
|
||
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
||
} else {
|
||
QualType T = GetTypeForDeclarator(D, S);
|
||
diag::kind err = static_cast<diag::kind>(0);
|
||
if (T->isReferenceType())
|
||
err = diag::err_mutable_reference;
|
||
else if (T.isConstQualified())
|
||
err = diag::err_mutable_const;
|
||
if (err != 0) {
|
||
if (DS.getStorageClassSpecLoc().isValid())
|
||
Diag(DS.getStorageClassSpecLoc(), err);
|
||
else
|
||
Diag(DS.getThreadSpecLoc(), err);
|
||
// FIXME: It would be nicer if the keyword was ignored only for this
|
||
// declarator. Otherwise we could get follow-up errors.
|
||
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
||
}
|
||
}
|
||
break;
|
||
default:
|
||
if (DS.getStorageClassSpecLoc().isValid())
|
||
Diag(DS.getStorageClassSpecLoc(),
|
||
diag::err_storageclass_invalid_for_member);
|
||
else
|
||
Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
|
||
D.getMutableDeclSpec().ClearStorageClassSpecs();
|
||
}
|
||
|
||
if (!isFunc &&
|
||
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
|
||
D.getNumTypeObjects() == 0) {
|
||
// Check also for this case:
|
||
//
|
||
// typedef int f();
|
||
// f a;
|
||
//
|
||
QualType TDType = GetTypeFromParser(DS.getTypeRep());
|
||
isFunc = TDType->isFunctionType();
|
||
}
|
||
|
||
bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
|
||
DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
|
||
!isFunc);
|
||
|
||
Decl *Member;
|
||
if (isInstField) {
|
||
// FIXME: Check for template parameters!
|
||
Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
|
||
AS);
|
||
assert(Member && "HandleField never returns null");
|
||
} else {
|
||
Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
|
||
.getAs<Decl>();
|
||
if (!Member) {
|
||
if (BitWidth) DeleteExpr(BitWidth);
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
// Non-instance-fields can't have a bitfield.
|
||
if (BitWidth) {
|
||
if (Member->isInvalidDecl()) {
|
||
// don't emit another diagnostic.
|
||
} else if (isa<VarDecl>(Member)) {
|
||
// C++ 9.6p3: A bit-field shall not be a static member.
|
||
// "static member 'A' cannot be a bit-field"
|
||
Diag(Loc, diag::err_static_not_bitfield)
|
||
<< Name << BitWidth->getSourceRange();
|
||
} else if (isa<TypedefDecl>(Member)) {
|
||
// "typedef member 'x' cannot be a bit-field"
|
||
Diag(Loc, diag::err_typedef_not_bitfield)
|
||
<< Name << BitWidth->getSourceRange();
|
||
} else {
|
||
// A function typedef ("typedef int f(); f a;").
|
||
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
|
||
Diag(Loc, diag::err_not_integral_type_bitfield)
|
||
<< Name << cast<ValueDecl>(Member)->getType()
|
||
<< BitWidth->getSourceRange();
|
||
}
|
||
|
||
DeleteExpr(BitWidth);
|
||
BitWidth = 0;
|
||
Member->setInvalidDecl();
|
||
}
|
||
|
||
Member->setAccess(AS);
|
||
|
||
// If we have declared a member function template, set the access of the
|
||
// templated declaration as well.
|
||
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
|
||
FunTmpl->getTemplatedDecl()->setAccess(AS);
|
||
}
|
||
|
||
assert((Name || isInstField) && "No identifier for non-field ?");
|
||
|
||
if (Init)
|
||
AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
|
||
if (Deleted) // FIXME: Source location is not very good.
|
||
SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
|
||
|
||
if (isInstField) {
|
||
FieldCollector->Add(cast<FieldDecl>(Member));
|
||
return DeclPtrTy();
|
||
}
|
||
return DeclPtrTy::make(Member);
|
||
}
|
||
|
||
/// \brief Find the direct and/or virtual base specifiers that
|
||
/// correspond to the given base type, for use in base initialization
|
||
/// within a constructor.
|
||
static bool FindBaseInitializer(Sema &SemaRef,
|
||
CXXRecordDecl *ClassDecl,
|
||
QualType BaseType,
|
||
const CXXBaseSpecifier *&DirectBaseSpec,
|
||
const CXXBaseSpecifier *&VirtualBaseSpec) {
|
||
// First, check for a direct base class.
|
||
DirectBaseSpec = 0;
|
||
for (CXXRecordDecl::base_class_const_iterator Base
|
||
= ClassDecl->bases_begin();
|
||
Base != ClassDecl->bases_end(); ++Base) {
|
||
if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
|
||
// We found a direct base of this type. That's what we're
|
||
// initializing.
|
||
DirectBaseSpec = &*Base;
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Check for a virtual base class.
|
||
// FIXME: We might be able to short-circuit this if we know in advance that
|
||
// there are no virtual bases.
|
||
VirtualBaseSpec = 0;
|
||
if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
|
||
// We haven't found a base yet; search the class hierarchy for a
|
||
// virtual base class.
|
||
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
|
||
/*DetectVirtual=*/false);
|
||
if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
|
||
BaseType, Paths)) {
|
||
for (CXXBasePaths::paths_iterator Path = Paths.begin();
|
||
Path != Paths.end(); ++Path) {
|
||
if (Path->back().Base->isVirtual()) {
|
||
VirtualBaseSpec = Path->back().Base;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return DirectBaseSpec || VirtualBaseSpec;
|
||
}
|
||
|
||
/// ActOnMemInitializer - Handle a C++ member initializer.
|
||
Sema::MemInitResult
|
||
Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
|
||
Scope *S,
|
||
CXXScopeSpec &SS,
|
||
IdentifierInfo *MemberOrBase,
|
||
TypeTy *TemplateTypeTy,
|
||
SourceLocation IdLoc,
|
||
SourceLocation LParenLoc,
|
||
ExprTy **Args, unsigned NumArgs,
|
||
SourceLocation *CommaLocs,
|
||
SourceLocation RParenLoc) {
|
||
if (!ConstructorD)
|
||
return true;
|
||
|
||
AdjustDeclIfTemplate(ConstructorD);
|
||
|
||
CXXConstructorDecl *Constructor
|
||
= dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
|
||
if (!Constructor) {
|
||
// The user wrote a constructor initializer on a function that is
|
||
// not a C++ constructor. Ignore the error for now, because we may
|
||
// have more member initializers coming; we'll diagnose it just
|
||
// once in ActOnMemInitializers.
|
||
return true;
|
||
}
|
||
|
||
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
||
|
||
// C++ [class.base.init]p2:
|
||
// Names in a mem-initializer-id are looked up in the scope of the
|
||
// constructor’s class and, if not found in that scope, are looked
|
||
// up in the scope containing the constructor’s
|
||
// definition. [Note: if the constructor’s class contains a member
|
||
// with the same name as a direct or virtual base class of the
|
||
// class, a mem-initializer-id naming the member or base class and
|
||
// composed of a single identifier refers to the class member. A
|
||
// mem-initializer-id for the hidden base class may be specified
|
||
// using a qualified name. ]
|
||
if (!SS.getScopeRep() && !TemplateTypeTy) {
|
||
// Look for a member, first.
|
||
FieldDecl *Member = 0;
|
||
DeclContext::lookup_result Result
|
||
= ClassDecl->lookup(MemberOrBase);
|
||
if (Result.first != Result.second)
|
||
Member = dyn_cast<FieldDecl>(*Result.first);
|
||
|
||
// FIXME: Handle members of an anonymous union.
|
||
|
||
if (Member)
|
||
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
|
||
LParenLoc, RParenLoc);
|
||
}
|
||
// It didn't name a member, so see if it names a class.
|
||
QualType BaseType;
|
||
TypeSourceInfo *TInfo = 0;
|
||
|
||
if (TemplateTypeTy) {
|
||
BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
|
||
} else {
|
||
LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
|
||
LookupParsedName(R, S, &SS);
|
||
|
||
TypeDecl *TyD = R.getAsSingle<TypeDecl>();
|
||
if (!TyD) {
|
||
if (R.isAmbiguous()) return true;
|
||
|
||
// We don't want access-control diagnostics here.
|
||
R.suppressDiagnostics();
|
||
|
||
if (SS.isSet() && isDependentScopeSpecifier(SS)) {
|
||
bool NotUnknownSpecialization = false;
|
||
DeclContext *DC = computeDeclContext(SS, false);
|
||
if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
|
||
NotUnknownSpecialization = !Record->hasAnyDependentBases();
|
||
|
||
if (!NotUnknownSpecialization) {
|
||
// When the scope specifier can refer to a member of an unknown
|
||
// specialization, we take it as a type name.
|
||
BaseType = CheckTypenameType(ETK_None,
|
||
(NestedNameSpecifier *)SS.getScopeRep(),
|
||
*MemberOrBase, SS.getRange());
|
||
if (BaseType.isNull())
|
||
return true;
|
||
|
||
R.clear();
|
||
}
|
||
}
|
||
|
||
// If no results were found, try to correct typos.
|
||
if (R.empty() && BaseType.isNull() &&
|
||
CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
|
||
R.isSingleResult()) {
|
||
if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
|
||
if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
|
||
// We have found a non-static data member with a similar
|
||
// name to what was typed; complain and initialize that
|
||
// member.
|
||
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
|
||
<< MemberOrBase << true << R.getLookupName()
|
||
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
||
R.getLookupName().getAsString());
|
||
Diag(Member->getLocation(), diag::note_previous_decl)
|
||
<< Member->getDeclName();
|
||
|
||
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
|
||
LParenLoc, RParenLoc);
|
||
}
|
||
} else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
|
||
const CXXBaseSpecifier *DirectBaseSpec;
|
||
const CXXBaseSpecifier *VirtualBaseSpec;
|
||
if (FindBaseInitializer(*this, ClassDecl,
|
||
Context.getTypeDeclType(Type),
|
||
DirectBaseSpec, VirtualBaseSpec)) {
|
||
// We have found a direct or virtual base class with a
|
||
// similar name to what was typed; complain and initialize
|
||
// that base class.
|
||
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
|
||
<< MemberOrBase << false << R.getLookupName()
|
||
<< FixItHint::CreateReplacement(R.getNameLoc(),
|
||
R.getLookupName().getAsString());
|
||
|
||
const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
|
||
: VirtualBaseSpec;
|
||
Diag(BaseSpec->getSourceRange().getBegin(),
|
||
diag::note_base_class_specified_here)
|
||
<< BaseSpec->getType()
|
||
<< BaseSpec->getSourceRange();
|
||
|
||
TyD = Type;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!TyD && BaseType.isNull()) {
|
||
Diag(IdLoc, diag::err_mem_init_not_member_or_class)
|
||
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (BaseType.isNull()) {
|
||
BaseType = Context.getTypeDeclType(TyD);
|
||
if (SS.isSet()) {
|
||
NestedNameSpecifier *Qualifier =
|
||
static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
||
|
||
// FIXME: preserve source range information
|
||
BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!TInfo)
|
||
TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
|
||
|
||
return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
|
||
LParenLoc, RParenLoc, ClassDecl);
|
||
}
|
||
|
||
/// Checks an initializer expression for use of uninitialized fields, such as
|
||
/// containing the field that is being initialized. Returns true if there is an
|
||
/// uninitialized field was used an updates the SourceLocation parameter; false
|
||
/// otherwise.
|
||
static bool InitExprContainsUninitializedFields(const Stmt* S,
|
||
const FieldDecl* LhsField,
|
||
SourceLocation* L) {
|
||
const MemberExpr* ME = dyn_cast<MemberExpr>(S);
|
||
if (ME) {
|
||
const NamedDecl* RhsField = ME->getMemberDecl();
|
||
if (RhsField == LhsField) {
|
||
// Initializing a field with itself. Throw a warning.
|
||
// But wait; there are exceptions!
|
||
// Exception #1: The field may not belong to this record.
|
||
// e.g. Foo(const Foo& rhs) : A(rhs.A) {}
|
||
const Expr* base = ME->getBase();
|
||
if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
|
||
// Even though the field matches, it does not belong to this record.
|
||
return false;
|
||
}
|
||
// None of the exceptions triggered; return true to indicate an
|
||
// uninitialized field was used.
|
||
*L = ME->getMemberLoc();
|
||
return true;
|
||
}
|
||
}
|
||
bool found = false;
|
||
for (Stmt::const_child_iterator it = S->child_begin();
|
||
it != S->child_end() && found == false;
|
||
++it) {
|
||
if (isa<CallExpr>(S)) {
|
||
// Do not descend into function calls or constructors, as the use
|
||
// of an uninitialized field may be valid. One would have to inspect
|
||
// the contents of the function/ctor to determine if it is safe or not.
|
||
// i.e. Pass-by-value is never safe, but pass-by-reference and pointers
|
||
// may be safe, depending on what the function/ctor does.
|
||
continue;
|
||
}
|
||
found = InitExprContainsUninitializedFields(*it, LhsField, L);
|
||
}
|
||
return found;
|
||
}
|
||
|
||
Sema::MemInitResult
|
||
Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
|
||
unsigned NumArgs, SourceLocation IdLoc,
|
||
SourceLocation LParenLoc,
|
||
SourceLocation RParenLoc) {
|
||
// Diagnose value-uses of fields to initialize themselves, e.g.
|
||
// foo(foo)
|
||
// where foo is not also a parameter to the constructor.
|
||
// TODO: implement -Wuninitialized and fold this into that framework.
|
||
for (unsigned i = 0; i < NumArgs; ++i) {
|
||
SourceLocation L;
|
||
if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
|
||
// FIXME: Return true in the case when other fields are used before being
|
||
// uninitialized. For example, let this field be the i'th field. When
|
||
// initializing the i'th field, throw a warning if any of the >= i'th
|
||
// fields are used, as they are not yet initialized.
|
||
// Right now we are only handling the case where the i'th field uses
|
||
// itself in its initializer.
|
||
Diag(L, diag::warn_field_is_uninit);
|
||
}
|
||
}
|
||
|
||
bool HasDependentArg = false;
|
||
for (unsigned i = 0; i < NumArgs; i++)
|
||
HasDependentArg |= Args[i]->isTypeDependent();
|
||
|
||
QualType FieldType = Member->getType();
|
||
if (const ArrayType *Array = Context.getAsArrayType(FieldType))
|
||
FieldType = Array->getElementType();
|
||
if (FieldType->isDependentType() || HasDependentArg) {
|
||
// Can't check initialization for a member of dependent type or when
|
||
// any of the arguments are type-dependent expressions.
|
||
OwningExprResult Init
|
||
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
||
RParenLoc));
|
||
|
||
// Erase any temporaries within this evaluation context; we're not
|
||
// going to track them in the AST, since we'll be rebuilding the
|
||
// ASTs during template instantiation.
|
||
ExprTemporaries.erase(
|
||
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
|
||
ExprTemporaries.end());
|
||
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
|
||
LParenLoc,
|
||
Init.takeAs<Expr>(),
|
||
RParenLoc);
|
||
|
||
}
|
||
|
||
if (Member->isInvalidDecl())
|
||
return true;
|
||
|
||
// Initialize the member.
|
||
InitializedEntity MemberEntity =
|
||
InitializedEntity::InitializeMember(Member, 0);
|
||
InitializationKind Kind =
|
||
InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
|
||
|
||
InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
|
||
|
||
OwningExprResult MemberInit =
|
||
InitSeq.Perform(*this, MemberEntity, Kind,
|
||
MultiExprArg(*this, (void**)Args, NumArgs), 0);
|
||
if (MemberInit.isInvalid())
|
||
return true;
|
||
|
||
// C++0x [class.base.init]p7:
|
||
// The initialization of each base and member constitutes a
|
||
// full-expression.
|
||
MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
|
||
if (MemberInit.isInvalid())
|
||
return true;
|
||
|
||
// If we are in a dependent context, template instantiation will
|
||
// perform this type-checking again. Just save the arguments that we
|
||
// received in a ParenListExpr.
|
||
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
||
// of the information that we have about the member
|
||
// initializer. However, deconstructing the ASTs is a dicey process,
|
||
// and this approach is far more likely to get the corner cases right.
|
||
if (CurContext->isDependentContext()) {
|
||
// Bump the reference count of all of the arguments.
|
||
for (unsigned I = 0; I != NumArgs; ++I)
|
||
Args[I]->Retain();
|
||
|
||
OwningExprResult Init
|
||
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
||
RParenLoc));
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
|
||
LParenLoc,
|
||
Init.takeAs<Expr>(),
|
||
RParenLoc);
|
||
}
|
||
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
|
||
LParenLoc,
|
||
MemberInit.takeAs<Expr>(),
|
||
RParenLoc);
|
||
}
|
||
|
||
Sema::MemInitResult
|
||
Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
|
||
Expr **Args, unsigned NumArgs,
|
||
SourceLocation LParenLoc, SourceLocation RParenLoc,
|
||
CXXRecordDecl *ClassDecl) {
|
||
bool HasDependentArg = false;
|
||
for (unsigned i = 0; i < NumArgs; i++)
|
||
HasDependentArg |= Args[i]->isTypeDependent();
|
||
|
||
SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
|
||
if (BaseType->isDependentType() || HasDependentArg) {
|
||
// Can't check initialization for a base of dependent type or when
|
||
// any of the arguments are type-dependent expressions.
|
||
OwningExprResult BaseInit
|
||
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
||
RParenLoc));
|
||
|
||
// Erase any temporaries within this evaluation context; we're not
|
||
// going to track them in the AST, since we'll be rebuilding the
|
||
// ASTs during template instantiation.
|
||
ExprTemporaries.erase(
|
||
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
|
||
ExprTemporaries.end());
|
||
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
|
||
/*IsVirtual=*/false,
|
||
LParenLoc,
|
||
BaseInit.takeAs<Expr>(),
|
||
RParenLoc);
|
||
}
|
||
|
||
if (!BaseType->isRecordType())
|
||
return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
|
||
<< BaseType << BaseTInfo->getTypeLoc().getSourceRange();
|
||
|
||
// C++ [class.base.init]p2:
|
||
// [...] Unless the mem-initializer-id names a nonstatic data
|
||
// member of the constructor’s class or a direct or virtual base
|
||
// of that class, the mem-initializer is ill-formed. A
|
||
// mem-initializer-list can initialize a base class using any
|
||
// name that denotes that base class type.
|
||
|
||
// Check for direct and virtual base classes.
|
||
const CXXBaseSpecifier *DirectBaseSpec = 0;
|
||
const CXXBaseSpecifier *VirtualBaseSpec = 0;
|
||
FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
|
||
VirtualBaseSpec);
|
||
|
||
// C++ [base.class.init]p2:
|
||
// If a mem-initializer-id is ambiguous because it designates both
|
||
// a direct non-virtual base class and an inherited virtual base
|
||
// class, the mem-initializer is ill-formed.
|
||
if (DirectBaseSpec && VirtualBaseSpec)
|
||
return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
|
||
<< BaseType << BaseTInfo->getTypeLoc().getSourceRange();
|
||
// C++ [base.class.init]p2:
|
||
// Unless the mem-initializer-id names a nonstatic data membeer of the
|
||
// constructor's class ot a direst or virtual base of that class, the
|
||
// mem-initializer is ill-formed.
|
||
if (!DirectBaseSpec && !VirtualBaseSpec)
|
||
return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
|
||
<< BaseType << Context.getTypeDeclType(ClassDecl)
|
||
<< BaseTInfo->getTypeLoc().getSourceRange();
|
||
|
||
CXXBaseSpecifier *BaseSpec
|
||
= const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
|
||
if (!BaseSpec)
|
||
BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
|
||
|
||
// Initialize the base.
|
||
InitializedEntity BaseEntity =
|
||
InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
|
||
InitializationKind Kind =
|
||
InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
|
||
|
||
InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
|
||
|
||
OwningExprResult BaseInit =
|
||
InitSeq.Perform(*this, BaseEntity, Kind,
|
||
MultiExprArg(*this, (void**)Args, NumArgs), 0);
|
||
if (BaseInit.isInvalid())
|
||
return true;
|
||
|
||
// C++0x [class.base.init]p7:
|
||
// The initialization of each base and member constitutes a
|
||
// full-expression.
|
||
BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
|
||
if (BaseInit.isInvalid())
|
||
return true;
|
||
|
||
// If we are in a dependent context, template instantiation will
|
||
// perform this type-checking again. Just save the arguments that we
|
||
// received in a ParenListExpr.
|
||
// FIXME: This isn't quite ideal, since our ASTs don't capture all
|
||
// of the information that we have about the base
|
||
// initializer. However, deconstructing the ASTs is a dicey process,
|
||
// and this approach is far more likely to get the corner cases right.
|
||
if (CurContext->isDependentContext()) {
|
||
// Bump the reference count of all of the arguments.
|
||
for (unsigned I = 0; I != NumArgs; ++I)
|
||
Args[I]->Retain();
|
||
|
||
OwningExprResult Init
|
||
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
|
||
RParenLoc));
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
|
||
BaseSpec->isVirtual(),
|
||
LParenLoc,
|
||
Init.takeAs<Expr>(),
|
||
RParenLoc);
|
||
}
|
||
|
||
return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
|
||
BaseSpec->isVirtual(),
|
||
LParenLoc,
|
||
BaseInit.takeAs<Expr>(),
|
||
RParenLoc);
|
||
}
|
||
|
||
/// ImplicitInitializerKind - How an implicit base or member initializer should
|
||
/// initialize its base or member.
|
||
enum ImplicitInitializerKind {
|
||
IIK_Default,
|
||
IIK_Copy,
|
||
IIK_Move
|
||
};
|
||
|
||
static bool
|
||
BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
||
ImplicitInitializerKind ImplicitInitKind,
|
||
CXXBaseSpecifier *BaseSpec,
|
||
bool IsInheritedVirtualBase,
|
||
CXXBaseOrMemberInitializer *&CXXBaseInit) {
|
||
InitializedEntity InitEntity
|
||
= InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
|
||
IsInheritedVirtualBase);
|
||
|
||
Sema::OwningExprResult BaseInit(SemaRef);
|
||
|
||
switch (ImplicitInitKind) {
|
||
case IIK_Default: {
|
||
InitializationKind InitKind
|
||
= InitializationKind::CreateDefault(Constructor->getLocation());
|
||
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
|
||
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
|
||
Sema::MultiExprArg(SemaRef, 0, 0));
|
||
break;
|
||
}
|
||
|
||
case IIK_Copy: {
|
||
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
||
QualType ParamType = Param->getType().getNonReferenceType();
|
||
|
||
Expr *CopyCtorArg =
|
||
DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
|
||
Constructor->getLocation(), ParamType, 0);
|
||
|
||
// Cast to the base class to avoid ambiguities.
|
||
QualType ArgTy =
|
||
SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
|
||
ParamType.getQualifiers());
|
||
SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
|
||
CastExpr::CK_UncheckedDerivedToBase,
|
||
/*isLvalue=*/true,
|
||
CXXBaseSpecifierArray(BaseSpec));
|
||
|
||
InitializationKind InitKind
|
||
= InitializationKind::CreateDirect(Constructor->getLocation(),
|
||
SourceLocation(), SourceLocation());
|
||
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
|
||
&CopyCtorArg, 1);
|
||
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
|
||
Sema::MultiExprArg(SemaRef,
|
||
(void**)&CopyCtorArg, 1));
|
||
break;
|
||
}
|
||
|
||
case IIK_Move:
|
||
assert(false && "Unhandled initializer kind!");
|
||
}
|
||
|
||
BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
|
||
if (BaseInit.isInvalid())
|
||
return true;
|
||
|
||
CXXBaseInit =
|
||
new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
|
||
SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
|
||
SourceLocation()),
|
||
BaseSpec->isVirtual(),
|
||
SourceLocation(),
|
||
BaseInit.takeAs<Expr>(),
|
||
SourceLocation());
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
|
||
ImplicitInitializerKind ImplicitInitKind,
|
||
FieldDecl *Field,
|
||
CXXBaseOrMemberInitializer *&CXXMemberInit) {
|
||
if (ImplicitInitKind == IIK_Copy) {
|
||
SourceLocation Loc = Constructor->getLocation();
|
||
ParmVarDecl *Param = Constructor->getParamDecl(0);
|
||
QualType ParamType = Param->getType().getNonReferenceType();
|
||
|
||
Expr *MemberExprBase =
|
||
DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
|
||
Loc, ParamType, 0);
|
||
|
||
// Build a reference to this field within the parameter.
|
||
CXXScopeSpec SS;
|
||
LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
|
||
Sema::LookupMemberName);
|
||
MemberLookup.addDecl(Field, AS_public);
|
||
MemberLookup.resolveKind();
|
||
Sema::OwningExprResult CopyCtorArg
|
||
= SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
|
||
ParamType, Loc,
|
||
/*IsArrow=*/false,
|
||
SS,
|
||
/*FirstQualifierInScope=*/0,
|
||
MemberLookup,
|
||
/*TemplateArgs=*/0);
|
||
if (CopyCtorArg.isInvalid())
|
||
return true;
|
||
|
||
// When the field we are copying is an array, create index variables for
|
||
// each dimension of the array. We use these index variables to subscript
|
||
// the source array, and other clients (e.g., CodeGen) will perform the
|
||
// necessary iteration with these index variables.
|
||
llvm::SmallVector<VarDecl *, 4> IndexVariables;
|
||
QualType BaseType = Field->getType();
|
||
QualType SizeType = SemaRef.Context.getSizeType();
|
||
while (const ConstantArrayType *Array
|
||
= SemaRef.Context.getAsConstantArrayType(BaseType)) {
|
||
// Create the iteration variable for this array index.
|
||
IdentifierInfo *IterationVarName = 0;
|
||
{
|
||
llvm::SmallString<8> Str;
|
||
llvm::raw_svector_ostream OS(Str);
|
||
OS << "__i" << IndexVariables.size();
|
||
IterationVarName = &SemaRef.Context.Idents.get(OS.str());
|
||
}
|
||
VarDecl *IterationVar
|
||
= VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
|
||
IterationVarName, SizeType,
|
||
SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
||
VarDecl::None, VarDecl::None);
|
||
IndexVariables.push_back(IterationVar);
|
||
|
||
// Create a reference to the iteration variable.
|
||
Sema::OwningExprResult IterationVarRef
|
||
= SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
|
||
assert(!IterationVarRef.isInvalid() &&
|
||
"Reference to invented variable cannot fail!");
|
||
|
||
// Subscript the array with this iteration variable.
|
||
CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
|
||
Loc,
|
||
move(IterationVarRef),
|
||
Loc);
|
||
if (CopyCtorArg.isInvalid())
|
||
return true;
|
||
|
||
BaseType = Array->getElementType();
|
||
}
|
||
|
||
// Construct the entity that we will be initializing. For an array, this
|
||
// will be first element in the array, which may require several levels
|
||
// of array-subscript entities.
|
||
llvm::SmallVector<InitializedEntity, 4> Entities;
|
||
Entities.reserve(1 + IndexVariables.size());
|
||
Entities.push_back(InitializedEntity::InitializeMember(Field));
|
||
for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
|
||
Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
|
||
0,
|
||
Entities.back()));
|
||
|
||
// Direct-initialize to use the copy constructor.
|
||
InitializationKind InitKind =
|
||
InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
|
||
|
||
Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
|
||
InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
|
||
&CopyCtorArgE, 1);
|
||
|
||
Sema::OwningExprResult MemberInit
|
||
= InitSeq.Perform(SemaRef, Entities.back(), InitKind,
|
||
Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
|
||
MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
|
||
if (MemberInit.isInvalid())
|
||
return true;
|
||
|
||
CXXMemberInit
|
||
= CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
|
||
MemberInit.takeAs<Expr>(), Loc,
|
||
IndexVariables.data(),
|
||
IndexVariables.size());
|
||
return false;
|
||
}
|
||
|
||
assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
|
||
|
||
QualType FieldBaseElementType =
|
||
SemaRef.Context.getBaseElementType(Field->getType());
|
||
|
||
if (FieldBaseElementType->isRecordType()) {
|
||
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
|
||
InitializationKind InitKind =
|
||
InitializationKind::CreateDefault(Constructor->getLocation());
|
||
|
||
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
|
||
Sema::OwningExprResult MemberInit =
|
||
InitSeq.Perform(SemaRef, InitEntity, InitKind,
|
||
Sema::MultiExprArg(SemaRef, 0, 0));
|
||
MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
|
||
if (MemberInit.isInvalid())
|
||
return true;
|
||
|
||
CXXMemberInit =
|
||
new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
|
||
Field, SourceLocation(),
|
||
SourceLocation(),
|
||
MemberInit.takeAs<Expr>(),
|
||
SourceLocation());
|
||
return false;
|
||
}
|
||
|
||
if (FieldBaseElementType->isReferenceType()) {
|
||
SemaRef.Diag(Constructor->getLocation(),
|
||
diag::err_uninitialized_member_in_ctor)
|
||
<< (int)Constructor->isImplicit()
|
||
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
||
<< 0 << Field->getDeclName();
|
||
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
||
return true;
|
||
}
|
||
|
||
if (FieldBaseElementType.isConstQualified()) {
|
||
SemaRef.Diag(Constructor->getLocation(),
|
||
diag::err_uninitialized_member_in_ctor)
|
||
<< (int)Constructor->isImplicit()
|
||
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
|
||
<< 1 << Field->getDeclName();
|
||
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
|
||
return true;
|
||
}
|
||
|
||
// Nothing to initialize.
|
||
CXXMemberInit = 0;
|
||
return false;
|
||
}
|
||
|
||
bool
|
||
Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
|
||
CXXBaseOrMemberInitializer **Initializers,
|
||
unsigned NumInitializers,
|
||
bool AnyErrors) {
|
||
if (Constructor->getDeclContext()->isDependentContext()) {
|
||
// Just store the initializers as written, they will be checked during
|
||
// instantiation.
|
||
if (NumInitializers > 0) {
|
||
Constructor->setNumBaseOrMemberInitializers(NumInitializers);
|
||
CXXBaseOrMemberInitializer **baseOrMemberInitializers =
|
||
new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
|
||
memcpy(baseOrMemberInitializers, Initializers,
|
||
NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
|
||
Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
ImplicitInitializerKind ImplicitInitKind = IIK_Default;
|
||
|
||
// FIXME: Handle implicit move constructors.
|
||
if (Constructor->isImplicit() && Constructor->isCopyConstructor())
|
||
ImplicitInitKind = IIK_Copy;
|
||
|
||
// We need to build the initializer AST according to order of construction
|
||
// and not what user specified in the Initializers list.
|
||
CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
|
||
if (!ClassDecl)
|
||
return true;
|
||
|
||
llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
|
||
llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
|
||
bool HadError = false;
|
||
|
||
for (unsigned i = 0; i < NumInitializers; i++) {
|
||
CXXBaseOrMemberInitializer *Member = Initializers[i];
|
||
|
||
if (Member->isBaseInitializer())
|
||
AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
|
||
else
|
||
AllBaseFields[Member->getMember()] = Member;
|
||
}
|
||
|
||
// Keep track of the direct virtual bases.
|
||
llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
|
||
for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
|
||
E = ClassDecl->bases_end(); I != E; ++I) {
|
||
if (I->isVirtual())
|
||
DirectVBases.insert(I);
|
||
}
|
||
|
||
// Push virtual bases before others.
|
||
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
|
||
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
|
||
|
||
if (CXXBaseOrMemberInitializer *Value
|
||
= AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
|
||
AllToInit.push_back(Value);
|
||
} else if (!AnyErrors) {
|
||
bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
|
||
CXXBaseOrMemberInitializer *CXXBaseInit;
|
||
if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
|
||
VBase, IsInheritedVirtualBase,
|
||
CXXBaseInit)) {
|
||
HadError = true;
|
||
continue;
|
||
}
|
||
|
||
AllToInit.push_back(CXXBaseInit);
|
||
}
|
||
}
|
||
|
||
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
||
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
||
// Virtuals are in the virtual base list and already constructed.
|
||
if (Base->isVirtual())
|
||
continue;
|
||
|
||
if (CXXBaseOrMemberInitializer *Value
|
||
= AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
|
||
AllToInit.push_back(Value);
|
||
} else if (!AnyErrors) {
|
||
CXXBaseOrMemberInitializer *CXXBaseInit;
|
||
if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
|
||
Base, /*IsInheritedVirtualBase=*/false,
|
||
CXXBaseInit)) {
|
||
HadError = true;
|
||
continue;
|
||
}
|
||
|
||
AllToInit.push_back(CXXBaseInit);
|
||
}
|
||
}
|
||
|
||
// non-static data members.
|
||
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
||
E = ClassDecl->field_end(); Field != E; ++Field) {
|
||
if ((*Field)->isAnonymousStructOrUnion()) {
|
||
if (const RecordType *FieldClassType =
|
||
Field->getType()->getAs<RecordType>()) {
|
||
CXXRecordDecl *FieldClassDecl
|
||
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
||
for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
|
||
EA = FieldClassDecl->field_end(); FA != EA; FA++) {
|
||
if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
|
||
// 'Member' is the anonymous union field and 'AnonUnionMember' is
|
||
// set to the anonymous union data member used in the initializer
|
||
// list.
|
||
Value->setMember(*Field);
|
||
Value->setAnonUnionMember(*FA);
|
||
AllToInit.push_back(Value);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (ImplicitInitKind == IIK_Default)
|
||
continue;
|
||
}
|
||
if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
|
||
AllToInit.push_back(Value);
|
||
continue;
|
||
}
|
||
|
||
if (AnyErrors)
|
||
continue;
|
||
|
||
CXXBaseOrMemberInitializer *Member;
|
||
if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
|
||
*Field, Member)) {
|
||
HadError = true;
|
||
continue;
|
||
}
|
||
|
||
// If the member doesn't need to be initialized, it will be null.
|
||
if (Member)
|
||
AllToInit.push_back(Member);
|
||
}
|
||
|
||
NumInitializers = AllToInit.size();
|
||
if (NumInitializers > 0) {
|
||
Constructor->setNumBaseOrMemberInitializers(NumInitializers);
|
||
CXXBaseOrMemberInitializer **baseOrMemberInitializers =
|
||
new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
|
||
memcpy(baseOrMemberInitializers, AllToInit.data(),
|
||
NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
|
||
Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
|
||
|
||
// Constructors implicitly reference the base and member
|
||
// destructors.
|
||
MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
|
||
Constructor->getParent());
|
||
}
|
||
|
||
return HadError;
|
||
}
|
||
|
||
static void *GetKeyForTopLevelField(FieldDecl *Field) {
|
||
// For anonymous unions, use the class declaration as the key.
|
||
if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
|
||
if (RT->getDecl()->isAnonymousStructOrUnion())
|
||
return static_cast<void *>(RT->getDecl());
|
||
}
|
||
return static_cast<void *>(Field);
|
||
}
|
||
|
||
static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
|
||
return Context.getCanonicalType(BaseType).getTypePtr();
|
||
}
|
||
|
||
static void *GetKeyForMember(ASTContext &Context,
|
||
CXXBaseOrMemberInitializer *Member,
|
||
bool MemberMaybeAnon = false) {
|
||
if (!Member->isMemberInitializer())
|
||
return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
|
||
|
||
// For fields injected into the class via declaration of an anonymous union,
|
||
// use its anonymous union class declaration as the unique key.
|
||
FieldDecl *Field = Member->getMember();
|
||
|
||
// After SetBaseOrMemberInitializers call, Field is the anonymous union
|
||
// data member of the class. Data member used in the initializer list is
|
||
// in AnonUnionMember field.
|
||
if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
|
||
Field = Member->getAnonUnionMember();
|
||
|
||
// If the field is a member of an anonymous struct or union, our key
|
||
// is the anonymous record decl that's a direct child of the class.
|
||
RecordDecl *RD = Field->getParent();
|
||
if (RD->isAnonymousStructOrUnion()) {
|
||
while (true) {
|
||
RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
|
||
if (Parent->isAnonymousStructOrUnion())
|
||
RD = Parent;
|
||
else
|
||
break;
|
||
}
|
||
|
||
return static_cast<void *>(RD);
|
||
}
|
||
|
||
return static_cast<void *>(Field);
|
||
}
|
||
|
||
static void
|
||
DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
|
||
const CXXConstructorDecl *Constructor,
|
||
CXXBaseOrMemberInitializer **Inits,
|
||
unsigned NumInits) {
|
||
if (Constructor->getDeclContext()->isDependentContext())
|
||
return;
|
||
|
||
if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
|
||
== Diagnostic::Ignored)
|
||
return;
|
||
|
||
// Build the list of bases and members in the order that they'll
|
||
// actually be initialized. The explicit initializers should be in
|
||
// this same order but may be missing things.
|
||
llvm::SmallVector<const void*, 32> IdealInitKeys;
|
||
|
||
const CXXRecordDecl *ClassDecl = Constructor->getParent();
|
||
|
||
// 1. Virtual bases.
|
||
for (CXXRecordDecl::base_class_const_iterator VBase =
|
||
ClassDecl->vbases_begin(),
|
||
E = ClassDecl->vbases_end(); VBase != E; ++VBase)
|
||
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
|
||
|
||
// 2. Non-virtual bases.
|
||
for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
|
||
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
||
if (Base->isVirtual())
|
||
continue;
|
||
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
|
||
}
|
||
|
||
// 3. Direct fields.
|
||
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
||
E = ClassDecl->field_end(); Field != E; ++Field)
|
||
IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
|
||
|
||
unsigned NumIdealInits = IdealInitKeys.size();
|
||
unsigned IdealIndex = 0;
|
||
|
||
CXXBaseOrMemberInitializer *PrevInit = 0;
|
||
for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
|
||
CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
|
||
void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
|
||
|
||
// Scan forward to try to find this initializer in the idealized
|
||
// initializers list.
|
||
for (; IdealIndex != NumIdealInits; ++IdealIndex)
|
||
if (InitKey == IdealInitKeys[IdealIndex])
|
||
break;
|
||
|
||
// If we didn't find this initializer, it must be because we
|
||
// scanned past it on a previous iteration. That can only
|
||
// happen if we're out of order; emit a warning.
|
||
if (IdealIndex == NumIdealInits) {
|
||
assert(PrevInit && "initializer not found in initializer list");
|
||
|
||
Sema::SemaDiagnosticBuilder D =
|
||
SemaRef.Diag(PrevInit->getSourceLocation(),
|
||
diag::warn_initializer_out_of_order);
|
||
|
||
if (PrevInit->isMemberInitializer())
|
||
D << 0 << PrevInit->getMember()->getDeclName();
|
||
else
|
||
D << 1 << PrevInit->getBaseClassInfo()->getType();
|
||
|
||
if (Init->isMemberInitializer())
|
||
D << 0 << Init->getMember()->getDeclName();
|
||
else
|
||
D << 1 << Init->getBaseClassInfo()->getType();
|
||
|
||
// Move back to the initializer's location in the ideal list.
|
||
for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
|
||
if (InitKey == IdealInitKeys[IdealIndex])
|
||
break;
|
||
|
||
assert(IdealIndex != NumIdealInits &&
|
||
"initializer not found in initializer list");
|
||
}
|
||
|
||
PrevInit = Init;
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
bool CheckRedundantInit(Sema &S,
|
||
CXXBaseOrMemberInitializer *Init,
|
||
CXXBaseOrMemberInitializer *&PrevInit) {
|
||
if (!PrevInit) {
|
||
PrevInit = Init;
|
||
return false;
|
||
}
|
||
|
||
if (FieldDecl *Field = Init->getMember())
|
||
S.Diag(Init->getSourceLocation(),
|
||
diag::err_multiple_mem_initialization)
|
||
<< Field->getDeclName()
|
||
<< Init->getSourceRange();
|
||
else {
|
||
Type *BaseClass = Init->getBaseClass();
|
||
assert(BaseClass && "neither field nor base");
|
||
S.Diag(Init->getSourceLocation(),
|
||
diag::err_multiple_base_initialization)
|
||
<< QualType(BaseClass, 0)
|
||
<< Init->getSourceRange();
|
||
}
|
||
S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
|
||
<< 0 << PrevInit->getSourceRange();
|
||
|
||
return true;
|
||
}
|
||
|
||
typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
|
||
typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
|
||
|
||
bool CheckRedundantUnionInit(Sema &S,
|
||
CXXBaseOrMemberInitializer *Init,
|
||
RedundantUnionMap &Unions) {
|
||
FieldDecl *Field = Init->getMember();
|
||
RecordDecl *Parent = Field->getParent();
|
||
if (!Parent->isAnonymousStructOrUnion())
|
||
return false;
|
||
|
||
NamedDecl *Child = Field;
|
||
do {
|
||
if (Parent->isUnion()) {
|
||
UnionEntry &En = Unions[Parent];
|
||
if (En.first && En.first != Child) {
|
||
S.Diag(Init->getSourceLocation(),
|
||
diag::err_multiple_mem_union_initialization)
|
||
<< Field->getDeclName()
|
||
<< Init->getSourceRange();
|
||
S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
|
||
<< 0 << En.second->getSourceRange();
|
||
return true;
|
||
} else if (!En.first) {
|
||
En.first = Child;
|
||
En.second = Init;
|
||
}
|
||
}
|
||
|
||
Child = Parent;
|
||
Parent = cast<RecordDecl>(Parent->getDeclContext());
|
||
} while (Parent->isAnonymousStructOrUnion());
|
||
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/// ActOnMemInitializers - Handle the member initializers for a constructor.
|
||
void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
|
||
SourceLocation ColonLoc,
|
||
MemInitTy **meminits, unsigned NumMemInits,
|
||
bool AnyErrors) {
|
||
if (!ConstructorDecl)
|
||
return;
|
||
|
||
AdjustDeclIfTemplate(ConstructorDecl);
|
||
|
||
CXXConstructorDecl *Constructor
|
||
= dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
|
||
|
||
if (!Constructor) {
|
||
Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
|
||
return;
|
||
}
|
||
|
||
CXXBaseOrMemberInitializer **MemInits =
|
||
reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
|
||
|
||
// Mapping for the duplicate initializers check.
|
||
// For member initializers, this is keyed with a FieldDecl*.
|
||
// For base initializers, this is keyed with a Type*.
|
||
llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
|
||
|
||
// Mapping for the inconsistent anonymous-union initializers check.
|
||
RedundantUnionMap MemberUnions;
|
||
|
||
bool HadError = false;
|
||
for (unsigned i = 0; i < NumMemInits; i++) {
|
||
CXXBaseOrMemberInitializer *Init = MemInits[i];
|
||
|
||
if (Init->isMemberInitializer()) {
|
||
FieldDecl *Field = Init->getMember();
|
||
if (CheckRedundantInit(*this, Init, Members[Field]) ||
|
||
CheckRedundantUnionInit(*this, Init, MemberUnions))
|
||
HadError = true;
|
||
} else {
|
||
void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
|
||
if (CheckRedundantInit(*this, Init, Members[Key]))
|
||
HadError = true;
|
||
}
|
||
}
|
||
|
||
if (HadError)
|
||
return;
|
||
|
||
DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
|
||
|
||
SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
|
||
}
|
||
|
||
void
|
||
Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
|
||
CXXRecordDecl *ClassDecl) {
|
||
// Ignore dependent contexts.
|
||
if (ClassDecl->isDependentContext())
|
||
return;
|
||
|
||
// FIXME: all the access-control diagnostics are positioned on the
|
||
// field/base declaration. That's probably good; that said, the
|
||
// user might reasonably want to know why the destructor is being
|
||
// emitted, and we currently don't say.
|
||
|
||
// Non-static data members.
|
||
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
|
||
E = ClassDecl->field_end(); I != E; ++I) {
|
||
FieldDecl *Field = *I;
|
||
|
||
QualType FieldType = Context.getBaseElementType(Field->getType());
|
||
|
||
const RecordType* RT = FieldType->getAs<RecordType>();
|
||
if (!RT)
|
||
continue;
|
||
|
||
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (FieldClassDecl->hasTrivialDestructor())
|
||
continue;
|
||
|
||
CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
|
||
CheckDestructorAccess(Field->getLocation(), Dtor,
|
||
PDiag(diag::err_access_dtor_field)
|
||
<< Field->getDeclName()
|
||
<< FieldType);
|
||
|
||
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
||
}
|
||
|
||
llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
|
||
|
||
// Bases.
|
||
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
||
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
||
// Bases are always records in a well-formed non-dependent class.
|
||
const RecordType *RT = Base->getType()->getAs<RecordType>();
|
||
|
||
// Remember direct virtual bases.
|
||
if (Base->isVirtual())
|
||
DirectVirtualBases.insert(RT);
|
||
|
||
// Ignore trivial destructors.
|
||
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (BaseClassDecl->hasTrivialDestructor())
|
||
continue;
|
||
|
||
CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
|
||
|
||
// FIXME: caret should be on the start of the class name
|
||
CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
|
||
PDiag(diag::err_access_dtor_base)
|
||
<< Base->getType()
|
||
<< Base->getSourceRange());
|
||
|
||
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
||
}
|
||
|
||
// Virtual bases.
|
||
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
|
||
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
|
||
|
||
// Bases are always records in a well-formed non-dependent class.
|
||
const RecordType *RT = VBase->getType()->getAs<RecordType>();
|
||
|
||
// Ignore direct virtual bases.
|
||
if (DirectVirtualBases.count(RT))
|
||
continue;
|
||
|
||
// Ignore trivial destructors.
|
||
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
|
||
if (BaseClassDecl->hasTrivialDestructor())
|
||
continue;
|
||
|
||
CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
|
||
CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
|
||
PDiag(diag::err_access_dtor_vbase)
|
||
<< VBase->getType());
|
||
|
||
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
|
||
}
|
||
}
|
||
|
||
void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
|
||
if (!CDtorDecl)
|
||
return;
|
||
|
||
if (CXXConstructorDecl *Constructor
|
||
= dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
|
||
SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
|
||
}
|
||
|
||
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
|
||
unsigned DiagID, AbstractDiagSelID SelID,
|
||
const CXXRecordDecl *CurrentRD) {
|
||
if (SelID == -1)
|
||
return RequireNonAbstractType(Loc, T,
|
||
PDiag(DiagID), CurrentRD);
|
||
else
|
||
return RequireNonAbstractType(Loc, T,
|
||
PDiag(DiagID) << SelID, CurrentRD);
|
||
}
|
||
|
||
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
|
||
const PartialDiagnostic &PD,
|
||
const CXXRecordDecl *CurrentRD) {
|
||
if (!getLangOptions().CPlusPlus)
|
||
return false;
|
||
|
||
if (const ArrayType *AT = Context.getAsArrayType(T))
|
||
return RequireNonAbstractType(Loc, AT->getElementType(), PD,
|
||
CurrentRD);
|
||
|
||
if (const PointerType *PT = T->getAs<PointerType>()) {
|
||
// Find the innermost pointer type.
|
||
while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
|
||
PT = T;
|
||
|
||
if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
|
||
return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
|
||
}
|
||
|
||
const RecordType *RT = T->getAs<RecordType>();
|
||
if (!RT)
|
||
return false;
|
||
|
||
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
||
|
||
if (CurrentRD && CurrentRD != RD)
|
||
return false;
|
||
|
||
// FIXME: is this reasonable? It matches current behavior, but....
|
||
if (!RD->getDefinition())
|
||
return false;
|
||
|
||
if (!RD->isAbstract())
|
||
return false;
|
||
|
||
Diag(Loc, PD) << RD->getDeclName();
|
||
|
||
// Check if we've already emitted the list of pure virtual functions for this
|
||
// class.
|
||
if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
|
||
return true;
|
||
|
||
CXXFinalOverriderMap FinalOverriders;
|
||
RD->getFinalOverriders(FinalOverriders);
|
||
|
||
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
|
||
MEnd = FinalOverriders.end();
|
||
M != MEnd;
|
||
++M) {
|
||
for (OverridingMethods::iterator SO = M->second.begin(),
|
||
SOEnd = M->second.end();
|
||
SO != SOEnd; ++SO) {
|
||
// C++ [class.abstract]p4:
|
||
// A class is abstract if it contains or inherits at least one
|
||
// pure virtual function for which the final overrider is pure
|
||
// virtual.
|
||
|
||
//
|
||
if (SO->second.size() != 1)
|
||
continue;
|
||
|
||
if (!SO->second.front().Method->isPure())
|
||
continue;
|
||
|
||
Diag(SO->second.front().Method->getLocation(),
|
||
diag::note_pure_virtual_function)
|
||
<< SO->second.front().Method->getDeclName();
|
||
}
|
||
}
|
||
|
||
if (!PureVirtualClassDiagSet)
|
||
PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
|
||
PureVirtualClassDiagSet->insert(RD);
|
||
|
||
return true;
|
||
}
|
||
|
||
namespace {
|
||
class AbstractClassUsageDiagnoser
|
||
: public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
|
||
Sema &SemaRef;
|
||
CXXRecordDecl *AbstractClass;
|
||
|
||
bool VisitDeclContext(const DeclContext *DC) {
|
||
bool Invalid = false;
|
||
|
||
for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
|
||
E = DC->decls_end(); I != E; ++I)
|
||
Invalid |= Visit(*I);
|
||
|
||
return Invalid;
|
||
}
|
||
|
||
public:
|
||
AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
|
||
: SemaRef(SemaRef), AbstractClass(ac) {
|
||
Visit(SemaRef.Context.getTranslationUnitDecl());
|
||
}
|
||
|
||
bool VisitFunctionDecl(const FunctionDecl *FD) {
|
||
if (FD->isThisDeclarationADefinition()) {
|
||
// No need to do the check if we're in a definition, because it requires
|
||
// that the return/param types are complete.
|
||
// because that requires
|
||
return VisitDeclContext(FD);
|
||
}
|
||
|
||
// Check the return type.
|
||
QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
|
||
bool Invalid =
|
||
SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
|
||
diag::err_abstract_type_in_decl,
|
||
Sema::AbstractReturnType,
|
||
AbstractClass);
|
||
|
||
for (FunctionDecl::param_const_iterator I = FD->param_begin(),
|
||
E = FD->param_end(); I != E; ++I) {
|
||
const ParmVarDecl *VD = *I;
|
||
Invalid |=
|
||
SemaRef.RequireNonAbstractType(VD->getLocation(),
|
||
VD->getOriginalType(),
|
||
diag::err_abstract_type_in_decl,
|
||
Sema::AbstractParamType,
|
||
AbstractClass);
|
||
}
|
||
|
||
return Invalid;
|
||
}
|
||
|
||
bool VisitDecl(const Decl* D) {
|
||
if (const DeclContext *DC = dyn_cast<DeclContext>(D))
|
||
return VisitDeclContext(DC);
|
||
|
||
return false;
|
||
}
|
||
};
|
||
}
|
||
|
||
/// \brief Perform semantic checks on a class definition that has been
|
||
/// completing, introducing implicitly-declared members, checking for
|
||
/// abstract types, etc.
|
||
void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
|
||
if (!Record || Record->isInvalidDecl())
|
||
return;
|
||
|
||
if (!Record->isDependentType())
|
||
AddImplicitlyDeclaredMembersToClass(S, Record);
|
||
|
||
if (Record->isInvalidDecl())
|
||
return;
|
||
|
||
// Set access bits correctly on the directly-declared conversions.
|
||
UnresolvedSetImpl *Convs = Record->getConversionFunctions();
|
||
for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
|
||
Convs->setAccess(I, (*I)->getAccess());
|
||
|
||
// Determine whether we need to check for final overriders. We do
|
||
// this either when there are virtual base classes (in which case we
|
||
// may end up finding multiple final overriders for a given virtual
|
||
// function) or any of the base classes is abstract (in which case
|
||
// we might detect that this class is abstract).
|
||
bool CheckFinalOverriders = false;
|
||
if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
|
||
!Record->isDependentType()) {
|
||
if (Record->getNumVBases())
|
||
CheckFinalOverriders = true;
|
||
else if (!Record->isAbstract()) {
|
||
for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
|
||
BEnd = Record->bases_end();
|
||
B != BEnd; ++B) {
|
||
CXXRecordDecl *BaseDecl
|
||
= cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
|
||
if (BaseDecl->isAbstract()) {
|
||
CheckFinalOverriders = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (CheckFinalOverriders) {
|
||
CXXFinalOverriderMap FinalOverriders;
|
||
Record->getFinalOverriders(FinalOverriders);
|
||
|
||
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
|
||
MEnd = FinalOverriders.end();
|
||
M != MEnd; ++M) {
|
||
for (OverridingMethods::iterator SO = M->second.begin(),
|
||
SOEnd = M->second.end();
|
||
SO != SOEnd; ++SO) {
|
||
assert(SO->second.size() > 0 &&
|
||
"All virtual functions have overridding virtual functions");
|
||
if (SO->second.size() == 1) {
|
||
// C++ [class.abstract]p4:
|
||
// A class is abstract if it contains or inherits at least one
|
||
// pure virtual function for which the final overrider is pure
|
||
// virtual.
|
||
if (SO->second.front().Method->isPure())
|
||
Record->setAbstract(true);
|
||
continue;
|
||
}
|
||
|
||
// C++ [class.virtual]p2:
|
||
// In a derived class, if a virtual member function of a base
|
||
// class subobject has more than one final overrider the
|
||
// program is ill-formed.
|
||
Diag(Record->getLocation(), diag::err_multiple_final_overriders)
|
||
<< (NamedDecl *)M->first << Record;
|
||
Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
|
||
for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
|
||
OMEnd = SO->second.end();
|
||
OM != OMEnd; ++OM)
|
||
Diag(OM->Method->getLocation(), diag::note_final_overrider)
|
||
<< (NamedDecl *)M->first << OM->Method->getParent();
|
||
|
||
Record->setInvalidDecl();
|
||
}
|
||
}
|
||
}
|
||
|
||
if (Record->isAbstract() && !Record->isInvalidDecl())
|
||
(void)AbstractClassUsageDiagnoser(*this, Record);
|
||
|
||
// If this is not an aggregate type and has no user-declared constructor,
|
||
// complain about any non-static data members of reference or const scalar
|
||
// type, since they will never get initializers.
|
||
if (!Record->isInvalidDecl() && !Record->isDependentType() &&
|
||
!Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
|
||
bool Complained = false;
|
||
for (RecordDecl::field_iterator F = Record->field_begin(),
|
||
FEnd = Record->field_end();
|
||
F != FEnd; ++F) {
|
||
if (F->getType()->isReferenceType() ||
|
||
(F->getType().isConstQualified() && F->getType()->isScalarType())) {
|
||
if (!Complained) {
|
||
Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
|
||
<< Record->getTagKind() << Record;
|
||
Complained = true;
|
||
}
|
||
|
||
Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
|
||
<< F->getType()->isReferenceType()
|
||
<< F->getDeclName();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
|
||
DeclPtrTy TagDecl,
|
||
SourceLocation LBrac,
|
||
SourceLocation RBrac,
|
||
AttributeList *AttrList) {
|
||
if (!TagDecl)
|
||
return;
|
||
|
||
AdjustDeclIfTemplate(TagDecl);
|
||
|
||
ActOnFields(S, RLoc, TagDecl,
|
||
(DeclPtrTy*)FieldCollector->getCurFields(),
|
||
FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
|
||
|
||
CheckCompletedCXXClass(S,
|
||
dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
|
||
}
|
||
|
||
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
|
||
/// special functions, such as the default constructor, copy
|
||
/// constructor, or destructor, to the given C++ class (C++
|
||
/// [special]p1). This routine can only be executed just before the
|
||
/// definition of the class is complete.
|
||
///
|
||
/// The scope, if provided, is the class scope.
|
||
void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
|
||
CXXRecordDecl *ClassDecl) {
|
||
CanQualType ClassType
|
||
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
||
|
||
// FIXME: Implicit declarations have exception specifications, which are
|
||
// the union of the specifications of the implicitly called functions.
|
||
|
||
if (!ClassDecl->hasUserDeclaredConstructor()) {
|
||
// C++ [class.ctor]p5:
|
||
// A default constructor for a class X is a constructor of class X
|
||
// that can be called without an argument. If there is no
|
||
// user-declared constructor for class X, a default constructor is
|
||
// implicitly declared. An implicitly-declared default constructor
|
||
// is an inline public member of its class.
|
||
DeclarationName Name
|
||
= Context.DeclarationNames.getCXXConstructorName(ClassType);
|
||
CXXConstructorDecl *DefaultCon =
|
||
CXXConstructorDecl::Create(Context, ClassDecl,
|
||
ClassDecl->getLocation(), Name,
|
||
Context.getFunctionType(Context.VoidTy,
|
||
0, 0, false, 0,
|
||
/*FIXME*/false, false,
|
||
0, 0,
|
||
FunctionType::ExtInfo()),
|
||
/*TInfo=*/0,
|
||
/*isExplicit=*/false,
|
||
/*isInline=*/true,
|
||
/*isImplicitlyDeclared=*/true);
|
||
DefaultCon->setAccess(AS_public);
|
||
DefaultCon->setImplicit();
|
||
DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
|
||
if (S)
|
||
PushOnScopeChains(DefaultCon, S, true);
|
||
else
|
||
ClassDecl->addDecl(DefaultCon);
|
||
}
|
||
|
||
if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
|
||
// C++ [class.copy]p4:
|
||
// If the class definition does not explicitly declare a copy
|
||
// constructor, one is declared implicitly.
|
||
|
||
// C++ [class.copy]p5:
|
||
// The implicitly-declared copy constructor for a class X will
|
||
// have the form
|
||
//
|
||
// X::X(const X&)
|
||
//
|
||
// if
|
||
bool HasConstCopyConstructor = true;
|
||
|
||
// -- each direct or virtual base class B of X has a copy
|
||
// constructor whose first parameter is of type const B& or
|
||
// const volatile B&, and
|
||
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
|
||
HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
|
||
const CXXRecordDecl *BaseClassDecl
|
||
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
||
HasConstCopyConstructor
|
||
= BaseClassDecl->hasConstCopyConstructor(Context);
|
||
}
|
||
|
||
// -- for all the nonstatic data members of X that are of a
|
||
// class type M (or array thereof), each such class type
|
||
// has a copy constructor whose first parameter is of type
|
||
// const M& or const volatile M&.
|
||
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
|
||
HasConstCopyConstructor && Field != ClassDecl->field_end();
|
||
++Field) {
|
||
QualType FieldType = (*Field)->getType();
|
||
if (const ArrayType *Array = Context.getAsArrayType(FieldType))
|
||
FieldType = Array->getElementType();
|
||
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
||
const CXXRecordDecl *FieldClassDecl
|
||
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
||
HasConstCopyConstructor
|
||
= FieldClassDecl->hasConstCopyConstructor(Context);
|
||
}
|
||
}
|
||
|
||
// Otherwise, the implicitly declared copy constructor will have
|
||
// the form
|
||
//
|
||
// X::X(X&)
|
||
QualType ArgType = ClassType;
|
||
if (HasConstCopyConstructor)
|
||
ArgType = ArgType.withConst();
|
||
ArgType = Context.getLValueReferenceType(ArgType);
|
||
|
||
// An implicitly-declared copy constructor is an inline public
|
||
// member of its class.
|
||
DeclarationName Name
|
||
= Context.DeclarationNames.getCXXConstructorName(ClassType);
|
||
CXXConstructorDecl *CopyConstructor
|
||
= CXXConstructorDecl::Create(Context, ClassDecl,
|
||
ClassDecl->getLocation(), Name,
|
||
Context.getFunctionType(Context.VoidTy,
|
||
&ArgType, 1,
|
||
false, 0,
|
||
/*FIXME: hasExceptionSpec*/false,
|
||
false, 0, 0,
|
||
FunctionType::ExtInfo()),
|
||
/*TInfo=*/0,
|
||
/*isExplicit=*/false,
|
||
/*isInline=*/true,
|
||
/*isImplicitlyDeclared=*/true);
|
||
CopyConstructor->setAccess(AS_public);
|
||
CopyConstructor->setImplicit();
|
||
CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
|
||
|
||
// Add the parameter to the constructor.
|
||
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
|
||
ClassDecl->getLocation(),
|
||
/*IdentifierInfo=*/0,
|
||
ArgType, /*TInfo=*/0,
|
||
VarDecl::None,
|
||
VarDecl::None, 0);
|
||
CopyConstructor->setParams(&FromParam, 1);
|
||
if (S)
|
||
PushOnScopeChains(CopyConstructor, S, true);
|
||
else
|
||
ClassDecl->addDecl(CopyConstructor);
|
||
}
|
||
|
||
if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
|
||
// Note: The following rules are largely analoguous to the copy
|
||
// constructor rules. Note that virtual bases are not taken into account
|
||
// for determining the argument type of the operator. Note also that
|
||
// operators taking an object instead of a reference are allowed.
|
||
//
|
||
// C++ [class.copy]p10:
|
||
// If the class definition does not explicitly declare a copy
|
||
// assignment operator, one is declared implicitly.
|
||
// The implicitly-defined copy assignment operator for a class X
|
||
// will have the form
|
||
//
|
||
// X& X::operator=(const X&)
|
||
//
|
||
// if
|
||
bool HasConstCopyAssignment = true;
|
||
|
||
// -- each direct base class B of X has a copy assignment operator
|
||
// whose parameter is of type const B&, const volatile B& or B,
|
||
// and
|
||
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
|
||
HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
|
||
assert(!Base->getType()->isDependentType() &&
|
||
"Cannot generate implicit members for class with dependent bases.");
|
||
const CXXRecordDecl *BaseClassDecl
|
||
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
||
const CXXMethodDecl *MD = 0;
|
||
HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
|
||
MD);
|
||
}
|
||
|
||
// -- for all the nonstatic data members of X that are of a class
|
||
// type M (or array thereof), each such class type has a copy
|
||
// assignment operator whose parameter is of type const M&,
|
||
// const volatile M& or M.
|
||
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
|
||
HasConstCopyAssignment && Field != ClassDecl->field_end();
|
||
++Field) {
|
||
QualType FieldType = (*Field)->getType();
|
||
if (const ArrayType *Array = Context.getAsArrayType(FieldType))
|
||
FieldType = Array->getElementType();
|
||
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
|
||
const CXXRecordDecl *FieldClassDecl
|
||
= cast<CXXRecordDecl>(FieldClassType->getDecl());
|
||
const CXXMethodDecl *MD = 0;
|
||
HasConstCopyAssignment
|
||
= FieldClassDecl->hasConstCopyAssignment(Context, MD);
|
||
}
|
||
}
|
||
|
||
// Otherwise, the implicitly declared copy assignment operator will
|
||
// have the form
|
||
//
|
||
// X& X::operator=(X&)
|
||
QualType ArgType = ClassType;
|
||
QualType RetType = Context.getLValueReferenceType(ArgType);
|
||
if (HasConstCopyAssignment)
|
||
ArgType = ArgType.withConst();
|
||
ArgType = Context.getLValueReferenceType(ArgType);
|
||
|
||
// An implicitly-declared copy assignment operator is an inline public
|
||
// member of its class.
|
||
DeclarationName Name =
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
||
CXXMethodDecl *CopyAssignment =
|
||
CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
|
||
Context.getFunctionType(RetType, &ArgType, 1,
|
||
false, 0,
|
||
/*FIXME: hasExceptionSpec*/false,
|
||
false, 0, 0,
|
||
FunctionType::ExtInfo()),
|
||
/*TInfo=*/0, /*isStatic=*/false,
|
||
/*StorageClassAsWritten=*/FunctionDecl::None,
|
||
/*isInline=*/true);
|
||
CopyAssignment->setAccess(AS_public);
|
||
CopyAssignment->setImplicit();
|
||
CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
|
||
CopyAssignment->setCopyAssignment(true);
|
||
|
||
// Add the parameter to the operator.
|
||
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
|
||
ClassDecl->getLocation(),
|
||
/*Id=*/0,
|
||
ArgType, /*TInfo=*/0,
|
||
VarDecl::None,
|
||
VarDecl::None, 0);
|
||
CopyAssignment->setParams(&FromParam, 1);
|
||
|
||
// Don't call addedAssignmentOperator. There is no way to distinguish an
|
||
// implicit from an explicit assignment operator.
|
||
if (S)
|
||
PushOnScopeChains(CopyAssignment, S, true);
|
||
else
|
||
ClassDecl->addDecl(CopyAssignment);
|
||
AddOverriddenMethods(ClassDecl, CopyAssignment);
|
||
}
|
||
|
||
if (!ClassDecl->hasUserDeclaredDestructor()) {
|
||
// C++ [class.dtor]p2:
|
||
// If a class has no user-declared destructor, a destructor is
|
||
// declared implicitly. An implicitly-declared destructor is an
|
||
// inline public member of its class.
|
||
QualType Ty = Context.getFunctionType(Context.VoidTy,
|
||
0, 0, false, 0,
|
||
/*FIXME: hasExceptionSpec*/false,
|
||
false, 0, 0, FunctionType::ExtInfo());
|
||
|
||
DeclarationName Name
|
||
= Context.DeclarationNames.getCXXDestructorName(ClassType);
|
||
CXXDestructorDecl *Destructor
|
||
= CXXDestructorDecl::Create(Context, ClassDecl,
|
||
ClassDecl->getLocation(), Name, Ty,
|
||
/*isInline=*/true,
|
||
/*isImplicitlyDeclared=*/true);
|
||
Destructor->setAccess(AS_public);
|
||
Destructor->setImplicit();
|
||
Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
|
||
if (S)
|
||
PushOnScopeChains(Destructor, S, true);
|
||
else
|
||
ClassDecl->addDecl(Destructor);
|
||
|
||
// This could be uniqued if it ever proves significant.
|
||
Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
|
||
|
||
AddOverriddenMethods(ClassDecl, Destructor);
|
||
}
|
||
}
|
||
|
||
void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
|
||
Decl *D = TemplateD.getAs<Decl>();
|
||
if (!D)
|
||
return;
|
||
|
||
TemplateParameterList *Params = 0;
|
||
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
|
||
Params = Template->getTemplateParameters();
|
||
else if (ClassTemplatePartialSpecializationDecl *PartialSpec
|
||
= dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
|
||
Params = PartialSpec->getTemplateParameters();
|
||
else
|
||
return;
|
||
|
||
for (TemplateParameterList::iterator Param = Params->begin(),
|
||
ParamEnd = Params->end();
|
||
Param != ParamEnd; ++Param) {
|
||
NamedDecl *Named = cast<NamedDecl>(*Param);
|
||
if (Named->getDeclName()) {
|
||
S->AddDecl(DeclPtrTy::make(Named));
|
||
IdResolver.AddDecl(Named);
|
||
}
|
||
}
|
||
}
|
||
|
||
void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
|
||
if (!RecordD) return;
|
||
AdjustDeclIfTemplate(RecordD);
|
||
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
|
||
PushDeclContext(S, Record);
|
||
}
|
||
|
||
void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
|
||
if (!RecordD) return;
|
||
PopDeclContext();
|
||
}
|
||
|
||
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
|
||
/// parsing a top-level (non-nested) C++ class, and we are now
|
||
/// parsing those parts of the given Method declaration that could
|
||
/// not be parsed earlier (C++ [class.mem]p2), such as default
|
||
/// arguments. This action should enter the scope of the given
|
||
/// Method declaration as if we had just parsed the qualified method
|
||
/// name. However, it should not bring the parameters into scope;
|
||
/// that will be performed by ActOnDelayedCXXMethodParameter.
|
||
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
|
||
}
|
||
|
||
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
|
||
/// C++ method declaration. We're (re-)introducing the given
|
||
/// function parameter into scope for use in parsing later parts of
|
||
/// the method declaration. For example, we could see an
|
||
/// ActOnParamDefaultArgument event for this parameter.
|
||
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
|
||
if (!ParamD)
|
||
return;
|
||
|
||
ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
|
||
|
||
// If this parameter has an unparsed default argument, clear it out
|
||
// to make way for the parsed default argument.
|
||
if (Param->hasUnparsedDefaultArg())
|
||
Param->setDefaultArg(0);
|
||
|
||
S->AddDecl(DeclPtrTy::make(Param));
|
||
if (Param->getDeclName())
|
||
IdResolver.AddDecl(Param);
|
||
}
|
||
|
||
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
|
||
/// processing the delayed method declaration for Method. The method
|
||
/// declaration is now considered finished. There may be a separate
|
||
/// ActOnStartOfFunctionDef action later (not necessarily
|
||
/// immediately!) for this method, if it was also defined inside the
|
||
/// class body.
|
||
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
|
||
if (!MethodD)
|
||
return;
|
||
|
||
AdjustDeclIfTemplate(MethodD);
|
||
|
||
FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
|
||
|
||
// Now that we have our default arguments, check the constructor
|
||
// again. It could produce additional diagnostics or affect whether
|
||
// the class has implicitly-declared destructors, among other
|
||
// things.
|
||
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
|
||
CheckConstructor(Constructor);
|
||
|
||
// Check the default arguments, which we may have added.
|
||
if (!Method->isInvalidDecl())
|
||
CheckCXXDefaultArguments(Method);
|
||
}
|
||
|
||
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
|
||
/// the well-formedness of the constructor declarator @p D with type @p
|
||
/// R. If there are any errors in the declarator, this routine will
|
||
/// emit diagnostics and set the invalid bit to true. In any case, the type
|
||
/// will be updated to reflect a well-formed type for the constructor and
|
||
/// returned.
|
||
QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
|
||
FunctionDecl::StorageClass &SC) {
|
||
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
|
||
|
||
// C++ [class.ctor]p3:
|
||
// A constructor shall not be virtual (10.3) or static (9.4). A
|
||
// constructor can be invoked for a const, volatile or const
|
||
// volatile object. A constructor shall not be declared const,
|
||
// volatile, or const volatile (9.3.2).
|
||
if (isVirtual) {
|
||
if (!D.isInvalidType())
|
||
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
||
<< "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
D.setInvalidType();
|
||
}
|
||
if (SC == FunctionDecl::Static) {
|
||
if (!D.isInvalidType())
|
||
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
|
||
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
D.setInvalidType();
|
||
SC = FunctionDecl::None;
|
||
}
|
||
|
||
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
||
if (FTI.TypeQuals != 0) {
|
||
if (FTI.TypeQuals & Qualifiers::Const)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
||
<< "const" << SourceRange(D.getIdentifierLoc());
|
||
if (FTI.TypeQuals & Qualifiers::Volatile)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
||
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
||
if (FTI.TypeQuals & Qualifiers::Restrict)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
|
||
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
||
}
|
||
|
||
// Rebuild the function type "R" without any type qualifiers (in
|
||
// case any of the errors above fired) and with "void" as the
|
||
// return type, since constructors don't have return types. We
|
||
// *always* have to do this, because GetTypeForDeclarator will
|
||
// put in a result type of "int" when none was specified.
|
||
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
||
return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
|
||
Proto->getNumArgs(),
|
||
Proto->isVariadic(), 0,
|
||
Proto->hasExceptionSpec(),
|
||
Proto->hasAnyExceptionSpec(),
|
||
Proto->getNumExceptions(),
|
||
Proto->exception_begin(),
|
||
Proto->getExtInfo());
|
||
}
|
||
|
||
/// CheckConstructor - Checks a fully-formed constructor for
|
||
/// well-formedness, issuing any diagnostics required. Returns true if
|
||
/// the constructor declarator is invalid.
|
||
void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
|
||
CXXRecordDecl *ClassDecl
|
||
= dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
|
||
if (!ClassDecl)
|
||
return Constructor->setInvalidDecl();
|
||
|
||
// C++ [class.copy]p3:
|
||
// A declaration of a constructor for a class X is ill-formed if
|
||
// its first parameter is of type (optionally cv-qualified) X and
|
||
// either there are no other parameters or else all other
|
||
// parameters have default arguments.
|
||
if (!Constructor->isInvalidDecl() &&
|
||
((Constructor->getNumParams() == 1) ||
|
||
(Constructor->getNumParams() > 1 &&
|
||
Constructor->getParamDecl(1)->hasDefaultArg())) &&
|
||
Constructor->getTemplateSpecializationKind()
|
||
!= TSK_ImplicitInstantiation) {
|
||
QualType ParamType = Constructor->getParamDecl(0)->getType();
|
||
QualType ClassTy = Context.getTagDeclType(ClassDecl);
|
||
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
|
||
SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
|
||
Diag(ParamLoc, diag::err_constructor_byvalue_arg)
|
||
<< FixItHint::CreateInsertion(ParamLoc, " const &");
|
||
|
||
// FIXME: Rather that making the constructor invalid, we should endeavor
|
||
// to fix the type.
|
||
Constructor->setInvalidDecl();
|
||
}
|
||
}
|
||
|
||
// Notify the class that we've added a constructor. In principle we
|
||
// don't need to do this for out-of-line declarations; in practice
|
||
// we only instantiate the most recent declaration of a method, so
|
||
// we have to call this for everything but friends.
|
||
if (!Constructor->getFriendObjectKind())
|
||
ClassDecl->addedConstructor(Context, Constructor);
|
||
}
|
||
|
||
/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
|
||
/// issuing any diagnostics required. Returns true on error.
|
||
bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
|
||
CXXRecordDecl *RD = Destructor->getParent();
|
||
|
||
if (Destructor->isVirtual()) {
|
||
SourceLocation Loc;
|
||
|
||
if (!Destructor->isImplicit())
|
||
Loc = Destructor->getLocation();
|
||
else
|
||
Loc = RD->getLocation();
|
||
|
||
// If we have a virtual destructor, look up the deallocation function
|
||
FunctionDecl *OperatorDelete = 0;
|
||
DeclarationName Name =
|
||
Context.DeclarationNames.getCXXOperatorName(OO_Delete);
|
||
if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
|
||
return true;
|
||
|
||
Destructor->setOperatorDelete(OperatorDelete);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static inline bool
|
||
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
|
||
return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
|
||
FTI.ArgInfo[0].Param &&
|
||
FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
|
||
}
|
||
|
||
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
|
||
/// the well-formednes of the destructor declarator @p D with type @p
|
||
/// R. If there are any errors in the declarator, this routine will
|
||
/// emit diagnostics and set the declarator to invalid. Even if this happens,
|
||
/// will be updated to reflect a well-formed type for the destructor and
|
||
/// returned.
|
||
QualType Sema::CheckDestructorDeclarator(Declarator &D,
|
||
FunctionDecl::StorageClass& SC) {
|
||
// C++ [class.dtor]p1:
|
||
// [...] A typedef-name that names a class is a class-name
|
||
// (7.1.3); however, a typedef-name that names a class shall not
|
||
// be used as the identifier in the declarator for a destructor
|
||
// declaration.
|
||
QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
|
||
if (isa<TypedefType>(DeclaratorType)) {
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
|
||
<< DeclaratorType;
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// C++ [class.dtor]p2:
|
||
// A destructor is used to destroy objects of its class type. A
|
||
// destructor takes no parameters, and no return type can be
|
||
// specified for it (not even void). The address of a destructor
|
||
// shall not be taken. A destructor shall not be static. A
|
||
// destructor can be invoked for a const, volatile or const
|
||
// volatile object. A destructor shall not be declared const,
|
||
// volatile or const volatile (9.3.2).
|
||
if (SC == FunctionDecl::Static) {
|
||
if (!D.isInvalidType())
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
|
||
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
SC = FunctionDecl::None;
|
||
D.setInvalidType();
|
||
}
|
||
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
|
||
// Destructors don't have return types, but the parser will
|
||
// happily parse something like:
|
||
//
|
||
// class X {
|
||
// float ~X();
|
||
// };
|
||
//
|
||
// The return type will be eliminated later.
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
|
||
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
}
|
||
|
||
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
|
||
if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
|
||
if (FTI.TypeQuals & Qualifiers::Const)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
||
<< "const" << SourceRange(D.getIdentifierLoc());
|
||
if (FTI.TypeQuals & Qualifiers::Volatile)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
||
<< "volatile" << SourceRange(D.getIdentifierLoc());
|
||
if (FTI.TypeQuals & Qualifiers::Restrict)
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
|
||
<< "restrict" << SourceRange(D.getIdentifierLoc());
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// Make sure we don't have any parameters.
|
||
if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
|
||
|
||
// Delete the parameters.
|
||
FTI.freeArgs();
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// Make sure the destructor isn't variadic.
|
||
if (FTI.isVariadic) {
|
||
Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// Rebuild the function type "R" without any type qualifiers or
|
||
// parameters (in case any of the errors above fired) and with
|
||
// "void" as the return type, since destructors don't have return
|
||
// types. We *always* have to do this, because GetTypeForDeclarator
|
||
// will put in a result type of "int" when none was specified.
|
||
// FIXME: Exceptions!
|
||
return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
|
||
false, false, 0, 0, FunctionType::ExtInfo());
|
||
}
|
||
|
||
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
|
||
/// well-formednes of the conversion function declarator @p D with
|
||
/// type @p R. If there are any errors in the declarator, this routine
|
||
/// will emit diagnostics and return true. Otherwise, it will return
|
||
/// false. Either way, the type @p R will be updated to reflect a
|
||
/// well-formed type for the conversion operator.
|
||
void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
|
||
FunctionDecl::StorageClass& SC) {
|
||
// C++ [class.conv.fct]p1:
|
||
// Neither parameter types nor return type can be specified. The
|
||
// type of a conversion function (8.3.5) is "function taking no
|
||
// parameter returning conversion-type-id."
|
||
if (SC == FunctionDecl::Static) {
|
||
if (!D.isInvalidType())
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
|
||
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
D.setInvalidType();
|
||
SC = FunctionDecl::None;
|
||
}
|
||
|
||
QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
|
||
|
||
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
|
||
// Conversion functions don't have return types, but the parser will
|
||
// happily parse something like:
|
||
//
|
||
// class X {
|
||
// float operator bool();
|
||
// };
|
||
//
|
||
// The return type will be changed later anyway.
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
|
||
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
|
||
<< SourceRange(D.getIdentifierLoc());
|
||
D.setInvalidType();
|
||
}
|
||
|
||
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
|
||
|
||
// Make sure we don't have any parameters.
|
||
if (Proto->getNumArgs() > 0) {
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
|
||
|
||
// Delete the parameters.
|
||
D.getTypeObject(0).Fun.freeArgs();
|
||
D.setInvalidType();
|
||
} else if (Proto->isVariadic()) {
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// Diagnose "&operator bool()" and other such nonsense. This
|
||
// is actually a gcc extension which we don't support.
|
||
if (Proto->getResultType() != ConvType) {
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
|
||
<< Proto->getResultType();
|
||
D.setInvalidType();
|
||
ConvType = Proto->getResultType();
|
||
}
|
||
|
||
// C++ [class.conv.fct]p4:
|
||
// The conversion-type-id shall not represent a function type nor
|
||
// an array type.
|
||
if (ConvType->isArrayType()) {
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
|
||
ConvType = Context.getPointerType(ConvType);
|
||
D.setInvalidType();
|
||
} else if (ConvType->isFunctionType()) {
|
||
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
|
||
ConvType = Context.getPointerType(ConvType);
|
||
D.setInvalidType();
|
||
}
|
||
|
||
// Rebuild the function type "R" without any parameters (in case any
|
||
// of the errors above fired) and with the conversion type as the
|
||
// return type.
|
||
if (D.isInvalidType()) {
|
||
R = Context.getFunctionType(ConvType, 0, 0, false,
|
||
Proto->getTypeQuals(),
|
||
Proto->hasExceptionSpec(),
|
||
Proto->hasAnyExceptionSpec(),
|
||
Proto->getNumExceptions(),
|
||
Proto->exception_begin(),
|
||
Proto->getExtInfo());
|
||
}
|
||
|
||
// C++0x explicit conversion operators.
|
||
if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
|
||
Diag(D.getDeclSpec().getExplicitSpecLoc(),
|
||
diag::warn_explicit_conversion_functions)
|
||
<< SourceRange(D.getDeclSpec().getExplicitSpecLoc());
|
||
}
|
||
|
||
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
|
||
/// the declaration of the given C++ conversion function. This routine
|
||
/// is responsible for recording the conversion function in the C++
|
||
/// class, if possible.
|
||
Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
|
||
assert(Conversion && "Expected to receive a conversion function declaration");
|
||
|
||
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
|
||
|
||
// Make sure we aren't redeclaring the conversion function.
|
||
QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
|
||
|
||
// C++ [class.conv.fct]p1:
|
||
// [...] A conversion function is never used to convert a
|
||
// (possibly cv-qualified) object to the (possibly cv-qualified)
|
||
// same object type (or a reference to it), to a (possibly
|
||
// cv-qualified) base class of that type (or a reference to it),
|
||
// or to (possibly cv-qualified) void.
|
||
// FIXME: Suppress this warning if the conversion function ends up being a
|
||
// virtual function that overrides a virtual function in a base class.
|
||
QualType ClassType
|
||
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
|
||
if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
|
||
ConvType = ConvTypeRef->getPointeeType();
|
||
if (ConvType->isRecordType()) {
|
||
ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
|
||
if (ConvType == ClassType)
|
||
Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
|
||
<< ClassType;
|
||
else if (IsDerivedFrom(ClassType, ConvType))
|
||
Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
|
||
<< ClassType << ConvType;
|
||
} else if (ConvType->isVoidType()) {
|
||
Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
|
||
<< ClassType << ConvType;
|
||
}
|
||
|
||
if (Conversion->getPrimaryTemplate()) {
|
||
// ignore specializations
|
||
} else if (Conversion->getPreviousDeclaration()) {
|
||
if (FunctionTemplateDecl *ConversionTemplate
|
||
= Conversion->getDescribedFunctionTemplate()) {
|
||
if (ClassDecl->replaceConversion(
|
||
ConversionTemplate->getPreviousDeclaration(),
|
||
ConversionTemplate))
|
||
return DeclPtrTy::make(ConversionTemplate);
|
||
} else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
|
||
Conversion))
|
||
return DeclPtrTy::make(Conversion);
|
||
assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
|
||
} else if (FunctionTemplateDecl *ConversionTemplate
|
||
= Conversion->getDescribedFunctionTemplate())
|
||
ClassDecl->addConversionFunction(ConversionTemplate);
|
||
else
|
||
ClassDecl->addConversionFunction(Conversion);
|
||
|
||
return DeclPtrTy::make(Conversion);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Namespace Handling
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
/// ActOnStartNamespaceDef - This is called at the start of a namespace
|
||
/// definition.
|
||
Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
|
||
SourceLocation IdentLoc,
|
||
IdentifierInfo *II,
|
||
SourceLocation LBrace,
|
||
AttributeList *AttrList) {
|
||
NamespaceDecl *Namespc =
|
||
NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
|
||
Namespc->setLBracLoc(LBrace);
|
||
|
||
Scope *DeclRegionScope = NamespcScope->getParent();
|
||
|
||
ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
|
||
|
||
if (II) {
|
||
// C++ [namespace.def]p2:
|
||
// The identifier in an original-namespace-definition shall not have been
|
||
// previously defined in the declarative region in which the
|
||
// original-namespace-definition appears. The identifier in an
|
||
// original-namespace-definition is the name of the namespace. Subsequently
|
||
// in that declarative region, it is treated as an original-namespace-name.
|
||
|
||
NamedDecl *PrevDecl
|
||
= LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
|
||
ForRedeclaration);
|
||
|
||
if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
|
||
// This is an extended namespace definition.
|
||
// Attach this namespace decl to the chain of extended namespace
|
||
// definitions.
|
||
OrigNS->setNextNamespace(Namespc);
|
||
Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
|
||
|
||
// Remove the previous declaration from the scope.
|
||
if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
|
||
IdResolver.RemoveDecl(OrigNS);
|
||
DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
|
||
}
|
||
} else if (PrevDecl) {
|
||
// This is an invalid name redefinition.
|
||
Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
|
||
<< Namespc->getDeclName();
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
Namespc->setInvalidDecl();
|
||
// Continue on to push Namespc as current DeclContext and return it.
|
||
} else if (II->isStr("std") &&
|
||
CurContext->getLookupContext()->isTranslationUnit()) {
|
||
// This is the first "real" definition of the namespace "std", so update
|
||
// our cache of the "std" namespace to point at this definition.
|
||
if (StdNamespace) {
|
||
// We had already defined a dummy namespace "std". Link this new
|
||
// namespace definition to the dummy namespace "std".
|
||
StdNamespace->setNextNamespace(Namespc);
|
||
StdNamespace->setLocation(IdentLoc);
|
||
Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
|
||
}
|
||
|
||
// Make our StdNamespace cache point at the first real definition of the
|
||
// "std" namespace.
|
||
StdNamespace = Namespc;
|
||
}
|
||
|
||
PushOnScopeChains(Namespc, DeclRegionScope);
|
||
} else {
|
||
// Anonymous namespaces.
|
||
assert(Namespc->isAnonymousNamespace());
|
||
|
||
// Link the anonymous namespace into its parent.
|
||
NamespaceDecl *PrevDecl;
|
||
DeclContext *Parent = CurContext->getLookupContext();
|
||
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
|
||
PrevDecl = TU->getAnonymousNamespace();
|
||
TU->setAnonymousNamespace(Namespc);
|
||
} else {
|
||
NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
|
||
PrevDecl = ND->getAnonymousNamespace();
|
||
ND->setAnonymousNamespace(Namespc);
|
||
}
|
||
|
||
// Link the anonymous namespace with its previous declaration.
|
||
if (PrevDecl) {
|
||
assert(PrevDecl->isAnonymousNamespace());
|
||
assert(!PrevDecl->getNextNamespace());
|
||
Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
|
||
PrevDecl->setNextNamespace(Namespc);
|
||
}
|
||
|
||
CurContext->addDecl(Namespc);
|
||
|
||
// C++ [namespace.unnamed]p1. An unnamed-namespace-definition
|
||
// behaves as if it were replaced by
|
||
// namespace unique { /* empty body */ }
|
||
// using namespace unique;
|
||
// namespace unique { namespace-body }
|
||
// where all occurrences of 'unique' in a translation unit are
|
||
// replaced by the same identifier and this identifier differs
|
||
// from all other identifiers in the entire program.
|
||
|
||
// We just create the namespace with an empty name and then add an
|
||
// implicit using declaration, just like the standard suggests.
|
||
//
|
||
// CodeGen enforces the "universally unique" aspect by giving all
|
||
// declarations semantically contained within an anonymous
|
||
// namespace internal linkage.
|
||
|
||
if (!PrevDecl) {
|
||
UsingDirectiveDecl* UD
|
||
= UsingDirectiveDecl::Create(Context, CurContext,
|
||
/* 'using' */ LBrace,
|
||
/* 'namespace' */ SourceLocation(),
|
||
/* qualifier */ SourceRange(),
|
||
/* NNS */ NULL,
|
||
/* identifier */ SourceLocation(),
|
||
Namespc,
|
||
/* Ancestor */ CurContext);
|
||
UD->setImplicit();
|
||
CurContext->addDecl(UD);
|
||
}
|
||
}
|
||
|
||
// Although we could have an invalid decl (i.e. the namespace name is a
|
||
// redefinition), push it as current DeclContext and try to continue parsing.
|
||
// FIXME: We should be able to push Namespc here, so that the each DeclContext
|
||
// for the namespace has the declarations that showed up in that particular
|
||
// namespace definition.
|
||
PushDeclContext(NamespcScope, Namespc);
|
||
return DeclPtrTy::make(Namespc);
|
||
}
|
||
|
||
/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
|
||
/// is a namespace alias, returns the namespace it points to.
|
||
static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
|
||
if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
|
||
return AD->getNamespace();
|
||
return dyn_cast_or_null<NamespaceDecl>(D);
|
||
}
|
||
|
||
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
|
||
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
|
||
void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
|
||
Decl *Dcl = D.getAs<Decl>();
|
||
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
|
||
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
|
||
Namespc->setRBracLoc(RBrace);
|
||
PopDeclContext();
|
||
}
|
||
|
||
Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
|
||
SourceLocation UsingLoc,
|
||
SourceLocation NamespcLoc,
|
||
CXXScopeSpec &SS,
|
||
SourceLocation IdentLoc,
|
||
IdentifierInfo *NamespcName,
|
||
AttributeList *AttrList) {
|
||
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
||
assert(NamespcName && "Invalid NamespcName.");
|
||
assert(IdentLoc.isValid() && "Invalid NamespceName location.");
|
||
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
||
|
||
UsingDirectiveDecl *UDir = 0;
|
||
|
||
// Lookup namespace name.
|
||
LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
|
||
LookupParsedName(R, S, &SS);
|
||
if (R.isAmbiguous())
|
||
return DeclPtrTy();
|
||
|
||
if (!R.empty()) {
|
||
NamedDecl *Named = R.getFoundDecl();
|
||
assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
|
||
&& "expected namespace decl");
|
||
// C++ [namespace.udir]p1:
|
||
// A using-directive specifies that the names in the nominated
|
||
// namespace can be used in the scope in which the
|
||
// using-directive appears after the using-directive. During
|
||
// unqualified name lookup (3.4.1), the names appear as if they
|
||
// were declared in the nearest enclosing namespace which
|
||
// contains both the using-directive and the nominated
|
||
// namespace. [Note: in this context, "contains" means "contains
|
||
// directly or indirectly". ]
|
||
|
||
// Find enclosing context containing both using-directive and
|
||
// nominated namespace.
|
||
NamespaceDecl *NS = getNamespaceDecl(Named);
|
||
DeclContext *CommonAncestor = cast<DeclContext>(NS);
|
||
while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
|
||
CommonAncestor = CommonAncestor->getParent();
|
||
|
||
UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
|
||
SS.getRange(),
|
||
(NestedNameSpecifier *)SS.getScopeRep(),
|
||
IdentLoc, Named, CommonAncestor);
|
||
PushUsingDirective(S, UDir);
|
||
} else {
|
||
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
|
||
}
|
||
|
||
// FIXME: We ignore attributes for now.
|
||
delete AttrList;
|
||
return DeclPtrTy::make(UDir);
|
||
}
|
||
|
||
void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
|
||
// If scope has associated entity, then using directive is at namespace
|
||
// or translation unit scope. We add UsingDirectiveDecls, into
|
||
// it's lookup structure.
|
||
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
|
||
Ctx->addDecl(UDir);
|
||
else
|
||
// Otherwise it is block-sope. using-directives will affect lookup
|
||
// only to the end of scope.
|
||
S->PushUsingDirective(DeclPtrTy::make(UDir));
|
||
}
|
||
|
||
|
||
Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
|
||
AccessSpecifier AS,
|
||
bool HasUsingKeyword,
|
||
SourceLocation UsingLoc,
|
||
CXXScopeSpec &SS,
|
||
UnqualifiedId &Name,
|
||
AttributeList *AttrList,
|
||
bool IsTypeName,
|
||
SourceLocation TypenameLoc) {
|
||
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
|
||
|
||
switch (Name.getKind()) {
|
||
case UnqualifiedId::IK_Identifier:
|
||
case UnqualifiedId::IK_OperatorFunctionId:
|
||
case UnqualifiedId::IK_LiteralOperatorId:
|
||
case UnqualifiedId::IK_ConversionFunctionId:
|
||
break;
|
||
|
||
case UnqualifiedId::IK_ConstructorName:
|
||
case UnqualifiedId::IK_ConstructorTemplateId:
|
||
// C++0x inherited constructors.
|
||
if (getLangOptions().CPlusPlus0x) break;
|
||
|
||
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
|
||
<< SS.getRange();
|
||
return DeclPtrTy();
|
||
|
||
case UnqualifiedId::IK_DestructorName:
|
||
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
|
||
<< SS.getRange();
|
||
return DeclPtrTy();
|
||
|
||
case UnqualifiedId::IK_TemplateId:
|
||
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
|
||
<< SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
|
||
if (!TargetName)
|
||
return DeclPtrTy();
|
||
|
||
// Warn about using declarations.
|
||
// TODO: store that the declaration was written without 'using' and
|
||
// talk about access decls instead of using decls in the
|
||
// diagnostics.
|
||
if (!HasUsingKeyword) {
|
||
UsingLoc = Name.getSourceRange().getBegin();
|
||
|
||
Diag(UsingLoc, diag::warn_access_decl_deprecated)
|
||
<< FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
|
||
}
|
||
|
||
NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
|
||
Name.getSourceRange().getBegin(),
|
||
TargetName, AttrList,
|
||
/* IsInstantiation */ false,
|
||
IsTypeName, TypenameLoc);
|
||
if (UD)
|
||
PushOnScopeChains(UD, S, /*AddToContext*/ false);
|
||
|
||
return DeclPtrTy::make(UD);
|
||
}
|
||
|
||
/// Determines whether to create a using shadow decl for a particular
|
||
/// decl, given the set of decls existing prior to this using lookup.
|
||
bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
|
||
const LookupResult &Previous) {
|
||
// Diagnose finding a decl which is not from a base class of the
|
||
// current class. We do this now because there are cases where this
|
||
// function will silently decide not to build a shadow decl, which
|
||
// will pre-empt further diagnostics.
|
||
//
|
||
// We don't need to do this in C++0x because we do the check once on
|
||
// the qualifier.
|
||
//
|
||
// FIXME: diagnose the following if we care enough:
|
||
// struct A { int foo; };
|
||
// struct B : A { using A::foo; };
|
||
// template <class T> struct C : A {};
|
||
// template <class T> struct D : C<T> { using B::foo; } // <---
|
||
// This is invalid (during instantiation) in C++03 because B::foo
|
||
// resolves to the using decl in B, which is not a base class of D<T>.
|
||
// We can't diagnose it immediately because C<T> is an unknown
|
||
// specialization. The UsingShadowDecl in D<T> then points directly
|
||
// to A::foo, which will look well-formed when we instantiate.
|
||
// The right solution is to not collapse the shadow-decl chain.
|
||
if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
|
||
DeclContext *OrigDC = Orig->getDeclContext();
|
||
|
||
// Handle enums and anonymous structs.
|
||
if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
|
||
CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
|
||
while (OrigRec->isAnonymousStructOrUnion())
|
||
OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
|
||
|
||
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
|
||
if (OrigDC == CurContext) {
|
||
Diag(Using->getLocation(),
|
||
diag::err_using_decl_nested_name_specifier_is_current_class)
|
||
<< Using->getNestedNameRange();
|
||
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
||
return true;
|
||
}
|
||
|
||
Diag(Using->getNestedNameRange().getBegin(),
|
||
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
||
<< Using->getTargetNestedNameDecl()
|
||
<< cast<CXXRecordDecl>(CurContext)
|
||
<< Using->getNestedNameRange();
|
||
Diag(Orig->getLocation(), diag::note_using_decl_target);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
if (Previous.empty()) return false;
|
||
|
||
NamedDecl *Target = Orig;
|
||
if (isa<UsingShadowDecl>(Target))
|
||
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
||
|
||
// If the target happens to be one of the previous declarations, we
|
||
// don't have a conflict.
|
||
//
|
||
// FIXME: but we might be increasing its access, in which case we
|
||
// should redeclare it.
|
||
NamedDecl *NonTag = 0, *Tag = 0;
|
||
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
|
||
I != E; ++I) {
|
||
NamedDecl *D = (*I)->getUnderlyingDecl();
|
||
if (D->getCanonicalDecl() == Target->getCanonicalDecl())
|
||
return false;
|
||
|
||
(isa<TagDecl>(D) ? Tag : NonTag) = D;
|
||
}
|
||
|
||
if (Target->isFunctionOrFunctionTemplate()) {
|
||
FunctionDecl *FD;
|
||
if (isa<FunctionTemplateDecl>(Target))
|
||
FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
|
||
else
|
||
FD = cast<FunctionDecl>(Target);
|
||
|
||
NamedDecl *OldDecl = 0;
|
||
switch (CheckOverload(FD, Previous, OldDecl)) {
|
||
case Ovl_Overload:
|
||
return false;
|
||
|
||
case Ovl_NonFunction:
|
||
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
||
break;
|
||
|
||
// We found a decl with the exact signature.
|
||
case Ovl_Match:
|
||
if (isa<UsingShadowDecl>(OldDecl)) {
|
||
// Silently ignore the possible conflict.
|
||
return false;
|
||
}
|
||
|
||
// If we're in a record, we want to hide the target, so we
|
||
// return true (without a diagnostic) to tell the caller not to
|
||
// build a shadow decl.
|
||
if (CurContext->isRecord())
|
||
return true;
|
||
|
||
// If we're not in a record, this is an error.
|
||
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
||
break;
|
||
}
|
||
|
||
Diag(Target->getLocation(), diag::note_using_decl_target);
|
||
Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
|
||
return true;
|
||
}
|
||
|
||
// Target is not a function.
|
||
|
||
if (isa<TagDecl>(Target)) {
|
||
// No conflict between a tag and a non-tag.
|
||
if (!Tag) return false;
|
||
|
||
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
||
Diag(Target->getLocation(), diag::note_using_decl_target);
|
||
Diag(Tag->getLocation(), diag::note_using_decl_conflict);
|
||
return true;
|
||
}
|
||
|
||
// No conflict between a tag and a non-tag.
|
||
if (!NonTag) return false;
|
||
|
||
Diag(Using->getLocation(), diag::err_using_decl_conflict);
|
||
Diag(Target->getLocation(), diag::note_using_decl_target);
|
||
Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
|
||
return true;
|
||
}
|
||
|
||
/// Builds a shadow declaration corresponding to a 'using' declaration.
|
||
UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
|
||
UsingDecl *UD,
|
||
NamedDecl *Orig) {
|
||
|
||
// If we resolved to another shadow declaration, just coalesce them.
|
||
NamedDecl *Target = Orig;
|
||
if (isa<UsingShadowDecl>(Target)) {
|
||
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
|
||
assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
|
||
}
|
||
|
||
UsingShadowDecl *Shadow
|
||
= UsingShadowDecl::Create(Context, CurContext,
|
||
UD->getLocation(), UD, Target);
|
||
UD->addShadowDecl(Shadow);
|
||
|
||
if (S)
|
||
PushOnScopeChains(Shadow, S);
|
||
else
|
||
CurContext->addDecl(Shadow);
|
||
Shadow->setAccess(UD->getAccess());
|
||
|
||
// Register it as a conversion if appropriate.
|
||
if (Shadow->getDeclName().getNameKind()
|
||
== DeclarationName::CXXConversionFunctionName)
|
||
cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
|
||
|
||
if (Orig->isInvalidDecl() || UD->isInvalidDecl())
|
||
Shadow->setInvalidDecl();
|
||
|
||
return Shadow;
|
||
}
|
||
|
||
/// Hides a using shadow declaration. This is required by the current
|
||
/// using-decl implementation when a resolvable using declaration in a
|
||
/// class is followed by a declaration which would hide or override
|
||
/// one or more of the using decl's targets; for example:
|
||
///
|
||
/// struct Base { void foo(int); };
|
||
/// struct Derived : Base {
|
||
/// using Base::foo;
|
||
/// void foo(int);
|
||
/// };
|
||
///
|
||
/// The governing language is C++03 [namespace.udecl]p12:
|
||
///
|
||
/// When a using-declaration brings names from a base class into a
|
||
/// derived class scope, member functions in the derived class
|
||
/// override and/or hide member functions with the same name and
|
||
/// parameter types in a base class (rather than conflicting).
|
||
///
|
||
/// There are two ways to implement this:
|
||
/// (1) optimistically create shadow decls when they're not hidden
|
||
/// by existing declarations, or
|
||
/// (2) don't create any shadow decls (or at least don't make them
|
||
/// visible) until we've fully parsed/instantiated the class.
|
||
/// The problem with (1) is that we might have to retroactively remove
|
||
/// a shadow decl, which requires several O(n) operations because the
|
||
/// decl structures are (very reasonably) not designed for removal.
|
||
/// (2) avoids this but is very fiddly and phase-dependent.
|
||
void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
|
||
if (Shadow->getDeclName().getNameKind() ==
|
||
DeclarationName::CXXConversionFunctionName)
|
||
cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
|
||
|
||
// Remove it from the DeclContext...
|
||
Shadow->getDeclContext()->removeDecl(Shadow);
|
||
|
||
// ...and the scope, if applicable...
|
||
if (S) {
|
||
S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
|
||
IdResolver.RemoveDecl(Shadow);
|
||
}
|
||
|
||
// ...and the using decl.
|
||
Shadow->getUsingDecl()->removeShadowDecl(Shadow);
|
||
|
||
// TODO: complain somehow if Shadow was used. It shouldn't
|
||
// be possible for this to happen, because...?
|
||
}
|
||
|
||
/// Builds a using declaration.
|
||
///
|
||
/// \param IsInstantiation - Whether this call arises from an
|
||
/// instantiation of an unresolved using declaration. We treat
|
||
/// the lookup differently for these declarations.
|
||
NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
|
||
SourceLocation UsingLoc,
|
||
CXXScopeSpec &SS,
|
||
SourceLocation IdentLoc,
|
||
DeclarationName Name,
|
||
AttributeList *AttrList,
|
||
bool IsInstantiation,
|
||
bool IsTypeName,
|
||
SourceLocation TypenameLoc) {
|
||
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
|
||
assert(IdentLoc.isValid() && "Invalid TargetName location.");
|
||
|
||
// FIXME: We ignore attributes for now.
|
||
delete AttrList;
|
||
|
||
if (SS.isEmpty()) {
|
||
Diag(IdentLoc, diag::err_using_requires_qualname);
|
||
return 0;
|
||
}
|
||
|
||
// Do the redeclaration lookup in the current scope.
|
||
LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
|
||
ForRedeclaration);
|
||
Previous.setHideTags(false);
|
||
if (S) {
|
||
LookupName(Previous, S);
|
||
|
||
// It is really dumb that we have to do this.
|
||
LookupResult::Filter F = Previous.makeFilter();
|
||
while (F.hasNext()) {
|
||
NamedDecl *D = F.next();
|
||
if (!isDeclInScope(D, CurContext, S))
|
||
F.erase();
|
||
}
|
||
F.done();
|
||
} else {
|
||
assert(IsInstantiation && "no scope in non-instantiation");
|
||
assert(CurContext->isRecord() && "scope not record in instantiation");
|
||
LookupQualifiedName(Previous, CurContext);
|
||
}
|
||
|
||
NestedNameSpecifier *NNS =
|
||
static_cast<NestedNameSpecifier *>(SS.getScopeRep());
|
||
|
||
// Check for invalid redeclarations.
|
||
if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
|
||
return 0;
|
||
|
||
// Check for bad qualifiers.
|
||
if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
|
||
return 0;
|
||
|
||
DeclContext *LookupContext = computeDeclContext(SS);
|
||
NamedDecl *D;
|
||
if (!LookupContext) {
|
||
if (IsTypeName) {
|
||
// FIXME: not all declaration name kinds are legal here
|
||
D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
|
||
UsingLoc, TypenameLoc,
|
||
SS.getRange(), NNS,
|
||
IdentLoc, Name);
|
||
} else {
|
||
D = UnresolvedUsingValueDecl::Create(Context, CurContext,
|
||
UsingLoc, SS.getRange(), NNS,
|
||
IdentLoc, Name);
|
||
}
|
||
} else {
|
||
D = UsingDecl::Create(Context, CurContext, IdentLoc,
|
||
SS.getRange(), UsingLoc, NNS, Name,
|
||
IsTypeName);
|
||
}
|
||
D->setAccess(AS);
|
||
CurContext->addDecl(D);
|
||
|
||
if (!LookupContext) return D;
|
||
UsingDecl *UD = cast<UsingDecl>(D);
|
||
|
||
if (RequireCompleteDeclContext(SS, LookupContext)) {
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
|
||
// Look up the target name.
|
||
|
||
LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
|
||
|
||
// Unlike most lookups, we don't always want to hide tag
|
||
// declarations: tag names are visible through the using declaration
|
||
// even if hidden by ordinary names, *except* in a dependent context
|
||
// where it's important for the sanity of two-phase lookup.
|
||
if (!IsInstantiation)
|
||
R.setHideTags(false);
|
||
|
||
LookupQualifiedName(R, LookupContext);
|
||
|
||
if (R.empty()) {
|
||
Diag(IdentLoc, diag::err_no_member)
|
||
<< Name << LookupContext << SS.getRange();
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
|
||
if (R.isAmbiguous()) {
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
|
||
if (IsTypeName) {
|
||
// If we asked for a typename and got a non-type decl, error out.
|
||
if (!R.getAsSingle<TypeDecl>()) {
|
||
Diag(IdentLoc, diag::err_using_typename_non_type);
|
||
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
||
Diag((*I)->getUnderlyingDecl()->getLocation(),
|
||
diag::note_using_decl_target);
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
} else {
|
||
// If we asked for a non-typename and we got a type, error out,
|
||
// but only if this is an instantiation of an unresolved using
|
||
// decl. Otherwise just silently find the type name.
|
||
if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
|
||
Diag(IdentLoc, diag::err_using_dependent_value_is_type);
|
||
Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
}
|
||
|
||
// C++0x N2914 [namespace.udecl]p6:
|
||
// A using-declaration shall not name a namespace.
|
||
if (R.getAsSingle<NamespaceDecl>()) {
|
||
Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
|
||
<< SS.getRange();
|
||
UD->setInvalidDecl();
|
||
return UD;
|
||
}
|
||
|
||
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
||
if (!CheckUsingShadowDecl(UD, *I, Previous))
|
||
BuildUsingShadowDecl(S, UD, *I);
|
||
}
|
||
|
||
return UD;
|
||
}
|
||
|
||
/// Checks that the given using declaration is not an invalid
|
||
/// redeclaration. Note that this is checking only for the using decl
|
||
/// itself, not for any ill-formedness among the UsingShadowDecls.
|
||
bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
|
||
bool isTypeName,
|
||
const CXXScopeSpec &SS,
|
||
SourceLocation NameLoc,
|
||
const LookupResult &Prev) {
|
||
// C++03 [namespace.udecl]p8:
|
||
// C++0x [namespace.udecl]p10:
|
||
// A using-declaration is a declaration and can therefore be used
|
||
// repeatedly where (and only where) multiple declarations are
|
||
// allowed.
|
||
//
|
||
// That's in non-member contexts.
|
||
if (!CurContext->getLookupContext()->isRecord())
|
||
return false;
|
||
|
||
NestedNameSpecifier *Qual
|
||
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
|
||
|
||
for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
|
||
NamedDecl *D = *I;
|
||
|
||
bool DTypename;
|
||
NestedNameSpecifier *DQual;
|
||
if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
|
||
DTypename = UD->isTypeName();
|
||
DQual = UD->getTargetNestedNameDecl();
|
||
} else if (UnresolvedUsingValueDecl *UD
|
||
= dyn_cast<UnresolvedUsingValueDecl>(D)) {
|
||
DTypename = false;
|
||
DQual = UD->getTargetNestedNameSpecifier();
|
||
} else if (UnresolvedUsingTypenameDecl *UD
|
||
= dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
|
||
DTypename = true;
|
||
DQual = UD->getTargetNestedNameSpecifier();
|
||
} else continue;
|
||
|
||
// using decls differ if one says 'typename' and the other doesn't.
|
||
// FIXME: non-dependent using decls?
|
||
if (isTypeName != DTypename) continue;
|
||
|
||
// using decls differ if they name different scopes (but note that
|
||
// template instantiation can cause this check to trigger when it
|
||
// didn't before instantiation).
|
||
if (Context.getCanonicalNestedNameSpecifier(Qual) !=
|
||
Context.getCanonicalNestedNameSpecifier(DQual))
|
||
continue;
|
||
|
||
Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
|
||
Diag(D->getLocation(), diag::note_using_decl) << 1;
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/// Checks that the given nested-name qualifier used in a using decl
|
||
/// in the current context is appropriately related to the current
|
||
/// scope. If an error is found, diagnoses it and returns true.
|
||
bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
|
||
const CXXScopeSpec &SS,
|
||
SourceLocation NameLoc) {
|
||
DeclContext *NamedContext = computeDeclContext(SS);
|
||
|
||
if (!CurContext->isRecord()) {
|
||
// C++03 [namespace.udecl]p3:
|
||
// C++0x [namespace.udecl]p8:
|
||
// A using-declaration for a class member shall be a member-declaration.
|
||
|
||
// If we weren't able to compute a valid scope, it must be a
|
||
// dependent class scope.
|
||
if (!NamedContext || NamedContext->isRecord()) {
|
||
Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
|
||
<< SS.getRange();
|
||
return true;
|
||
}
|
||
|
||
// Otherwise, everything is known to be fine.
|
||
return false;
|
||
}
|
||
|
||
// The current scope is a record.
|
||
|
||
// If the named context is dependent, we can't decide much.
|
||
if (!NamedContext) {
|
||
// FIXME: in C++0x, we can diagnose if we can prove that the
|
||
// nested-name-specifier does not refer to a base class, which is
|
||
// still possible in some cases.
|
||
|
||
// Otherwise we have to conservatively report that things might be
|
||
// okay.
|
||
return false;
|
||
}
|
||
|
||
if (!NamedContext->isRecord()) {
|
||
// Ideally this would point at the last name in the specifier,
|
||
// but we don't have that level of source info.
|
||
Diag(SS.getRange().getBegin(),
|
||
diag::err_using_decl_nested_name_specifier_is_not_class)
|
||
<< (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
|
||
return true;
|
||
}
|
||
|
||
if (getLangOptions().CPlusPlus0x) {
|
||
// C++0x [namespace.udecl]p3:
|
||
// In a using-declaration used as a member-declaration, the
|
||
// nested-name-specifier shall name a base class of the class
|
||
// being defined.
|
||
|
||
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
|
||
cast<CXXRecordDecl>(NamedContext))) {
|
||
if (CurContext == NamedContext) {
|
||
Diag(NameLoc,
|
||
diag::err_using_decl_nested_name_specifier_is_current_class)
|
||
<< SS.getRange();
|
||
return true;
|
||
}
|
||
|
||
Diag(SS.getRange().getBegin(),
|
||
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
||
<< (NestedNameSpecifier*) SS.getScopeRep()
|
||
<< cast<CXXRecordDecl>(CurContext)
|
||
<< SS.getRange();
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// C++03 [namespace.udecl]p4:
|
||
// A using-declaration used as a member-declaration shall refer
|
||
// to a member of a base class of the class being defined [etc.].
|
||
|
||
// Salient point: SS doesn't have to name a base class as long as
|
||
// lookup only finds members from base classes. Therefore we can
|
||
// diagnose here only if we can prove that that can't happen,
|
||
// i.e. if the class hierarchies provably don't intersect.
|
||
|
||
// TODO: it would be nice if "definitely valid" results were cached
|
||
// in the UsingDecl and UsingShadowDecl so that these checks didn't
|
||
// need to be repeated.
|
||
|
||
struct UserData {
|
||
llvm::DenseSet<const CXXRecordDecl*> Bases;
|
||
|
||
static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
|
||
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
|
||
Data->Bases.insert(Base);
|
||
return true;
|
||
}
|
||
|
||
bool hasDependentBases(const CXXRecordDecl *Class) {
|
||
return !Class->forallBases(collect, this);
|
||
}
|
||
|
||
/// Returns true if the base is dependent or is one of the
|
||
/// accumulated base classes.
|
||
static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
|
||
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
|
||
return !Data->Bases.count(Base);
|
||
}
|
||
|
||
bool mightShareBases(const CXXRecordDecl *Class) {
|
||
return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
|
||
}
|
||
};
|
||
|
||
UserData Data;
|
||
|
||
// Returns false if we find a dependent base.
|
||
if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
|
||
return false;
|
||
|
||
// Returns false if the class has a dependent base or if it or one
|
||
// of its bases is present in the base set of the current context.
|
||
if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
|
||
return false;
|
||
|
||
Diag(SS.getRange().getBegin(),
|
||
diag::err_using_decl_nested_name_specifier_is_not_base_class)
|
||
<< (NestedNameSpecifier*) SS.getScopeRep()
|
||
<< cast<CXXRecordDecl>(CurContext)
|
||
<< SS.getRange();
|
||
|
||
return true;
|
||
}
|
||
|
||
Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
|
||
SourceLocation NamespaceLoc,
|
||
SourceLocation AliasLoc,
|
||
IdentifierInfo *Alias,
|
||
CXXScopeSpec &SS,
|
||
SourceLocation IdentLoc,
|
||
IdentifierInfo *Ident) {
|
||
|
||
// Lookup the namespace name.
|
||
LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
|
||
LookupParsedName(R, S, &SS);
|
||
|
||
// Check if we have a previous declaration with the same name.
|
||
NamedDecl *PrevDecl
|
||
= LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
|
||
ForRedeclaration);
|
||
if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
|
||
PrevDecl = 0;
|
||
|
||
if (PrevDecl) {
|
||
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
|
||
// We already have an alias with the same name that points to the same
|
||
// namespace, so don't create a new one.
|
||
// FIXME: At some point, we'll want to create the (redundant)
|
||
// declaration to maintain better source information.
|
||
if (!R.isAmbiguous() && !R.empty() &&
|
||
AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
|
||
diag::err_redefinition_different_kind;
|
||
Diag(AliasLoc, DiagID) << Alias;
|
||
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
if (R.isAmbiguous())
|
||
return DeclPtrTy();
|
||
|
||
if (R.empty()) {
|
||
Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
NamespaceAliasDecl *AliasDecl =
|
||
NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
|
||
Alias, SS.getRange(),
|
||
(NestedNameSpecifier *)SS.getScopeRep(),
|
||
IdentLoc, R.getFoundDecl());
|
||
|
||
PushOnScopeChains(AliasDecl, S);
|
||
return DeclPtrTy::make(AliasDecl);
|
||
}
|
||
|
||
namespace {
|
||
/// \brief Scoped object used to handle the state changes required in Sema
|
||
/// to implicitly define the body of a C++ member function;
|
||
class ImplicitlyDefinedFunctionScope {
|
||
Sema &S;
|
||
DeclContext *PreviousContext;
|
||
|
||
public:
|
||
ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
|
||
: S(S), PreviousContext(S.CurContext)
|
||
{
|
||
S.CurContext = Method;
|
||
S.PushFunctionScope();
|
||
S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
|
||
}
|
||
|
||
~ImplicitlyDefinedFunctionScope() {
|
||
S.PopExpressionEvaluationContext();
|
||
S.PopFunctionOrBlockScope();
|
||
S.CurContext = PreviousContext;
|
||
}
|
||
};
|
||
}
|
||
|
||
void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
|
||
CXXConstructorDecl *Constructor) {
|
||
assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
|
||
!Constructor->isUsed()) &&
|
||
"DefineImplicitDefaultConstructor - call it for implicit default ctor");
|
||
|
||
CXXRecordDecl *ClassDecl = Constructor->getParent();
|
||
assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
|
||
|
||
ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
|
||
ErrorTrap Trap(*this);
|
||
if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
|
||
Trap.hasErrorOccurred()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXConstructor << Context.getTagDeclType(ClassDecl);
|
||
Constructor->setInvalidDecl();
|
||
} else {
|
||
Constructor->setUsed();
|
||
MaybeMarkVirtualMembersReferenced(CurrentLocation, Constructor);
|
||
}
|
||
}
|
||
|
||
void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
|
||
CXXDestructorDecl *Destructor) {
|
||
assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
|
||
"DefineImplicitDestructor - call it for implicit default dtor");
|
||
CXXRecordDecl *ClassDecl = Destructor->getParent();
|
||
assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
|
||
|
||
if (Destructor->isInvalidDecl())
|
||
return;
|
||
|
||
ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
|
||
|
||
ErrorTrap Trap(*this);
|
||
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
|
||
Destructor->getParent());
|
||
|
||
if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXDestructor << Context.getTagDeclType(ClassDecl);
|
||
|
||
Destructor->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
Destructor->setUsed();
|
||
MaybeMarkVirtualMembersReferenced(CurrentLocation, Destructor);
|
||
}
|
||
|
||
/// \brief Builds a statement that copies the given entity from \p From to
|
||
/// \c To.
|
||
///
|
||
/// This routine is used to copy the members of a class with an
|
||
/// implicitly-declared copy assignment operator. When the entities being
|
||
/// copied are arrays, this routine builds for loops to copy them.
|
||
///
|
||
/// \param S The Sema object used for type-checking.
|
||
///
|
||
/// \param Loc The location where the implicit copy is being generated.
|
||
///
|
||
/// \param T The type of the expressions being copied. Both expressions must
|
||
/// have this type.
|
||
///
|
||
/// \param To The expression we are copying to.
|
||
///
|
||
/// \param From The expression we are copying from.
|
||
///
|
||
/// \param CopyingBaseSubobject Whether we're copying a base subobject.
|
||
/// Otherwise, it's a non-static member subobject.
|
||
///
|
||
/// \param Depth Internal parameter recording the depth of the recursion.
|
||
///
|
||
/// \returns A statement or a loop that copies the expressions.
|
||
static Sema::OwningStmtResult
|
||
BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
|
||
Sema::OwningExprResult To, Sema::OwningExprResult From,
|
||
bool CopyingBaseSubobject, unsigned Depth = 0) {
|
||
typedef Sema::OwningStmtResult OwningStmtResult;
|
||
typedef Sema::OwningExprResult OwningExprResult;
|
||
|
||
// C++0x [class.copy]p30:
|
||
// Each subobject is assigned in the manner appropriate to its type:
|
||
//
|
||
// - if the subobject is of class type, the copy assignment operator
|
||
// for the class is used (as if by explicit qualification; that is,
|
||
// ignoring any possible virtual overriding functions in more derived
|
||
// classes);
|
||
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
|
||
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
|
||
|
||
// Look for operator=.
|
||
DeclarationName Name
|
||
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
||
LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
|
||
S.LookupQualifiedName(OpLookup, ClassDecl, false);
|
||
|
||
// Filter out any result that isn't a copy-assignment operator.
|
||
LookupResult::Filter F = OpLookup.makeFilter();
|
||
while (F.hasNext()) {
|
||
NamedDecl *D = F.next();
|
||
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
|
||
if (Method->isCopyAssignmentOperator())
|
||
continue;
|
||
|
||
F.erase();
|
||
}
|
||
F.done();
|
||
|
||
// Suppress the protected check (C++ [class.protected]) for each of the
|
||
// assignment operators we found. This strange dance is required when
|
||
// we're assigning via a base classes's copy-assignment operator. To
|
||
// ensure that we're getting the right base class subobject (without
|
||
// ambiguities), we need to cast "this" to that subobject type; to
|
||
// ensure that we don't go through the virtual call mechanism, we need
|
||
// to qualify the operator= name with the base class (see below). However,
|
||
// this means that if the base class has a protected copy assignment
|
||
// operator, the protected member access check will fail. So, we
|
||
// rewrite "protected" access to "public" access in this case, since we
|
||
// know by construction that we're calling from a derived class.
|
||
if (CopyingBaseSubobject) {
|
||
for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
|
||
L != LEnd; ++L) {
|
||
if (L.getAccess() == AS_protected)
|
||
L.setAccess(AS_public);
|
||
}
|
||
}
|
||
|
||
// Create the nested-name-specifier that will be used to qualify the
|
||
// reference to operator=; this is required to suppress the virtual
|
||
// call mechanism.
|
||
CXXScopeSpec SS;
|
||
SS.setRange(Loc);
|
||
SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
|
||
T.getTypePtr()));
|
||
|
||
// Create the reference to operator=.
|
||
OwningExprResult OpEqualRef
|
||
= S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
|
||
/*FirstQualifierInScope=*/0, OpLookup,
|
||
/*TemplateArgs=*/0,
|
||
/*SuppressQualifierCheck=*/true);
|
||
if (OpEqualRef.isInvalid())
|
||
return S.StmtError();
|
||
|
||
// Build the call to the assignment operator.
|
||
Expr *FromE = From.takeAs<Expr>();
|
||
OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
|
||
OpEqualRef.takeAs<Expr>(),
|
||
Loc, &FromE, 1, 0, Loc);
|
||
if (Call.isInvalid())
|
||
return S.StmtError();
|
||
|
||
return S.Owned(Call.takeAs<Stmt>());
|
||
}
|
||
|
||
// - if the subobject is of scalar type, the built-in assignment
|
||
// operator is used.
|
||
const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
|
||
if (!ArrayTy) {
|
||
OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
|
||
BinaryOperator::Assign,
|
||
To.takeAs<Expr>(),
|
||
From.takeAs<Expr>());
|
||
if (Assignment.isInvalid())
|
||
return S.StmtError();
|
||
|
||
return S.Owned(Assignment.takeAs<Stmt>());
|
||
}
|
||
|
||
// - if the subobject is an array, each element is assigned, in the
|
||
// manner appropriate to the element type;
|
||
|
||
// Construct a loop over the array bounds, e.g.,
|
||
//
|
||
// for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
|
||
//
|
||
// that will copy each of the array elements.
|
||
QualType SizeType = S.Context.getSizeType();
|
||
|
||
// Create the iteration variable.
|
||
IdentifierInfo *IterationVarName = 0;
|
||
{
|
||
llvm::SmallString<8> Str;
|
||
llvm::raw_svector_ostream OS(Str);
|
||
OS << "__i" << Depth;
|
||
IterationVarName = &S.Context.Idents.get(OS.str());
|
||
}
|
||
VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
|
||
IterationVarName, SizeType,
|
||
S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
|
||
VarDecl::None, VarDecl::None);
|
||
|
||
// Initialize the iteration variable to zero.
|
||
llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
|
||
IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
|
||
|
||
// Create a reference to the iteration variable; we'll use this several
|
||
// times throughout.
|
||
Expr *IterationVarRef
|
||
= S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
|
||
assert(IterationVarRef && "Reference to invented variable cannot fail!");
|
||
|
||
// Create the DeclStmt that holds the iteration variable.
|
||
Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
|
||
|
||
// Create the comparison against the array bound.
|
||
llvm::APInt Upper = ArrayTy->getSize();
|
||
Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
|
||
OwningExprResult Comparison
|
||
= S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
|
||
new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
|
||
BinaryOperator::NE, S.Context.BoolTy, Loc));
|
||
|
||
// Create the pre-increment of the iteration variable.
|
||
OwningExprResult Increment
|
||
= S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
|
||
UnaryOperator::PreInc,
|
||
SizeType, Loc));
|
||
|
||
// Subscript the "from" and "to" expressions with the iteration variable.
|
||
From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
|
||
S.Owned(IterationVarRef->Retain()),
|
||
Loc);
|
||
To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
|
||
S.Owned(IterationVarRef->Retain()),
|
||
Loc);
|
||
assert(!From.isInvalid() && "Builtin subscripting can't fail!");
|
||
assert(!To.isInvalid() && "Builtin subscripting can't fail!");
|
||
|
||
// Build the copy for an individual element of the array.
|
||
OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
|
||
ArrayTy->getElementType(),
|
||
move(To), move(From),
|
||
CopyingBaseSubobject, Depth+1);
|
||
if (Copy.isInvalid()) {
|
||
InitStmt->Destroy(S.Context);
|
||
return S.StmtError();
|
||
}
|
||
|
||
// Construct the loop that copies all elements of this array.
|
||
return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
|
||
S.MakeFullExpr(Comparison),
|
||
Sema::DeclPtrTy(),
|
||
S.MakeFullExpr(Increment),
|
||
Loc, move(Copy));
|
||
}
|
||
|
||
void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
|
||
CXXMethodDecl *CopyAssignOperator) {
|
||
assert((CopyAssignOperator->isImplicit() &&
|
||
CopyAssignOperator->isOverloadedOperator() &&
|
||
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
|
||
!CopyAssignOperator->isUsed()) &&
|
||
"DefineImplicitCopyAssignment called for wrong function");
|
||
|
||
CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
|
||
|
||
if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
|
||
CopyAssignOperator->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
CopyAssignOperator->setUsed();
|
||
|
||
ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
|
||
ErrorTrap Trap(*this);
|
||
|
||
// C++0x [class.copy]p30:
|
||
// The implicitly-defined or explicitly-defaulted copy assignment operator
|
||
// for a non-union class X performs memberwise copy assignment of its
|
||
// subobjects. The direct base classes of X are assigned first, in the
|
||
// order of their declaration in the base-specifier-list, and then the
|
||
// immediate non-static data members of X are assigned, in the order in
|
||
// which they were declared in the class definition.
|
||
|
||
// The statements that form the synthesized function body.
|
||
ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
|
||
|
||
// The parameter for the "other" object, which we are copying from.
|
||
ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
|
||
Qualifiers OtherQuals = Other->getType().getQualifiers();
|
||
QualType OtherRefType = Other->getType();
|
||
if (const LValueReferenceType *OtherRef
|
||
= OtherRefType->getAs<LValueReferenceType>()) {
|
||
OtherRefType = OtherRef->getPointeeType();
|
||
OtherQuals = OtherRefType.getQualifiers();
|
||
}
|
||
|
||
// Our location for everything implicitly-generated.
|
||
SourceLocation Loc = CopyAssignOperator->getLocation();
|
||
|
||
// Construct a reference to the "other" object. We'll be using this
|
||
// throughout the generated ASTs.
|
||
Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
|
||
assert(OtherRef && "Reference to parameter cannot fail!");
|
||
|
||
// Construct the "this" pointer. We'll be using this throughout the generated
|
||
// ASTs.
|
||
Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
|
||
assert(This && "Reference to this cannot fail!");
|
||
|
||
// Assign base classes.
|
||
bool Invalid = false;
|
||
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
|
||
E = ClassDecl->bases_end(); Base != E; ++Base) {
|
||
// Form the assignment:
|
||
// static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
|
||
QualType BaseType = Base->getType().getUnqualifiedType();
|
||
CXXRecordDecl *BaseClassDecl = 0;
|
||
if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
|
||
BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
|
||
else {
|
||
Invalid = true;
|
||
continue;
|
||
}
|
||
|
||
// Construct the "from" expression, which is an implicit cast to the
|
||
// appropriately-qualified base type.
|
||
Expr *From = OtherRef->Retain();
|
||
ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
|
||
CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
|
||
CXXBaseSpecifierArray(Base));
|
||
|
||
// Dereference "this".
|
||
OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
|
||
Owned(This->Retain()));
|
||
|
||
// Implicitly cast "this" to the appropriately-qualified base type.
|
||
Expr *ToE = To.takeAs<Expr>();
|
||
ImpCastExprToType(ToE,
|
||
Context.getCVRQualifiedType(BaseType,
|
||
CopyAssignOperator->getTypeQualifiers()),
|
||
CastExpr::CK_UncheckedDerivedToBase,
|
||
/*isLvalue=*/true, CXXBaseSpecifierArray(Base));
|
||
To = Owned(ToE);
|
||
|
||
// Build the copy.
|
||
OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
|
||
move(To), Owned(From),
|
||
/*CopyingBaseSubobject=*/true);
|
||
if (Copy.isInvalid()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
||
CopyAssignOperator->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// Success! Record the copy.
|
||
Statements.push_back(Copy.takeAs<Expr>());
|
||
}
|
||
|
||
// \brief Reference to the __builtin_memcpy function.
|
||
Expr *BuiltinMemCpyRef = 0;
|
||
|
||
// Assign non-static members.
|
||
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
|
||
FieldEnd = ClassDecl->field_end();
|
||
Field != FieldEnd; ++Field) {
|
||
// Check for members of reference type; we can't copy those.
|
||
if (Field->getType()->isReferenceType()) {
|
||
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
||
<< Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
|
||
Diag(Field->getLocation(), diag::note_declared_at);
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
||
Invalid = true;
|
||
continue;
|
||
}
|
||
|
||
// Check for members of const-qualified, non-class type.
|
||
QualType BaseType = Context.getBaseElementType(Field->getType());
|
||
if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
|
||
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
|
||
<< Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
|
||
Diag(Field->getLocation(), diag::note_declared_at);
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
||
Invalid = true;
|
||
continue;
|
||
}
|
||
|
||
QualType FieldType = Field->getType().getNonReferenceType();
|
||
|
||
// Build references to the field in the object we're copying from and to.
|
||
CXXScopeSpec SS; // Intentionally empty
|
||
LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
|
||
LookupMemberName);
|
||
MemberLookup.addDecl(*Field);
|
||
MemberLookup.resolveKind();
|
||
OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
|
||
OtherRefType,
|
||
Loc, /*IsArrow=*/false,
|
||
SS, 0, MemberLookup, 0);
|
||
OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
|
||
This->getType(),
|
||
Loc, /*IsArrow=*/true,
|
||
SS, 0, MemberLookup, 0);
|
||
assert(!From.isInvalid() && "Implicit field reference cannot fail");
|
||
assert(!To.isInvalid() && "Implicit field reference cannot fail");
|
||
|
||
// If the field should be copied with __builtin_memcpy rather than via
|
||
// explicit assignments, do so. This optimization only applies for arrays
|
||
// of scalars and arrays of class type with trivial copy-assignment
|
||
// operators.
|
||
if (FieldType->isArrayType() &&
|
||
(!BaseType->isRecordType() ||
|
||
cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
|
||
->hasTrivialCopyAssignment())) {
|
||
// Compute the size of the memory buffer to be copied.
|
||
QualType SizeType = Context.getSizeType();
|
||
llvm::APInt Size(Context.getTypeSize(SizeType),
|
||
Context.getTypeSizeInChars(BaseType).getQuantity());
|
||
for (const ConstantArrayType *Array
|
||
= Context.getAsConstantArrayType(FieldType);
|
||
Array;
|
||
Array = Context.getAsConstantArrayType(Array->getElementType())) {
|
||
llvm::APInt ArraySize = Array->getSize();
|
||
ArraySize.zextOrTrunc(Size.getBitWidth());
|
||
Size *= ArraySize;
|
||
}
|
||
|
||
// Take the address of the field references for "from" and "to".
|
||
From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
|
||
To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
|
||
|
||
// Create a reference to the __builtin_memcpy builtin function.
|
||
if (!BuiltinMemCpyRef) {
|
||
LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
|
||
LookupOrdinaryName);
|
||
LookupName(R, TUScope, true);
|
||
|
||
FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
|
||
if (!BuiltinMemCpy) {
|
||
// Something went horribly wrong earlier, and we will have complained
|
||
// about it.
|
||
Invalid = true;
|
||
continue;
|
||
}
|
||
|
||
BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
|
||
BuiltinMemCpy->getType(),
|
||
Loc, 0).takeAs<Expr>();
|
||
assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
|
||
}
|
||
|
||
ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
|
||
CallArgs.push_back(To.takeAs<Expr>());
|
||
CallArgs.push_back(From.takeAs<Expr>());
|
||
CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
|
||
llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
|
||
Commas.push_back(Loc);
|
||
Commas.push_back(Loc);
|
||
OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
|
||
Owned(BuiltinMemCpyRef->Retain()),
|
||
Loc, move_arg(CallArgs),
|
||
Commas.data(), Loc);
|
||
assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
|
||
Statements.push_back(Call.takeAs<Expr>());
|
||
continue;
|
||
}
|
||
|
||
// Build the copy of this field.
|
||
OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
|
||
move(To), move(From),
|
||
/*CopyingBaseSubobject=*/false);
|
||
if (Copy.isInvalid()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
||
CopyAssignOperator->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// Success! Record the copy.
|
||
Statements.push_back(Copy.takeAs<Stmt>());
|
||
}
|
||
|
||
if (!Invalid) {
|
||
// Add a "return *this;"
|
||
OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
|
||
Owned(This->Retain()));
|
||
|
||
OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
|
||
if (Return.isInvalid())
|
||
Invalid = true;
|
||
else {
|
||
Statements.push_back(Return.takeAs<Stmt>());
|
||
|
||
if (Trap.hasErrorOccurred()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
|
||
Invalid = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (Invalid) {
|
||
CopyAssignOperator->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
|
||
/*isStmtExpr=*/false);
|
||
assert(!Body.isInvalid() && "Compound statement creation cannot fail");
|
||
CopyAssignOperator->setBody(Body.takeAs<Stmt>());
|
||
|
||
MaybeMarkVirtualMembersReferenced(CurrentLocation, CopyAssignOperator);
|
||
}
|
||
|
||
void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
|
||
CXXConstructorDecl *CopyConstructor,
|
||
unsigned TypeQuals) {
|
||
assert((CopyConstructor->isImplicit() &&
|
||
CopyConstructor->isCopyConstructor(TypeQuals) &&
|
||
!CopyConstructor->isUsed()) &&
|
||
"DefineImplicitCopyConstructor - call it for implicit copy ctor");
|
||
|
||
CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
|
||
assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
|
||
|
||
ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
|
||
ErrorTrap Trap(*this);
|
||
|
||
if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
|
||
Trap.hasErrorOccurred()) {
|
||
Diag(CurrentLocation, diag::note_member_synthesized_at)
|
||
<< CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
|
||
CopyConstructor->setInvalidDecl();
|
||
} else {
|
||
CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
|
||
CopyConstructor->getLocation(),
|
||
MultiStmtArg(*this, 0, 0),
|
||
/*isStmtExpr=*/false)
|
||
.takeAs<Stmt>());
|
||
MaybeMarkVirtualMembersReferenced(CurrentLocation, CopyConstructor);
|
||
}
|
||
|
||
CopyConstructor->setUsed();
|
||
}
|
||
|
||
Sema::OwningExprResult
|
||
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
||
CXXConstructorDecl *Constructor,
|
||
MultiExprArg ExprArgs,
|
||
bool RequiresZeroInit,
|
||
CXXConstructExpr::ConstructionKind ConstructKind) {
|
||
bool Elidable = false;
|
||
|
||
// C++0x [class.copy]p34:
|
||
// When certain criteria are met, an implementation is allowed to
|
||
// omit the copy/move construction of a class object, even if the
|
||
// copy/move constructor and/or destructor for the object have
|
||
// side effects. [...]
|
||
// - when a temporary class object that has not been bound to a
|
||
// reference (12.2) would be copied/moved to a class object
|
||
// with the same cv-unqualified type, the copy/move operation
|
||
// can be omitted by constructing the temporary object
|
||
// directly into the target of the omitted copy/move
|
||
if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
|
||
Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
|
||
Elidable = SubExpr->isTemporaryObject() &&
|
||
Context.hasSameUnqualifiedType(SubExpr->getType(),
|
||
Context.getTypeDeclType(Constructor->getParent()));
|
||
}
|
||
|
||
return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
|
||
Elidable, move(ExprArgs), RequiresZeroInit,
|
||
ConstructKind);
|
||
}
|
||
|
||
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
|
||
/// including handling of its default argument expressions.
|
||
Sema::OwningExprResult
|
||
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
|
||
CXXConstructorDecl *Constructor, bool Elidable,
|
||
MultiExprArg ExprArgs,
|
||
bool RequiresZeroInit,
|
||
CXXConstructExpr::ConstructionKind ConstructKind) {
|
||
unsigned NumExprs = ExprArgs.size();
|
||
Expr **Exprs = (Expr **)ExprArgs.release();
|
||
|
||
MarkDeclarationReferenced(ConstructLoc, Constructor);
|
||
return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
|
||
Constructor, Elidable, Exprs, NumExprs,
|
||
RequiresZeroInit, ConstructKind));
|
||
}
|
||
|
||
bool Sema::InitializeVarWithConstructor(VarDecl *VD,
|
||
CXXConstructorDecl *Constructor,
|
||
MultiExprArg Exprs) {
|
||
OwningExprResult TempResult =
|
||
BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
|
||
move(Exprs));
|
||
if (TempResult.isInvalid())
|
||
return true;
|
||
|
||
Expr *Temp = TempResult.takeAs<Expr>();
|
||
MarkDeclarationReferenced(VD->getLocation(), Constructor);
|
||
Temp = MaybeCreateCXXExprWithTemporaries(Temp);
|
||
VD->setInit(Temp);
|
||
|
||
return false;
|
||
}
|
||
|
||
void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
|
||
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
|
||
if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
|
||
!ClassDecl->hasTrivialDestructor()) {
|
||
CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
|
||
MarkDeclarationReferenced(VD->getLocation(), Destructor);
|
||
CheckDestructorAccess(VD->getLocation(), Destructor,
|
||
PDiag(diag::err_access_dtor_var)
|
||
<< VD->getDeclName()
|
||
<< VD->getType());
|
||
}
|
||
}
|
||
|
||
/// AddCXXDirectInitializerToDecl - This action is called immediately after
|
||
/// ActOnDeclarator, when a C++ direct initializer is present.
|
||
/// e.g: "int x(1);"
|
||
void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
|
||
SourceLocation LParenLoc,
|
||
MultiExprArg Exprs,
|
||
SourceLocation *CommaLocs,
|
||
SourceLocation RParenLoc) {
|
||
assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
|
||
Decl *RealDecl = Dcl.getAs<Decl>();
|
||
|
||
// If there is no declaration, there was an error parsing it. Just ignore
|
||
// the initializer.
|
||
if (RealDecl == 0)
|
||
return;
|
||
|
||
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
|
||
if (!VDecl) {
|
||
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
|
||
RealDecl->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// We will represent direct-initialization similarly to copy-initialization:
|
||
// int x(1); -as-> int x = 1;
|
||
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
|
||
//
|
||
// Clients that want to distinguish between the two forms, can check for
|
||
// direct initializer using VarDecl::hasCXXDirectInitializer().
|
||
// A major benefit is that clients that don't particularly care about which
|
||
// exactly form was it (like the CodeGen) can handle both cases without
|
||
// special case code.
|
||
|
||
// C++ 8.5p11:
|
||
// The form of initialization (using parentheses or '=') is generally
|
||
// insignificant, but does matter when the entity being initialized has a
|
||
// class type.
|
||
QualType DeclInitType = VDecl->getType();
|
||
if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
|
||
DeclInitType = Context.getBaseElementType(Array);
|
||
|
||
if (!VDecl->getType()->isDependentType() &&
|
||
RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
|
||
diag::err_typecheck_decl_incomplete_type)) {
|
||
VDecl->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// The variable can not have an abstract class type.
|
||
if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
|
||
diag::err_abstract_type_in_decl,
|
||
AbstractVariableType))
|
||
VDecl->setInvalidDecl();
|
||
|
||
const VarDecl *Def;
|
||
if ((Def = VDecl->getDefinition()) && Def != VDecl) {
|
||
Diag(VDecl->getLocation(), diag::err_redefinition)
|
||
<< VDecl->getDeclName();
|
||
Diag(Def->getLocation(), diag::note_previous_definition);
|
||
VDecl->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
// If either the declaration has a dependent type or if any of the
|
||
// expressions is type-dependent, we represent the initialization
|
||
// via a ParenListExpr for later use during template instantiation.
|
||
if (VDecl->getType()->isDependentType() ||
|
||
Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
|
||
// Let clients know that initialization was done with a direct initializer.
|
||
VDecl->setCXXDirectInitializer(true);
|
||
|
||
// Store the initialization expressions as a ParenListExpr.
|
||
unsigned NumExprs = Exprs.size();
|
||
VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
|
||
(Expr **)Exprs.release(),
|
||
NumExprs, RParenLoc));
|
||
return;
|
||
}
|
||
|
||
// Capture the variable that is being initialized and the style of
|
||
// initialization.
|
||
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
|
||
|
||
// FIXME: Poor source location information.
|
||
InitializationKind Kind
|
||
= InitializationKind::CreateDirect(VDecl->getLocation(),
|
||
LParenLoc, RParenLoc);
|
||
|
||
InitializationSequence InitSeq(*this, Entity, Kind,
|
||
(Expr**)Exprs.get(), Exprs.size());
|
||
OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
|
||
if (Result.isInvalid()) {
|
||
VDecl->setInvalidDecl();
|
||
return;
|
||
}
|
||
|
||
Result = MaybeCreateCXXExprWithTemporaries(move(Result));
|
||
VDecl->setInit(Result.takeAs<Expr>());
|
||
VDecl->setCXXDirectInitializer(true);
|
||
|
||
if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
|
||
FinalizeVarWithDestructor(VDecl, Record);
|
||
}
|
||
|
||
/// \brief Given a constructor and the set of arguments provided for the
|
||
/// constructor, convert the arguments and add any required default arguments
|
||
/// to form a proper call to this constructor.
|
||
///
|
||
/// \returns true if an error occurred, false otherwise.
|
||
bool
|
||
Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
|
||
MultiExprArg ArgsPtr,
|
||
SourceLocation Loc,
|
||
ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
|
||
// FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
|
||
unsigned NumArgs = ArgsPtr.size();
|
||
Expr **Args = (Expr **)ArgsPtr.get();
|
||
|
||
const FunctionProtoType *Proto
|
||
= Constructor->getType()->getAs<FunctionProtoType>();
|
||
assert(Proto && "Constructor without a prototype?");
|
||
unsigned NumArgsInProto = Proto->getNumArgs();
|
||
|
||
// If too few arguments are available, we'll fill in the rest with defaults.
|
||
if (NumArgs < NumArgsInProto)
|
||
ConvertedArgs.reserve(NumArgsInProto);
|
||
else
|
||
ConvertedArgs.reserve(NumArgs);
|
||
|
||
VariadicCallType CallType =
|
||
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
|
||
llvm::SmallVector<Expr *, 8> AllArgs;
|
||
bool Invalid = GatherArgumentsForCall(Loc, Constructor,
|
||
Proto, 0, Args, NumArgs, AllArgs,
|
||
CallType);
|
||
for (unsigned i =0, size = AllArgs.size(); i < size; i++)
|
||
ConvertedArgs.push_back(AllArgs[i]);
|
||
return Invalid;
|
||
}
|
||
|
||
static inline bool
|
||
CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
|
||
const FunctionDecl *FnDecl) {
|
||
const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
|
||
if (isa<NamespaceDecl>(DC)) {
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_declared_in_namespace)
|
||
<< FnDecl->getDeclName();
|
||
}
|
||
|
||
if (isa<TranslationUnitDecl>(DC) &&
|
||
FnDecl->getStorageClass() == FunctionDecl::Static) {
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_declared_static)
|
||
<< FnDecl->getDeclName();
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
static inline bool
|
||
CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
|
||
CanQualType ExpectedResultType,
|
||
CanQualType ExpectedFirstParamType,
|
||
unsigned DependentParamTypeDiag,
|
||
unsigned InvalidParamTypeDiag) {
|
||
QualType ResultType =
|
||
FnDecl->getType()->getAs<FunctionType>()->getResultType();
|
||
|
||
// Check that the result type is not dependent.
|
||
if (ResultType->isDependentType())
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_dependent_result_type)
|
||
<< FnDecl->getDeclName() << ExpectedResultType;
|
||
|
||
// Check that the result type is what we expect.
|
||
if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_invalid_result_type)
|
||
<< FnDecl->getDeclName() << ExpectedResultType;
|
||
|
||
// A function template must have at least 2 parameters.
|
||
if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_template_too_few_parameters)
|
||
<< FnDecl->getDeclName();
|
||
|
||
// The function decl must have at least 1 parameter.
|
||
if (FnDecl->getNumParams() == 0)
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_delete_too_few_parameters)
|
||
<< FnDecl->getDeclName();
|
||
|
||
// Check the the first parameter type is not dependent.
|
||
QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
|
||
if (FirstParamType->isDependentType())
|
||
return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
|
||
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
||
|
||
// Check that the first parameter type is what we expect.
|
||
if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
|
||
ExpectedFirstParamType)
|
||
return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
|
||
<< FnDecl->getDeclName() << ExpectedFirstParamType;
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
|
||
// C++ [basic.stc.dynamic.allocation]p1:
|
||
// A program is ill-formed if an allocation function is declared in a
|
||
// namespace scope other than global scope or declared static in global
|
||
// scope.
|
||
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
||
return true;
|
||
|
||
CanQualType SizeTy =
|
||
SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
|
||
|
||
// C++ [basic.stc.dynamic.allocation]p1:
|
||
// The return type shall be void*. The first parameter shall have type
|
||
// std::size_t.
|
||
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
|
||
SizeTy,
|
||
diag::err_operator_new_dependent_param_type,
|
||
diag::err_operator_new_param_type))
|
||
return true;
|
||
|
||
// C++ [basic.stc.dynamic.allocation]p1:
|
||
// The first parameter shall not have an associated default argument.
|
||
if (FnDecl->getParamDecl(0)->hasDefaultArg())
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_new_default_arg)
|
||
<< FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool
|
||
CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
|
||
// C++ [basic.stc.dynamic.deallocation]p1:
|
||
// A program is ill-formed if deallocation functions are declared in a
|
||
// namespace scope other than global scope or declared static in global
|
||
// scope.
|
||
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
|
||
return true;
|
||
|
||
// C++ [basic.stc.dynamic.deallocation]p2:
|
||
// Each deallocation function shall return void and its first parameter
|
||
// shall be void*.
|
||
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
|
||
SemaRef.Context.VoidPtrTy,
|
||
diag::err_operator_delete_dependent_param_type,
|
||
diag::err_operator_delete_param_type))
|
||
return true;
|
||
|
||
QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
|
||
if (FirstParamType->isDependentType())
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_delete_dependent_param_type)
|
||
<< FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
|
||
|
||
if (SemaRef.Context.getCanonicalType(FirstParamType) !=
|
||
SemaRef.Context.VoidPtrTy)
|
||
return SemaRef.Diag(FnDecl->getLocation(),
|
||
diag::err_operator_delete_param_type)
|
||
<< FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
|
||
|
||
return false;
|
||
}
|
||
|
||
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
|
||
/// of this overloaded operator is well-formed. If so, returns false;
|
||
/// otherwise, emits appropriate diagnostics and returns true.
|
||
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
|
||
assert(FnDecl && FnDecl->isOverloadedOperator() &&
|
||
"Expected an overloaded operator declaration");
|
||
|
||
OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
|
||
|
||
// C++ [over.oper]p5:
|
||
// The allocation and deallocation functions, operator new,
|
||
// operator new[], operator delete and operator delete[], are
|
||
// described completely in 3.7.3. The attributes and restrictions
|
||
// found in the rest of this subclause do not apply to them unless
|
||
// explicitly stated in 3.7.3.
|
||
if (Op == OO_Delete || Op == OO_Array_Delete)
|
||
return CheckOperatorDeleteDeclaration(*this, FnDecl);
|
||
|
||
if (Op == OO_New || Op == OO_Array_New)
|
||
return CheckOperatorNewDeclaration(*this, FnDecl);
|
||
|
||
// C++ [over.oper]p6:
|
||
// An operator function shall either be a non-static member
|
||
// function or be a non-member function and have at least one
|
||
// parameter whose type is a class, a reference to a class, an
|
||
// enumeration, or a reference to an enumeration.
|
||
if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
|
||
if (MethodDecl->isStatic())
|
||
return Diag(FnDecl->getLocation(),
|
||
diag::err_operator_overload_static) << FnDecl->getDeclName();
|
||
} else {
|
||
bool ClassOrEnumParam = false;
|
||
for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
|
||
ParamEnd = FnDecl->param_end();
|
||
Param != ParamEnd; ++Param) {
|
||
QualType ParamType = (*Param)->getType().getNonReferenceType();
|
||
if (ParamType->isDependentType() || ParamType->isRecordType() ||
|
||
ParamType->isEnumeralType()) {
|
||
ClassOrEnumParam = true;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!ClassOrEnumParam)
|
||
return Diag(FnDecl->getLocation(),
|
||
diag::err_operator_overload_needs_class_or_enum)
|
||
<< FnDecl->getDeclName();
|
||
}
|
||
|
||
// C++ [over.oper]p8:
|
||
// An operator function cannot have default arguments (8.3.6),
|
||
// except where explicitly stated below.
|
||
//
|
||
// Only the function-call operator allows default arguments
|
||
// (C++ [over.call]p1).
|
||
if (Op != OO_Call) {
|
||
for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
|
||
Param != FnDecl->param_end(); ++Param) {
|
||
if ((*Param)->hasDefaultArg())
|
||
return Diag((*Param)->getLocation(),
|
||
diag::err_operator_overload_default_arg)
|
||
<< FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
|
||
}
|
||
}
|
||
|
||
static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
|
||
{ false, false, false }
|
||
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
|
||
, { Unary, Binary, MemberOnly }
|
||
#include "clang/Basic/OperatorKinds.def"
|
||
};
|
||
|
||
bool CanBeUnaryOperator = OperatorUses[Op][0];
|
||
bool CanBeBinaryOperator = OperatorUses[Op][1];
|
||
bool MustBeMemberOperator = OperatorUses[Op][2];
|
||
|
||
// C++ [over.oper]p8:
|
||
// [...] Operator functions cannot have more or fewer parameters
|
||
// than the number required for the corresponding operator, as
|
||
// described in the rest of this subclause.
|
||
unsigned NumParams = FnDecl->getNumParams()
|
||
+ (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
|
||
if (Op != OO_Call &&
|
||
((NumParams == 1 && !CanBeUnaryOperator) ||
|
||
(NumParams == 2 && !CanBeBinaryOperator) ||
|
||
(NumParams < 1) || (NumParams > 2))) {
|
||
// We have the wrong number of parameters.
|
||
unsigned ErrorKind;
|
||
if (CanBeUnaryOperator && CanBeBinaryOperator) {
|
||
ErrorKind = 2; // 2 -> unary or binary.
|
||
} else if (CanBeUnaryOperator) {
|
||
ErrorKind = 0; // 0 -> unary
|
||
} else {
|
||
assert(CanBeBinaryOperator &&
|
||
"All non-call overloaded operators are unary or binary!");
|
||
ErrorKind = 1; // 1 -> binary
|
||
}
|
||
|
||
return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
|
||
<< FnDecl->getDeclName() << NumParams << ErrorKind;
|
||
}
|
||
|
||
// Overloaded operators other than operator() cannot be variadic.
|
||
if (Op != OO_Call &&
|
||
FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
|
||
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
|
||
<< FnDecl->getDeclName();
|
||
}
|
||
|
||
// Some operators must be non-static member functions.
|
||
if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
|
||
return Diag(FnDecl->getLocation(),
|
||
diag::err_operator_overload_must_be_member)
|
||
<< FnDecl->getDeclName();
|
||
}
|
||
|
||
// C++ [over.inc]p1:
|
||
// The user-defined function called operator++ implements the
|
||
// prefix and postfix ++ operator. If this function is a member
|
||
// function with no parameters, or a non-member function with one
|
||
// parameter of class or enumeration type, it defines the prefix
|
||
// increment operator ++ for objects of that type. If the function
|
||
// is a member function with one parameter (which shall be of type
|
||
// int) or a non-member function with two parameters (the second
|
||
// of which shall be of type int), it defines the postfix
|
||
// increment operator ++ for objects of that type.
|
||
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
|
||
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
|
||
bool ParamIsInt = false;
|
||
if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
|
||
ParamIsInt = BT->getKind() == BuiltinType::Int;
|
||
|
||
if (!ParamIsInt)
|
||
return Diag(LastParam->getLocation(),
|
||
diag::err_operator_overload_post_incdec_must_be_int)
|
||
<< LastParam->getType() << (Op == OO_MinusMinus);
|
||
}
|
||
|
||
// Notify the class if it got an assignment operator.
|
||
if (Op == OO_Equal) {
|
||
// Would have returned earlier otherwise.
|
||
assert(isa<CXXMethodDecl>(FnDecl) &&
|
||
"Overloaded = not member, but not filtered.");
|
||
CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
|
||
Method->getParent()->addedAssignmentOperator(Context, Method);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// CheckLiteralOperatorDeclaration - Check whether the declaration
|
||
/// of this literal operator function is well-formed. If so, returns
|
||
/// false; otherwise, emits appropriate diagnostics and returns true.
|
||
bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
|
||
DeclContext *DC = FnDecl->getDeclContext();
|
||
Decl::Kind Kind = DC->getDeclKind();
|
||
if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
|
||
Kind != Decl::LinkageSpec) {
|
||
Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
|
||
<< FnDecl->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
bool Valid = false;
|
||
|
||
// template <char...> type operator "" name() is the only valid template
|
||
// signature, and the only valid signature with no parameters.
|
||
if (FnDecl->param_size() == 0) {
|
||
if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
|
||
// Must have only one template parameter
|
||
TemplateParameterList *Params = TpDecl->getTemplateParameters();
|
||
if (Params->size() == 1) {
|
||
NonTypeTemplateParmDecl *PmDecl =
|
||
cast<NonTypeTemplateParmDecl>(Params->getParam(0));
|
||
|
||
// The template parameter must be a char parameter pack.
|
||
// FIXME: This test will always fail because non-type parameter packs
|
||
// have not been implemented.
|
||
if (PmDecl && PmDecl->isTemplateParameterPack() &&
|
||
Context.hasSameType(PmDecl->getType(), Context.CharTy))
|
||
Valid = true;
|
||
}
|
||
}
|
||
} else {
|
||
// Check the first parameter
|
||
FunctionDecl::param_iterator Param = FnDecl->param_begin();
|
||
|
||
QualType T = (*Param)->getType();
|
||
|
||
// unsigned long long int, long double, and any character type are allowed
|
||
// as the only parameters.
|
||
if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
|
||
Context.hasSameType(T, Context.LongDoubleTy) ||
|
||
Context.hasSameType(T, Context.CharTy) ||
|
||
Context.hasSameType(T, Context.WCharTy) ||
|
||
Context.hasSameType(T, Context.Char16Ty) ||
|
||
Context.hasSameType(T, Context.Char32Ty)) {
|
||
if (++Param == FnDecl->param_end())
|
||
Valid = true;
|
||
goto FinishedParams;
|
||
}
|
||
|
||
// Otherwise it must be a pointer to const; let's strip those qualifiers.
|
||
const PointerType *PT = T->getAs<PointerType>();
|
||
if (!PT)
|
||
goto FinishedParams;
|
||
T = PT->getPointeeType();
|
||
if (!T.isConstQualified())
|
||
goto FinishedParams;
|
||
T = T.getUnqualifiedType();
|
||
|
||
// Move on to the second parameter;
|
||
++Param;
|
||
|
||
// If there is no second parameter, the first must be a const char *
|
||
if (Param == FnDecl->param_end()) {
|
||
if (Context.hasSameType(T, Context.CharTy))
|
||
Valid = true;
|
||
goto FinishedParams;
|
||
}
|
||
|
||
// const char *, const wchar_t*, const char16_t*, and const char32_t*
|
||
// are allowed as the first parameter to a two-parameter function
|
||
if (!(Context.hasSameType(T, Context.CharTy) ||
|
||
Context.hasSameType(T, Context.WCharTy) ||
|
||
Context.hasSameType(T, Context.Char16Ty) ||
|
||
Context.hasSameType(T, Context.Char32Ty)))
|
||
goto FinishedParams;
|
||
|
||
// The second and final parameter must be an std::size_t
|
||
T = (*Param)->getType().getUnqualifiedType();
|
||
if (Context.hasSameType(T, Context.getSizeType()) &&
|
||
++Param == FnDecl->param_end())
|
||
Valid = true;
|
||
}
|
||
|
||
// FIXME: This diagnostic is absolutely terrible.
|
||
FinishedParams:
|
||
if (!Valid) {
|
||
Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
|
||
<< FnDecl->getDeclName();
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
|
||
/// linkage specification, including the language and (if present)
|
||
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
|
||
/// the location of the language string literal, which is provided
|
||
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
|
||
/// the '{' brace. Otherwise, this linkage specification does not
|
||
/// have any braces.
|
||
Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
|
||
SourceLocation ExternLoc,
|
||
SourceLocation LangLoc,
|
||
llvm::StringRef Lang,
|
||
SourceLocation LBraceLoc) {
|
||
LinkageSpecDecl::LanguageIDs Language;
|
||
if (Lang == "\"C\"")
|
||
Language = LinkageSpecDecl::lang_c;
|
||
else if (Lang == "\"C++\"")
|
||
Language = LinkageSpecDecl::lang_cxx;
|
||
else {
|
||
Diag(LangLoc, diag::err_bad_language);
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
// FIXME: Add all the various semantics of linkage specifications
|
||
|
||
LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
|
||
LangLoc, Language,
|
||
LBraceLoc.isValid());
|
||
CurContext->addDecl(D);
|
||
PushDeclContext(S, D);
|
||
return DeclPtrTy::make(D);
|
||
}
|
||
|
||
/// ActOnFinishLinkageSpecification - Completely the definition of
|
||
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
|
||
/// valid, it's the position of the closing '}' brace in a linkage
|
||
/// specification that uses braces.
|
||
Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
|
||
DeclPtrTy LinkageSpec,
|
||
SourceLocation RBraceLoc) {
|
||
if (LinkageSpec)
|
||
PopDeclContext();
|
||
return LinkageSpec;
|
||
}
|
||
|
||
/// \brief Perform semantic analysis for the variable declaration that
|
||
/// occurs within a C++ catch clause, returning the newly-created
|
||
/// variable.
|
||
VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
|
||
TypeSourceInfo *TInfo,
|
||
IdentifierInfo *Name,
|
||
SourceLocation Loc,
|
||
SourceRange Range) {
|
||
bool Invalid = false;
|
||
|
||
// Arrays and functions decay.
|
||
if (ExDeclType->isArrayType())
|
||
ExDeclType = Context.getArrayDecayedType(ExDeclType);
|
||
else if (ExDeclType->isFunctionType())
|
||
ExDeclType = Context.getPointerType(ExDeclType);
|
||
|
||
// C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
|
||
// The exception-declaration shall not denote a pointer or reference to an
|
||
// incomplete type, other than [cv] void*.
|
||
// N2844 forbids rvalue references.
|
||
if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
|
||
Diag(Loc, diag::err_catch_rvalue_ref) << Range;
|
||
Invalid = true;
|
||
}
|
||
|
||
// GCC allows catching pointers and references to incomplete types
|
||
// as an extension; so do we, but we warn by default.
|
||
|
||
QualType BaseType = ExDeclType;
|
||
int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
|
||
unsigned DK = diag::err_catch_incomplete;
|
||
bool IncompleteCatchIsInvalid = true;
|
||
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
|
||
BaseType = Ptr->getPointeeType();
|
||
Mode = 1;
|
||
DK = diag::ext_catch_incomplete_ptr;
|
||
IncompleteCatchIsInvalid = false;
|
||
} else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
|
||
// For the purpose of error recovery, we treat rvalue refs like lvalue refs.
|
||
BaseType = Ref->getPointeeType();
|
||
Mode = 2;
|
||
DK = diag::ext_catch_incomplete_ref;
|
||
IncompleteCatchIsInvalid = false;
|
||
}
|
||
if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
|
||
!BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
|
||
IncompleteCatchIsInvalid)
|
||
Invalid = true;
|
||
|
||
if (!Invalid && !ExDeclType->isDependentType() &&
|
||
RequireNonAbstractType(Loc, ExDeclType,
|
||
diag::err_abstract_type_in_decl,
|
||
AbstractVariableType))
|
||
Invalid = true;
|
||
|
||
VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
|
||
Name, ExDeclType, TInfo, VarDecl::None,
|
||
VarDecl::None);
|
||
ExDecl->setExceptionVariable(true);
|
||
|
||
if (!Invalid) {
|
||
if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
|
||
// C++ [except.handle]p16:
|
||
// The object declared in an exception-declaration or, if the
|
||
// exception-declaration does not specify a name, a temporary (12.2) is
|
||
// copy-initialized (8.5) from the exception object. [...]
|
||
// The object is destroyed when the handler exits, after the destruction
|
||
// of any automatic objects initialized within the handler.
|
||
//
|
||
// We just pretend to initialize the object with itself, then make sure
|
||
// it can be destroyed later.
|
||
InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
|
||
Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
|
||
Loc, ExDeclType, 0);
|
||
InitializationKind Kind = InitializationKind::CreateCopy(Loc,
|
||
SourceLocation());
|
||
InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
|
||
OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
|
||
MultiExprArg(*this, (void**)&ExDeclRef, 1));
|
||
if (Result.isInvalid())
|
||
Invalid = true;
|
||
else
|
||
FinalizeVarWithDestructor(ExDecl, RecordTy);
|
||
}
|
||
}
|
||
|
||
if (Invalid)
|
||
ExDecl->setInvalidDecl();
|
||
|
||
return ExDecl;
|
||
}
|
||
|
||
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
|
||
/// handler.
|
||
Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
|
||
TypeSourceInfo *TInfo = 0;
|
||
QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
|
||
|
||
bool Invalid = D.isInvalidType();
|
||
IdentifierInfo *II = D.getIdentifier();
|
||
if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
|
||
LookupOrdinaryName,
|
||
ForRedeclaration)) {
|
||
// The scope should be freshly made just for us. There is just no way
|
||
// it contains any previous declaration.
|
||
assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
|
||
if (PrevDecl->isTemplateParameter()) {
|
||
// Maybe we will complain about the shadowed template parameter.
|
||
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
|
||
}
|
||
}
|
||
|
||
if (D.getCXXScopeSpec().isSet() && !Invalid) {
|
||
Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
|
||
<< D.getCXXScopeSpec().getRange();
|
||
Invalid = true;
|
||
}
|
||
|
||
VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
|
||
D.getIdentifier(),
|
||
D.getIdentifierLoc(),
|
||
D.getDeclSpec().getSourceRange());
|
||
|
||
if (Invalid)
|
||
ExDecl->setInvalidDecl();
|
||
|
||
// Add the exception declaration into this scope.
|
||
if (II)
|
||
PushOnScopeChains(ExDecl, S);
|
||
else
|
||
CurContext->addDecl(ExDecl);
|
||
|
||
ProcessDeclAttributes(S, ExDecl, D);
|
||
return DeclPtrTy::make(ExDecl);
|
||
}
|
||
|
||
Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
|
||
ExprArg assertexpr,
|
||
ExprArg assertmessageexpr) {
|
||
Expr *AssertExpr = (Expr *)assertexpr.get();
|
||
StringLiteral *AssertMessage =
|
||
cast<StringLiteral>((Expr *)assertmessageexpr.get());
|
||
|
||
if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
|
||
llvm::APSInt Value(32);
|
||
if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
|
||
Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
|
||
AssertExpr->getSourceRange();
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
if (Value == 0) {
|
||
Diag(AssertLoc, diag::err_static_assert_failed)
|
||
<< AssertMessage->getString() << AssertExpr->getSourceRange();
|
||
}
|
||
}
|
||
|
||
assertexpr.release();
|
||
assertmessageexpr.release();
|
||
Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
|
||
AssertExpr, AssertMessage);
|
||
|
||
CurContext->addDecl(Decl);
|
||
return DeclPtrTy::make(Decl);
|
||
}
|
||
|
||
/// \brief Perform semantic analysis of the given friend type declaration.
|
||
///
|
||
/// \returns A friend declaration that.
|
||
FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
|
||
TypeSourceInfo *TSInfo) {
|
||
assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
|
||
|
||
QualType T = TSInfo->getType();
|
||
SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
|
||
|
||
if (!getLangOptions().CPlusPlus0x) {
|
||
// C++03 [class.friend]p2:
|
||
// An elaborated-type-specifier shall be used in a friend declaration
|
||
// for a class.*
|
||
//
|
||
// * The class-key of the elaborated-type-specifier is required.
|
||
if (!ActiveTemplateInstantiations.empty()) {
|
||
// Do not complain about the form of friend template types during
|
||
// template instantiation; we will already have complained when the
|
||
// template was declared.
|
||
} else if (!T->isElaboratedTypeSpecifier()) {
|
||
// If we evaluated the type to a record type, suggest putting
|
||
// a tag in front.
|
||
if (const RecordType *RT = T->getAs<RecordType>()) {
|
||
RecordDecl *RD = RT->getDecl();
|
||
|
||
std::string InsertionText = std::string(" ") + RD->getKindName();
|
||
|
||
Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
|
||
<< (unsigned) RD->getTagKind()
|
||
<< T
|
||
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
|
||
InsertionText);
|
||
} else {
|
||
Diag(FriendLoc, diag::ext_nonclass_type_friend)
|
||
<< T
|
||
<< SourceRange(FriendLoc, TypeRange.getEnd());
|
||
}
|
||
} else if (T->getAs<EnumType>()) {
|
||
Diag(FriendLoc, diag::ext_enum_friend)
|
||
<< T
|
||
<< SourceRange(FriendLoc, TypeRange.getEnd());
|
||
}
|
||
}
|
||
|
||
// C++0x [class.friend]p3:
|
||
// If the type specifier in a friend declaration designates a (possibly
|
||
// cv-qualified) class type, that class is declared as a friend; otherwise,
|
||
// the friend declaration is ignored.
|
||
|
||
// FIXME: C++0x has some syntactic restrictions on friend type declarations
|
||
// in [class.friend]p3 that we do not implement.
|
||
|
||
return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
|
||
}
|
||
|
||
/// Handle a friend type declaration. This works in tandem with
|
||
/// ActOnTag.
|
||
///
|
||
/// Notes on friend class templates:
|
||
///
|
||
/// We generally treat friend class declarations as if they were
|
||
/// declaring a class. So, for example, the elaborated type specifier
|
||
/// in a friend declaration is required to obey the restrictions of a
|
||
/// class-head (i.e. no typedefs in the scope chain), template
|
||
/// parameters are required to match up with simple template-ids, &c.
|
||
/// However, unlike when declaring a template specialization, it's
|
||
/// okay to refer to a template specialization without an empty
|
||
/// template parameter declaration, e.g.
|
||
/// friend class A<T>::B<unsigned>;
|
||
/// We permit this as a special case; if there are any template
|
||
/// parameters present at all, require proper matching, i.e.
|
||
/// template <> template <class T> friend class A<int>::B;
|
||
Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
|
||
MultiTemplateParamsArg TempParams) {
|
||
SourceLocation Loc = DS.getSourceRange().getBegin();
|
||
|
||
assert(DS.isFriendSpecified());
|
||
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
||
|
||
// Try to convert the decl specifier to a type. This works for
|
||
// friend templates because ActOnTag never produces a ClassTemplateDecl
|
||
// for a TUK_Friend.
|
||
Declarator TheDeclarator(DS, Declarator::MemberContext);
|
||
TypeSourceInfo *TSI;
|
||
QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
|
||
if (TheDeclarator.isInvalidType())
|
||
return DeclPtrTy();
|
||
|
||
if (!TSI)
|
||
TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
|
||
|
||
// This is definitely an error in C++98. It's probably meant to
|
||
// be forbidden in C++0x, too, but the specification is just
|
||
// poorly written.
|
||
//
|
||
// The problem is with declarations like the following:
|
||
// template <T> friend A<T>::foo;
|
||
// where deciding whether a class C is a friend or not now hinges
|
||
// on whether there exists an instantiation of A that causes
|
||
// 'foo' to equal C. There are restrictions on class-heads
|
||
// (which we declare (by fiat) elaborated friend declarations to
|
||
// be) that makes this tractable.
|
||
//
|
||
// FIXME: handle "template <> friend class A<T>;", which
|
||
// is possibly well-formed? Who even knows?
|
||
if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
|
||
Diag(Loc, diag::err_tagless_friend_type_template)
|
||
<< DS.getSourceRange();
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
// C++98 [class.friend]p1: A friend of a class is a function
|
||
// or class that is not a member of the class . . .
|
||
// This is fixed in DR77, which just barely didn't make the C++03
|
||
// deadline. It's also a very silly restriction that seriously
|
||
// affects inner classes and which nobody else seems to implement;
|
||
// thus we never diagnose it, not even in -pedantic.
|
||
//
|
||
// But note that we could warn about it: it's always useless to
|
||
// friend one of your own members (it's not, however, worthless to
|
||
// friend a member of an arbitrary specialization of your template).
|
||
|
||
Decl *D;
|
||
if (unsigned NumTempParamLists = TempParams.size())
|
||
D = FriendTemplateDecl::Create(Context, CurContext, Loc,
|
||
NumTempParamLists,
|
||
(TemplateParameterList**) TempParams.release(),
|
||
TSI,
|
||
DS.getFriendSpecLoc());
|
||
else
|
||
D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
|
||
|
||
if (!D)
|
||
return DeclPtrTy();
|
||
|
||
D->setAccess(AS_public);
|
||
CurContext->addDecl(D);
|
||
|
||
return DeclPtrTy::make(D);
|
||
}
|
||
|
||
Sema::DeclPtrTy
|
||
Sema::ActOnFriendFunctionDecl(Scope *S,
|
||
Declarator &D,
|
||
bool IsDefinition,
|
||
MultiTemplateParamsArg TemplateParams) {
|
||
const DeclSpec &DS = D.getDeclSpec();
|
||
|
||
assert(DS.isFriendSpecified());
|
||
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
|
||
|
||
SourceLocation Loc = D.getIdentifierLoc();
|
||
TypeSourceInfo *TInfo = 0;
|
||
QualType T = GetTypeForDeclarator(D, S, &TInfo);
|
||
|
||
// C++ [class.friend]p1
|
||
// A friend of a class is a function or class....
|
||
// Note that this sees through typedefs, which is intended.
|
||
// It *doesn't* see through dependent types, which is correct
|
||
// according to [temp.arg.type]p3:
|
||
// If a declaration acquires a function type through a
|
||
// type dependent on a template-parameter and this causes
|
||
// a declaration that does not use the syntactic form of a
|
||
// function declarator to have a function type, the program
|
||
// is ill-formed.
|
||
if (!T->isFunctionType()) {
|
||
Diag(Loc, diag::err_unexpected_friend);
|
||
|
||
// It might be worthwhile to try to recover by creating an
|
||
// appropriate declaration.
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
// C++ [namespace.memdef]p3
|
||
// - If a friend declaration in a non-local class first declares a
|
||
// class or function, the friend class or function is a member
|
||
// of the innermost enclosing namespace.
|
||
// - The name of the friend is not found by simple name lookup
|
||
// until a matching declaration is provided in that namespace
|
||
// scope (either before or after the class declaration granting
|
||
// friendship).
|
||
// - If a friend function is called, its name may be found by the
|
||
// name lookup that considers functions from namespaces and
|
||
// classes associated with the types of the function arguments.
|
||
// - When looking for a prior declaration of a class or a function
|
||
// declared as a friend, scopes outside the innermost enclosing
|
||
// namespace scope are not considered.
|
||
|
||
CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
|
||
DeclarationName Name = GetNameForDeclarator(D);
|
||
assert(Name);
|
||
|
||
// The context we found the declaration in, or in which we should
|
||
// create the declaration.
|
||
DeclContext *DC;
|
||
|
||
// FIXME: handle local classes
|
||
|
||
// Recover from invalid scope qualifiers as if they just weren't there.
|
||
LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
|
||
ForRedeclaration);
|
||
if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
|
||
DC = computeDeclContext(ScopeQual);
|
||
|
||
// FIXME: handle dependent contexts
|
||
if (!DC) return DeclPtrTy();
|
||
if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
|
||
|
||
LookupQualifiedName(Previous, DC);
|
||
|
||
// If searching in that context implicitly found a declaration in
|
||
// a different context, treat it like it wasn't found at all.
|
||
// TODO: better diagnostics for this case. Suggesting the right
|
||
// qualified scope would be nice...
|
||
// FIXME: getRepresentativeDecl() is not right here at all
|
||
if (Previous.empty() ||
|
||
!Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
|
||
D.setInvalidType();
|
||
Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
|
||
return DeclPtrTy();
|
||
}
|
||
|
||
// C++ [class.friend]p1: A friend of a class is a function or
|
||
// class that is not a member of the class . . .
|
||
if (DC->Equals(CurContext))
|
||
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
|
||
|
||
// Otherwise walk out to the nearest namespace scope looking for matches.
|
||
} else {
|
||
// TODO: handle local class contexts.
|
||
|
||
DC = CurContext;
|
||
while (true) {
|
||
// Skip class contexts. If someone can cite chapter and verse
|
||
// for this behavior, that would be nice --- it's what GCC and
|
||
// EDG do, and it seems like a reasonable intent, but the spec
|
||
// really only says that checks for unqualified existing
|
||
// declarations should stop at the nearest enclosing namespace,
|
||
// not that they should only consider the nearest enclosing
|
||
// namespace.
|
||
while (DC->isRecord())
|
||
DC = DC->getParent();
|
||
|
||
LookupQualifiedName(Previous, DC);
|
||
|
||
// TODO: decide what we think about using declarations.
|
||
if (!Previous.empty())
|
||
break;
|
||
|
||
if (DC->isFileContext()) break;
|
||
DC = DC->getParent();
|
||
}
|
||
|
||
// C++ [class.friend]p1: A friend of a class is a function or
|
||
// class that is not a member of the class . . .
|
||
// C++0x changes this for both friend types and functions.
|
||
// Most C++ 98 compilers do seem to give an error here, so
|
||
// we do, too.
|
||
if (!Previous.empty() && DC->Equals(CurContext)
|
||
&& !getLangOptions().CPlusPlus0x)
|
||
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
|
||
}
|
||
|
||
if (DC->isFileContext()) {
|
||
// This implies that it has to be an operator or function.
|
||
if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
|
||
D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
|
||
D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
|
||
Diag(Loc, diag::err_introducing_special_friend) <<
|
||
(D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
|
||
D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
|
||
return DeclPtrTy();
|
||
}
|
||
}
|
||
|
||
bool Redeclaration = false;
|
||
NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
|
||
move(TemplateParams),
|
||
IsDefinition,
|
||
Redeclaration);
|
||
if (!ND) return DeclPtrTy();
|
||
|
||
assert(ND->getDeclContext() == DC);
|
||
assert(ND->getLexicalDeclContext() == CurContext);
|
||
|
||
// Add the function declaration to the appropriate lookup tables,
|
||
// adjusting the redeclarations list as necessary. We don't
|
||
// want to do this yet if the friending class is dependent.
|
||
//
|
||
// Also update the scope-based lookup if the target context's
|
||
// lookup context is in lexical scope.
|
||
if (!CurContext->isDependentContext()) {
|
||
DC = DC->getLookupContext();
|
||
DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
|
||
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
|
||
PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
|
||
}
|
||
|
||
FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
|
||
D.getIdentifierLoc(), ND,
|
||
DS.getFriendSpecLoc());
|
||
FrD->setAccess(AS_public);
|
||
CurContext->addDecl(FrD);
|
||
|
||
return DeclPtrTy::make(ND);
|
||
}
|
||
|
||
void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
|
||
AdjustDeclIfTemplate(dcl);
|
||
|
||
Decl *Dcl = dcl.getAs<Decl>();
|
||
FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
|
||
if (!Fn) {
|
||
Diag(DelLoc, diag::err_deleted_non_function);
|
||
return;
|
||
}
|
||
if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
|
||
Diag(DelLoc, diag::err_deleted_decl_not_first);
|
||
Diag(Prev->getLocation(), diag::note_previous_declaration);
|
||
// If the declaration wasn't the first, we delete the function anyway for
|
||
// recovery.
|
||
}
|
||
Fn->setDeleted();
|
||
}
|
||
|
||
static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
|
||
for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
|
||
++CI) {
|
||
Stmt *SubStmt = *CI;
|
||
if (!SubStmt)
|
||
continue;
|
||
if (isa<ReturnStmt>(SubStmt))
|
||
Self.Diag(SubStmt->getSourceRange().getBegin(),
|
||
diag::err_return_in_constructor_handler);
|
||
if (!isa<Expr>(SubStmt))
|
||
SearchForReturnInStmt(Self, SubStmt);
|
||
}
|
||
}
|
||
|
||
void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
|
||
for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
|
||
CXXCatchStmt *Handler = TryBlock->getHandler(I);
|
||
SearchForReturnInStmt(*this, Handler);
|
||
}
|
||
}
|
||
|
||
bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
|
||
const CXXMethodDecl *Old) {
|
||
QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
|
||
QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
|
||
|
||
if (Context.hasSameType(NewTy, OldTy) ||
|
||
NewTy->isDependentType() || OldTy->isDependentType())
|
||
return false;
|
||
|
||
// Check if the return types are covariant
|
||
QualType NewClassTy, OldClassTy;
|
||
|
||
/// Both types must be pointers or references to classes.
|
||
if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
|
||
if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
|
||
NewClassTy = NewPT->getPointeeType();
|
||
OldClassTy = OldPT->getPointeeType();
|
||
}
|
||
} else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
|
||
if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
|
||
if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
|
||
NewClassTy = NewRT->getPointeeType();
|
||
OldClassTy = OldRT->getPointeeType();
|
||
}
|
||
}
|
||
}
|
||
|
||
// The return types aren't either both pointers or references to a class type.
|
||
if (NewClassTy.isNull()) {
|
||
Diag(New->getLocation(),
|
||
diag::err_different_return_type_for_overriding_virtual_function)
|
||
<< New->getDeclName() << NewTy << OldTy;
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
|
||
return true;
|
||
}
|
||
|
||
// C++ [class.virtual]p6:
|
||
// If the return type of D::f differs from the return type of B::f, the
|
||
// class type in the return type of D::f shall be complete at the point of
|
||
// declaration of D::f or shall be the class type D.
|
||
if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
|
||
if (!RT->isBeingDefined() &&
|
||
RequireCompleteType(New->getLocation(), NewClassTy,
|
||
PDiag(diag::err_covariant_return_incomplete)
|
||
<< New->getDeclName()))
|
||
return true;
|
||
}
|
||
|
||
if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
|
||
// Check if the new class derives from the old class.
|
||
if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
|
||
Diag(New->getLocation(),
|
||
diag::err_covariant_return_not_derived)
|
||
<< New->getDeclName() << NewTy << OldTy;
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
return true;
|
||
}
|
||
|
||
// Check if we the conversion from derived to base is valid.
|
||
if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
|
||
diag::err_covariant_return_inaccessible_base,
|
||
diag::err_covariant_return_ambiguous_derived_to_base_conv,
|
||
// FIXME: Should this point to the return type?
|
||
New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// The qualifiers of the return types must be the same.
|
||
if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
|
||
Diag(New->getLocation(),
|
||
diag::err_covariant_return_type_different_qualifications)
|
||
<< New->getDeclName() << NewTy << OldTy;
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
return true;
|
||
};
|
||
|
||
|
||
// The new class type must have the same or less qualifiers as the old type.
|
||
if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
|
||
Diag(New->getLocation(),
|
||
diag::err_covariant_return_type_class_type_more_qualified)
|
||
<< New->getDeclName() << NewTy << OldTy;
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
return true;
|
||
};
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
|
||
const CXXMethodDecl *Old)
|
||
{
|
||
if (Old->hasAttr<FinalAttr>()) {
|
||
Diag(New->getLocation(), diag::err_final_function_overridden)
|
||
<< New->getDeclName();
|
||
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// \brief Mark the given method pure.
|
||
///
|
||
/// \param Method the method to be marked pure.
|
||
///
|
||
/// \param InitRange the source range that covers the "0" initializer.
|
||
bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
|
||
if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
|
||
Method->setPure();
|
||
|
||
// A class is abstract if at least one function is pure virtual.
|
||
Method->getParent()->setAbstract(true);
|
||
return false;
|
||
}
|
||
|
||
if (!Method->isInvalidDecl())
|
||
Diag(Method->getLocation(), diag::err_non_virtual_pure)
|
||
<< Method->getDeclName() << InitRange;
|
||
return true;
|
||
}
|
||
|
||
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
|
||
/// an initializer for the out-of-line declaration 'Dcl'. The scope
|
||
/// is a fresh scope pushed for just this purpose.
|
||
///
|
||
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
|
||
/// static data member of class X, names should be looked up in the scope of
|
||
/// class X.
|
||
void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
|
||
// If there is no declaration, there was an error parsing it.
|
||
Decl *D = Dcl.getAs<Decl>();
|
||
if (D == 0) return;
|
||
|
||
// We should only get called for declarations with scope specifiers, like:
|
||
// int foo::bar;
|
||
assert(D->isOutOfLine());
|
||
EnterDeclaratorContext(S, D->getDeclContext());
|
||
}
|
||
|
||
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
|
||
/// initializer for the out-of-line declaration 'Dcl'.
|
||
void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
|
||
// If there is no declaration, there was an error parsing it.
|
||
Decl *D = Dcl.getAs<Decl>();
|
||
if (D == 0) return;
|
||
|
||
assert(D->isOutOfLine());
|
||
ExitDeclaratorContext(S);
|
||
}
|
||
|
||
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
|
||
/// C++ if/switch/while/for statement.
|
||
/// e.g: "if (int x = f()) {...}"
|
||
Action::DeclResult
|
||
Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
|
||
// C++ 6.4p2:
|
||
// The declarator shall not specify a function or an array.
|
||
// The type-specifier-seq shall not contain typedef and shall not declare a
|
||
// new class or enumeration.
|
||
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
|
||
"Parser allowed 'typedef' as storage class of condition decl.");
|
||
|
||
TypeSourceInfo *TInfo = 0;
|
||
TagDecl *OwnedTag = 0;
|
||
QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
|
||
|
||
if (Ty->isFunctionType()) { // The declarator shall not specify a function...
|
||
// We exit without creating a CXXConditionDeclExpr because a FunctionDecl
|
||
// would be created and CXXConditionDeclExpr wants a VarDecl.
|
||
Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
|
||
<< D.getSourceRange();
|
||
return DeclResult();
|
||
} else if (OwnedTag && OwnedTag->isDefinition()) {
|
||
// The type-specifier-seq shall not declare a new class or enumeration.
|
||
Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
|
||
}
|
||
|
||
DeclPtrTy Dcl = ActOnDeclarator(S, D);
|
||
if (!Dcl)
|
||
return DeclResult();
|
||
|
||
VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
|
||
VD->setDeclaredInCondition(true);
|
||
return Dcl;
|
||
}
|
||
|
||
static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
|
||
// Ignore dependent types.
|
||
if (MD->isDependentContext())
|
||
return false;
|
||
|
||
// Ignore declarations that are not definitions.
|
||
if (!MD->isThisDeclarationADefinition())
|
||
return false;
|
||
|
||
CXXRecordDecl *RD = MD->getParent();
|
||
|
||
// Ignore classes without a vtable.
|
||
if (!RD->isDynamicClass())
|
||
return false;
|
||
|
||
switch (MD->getParent()->getTemplateSpecializationKind()) {
|
||
case TSK_Undeclared:
|
||
case TSK_ExplicitSpecialization:
|
||
// Classes that aren't instantiations of templates don't need their
|
||
// virtual methods marked until we see the definition of the key
|
||
// function.
|
||
break;
|
||
|
||
case TSK_ImplicitInstantiation:
|
||
// This is a constructor of a class template; mark all of the virtual
|
||
// members as referenced to ensure that they get instantiatied.
|
||
if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
|
||
return true;
|
||
break;
|
||
|
||
case TSK_ExplicitInstantiationDeclaration:
|
||
return false;
|
||
|
||
case TSK_ExplicitInstantiationDefinition:
|
||
// This is method of a explicit instantiation; mark all of the virtual
|
||
// members as referenced to ensure that they get instantiatied.
|
||
return true;
|
||
}
|
||
|
||
// Consider only out-of-line definitions of member functions. When we see
|
||
// an inline definition, it's too early to compute the key function.
|
||
if (!MD->isOutOfLine())
|
||
return false;
|
||
|
||
const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
|
||
|
||
// If there is no key function, we will need a copy of the vtable.
|
||
if (!KeyFunction)
|
||
return true;
|
||
|
||
// If this is the key function, we need to mark virtual members.
|
||
if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
|
||
CXXMethodDecl *MD) {
|
||
CXXRecordDecl *RD = MD->getParent();
|
||
|
||
// We will need to mark all of the virtual members as referenced to build the
|
||
// vtable.
|
||
if (!needsVTable(MD, Context))
|
||
return;
|
||
|
||
TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
|
||
if (kind == TSK_ImplicitInstantiation)
|
||
ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
|
||
else
|
||
MarkVirtualMembersReferenced(Loc, RD);
|
||
}
|
||
|
||
bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
|
||
if (ClassesWithUnmarkedVirtualMembers.empty())
|
||
return false;
|
||
|
||
while (!ClassesWithUnmarkedVirtualMembers.empty()) {
|
||
CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
|
||
SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
|
||
ClassesWithUnmarkedVirtualMembers.pop_back();
|
||
MarkVirtualMembersReferenced(Loc, RD);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
|
||
const CXXRecordDecl *RD) {
|
||
for (CXXRecordDecl::method_iterator i = RD->method_begin(),
|
||
e = RD->method_end(); i != e; ++i) {
|
||
CXXMethodDecl *MD = *i;
|
||
|
||
// C++ [basic.def.odr]p2:
|
||
// [...] A virtual member function is used if it is not pure. [...]
|
||
if (MD->isVirtual() && !MD->isPure())
|
||
MarkDeclarationReferenced(Loc, MD);
|
||
}
|
||
|
||
// Only classes that have virtual bases need a VTT.
|
||
if (RD->getNumVBases() == 0)
|
||
return;
|
||
|
||
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
|
||
e = RD->bases_end(); i != e; ++i) {
|
||
const CXXRecordDecl *Base =
|
||
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
|
||
if (i->isVirtual())
|
||
continue;
|
||
if (Base->getNumVBases() == 0)
|
||
continue;
|
||
MarkVirtualMembersReferenced(Loc, Base);
|
||
}
|
||
}
|
||
|
||
/// SetIvarInitializers - This routine builds initialization ASTs for the
|
||
/// Objective-C implementation whose ivars need be initialized.
|
||
void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
|
||
if (!getLangOptions().CPlusPlus)
|
||
return;
|
||
if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
|
||
llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
|
||
CollectIvarsToConstructOrDestruct(OID, ivars);
|
||
if (ivars.empty())
|
||
return;
|
||
llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
|
||
for (unsigned i = 0; i < ivars.size(); i++) {
|
||
FieldDecl *Field = ivars[i];
|
||
CXXBaseOrMemberInitializer *Member;
|
||
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
|
||
InitializationKind InitKind =
|
||
InitializationKind::CreateDefault(ObjCImplementation->getLocation());
|
||
|
||
InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
|
||
Sema::OwningExprResult MemberInit =
|
||
InitSeq.Perform(*this, InitEntity, InitKind,
|
||
Sema::MultiExprArg(*this, 0, 0));
|
||
MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
|
||
// Note, MemberInit could actually come back empty if no initialization
|
||
// is required (e.g., because it would call a trivial default constructor)
|
||
if (!MemberInit.get() || MemberInit.isInvalid())
|
||
continue;
|
||
|
||
Member =
|
||
new (Context) CXXBaseOrMemberInitializer(Context,
|
||
Field, SourceLocation(),
|
||
SourceLocation(),
|
||
MemberInit.takeAs<Expr>(),
|
||
SourceLocation());
|
||
AllToInit.push_back(Member);
|
||
}
|
||
ObjCImplementation->setIvarInitializers(Context,
|
||
AllToInit.data(), AllToInit.size());
|
||
}
|
||
}
|