forked from OSchip/llvm-project
917 lines
32 KiB
C++
917 lines
32 KiB
C++
//===-- Execution.cpp - Implement code to simulate the program ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the actual instruction interpreter.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Interpreter.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Constants.h"
|
|
#include "Support/Statistic.h"
|
|
#include <cmath> // For fmod
|
|
|
|
namespace llvm {
|
|
|
|
namespace {
|
|
Statistic<> NumDynamicInsts("lli", "Number of dynamic instructions executed");
|
|
}
|
|
|
|
Interpreter *TheEE = 0;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Value Manipulation code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Operations used by constant expr implementations...
|
|
static GenericValue executeCastOperation(Value *Src, const Type *DestTy,
|
|
ExecutionContext &SF);
|
|
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty);
|
|
|
|
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::Cast:
|
|
return executeCastOperation(CE->getOperand(0), CE->getType(), SF);
|
|
case Instruction::GetElementPtr:
|
|
return TheEE->executeGEPOperation(CE->getOperand(0), CE->op_begin()+1,
|
|
CE->op_end(), SF);
|
|
case Instruction::Add:
|
|
return executeAddInst(getOperandValue(CE->getOperand(0), SF),
|
|
getOperandValue(CE->getOperand(1), SF),
|
|
CE->getType());
|
|
default:
|
|
std::cerr << "Unhandled ConstantExpr: " << CE << "\n";
|
|
abort();
|
|
return GenericValue();
|
|
}
|
|
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
|
|
return TheEE->getConstantValue(CPV);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
return PTOGV(TheEE->getPointerToGlobal(GV));
|
|
} else {
|
|
return SF.Values[V];
|
|
}
|
|
}
|
|
|
|
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
|
|
SF.Values[V] = Val;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Annotation Wrangling code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Interpreter::initializeExecutionEngine() {
|
|
TheEE = this;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Binary Instruction Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
|
|
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; break
|
|
|
|
static GenericValue executeAddInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(+, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(+, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(+, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(+, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(+, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(+, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(+, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(+, Long);
|
|
IMPLEMENT_BINARY_OPERATOR(+, Float);
|
|
IMPLEMENT_BINARY_OPERATOR(+, Double);
|
|
default:
|
|
std::cout << "Unhandled type for Add instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSubInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(-, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(-, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(-, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(-, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(-, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(-, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(-, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(-, Long);
|
|
IMPLEMENT_BINARY_OPERATOR(-, Float);
|
|
IMPLEMENT_BINARY_OPERATOR(-, Double);
|
|
default:
|
|
std::cout << "Unhandled type for Sub instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeMulInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(*, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(*, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(*, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(*, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(*, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(*, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(*, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(*, Long);
|
|
IMPLEMENT_BINARY_OPERATOR(*, Float);
|
|
IMPLEMENT_BINARY_OPERATOR(*, Double);
|
|
default:
|
|
std::cout << "Unhandled type for Mul instruction: " << Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeDivInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(/, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(/, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(/, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(/, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(/, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(/, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(/, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(/, Long);
|
|
IMPLEMENT_BINARY_OPERATOR(/, Float);
|
|
IMPLEMENT_BINARY_OPERATOR(/, Double);
|
|
default:
|
|
std::cout << "Unhandled type for Div instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeRemInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(%, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(%, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(%, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(%, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(%, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(%, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(%, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(%, Long);
|
|
case Type::FloatTyID:
|
|
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
|
|
break;
|
|
default:
|
|
std::cout << "Unhandled type for Rem instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeAndInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(&, Bool);
|
|
IMPLEMENT_BINARY_OPERATOR(&, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(&, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(&, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(&, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(&, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(&, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(&, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(&, Long);
|
|
default:
|
|
std::cout << "Unhandled type for And instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeOrInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(|, Bool);
|
|
IMPLEMENT_BINARY_OPERATOR(|, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(|, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(|, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(|, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(|, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(|, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(|, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(|, Long);
|
|
default:
|
|
std::cout << "Unhandled type for Or instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeXorInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_BINARY_OPERATOR(^, Bool);
|
|
IMPLEMENT_BINARY_OPERATOR(^, UByte);
|
|
IMPLEMENT_BINARY_OPERATOR(^, SByte);
|
|
IMPLEMENT_BINARY_OPERATOR(^, UShort);
|
|
IMPLEMENT_BINARY_OPERATOR(^, Short);
|
|
IMPLEMENT_BINARY_OPERATOR(^, UInt);
|
|
IMPLEMENT_BINARY_OPERATOR(^, Int);
|
|
IMPLEMENT_BINARY_OPERATOR(^, ULong);
|
|
IMPLEMENT_BINARY_OPERATOR(^, Long);
|
|
default:
|
|
std::cout << "Unhandled type for Xor instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
#define IMPLEMENT_SETCC(OP, TY) \
|
|
case Type::TY##TyID: Dest.BoolVal = Src1.TY##Val OP Src2.TY##Val; break
|
|
|
|
// Handle pointers specially because they must be compared with only as much
|
|
// width as the host has. We _do not_ want to be comparing 64 bit values when
|
|
// running on a 32-bit target, otherwise the upper 32 bits might mess up
|
|
// comparisons if they contain garbage.
|
|
#define IMPLEMENT_POINTERSETCC(OP) \
|
|
case Type::PointerTyID: \
|
|
Dest.BoolVal = (void*)(intptr_t)Src1.PointerVal OP \
|
|
(void*)(intptr_t)Src2.PointerVal; break
|
|
|
|
static GenericValue executeSetEQInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(==, UByte);
|
|
IMPLEMENT_SETCC(==, SByte);
|
|
IMPLEMENT_SETCC(==, UShort);
|
|
IMPLEMENT_SETCC(==, Short);
|
|
IMPLEMENT_SETCC(==, UInt);
|
|
IMPLEMENT_SETCC(==, Int);
|
|
IMPLEMENT_SETCC(==, ULong);
|
|
IMPLEMENT_SETCC(==, Long);
|
|
IMPLEMENT_SETCC(==, Float);
|
|
IMPLEMENT_SETCC(==, Double);
|
|
IMPLEMENT_POINTERSETCC(==);
|
|
default:
|
|
std::cout << "Unhandled type for SetEQ instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSetNEInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(!=, UByte);
|
|
IMPLEMENT_SETCC(!=, SByte);
|
|
IMPLEMENT_SETCC(!=, UShort);
|
|
IMPLEMENT_SETCC(!=, Short);
|
|
IMPLEMENT_SETCC(!=, UInt);
|
|
IMPLEMENT_SETCC(!=, Int);
|
|
IMPLEMENT_SETCC(!=, ULong);
|
|
IMPLEMENT_SETCC(!=, Long);
|
|
IMPLEMENT_SETCC(!=, Float);
|
|
IMPLEMENT_SETCC(!=, Double);
|
|
IMPLEMENT_POINTERSETCC(!=);
|
|
|
|
default:
|
|
std::cout << "Unhandled type for SetNE instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSetLEInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(<=, UByte);
|
|
IMPLEMENT_SETCC(<=, SByte);
|
|
IMPLEMENT_SETCC(<=, UShort);
|
|
IMPLEMENT_SETCC(<=, Short);
|
|
IMPLEMENT_SETCC(<=, UInt);
|
|
IMPLEMENT_SETCC(<=, Int);
|
|
IMPLEMENT_SETCC(<=, ULong);
|
|
IMPLEMENT_SETCC(<=, Long);
|
|
IMPLEMENT_SETCC(<=, Float);
|
|
IMPLEMENT_SETCC(<=, Double);
|
|
IMPLEMENT_POINTERSETCC(<=);
|
|
default:
|
|
std::cout << "Unhandled type for SetLE instruction: " << Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSetGEInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(>=, UByte);
|
|
IMPLEMENT_SETCC(>=, SByte);
|
|
IMPLEMENT_SETCC(>=, UShort);
|
|
IMPLEMENT_SETCC(>=, Short);
|
|
IMPLEMENT_SETCC(>=, UInt);
|
|
IMPLEMENT_SETCC(>=, Int);
|
|
IMPLEMENT_SETCC(>=, ULong);
|
|
IMPLEMENT_SETCC(>=, Long);
|
|
IMPLEMENT_SETCC(>=, Float);
|
|
IMPLEMENT_SETCC(>=, Double);
|
|
IMPLEMENT_POINTERSETCC(>=);
|
|
default:
|
|
std::cout << "Unhandled type for SetGE instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSetLTInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(<, UByte);
|
|
IMPLEMENT_SETCC(<, SByte);
|
|
IMPLEMENT_SETCC(<, UShort);
|
|
IMPLEMENT_SETCC(<, Short);
|
|
IMPLEMENT_SETCC(<, UInt);
|
|
IMPLEMENT_SETCC(<, Int);
|
|
IMPLEMENT_SETCC(<, ULong);
|
|
IMPLEMENT_SETCC(<, Long);
|
|
IMPLEMENT_SETCC(<, Float);
|
|
IMPLEMENT_SETCC(<, Double);
|
|
IMPLEMENT_POINTERSETCC(<);
|
|
default:
|
|
std::cout << "Unhandled type for SetLT instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static GenericValue executeSetGTInst(GenericValue Src1, GenericValue Src2,
|
|
const Type *Ty) {
|
|
GenericValue Dest;
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SETCC(>, UByte);
|
|
IMPLEMENT_SETCC(>, SByte);
|
|
IMPLEMENT_SETCC(>, UShort);
|
|
IMPLEMENT_SETCC(>, Short);
|
|
IMPLEMENT_SETCC(>, UInt);
|
|
IMPLEMENT_SETCC(>, Int);
|
|
IMPLEMENT_SETCC(>, ULong);
|
|
IMPLEMENT_SETCC(>, Long);
|
|
IMPLEMENT_SETCC(>, Float);
|
|
IMPLEMENT_SETCC(>, Double);
|
|
IMPLEMENT_POINTERSETCC(>);
|
|
default:
|
|
std::cout << "Unhandled type for SetGT instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
|
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
|
GenericValue R; // Result
|
|
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add: R = executeAddInst (Src1, Src2, Ty); break;
|
|
case Instruction::Sub: R = executeSubInst (Src1, Src2, Ty); break;
|
|
case Instruction::Mul: R = executeMulInst (Src1, Src2, Ty); break;
|
|
case Instruction::Div: R = executeDivInst (Src1, Src2, Ty); break;
|
|
case Instruction::Rem: R = executeRemInst (Src1, Src2, Ty); break;
|
|
case Instruction::And: R = executeAndInst (Src1, Src2, Ty); break;
|
|
case Instruction::Or: R = executeOrInst (Src1, Src2, Ty); break;
|
|
case Instruction::Xor: R = executeXorInst (Src1, Src2, Ty); break;
|
|
case Instruction::SetEQ: R = executeSetEQInst(Src1, Src2, Ty); break;
|
|
case Instruction::SetNE: R = executeSetNEInst(Src1, Src2, Ty); break;
|
|
case Instruction::SetLE: R = executeSetLEInst(Src1, Src2, Ty); break;
|
|
case Instruction::SetGE: R = executeSetGEInst(Src1, Src2, Ty); break;
|
|
case Instruction::SetLT: R = executeSetLTInst(Src1, Src2, Ty); break;
|
|
case Instruction::SetGT: R = executeSetGTInst(Src1, Src2, Ty); break;
|
|
default:
|
|
std::cout << "Don't know how to handle this binary operator!\n-->" << I;
|
|
abort();
|
|
}
|
|
|
|
SetValue(&I, R, SF);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Terminator Instruction Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Interpreter::exitCalled(GenericValue GV) {
|
|
ExitCode = GV.SByteVal;
|
|
ECStack.clear();
|
|
}
|
|
|
|
/// Pop the last stack frame off of ECStack and then copy the result
|
|
/// back into the result variable if we are not returning void. The
|
|
/// result variable may be the ExitCode, or the Value of the calling
|
|
/// CallInst if there was a previous stack frame. This method may
|
|
/// invalidate any ECStack iterators you have. This method also takes
|
|
/// care of switching to the normal destination BB, if we are returning
|
|
/// from an invoke.
|
|
///
|
|
void Interpreter::popStackAndReturnValueToCaller (const Type *RetTy,
|
|
GenericValue Result) {
|
|
// Pop the current stack frame.
|
|
ECStack.pop_back();
|
|
|
|
if (ECStack.empty()) { // Finished main. Put result into exit code...
|
|
if (RetTy && RetTy->isIntegral()) { // Nonvoid return type?
|
|
ExitCode = Result.IntVal; // Capture the exit code of the program
|
|
} else {
|
|
ExitCode = 0;
|
|
}
|
|
} else {
|
|
// If we have a previous stack frame, and we have a previous call,
|
|
// fill in the return value...
|
|
ExecutionContext &CallingSF = ECStack.back();
|
|
if (Instruction *I = CallingSF.Caller.getInstruction()) {
|
|
if (CallingSF.Caller.getType() != Type::VoidTy) // Save result...
|
|
SetValue(I, Result, CallingSF);
|
|
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
|
|
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
|
|
CallingSF.Caller = CallSite(); // We returned from the call...
|
|
}
|
|
}
|
|
}
|
|
|
|
void Interpreter::visitReturnInst(ReturnInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
const Type *RetTy = Type::VoidTy;
|
|
GenericValue Result;
|
|
|
|
// Save away the return value... (if we are not 'ret void')
|
|
if (I.getNumOperands()) {
|
|
RetTy = I.getReturnValue()->getType();
|
|
Result = getOperandValue(I.getReturnValue(), SF);
|
|
}
|
|
|
|
popStackAndReturnValueToCaller(RetTy, Result);
|
|
}
|
|
|
|
void Interpreter::visitUnwindInst(UnwindInst &I) {
|
|
// Unwind stack
|
|
Instruction *Inst;
|
|
do {
|
|
ECStack.pop_back ();
|
|
if (ECStack.empty ())
|
|
abort ();
|
|
Inst = ECStack.back ().Caller.getInstruction ();
|
|
} while (!(Inst && isa<InvokeInst> (Inst)));
|
|
|
|
// Return from invoke
|
|
ExecutionContext &InvokingSF = ECStack.back ();
|
|
InvokingSF.Caller = CallSite ();
|
|
|
|
// Go to exceptional destination BB of invoke instruction
|
|
SwitchToNewBasicBlock (cast<InvokeInst> (Inst)->getExceptionalDest (),
|
|
InvokingSF);
|
|
}
|
|
|
|
void Interpreter::visitBranchInst(BranchInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
BasicBlock *Dest;
|
|
|
|
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
|
|
if (!I.isUnconditional()) {
|
|
Value *Cond = I.getCondition();
|
|
if (getOperandValue(Cond, SF).BoolVal == 0) // If false cond...
|
|
Dest = I.getSuccessor(1);
|
|
}
|
|
SwitchToNewBasicBlock(Dest, SF);
|
|
}
|
|
|
|
void Interpreter::visitSwitchInst(SwitchInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
GenericValue CondVal = getOperandValue(I.getOperand(0), SF);
|
|
const Type *ElTy = I.getOperand(0)->getType();
|
|
|
|
// Check to see if any of the cases match...
|
|
BasicBlock *Dest = 0;
|
|
for (unsigned i = 2, e = I.getNumOperands(); i != e; i += 2)
|
|
if (executeSetEQInst(CondVal,
|
|
getOperandValue(I.getOperand(i), SF), ElTy).BoolVal) {
|
|
Dest = cast<BasicBlock>(I.getOperand(i+1));
|
|
break;
|
|
}
|
|
|
|
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
|
|
SwitchToNewBasicBlock(Dest, SF);
|
|
}
|
|
|
|
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
|
|
// This function handles the actual updating of block and instruction iterators
|
|
// as well as execution of all of the PHI nodes in the destination block.
|
|
//
|
|
// This method does this because all of the PHI nodes must be executed
|
|
// atomically, reading their inputs before any of the results are updated. Not
|
|
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
|
|
// their inputs. If the input PHI node is updated before it is read, incorrect
|
|
// results can happen. Thus we use a two phase approach.
|
|
//
|
|
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
|
|
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
|
|
SF.CurBB = Dest; // Update CurBB to branch destination
|
|
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
|
|
|
|
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
|
|
|
|
// Loop over all of the PHI nodes in the current block, reading their inputs.
|
|
std::vector<GenericValue> ResultValues;
|
|
|
|
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
|
|
// Search for the value corresponding to this previous bb...
|
|
int i = PN->getBasicBlockIndex(PrevBB);
|
|
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
|
|
Value *IncomingValue = PN->getIncomingValue(i);
|
|
|
|
// Save the incoming value for this PHI node...
|
|
ResultValues.push_back(getOperandValue(IncomingValue, SF));
|
|
}
|
|
|
|
// Now loop over all of the PHI nodes setting their values...
|
|
SF.CurInst = SF.CurBB->begin();
|
|
for (unsigned i = 0; PHINode *PN = dyn_cast<PHINode>(SF.CurInst);
|
|
++SF.CurInst, ++i)
|
|
SetValue(PN, ResultValues[i], SF);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Memory Instruction Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Interpreter::visitAllocationInst(AllocationInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
|
|
const Type *Ty = I.getType()->getElementType(); // Type to be allocated
|
|
|
|
// Get the number of elements being allocated by the array...
|
|
unsigned NumElements = getOperandValue(I.getOperand(0), SF).UIntVal;
|
|
|
|
// Allocate enough memory to hold the type...
|
|
void *Memory = malloc(NumElements * TD.getTypeSize(Ty));
|
|
|
|
GenericValue Result = PTOGV(Memory);
|
|
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
|
|
SetValue(&I, Result, SF);
|
|
|
|
if (I.getOpcode() == Instruction::Alloca)
|
|
ECStack.back().Allocas.add(Memory);
|
|
}
|
|
|
|
void Interpreter::visitFreeInst(FreeInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
assert(isa<PointerType>(I.getOperand(0)->getType()) && "Freeing nonptr?");
|
|
GenericValue Value = getOperandValue(I.getOperand(0), SF);
|
|
// TODO: Check to make sure memory is allocated
|
|
free(GVTOP(Value)); // Free memory
|
|
}
|
|
|
|
// getElementOffset - The workhorse for getelementptr.
|
|
//
|
|
GenericValue Interpreter::executeGEPOperation(Value *Ptr, User::op_iterator I,
|
|
User::op_iterator E,
|
|
ExecutionContext &SF) {
|
|
assert(isa<PointerType>(Ptr->getType()) &&
|
|
"Cannot getElementOffset of a nonpointer type!");
|
|
|
|
PointerTy Total = 0;
|
|
const Type *Ty = Ptr->getType();
|
|
|
|
for (; I != E; ++I) {
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
const StructLayout *SLO = TD.getStructLayout(STy);
|
|
|
|
// Indices must be ubyte constants...
|
|
const ConstantUInt *CPU = cast<ConstantUInt>(*I);
|
|
assert(CPU->getType() == Type::UByteTy);
|
|
unsigned Index = CPU->getValue();
|
|
|
|
Total += SLO->MemberOffsets[Index];
|
|
Ty = STy->getElementTypes()[Index];
|
|
} else if (const SequentialType *ST = cast<SequentialType>(Ty)) {
|
|
// Get the index number for the array... which must be long type...
|
|
assert((*I)->getType() == Type::LongTy);
|
|
unsigned Idx = getOperandValue(*I, SF).LongVal;
|
|
Ty = ST->getElementType();
|
|
unsigned Size = TD.getTypeSize(Ty);
|
|
Total += Size*Idx;
|
|
}
|
|
}
|
|
|
|
GenericValue Result;
|
|
Result.PointerVal = getOperandValue(Ptr, SF).PointerVal + Total;
|
|
return Result;
|
|
}
|
|
|
|
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
SetValue(&I, TheEE->executeGEPOperation(I.getPointerOperand(),
|
|
I.idx_begin(), I.idx_end(), SF), SF);
|
|
}
|
|
|
|
void Interpreter::visitLoadInst(LoadInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
|
|
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
|
|
GenericValue Result = LoadValueFromMemory(Ptr, I.getType());
|
|
SetValue(&I, Result, SF);
|
|
}
|
|
|
|
void Interpreter::visitStoreInst(StoreInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
GenericValue Val = getOperandValue(I.getOperand(0), SF);
|
|
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
|
|
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
|
|
I.getOperand(0)->getType());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous Instruction Implementations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Interpreter::visitCallSite(CallSite CS) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
SF.Caller = CS;
|
|
std::vector<GenericValue> ArgVals;
|
|
const unsigned NumArgs = SF.Caller.arg_size();
|
|
ArgVals.reserve(NumArgs);
|
|
for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
|
|
e = SF.Caller.arg_end(); i != e; ++i) {
|
|
Value *V = *i;
|
|
ArgVals.push_back(getOperandValue(V, SF));
|
|
// Promote all integral types whose size is < sizeof(int) into ints. We do
|
|
// this by zero or sign extending the value as appropriate according to the
|
|
// source type.
|
|
const Type *Ty = V->getType();
|
|
if (Ty->isIntegral() && Ty->getPrimitiveSize() < 4) {
|
|
if (Ty == Type::ShortTy)
|
|
ArgVals.back().IntVal = ArgVals.back().ShortVal;
|
|
else if (Ty == Type::UShortTy)
|
|
ArgVals.back().UIntVal = ArgVals.back().UShortVal;
|
|
else if (Ty == Type::SByteTy)
|
|
ArgVals.back().IntVal = ArgVals.back().SByteVal;
|
|
else if (Ty == Type::UByteTy)
|
|
ArgVals.back().UIntVal = ArgVals.back().UByteVal;
|
|
else if (Ty == Type::BoolTy)
|
|
ArgVals.back().UIntVal = ArgVals.back().BoolVal;
|
|
else
|
|
assert(0 && "Unknown type!");
|
|
}
|
|
}
|
|
|
|
// To handle indirect calls, we must get the pointer value from the argument
|
|
// and treat it as a function pointer.
|
|
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
|
|
callFunction((Function*)GVTOP(SRC), ArgVals);
|
|
}
|
|
|
|
#define IMPLEMENT_SHIFT(OP, TY) \
|
|
case Type::TY##TyID: Dest.TY##Val = Src1.TY##Val OP Src2.UByteVal; break
|
|
|
|
void Interpreter::visitShl(ShiftInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
|
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
|
GenericValue Dest;
|
|
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SHIFT(<<, UByte);
|
|
IMPLEMENT_SHIFT(<<, SByte);
|
|
IMPLEMENT_SHIFT(<<, UShort);
|
|
IMPLEMENT_SHIFT(<<, Short);
|
|
IMPLEMENT_SHIFT(<<, UInt);
|
|
IMPLEMENT_SHIFT(<<, Int);
|
|
IMPLEMENT_SHIFT(<<, ULong);
|
|
IMPLEMENT_SHIFT(<<, Long);
|
|
default:
|
|
std::cout << "Unhandled type for Shl instruction: " << *Ty << "\n";
|
|
}
|
|
SetValue(&I, Dest, SF);
|
|
}
|
|
|
|
void Interpreter::visitShr(ShiftInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
|
|
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
|
|
GenericValue Dest;
|
|
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_SHIFT(>>, UByte);
|
|
IMPLEMENT_SHIFT(>>, SByte);
|
|
IMPLEMENT_SHIFT(>>, UShort);
|
|
IMPLEMENT_SHIFT(>>, Short);
|
|
IMPLEMENT_SHIFT(>>, UInt);
|
|
IMPLEMENT_SHIFT(>>, Int);
|
|
IMPLEMENT_SHIFT(>>, ULong);
|
|
IMPLEMENT_SHIFT(>>, Long);
|
|
default:
|
|
std::cout << "Unhandled type for Shr instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
SetValue(&I, Dest, SF);
|
|
}
|
|
|
|
#define IMPLEMENT_CAST(DTY, DCTY, STY) \
|
|
case Type::STY##TyID: Dest.DTY##Val = DCTY Src.STY##Val; break;
|
|
|
|
#define IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY) \
|
|
case Type::DESTTY##TyID: \
|
|
switch (SrcTy->getPrimitiveID()) { \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Bool); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, UByte); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, SByte); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, UShort); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Short); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, UInt); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Int); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, ULong); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Long); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Pointer);
|
|
|
|
#define IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY) \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Float); \
|
|
IMPLEMENT_CAST(DESTTY, DESTCTY, Double)
|
|
|
|
#define IMPLEMENT_CAST_CASE_END() \
|
|
default: std::cout << "Unhandled cast: " << SrcTy << " to " << Ty << "\n"; \
|
|
abort(); \
|
|
} \
|
|
break
|
|
|
|
#define IMPLEMENT_CAST_CASE(DESTTY, DESTCTY) \
|
|
IMPLEMENT_CAST_CASE_START(DESTTY, DESTCTY); \
|
|
IMPLEMENT_CAST_CASE_FP_IMP(DESTTY, DESTCTY); \
|
|
IMPLEMENT_CAST_CASE_END()
|
|
|
|
GenericValue Interpreter::executeCastOperation(Value *SrcVal, const Type *Ty,
|
|
ExecutionContext &SF) {
|
|
const Type *SrcTy = SrcVal->getType();
|
|
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
|
|
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_CAST_CASE(UByte , (unsigned char));
|
|
IMPLEMENT_CAST_CASE(SByte , ( signed char));
|
|
IMPLEMENT_CAST_CASE(UShort , (unsigned short));
|
|
IMPLEMENT_CAST_CASE(Short , ( signed short));
|
|
IMPLEMENT_CAST_CASE(UInt , (unsigned int ));
|
|
IMPLEMENT_CAST_CASE(Int , ( signed int ));
|
|
IMPLEMENT_CAST_CASE(ULong , (uint64_t));
|
|
IMPLEMENT_CAST_CASE(Long , ( int64_t));
|
|
IMPLEMENT_CAST_CASE(Pointer, (PointerTy));
|
|
IMPLEMENT_CAST_CASE(Float , (float));
|
|
IMPLEMENT_CAST_CASE(Double , (double));
|
|
IMPLEMENT_CAST_CASE(Bool , (bool));
|
|
default:
|
|
std::cout << "Unhandled dest type for cast instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
|
|
return Dest;
|
|
}
|
|
|
|
void Interpreter::visitCastInst(CastInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
SetValue(&I, executeCastOperation(I.getOperand(0), I.getType(), SF), SF);
|
|
}
|
|
|
|
void Interpreter::visitVANextInst(VANextInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
|
|
// Get the incoming valist element. LLI treats the valist as an integer.
|
|
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
|
|
|
|
// Move to the next operand.
|
|
unsigned Argument = VAList.IntVal++;
|
|
assert(Argument < SF.VarArgs.size() &&
|
|
"Accessing past the last vararg argument!");
|
|
SetValue(&I, VAList, SF);
|
|
}
|
|
|
|
#define IMPLEMENT_VAARG(TY) \
|
|
case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
|
|
|
|
void Interpreter::visitVAArgInst(VAArgInst &I) {
|
|
ExecutionContext &SF = ECStack.back();
|
|
|
|
// Get the incoming valist element. LLI treats the valist as an integer.
|
|
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
|
|
unsigned Argument = VAList.IntVal;
|
|
assert(Argument < SF.VarArgs.size() &&
|
|
"Accessing past the last vararg argument!");
|
|
GenericValue Dest, Src = SF.VarArgs[Argument];
|
|
const Type *Ty = I.getType();
|
|
switch (Ty->getPrimitiveID()) {
|
|
IMPLEMENT_VAARG(UByte);
|
|
IMPLEMENT_VAARG(SByte);
|
|
IMPLEMENT_VAARG(UShort);
|
|
IMPLEMENT_VAARG(Short);
|
|
IMPLEMENT_VAARG(UInt);
|
|
IMPLEMENT_VAARG(Int);
|
|
IMPLEMENT_VAARG(ULong);
|
|
IMPLEMENT_VAARG(Long);
|
|
IMPLEMENT_VAARG(Pointer);
|
|
IMPLEMENT_VAARG(Float);
|
|
IMPLEMENT_VAARG(Double);
|
|
IMPLEMENT_VAARG(Bool);
|
|
default:
|
|
std::cout << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
|
|
abort();
|
|
}
|
|
|
|
// Set the Value of this Instruction.
|
|
SetValue(&I, Dest, SF);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dispatch and Execution Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// callFunction - Execute the specified function...
|
|
//
|
|
void Interpreter::callFunction(Function *F,
|
|
const std::vector<GenericValue> &ArgVals) {
|
|
assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
|
|
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
|
|
"Incorrect number of arguments passed into function call!");
|
|
// Make a new stack frame... and fill it in.
|
|
ECStack.push_back(ExecutionContext());
|
|
ExecutionContext &StackFrame = ECStack.back();
|
|
StackFrame.CurFunction = F;
|
|
|
|
// Special handling for external functions.
|
|
if (F->isExternal()) {
|
|
GenericValue Result = callExternalFunction (F, ArgVals);
|
|
// Simulate a 'ret' instruction of the appropriate type.
|
|
popStackAndReturnValueToCaller (F->getReturnType (), Result);
|
|
return;
|
|
}
|
|
|
|
// Get pointers to first LLVM BB & Instruction in function.
|
|
StackFrame.CurBB = F->begin();
|
|
StackFrame.CurInst = StackFrame.CurBB->begin();
|
|
|
|
// Run through the function arguments and initialize their values...
|
|
assert((ArgVals.size() == F->asize() ||
|
|
(ArgVals.size() > F->asize() && F->getFunctionType()->isVarArg())) &&
|
|
"Invalid number of values passed to function invocation!");
|
|
|
|
// Handle non-varargs arguments...
|
|
unsigned i = 0;
|
|
for (Function::aiterator AI = F->abegin(), E = F->aend(); AI != E; ++AI, ++i)
|
|
SetValue(AI, ArgVals[i], StackFrame);
|
|
|
|
// Handle varargs arguments...
|
|
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
|
|
}
|
|
|
|
void Interpreter::run() {
|
|
while (!ECStack.empty()) {
|
|
// Interpret a single instruction & increment the "PC".
|
|
ExecutionContext &SF = ECStack.back(); // Current stack frame
|
|
Instruction &I = *SF.CurInst++; // Increment before execute
|
|
|
|
// Track the number of dynamic instructions executed.
|
|
++NumDynamicInsts;
|
|
|
|
visit(I); // Dispatch to one of the visit* methods...
|
|
}
|
|
}
|
|
|
|
} // End llvm namespace
|