llvm-project/clang/lib/Frontend/InitPreprocessor.cpp

724 lines
29 KiB
C++

//===--- InitPreprocessor.cpp - PP initialization code. ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the clang::InitializePreprocessor function.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Version.h"
#include "clang/Frontend/Utils.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/PreprocessorOptions.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
using namespace clang;
// Append a #define line to Buf for Macro. Macro should be of the form XXX,
// in which case we emit "#define XXX 1" or "XXX=Y z W" in which case we emit
// "#define XXX Y z W". To get a #define with no value, use "XXX=".
static void DefineBuiltinMacro(MacroBuilder &Builder, StringRef Macro,
DiagnosticsEngine &Diags) {
std::pair<StringRef, StringRef> MacroPair = Macro.split('=');
StringRef MacroName = MacroPair.first;
StringRef MacroBody = MacroPair.second;
if (MacroName.size() != Macro.size()) {
// Per GCC -D semantics, the macro ends at \n if it exists.
StringRef::size_type End = MacroBody.find_first_of("\n\r");
if (End != StringRef::npos)
Diags.Report(diag::warn_fe_macro_contains_embedded_newline)
<< MacroName;
Builder.defineMacro(MacroName, MacroBody.substr(0, End));
} else {
// Push "macroname 1".
Builder.defineMacro(Macro);
}
}
std::string clang::NormalizeDashIncludePath(StringRef File,
FileManager &FileMgr) {
// Implicit include paths should be resolved relative to the current
// working directory first, and then use the regular header search
// mechanism. The proper way to handle this is to have the
// predefines buffer located at the current working directory, but
// it has no file entry. For now, workaround this by using an
// absolute path if we find the file here, and otherwise letting
// header search handle it.
llvm::SmallString<128> Path(File);
llvm::sys::fs::make_absolute(Path);
bool exists;
if (llvm::sys::fs::exists(Path.str(), exists) || !exists)
Path = File;
else if (exists)
FileMgr.getFile(File);
return Lexer::Stringify(Path.str());
}
/// AddImplicitInclude - Add an implicit #include of the specified file to the
/// predefines buffer.
static void AddImplicitInclude(MacroBuilder &Builder, StringRef File,
FileManager &FileMgr) {
Builder.append("#include \"" +
Twine(NormalizeDashIncludePath(File, FileMgr)) + "\"");
}
static void AddImplicitIncludeMacros(MacroBuilder &Builder,
StringRef File,
FileManager &FileMgr) {
Builder.append("#__include_macros \"" +
Twine(NormalizeDashIncludePath(File, FileMgr)) + "\"");
// Marker token to stop the __include_macros fetch loop.
Builder.append("##"); // ##?
}
/// AddImplicitIncludePTH - Add an implicit #include using the original file
/// used to generate a PTH cache.
static void AddImplicitIncludePTH(MacroBuilder &Builder, Preprocessor &PP,
StringRef ImplicitIncludePTH) {
PTHManager *P = PP.getPTHManager();
// Null check 'P' in the corner case where it couldn't be created.
const char *OriginalFile = P ? P->getOriginalSourceFile() : 0;
if (!OriginalFile) {
PP.getDiagnostics().Report(diag::err_fe_pth_file_has_no_source_header)
<< ImplicitIncludePTH;
return;
}
AddImplicitInclude(Builder, OriginalFile, PP.getFileManager());
}
/// PickFP - This is used to pick a value based on the FP semantics of the
/// specified FP model.
template <typename T>
static T PickFP(const llvm::fltSemantics *Sem, T IEEESingleVal,
T IEEEDoubleVal, T X87DoubleExtendedVal, T PPCDoubleDoubleVal,
T IEEEQuadVal) {
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEsingle)
return IEEESingleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEdouble)
return IEEEDoubleVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::x87DoubleExtended)
return X87DoubleExtendedVal;
if (Sem == (const llvm::fltSemantics*)&llvm::APFloat::PPCDoubleDouble)
return PPCDoubleDoubleVal;
assert(Sem == (const llvm::fltSemantics*)&llvm::APFloat::IEEEquad);
return IEEEQuadVal;
}
static void DefineFloatMacros(MacroBuilder &Builder, StringRef Prefix,
const llvm::fltSemantics *Sem) {
const char *DenormMin, *Epsilon, *Max, *Min;
DenormMin = PickFP(Sem, "1.40129846e-45F", "4.9406564584124654e-324",
"3.64519953188247460253e-4951L",
"4.94065645841246544176568792868221e-324L",
"6.47517511943802511092443895822764655e-4966L");
int Digits = PickFP(Sem, 6, 15, 18, 31, 33);
Epsilon = PickFP(Sem, "1.19209290e-7F", "2.2204460492503131e-16",
"1.08420217248550443401e-19L",
"4.94065645841246544176568792868221e-324L",
"1.92592994438723585305597794258492732e-34L");
int MantissaDigits = PickFP(Sem, 24, 53, 64, 106, 113);
int Min10Exp = PickFP(Sem, -37, -307, -4931, -291, -4931);
int Max10Exp = PickFP(Sem, 38, 308, 4932, 308, 4932);
int MinExp = PickFP(Sem, -125, -1021, -16381, -968, -16381);
int MaxExp = PickFP(Sem, 128, 1024, 16384, 1024, 16384);
Min = PickFP(Sem, "1.17549435e-38F", "2.2250738585072014e-308",
"3.36210314311209350626e-4932L",
"2.00416836000897277799610805135016e-292L",
"3.36210314311209350626267781732175260e-4932L");
Max = PickFP(Sem, "3.40282347e+38F", "1.7976931348623157e+308",
"1.18973149535723176502e+4932L",
"1.79769313486231580793728971405301e+308L",
"1.18973149535723176508575932662800702e+4932L");
llvm::SmallString<32> DefPrefix;
DefPrefix = "__";
DefPrefix += Prefix;
DefPrefix += "_";
Builder.defineMacro(DefPrefix + "DENORM_MIN__", DenormMin);
Builder.defineMacro(DefPrefix + "HAS_DENORM__");
Builder.defineMacro(DefPrefix + "DIG__", Twine(Digits));
Builder.defineMacro(DefPrefix + "EPSILON__", Twine(Epsilon));
Builder.defineMacro(DefPrefix + "HAS_INFINITY__");
Builder.defineMacro(DefPrefix + "HAS_QUIET_NAN__");
Builder.defineMacro(DefPrefix + "MANT_DIG__", Twine(MantissaDigits));
Builder.defineMacro(DefPrefix + "MAX_10_EXP__", Twine(Max10Exp));
Builder.defineMacro(DefPrefix + "MAX_EXP__", Twine(MaxExp));
Builder.defineMacro(DefPrefix + "MAX__", Twine(Max));
Builder.defineMacro(DefPrefix + "MIN_10_EXP__","("+Twine(Min10Exp)+")");
Builder.defineMacro(DefPrefix + "MIN_EXP__", "("+Twine(MinExp)+")");
Builder.defineMacro(DefPrefix + "MIN__", Twine(Min));
}
/// DefineTypeSize - Emit a macro to the predefines buffer that declares a macro
/// named MacroName with the max value for a type with width 'TypeWidth' a
/// signedness of 'isSigned' and with a value suffix of 'ValSuffix' (e.g. LL).
static void DefineTypeSize(StringRef MacroName, unsigned TypeWidth,
StringRef ValSuffix, bool isSigned,
MacroBuilder &Builder) {
llvm::APInt MaxVal = isSigned ? llvm::APInt::getSignedMaxValue(TypeWidth)
: llvm::APInt::getMaxValue(TypeWidth);
Builder.defineMacro(MacroName, MaxVal.toString(10, isSigned) + ValSuffix);
}
/// DefineTypeSize - An overloaded helper that uses TargetInfo to determine
/// the width, suffix, and signedness of the given type
static void DefineTypeSize(StringRef MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
DefineTypeSize(MacroName, TI.getTypeWidth(Ty), TI.getTypeConstantSuffix(Ty),
TI.isTypeSigned(Ty), Builder);
}
static void DefineType(const Twine &MacroName, TargetInfo::IntType Ty,
MacroBuilder &Builder) {
Builder.defineMacro(MacroName, TargetInfo::getTypeName(Ty));
}
static void DefineTypeWidth(StringRef MacroName, TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName, Twine(TI.getTypeWidth(Ty)));
}
static void DefineTypeSizeof(StringRef MacroName, unsigned BitWidth,
const TargetInfo &TI, MacroBuilder &Builder) {
Builder.defineMacro(MacroName,
Twine(BitWidth / TI.getCharWidth()));
}
static void DefineExactWidthIntType(TargetInfo::IntType Ty,
const TargetInfo &TI, MacroBuilder &Builder) {
int TypeWidth = TI.getTypeWidth(Ty);
// Use the target specified int64 type, when appropriate, so that [u]int64_t
// ends up being defined in terms of the correct type.
if (TypeWidth == 64)
Ty = TI.getInt64Type();
DefineType("__INT" + Twine(TypeWidth) + "_TYPE__", Ty, Builder);
StringRef ConstSuffix(TargetInfo::getTypeConstantSuffix(Ty));
if (!ConstSuffix.empty())
Builder.defineMacro("__INT" + Twine(TypeWidth) + "_C_SUFFIX__",
ConstSuffix);
}
/// \brief Add definitions required for a smooth interaction between
/// Objective-C++ automated reference counting and libstdc++ (4.2).
static void AddObjCXXARCLibstdcxxDefines(const LangOptions &LangOpts,
MacroBuilder &Builder) {
Builder.defineMacro("_GLIBCXX_PREDEFINED_OBJC_ARC_IS_SCALAR");
std::string Result;
{
// Provide specializations for the __is_scalar type trait so that
// lifetime-qualified objects are not considered "scalar" types, which
// libstdc++ uses as an indicator of the presence of trivial copy, assign,
// default-construct, and destruct semantics (none of which hold for
// lifetime-qualified objects in ARC).
llvm::raw_string_ostream Out(Result);
Out << "namespace std {\n"
<< "\n"
<< "struct __true_type;\n"
<< "struct __false_type;\n"
<< "\n";
Out << "template<typename _Tp> struct __is_scalar;\n"
<< "\n";
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(strong))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
if (LangOpts.ObjCRuntimeHasWeak) {
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(weak))) _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
}
Out << "template<typename _Tp>\n"
<< "struct __is_scalar<__attribute__((objc_ownership(autoreleasing)))"
<< " _Tp> {\n"
<< " enum { __value = 0 };\n"
<< " typedef __false_type __type;\n"
<< "};\n"
<< "\n";
Out << "}\n";
}
Builder.append(Result);
}
static void InitializeStandardPredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
MacroBuilder &Builder) {
if (!LangOpts.MicrosoftExt && !LangOpts.TraditionalCPP)
Builder.defineMacro("__STDC__");
if (LangOpts.Freestanding)
Builder.defineMacro("__STDC_HOSTED__", "0");
else
Builder.defineMacro("__STDC_HOSTED__");
if (!LangOpts.CPlusPlus) {
if (LangOpts.C99)
Builder.defineMacro("__STDC_VERSION__", "199901L");
else if (!LangOpts.GNUMode && LangOpts.Digraphs)
Builder.defineMacro("__STDC_VERSION__", "199409L");
} else {
if (LangOpts.GNUMode)
Builder.defineMacro("__cplusplus");
else {
// C++0x [cpp.predefined]p1:
// The name_ _cplusplus is defined to the value 201103L when compiling a
// C++ translation unit.
if (LangOpts.CPlusPlus0x)
Builder.defineMacro("__cplusplus", "201103L");
// C++03 [cpp.predefined]p1:
// The name_ _cplusplus is defined to the value 199711L when compiling a
// C++ translation unit.
else
Builder.defineMacro("__cplusplus", "199711L");
}
}
if (LangOpts.ObjC1)
Builder.defineMacro("__OBJC__");
// Not "standard" per se, but available even with the -undef flag.
if (LangOpts.AsmPreprocessor)
Builder.defineMacro("__ASSEMBLER__");
}
static void InitializePredefinedMacros(const TargetInfo &TI,
const LangOptions &LangOpts,
const FrontendOptions &FEOpts,
MacroBuilder &Builder) {
// Compiler version introspection macros.
Builder.defineMacro("__llvm__"); // LLVM Backend
Builder.defineMacro("__clang__"); // Clang Frontend
#define TOSTR2(X) #X
#define TOSTR(X) TOSTR2(X)
Builder.defineMacro("__clang_major__", TOSTR(CLANG_VERSION_MAJOR));
Builder.defineMacro("__clang_minor__", TOSTR(CLANG_VERSION_MINOR));
#ifdef CLANG_VERSION_PATCHLEVEL
Builder.defineMacro("__clang_patchlevel__", TOSTR(CLANG_VERSION_PATCHLEVEL));
#else
Builder.defineMacro("__clang_patchlevel__", "0");
#endif
Builder.defineMacro("__clang_version__",
"\"" CLANG_VERSION_STRING " ("
+ getClangFullRepositoryVersion() + ")\"");
#undef TOSTR
#undef TOSTR2
// Currently claim to be compatible with GCC 4.2.1-5621.
Builder.defineMacro("__GNUC_MINOR__", "2");
Builder.defineMacro("__GNUC_PATCHLEVEL__", "1");
Builder.defineMacro("__GNUC__", "4");
Builder.defineMacro("__GXX_ABI_VERSION", "1002");
// As sad as it is, enough software depends on the __VERSION__ for version
// checks that it is necessary to report 4.2.1 (the base GCC version we claim
// compatibility with) first.
Builder.defineMacro("__VERSION__", "\"4.2.1 Compatible " +
Twine(getClangFullCPPVersion()) + "\"");
// Initialize language-specific preprocessor defines.
// Standard conforming mode?
if (!LangOpts.GNUMode)
Builder.defineMacro("__STRICT_ANSI__");
if (LangOpts.CPlusPlus0x)
Builder.defineMacro("__GXX_EXPERIMENTAL_CXX0X__");
if (LangOpts.ObjC1) {
if (LangOpts.ObjCNonFragileABI) {
Builder.defineMacro("__OBJC2__");
if (LangOpts.ObjCExceptions)
Builder.defineMacro("OBJC_ZEROCOST_EXCEPTIONS");
}
if (LangOpts.getGC() != LangOptions::NonGC)
Builder.defineMacro("__OBJC_GC__");
if (LangOpts.NeXTRuntime)
Builder.defineMacro("__NEXT_RUNTIME__");
}
// darwin_constant_cfstrings controls this. This is also dependent
// on other things like the runtime I believe. This is set even for C code.
if (!LangOpts.NoConstantCFStrings)
Builder.defineMacro("__CONSTANT_CFSTRINGS__");
if (LangOpts.ObjC2)
Builder.defineMacro("OBJC_NEW_PROPERTIES");
if (LangOpts.PascalStrings)
Builder.defineMacro("__PASCAL_STRINGS__");
if (LangOpts.Blocks) {
Builder.defineMacro("__block", "__attribute__((__blocks__(byref)))");
Builder.defineMacro("__BLOCKS__");
}
if (LangOpts.CXXExceptions)
Builder.defineMacro("__EXCEPTIONS");
if (LangOpts.RTTI)
Builder.defineMacro("__GXX_RTTI");
if (LangOpts.SjLjExceptions)
Builder.defineMacro("__USING_SJLJ_EXCEPTIONS__");
if (LangOpts.Deprecated)
Builder.defineMacro("__DEPRECATED");
if (LangOpts.CPlusPlus) {
Builder.defineMacro("__GNUG__", "4");
Builder.defineMacro("__GXX_WEAK__");
Builder.defineMacro("__private_extern__", "extern");
}
if (LangOpts.MicrosoftExt) {
// Both __PRETTY_FUNCTION__ and __FUNCTION__ are GCC extensions, however
// VC++ appears to only like __FUNCTION__.
Builder.defineMacro("__PRETTY_FUNCTION__", "__FUNCTION__");
// Work around some issues with Visual C++ headerws.
if (LangOpts.CPlusPlus) {
// Since we define wchar_t in C++ mode.
Builder.defineMacro("_WCHAR_T_DEFINED");
Builder.defineMacro("_NATIVE_WCHAR_T_DEFINED");
// FIXME: Support Microsoft's __identifier extension in the lexer.
Builder.append("#define __identifier(x) x");
Builder.append("class type_info;");
}
if (LangOpts.CPlusPlus0x) {
Builder.defineMacro("_HAS_CHAR16_T_LANGUAGE_SUPPORT", "1");
}
}
if (LangOpts.Optimize)
Builder.defineMacro("__OPTIMIZE__");
if (LangOpts.OptimizeSize)
Builder.defineMacro("__OPTIMIZE_SIZE__");
// Initialize target-specific preprocessor defines.
// Define type sizing macros based on the target properties.
assert(TI.getCharWidth() == 8 && "Only support 8-bit char so far");
Builder.defineMacro("__CHAR_BIT__", "8");
DefineTypeSize("__SCHAR_MAX__", TI.getCharWidth(), "", true, Builder);
DefineTypeSize("__SHRT_MAX__", TargetInfo::SignedShort, TI, Builder);
DefineTypeSize("__INT_MAX__", TargetInfo::SignedInt, TI, Builder);
DefineTypeSize("__LONG_MAX__", TargetInfo::SignedLong, TI, Builder);
DefineTypeSize("__LONG_LONG_MAX__", TargetInfo::SignedLongLong, TI, Builder);
DefineTypeSize("__WCHAR_MAX__", TI.getWCharType(), TI, Builder);
DefineTypeSize("__INTMAX_MAX__", TI.getIntMaxType(), TI, Builder);
DefineTypeSizeof("__SIZEOF_DOUBLE__", TI.getDoubleWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_FLOAT__", TI.getFloatWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_INT__", TI.getIntWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG__", TI.getLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_LONG_DOUBLE__",TI.getLongDoubleWidth(),TI,Builder);
DefineTypeSizeof("__SIZEOF_LONG_LONG__", TI.getLongLongWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_POINTER__", TI.getPointerWidth(0), TI, Builder);
DefineTypeSizeof("__SIZEOF_SHORT__", TI.getShortWidth(), TI, Builder);
DefineTypeSizeof("__SIZEOF_PTRDIFF_T__",
TI.getTypeWidth(TI.getPtrDiffType(0)), TI, Builder);
DefineTypeSizeof("__SIZEOF_SIZE_T__",
TI.getTypeWidth(TI.getSizeType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WCHAR_T__",
TI.getTypeWidth(TI.getWCharType()), TI, Builder);
DefineTypeSizeof("__SIZEOF_WINT_T__",
TI.getTypeWidth(TI.getWIntType()), TI, Builder);
DefineType("__INTMAX_TYPE__", TI.getIntMaxType(), Builder);
DefineType("__UINTMAX_TYPE__", TI.getUIntMaxType(), Builder);
DefineTypeWidth("__INTMAX_WIDTH__", TI.getIntMaxType(), TI, Builder);
DefineType("__PTRDIFF_TYPE__", TI.getPtrDiffType(0), Builder);
DefineTypeWidth("__PTRDIFF_WIDTH__", TI.getPtrDiffType(0), TI, Builder);
DefineType("__INTPTR_TYPE__", TI.getIntPtrType(), Builder);
DefineTypeWidth("__INTPTR_WIDTH__", TI.getIntPtrType(), TI, Builder);
DefineType("__SIZE_TYPE__", TI.getSizeType(), Builder);
DefineTypeWidth("__SIZE_WIDTH__", TI.getSizeType(), TI, Builder);
DefineType("__WCHAR_TYPE__", TI.getWCharType(), Builder);
DefineTypeWidth("__WCHAR_WIDTH__", TI.getWCharType(), TI, Builder);
DefineType("__WINT_TYPE__", TI.getWIntType(), Builder);
DefineTypeWidth("__WINT_WIDTH__", TI.getWIntType(), TI, Builder);
DefineTypeWidth("__SIG_ATOMIC_WIDTH__", TI.getSigAtomicType(), TI, Builder);
DefineType("__CHAR16_TYPE__", TI.getChar16Type(), Builder);
DefineType("__CHAR32_TYPE__", TI.getChar32Type(), Builder);
DefineFloatMacros(Builder, "FLT", &TI.getFloatFormat());
DefineFloatMacros(Builder, "DBL", &TI.getDoubleFormat());
DefineFloatMacros(Builder, "LDBL", &TI.getLongDoubleFormat());
// Define a __POINTER_WIDTH__ macro for stdint.h.
Builder.defineMacro("__POINTER_WIDTH__",
Twine((int)TI.getPointerWidth(0)));
if (!LangOpts.CharIsSigned)
Builder.defineMacro("__CHAR_UNSIGNED__");
if (!TargetInfo::isTypeSigned(TI.getWIntType()))
Builder.defineMacro("__WINT_UNSIGNED__");
// Define exact-width integer types for stdint.h
Builder.defineMacro("__INT" + Twine(TI.getCharWidth()) + "_TYPE__",
"char");
if (TI.getShortWidth() > TI.getCharWidth())
DefineExactWidthIntType(TargetInfo::SignedShort, TI, Builder);
if (TI.getIntWidth() > TI.getShortWidth())
DefineExactWidthIntType(TargetInfo::SignedInt, TI, Builder);
if (TI.getLongWidth() > TI.getIntWidth())
DefineExactWidthIntType(TargetInfo::SignedLong, TI, Builder);
if (TI.getLongLongWidth() > TI.getLongWidth())
DefineExactWidthIntType(TargetInfo::SignedLongLong, TI, Builder);
// Add __builtin_va_list typedef.
Builder.append(TI.getVAListDeclaration());
if (const char *Prefix = TI.getUserLabelPrefix())
Builder.defineMacro("__USER_LABEL_PREFIX__", Prefix);
// Build configuration options. FIXME: these should be controlled by
// command line options or something.
Builder.defineMacro("__FINITE_MATH_ONLY__", "0");
if (LangOpts.GNUInline)
Builder.defineMacro("__GNUC_GNU_INLINE__");
else
Builder.defineMacro("__GNUC_STDC_INLINE__");
if (LangOpts.NoInline)
Builder.defineMacro("__NO_INLINE__");
if (unsigned PICLevel = LangOpts.PICLevel) {
Builder.defineMacro("__PIC__", Twine(PICLevel));
Builder.defineMacro("__pic__", Twine(PICLevel));
}
// Macros to control C99 numerics and <float.h>
Builder.defineMacro("__FLT_EVAL_METHOD__", "0");
Builder.defineMacro("__FLT_RADIX__", "2");
int Dig = PickFP(&TI.getLongDoubleFormat(), -1/*FIXME*/, 17, 21, 33, 36);
Builder.defineMacro("__DECIMAL_DIG__", Twine(Dig));
if (LangOpts.getStackProtector() == LangOptions::SSPOn)
Builder.defineMacro("__SSP__");
else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
Builder.defineMacro("__SSP_ALL__", "2");
if (FEOpts.ProgramAction == frontend::RewriteObjC)
Builder.defineMacro("__weak", "__attribute__((objc_gc(weak)))");
// Define a macro that exists only when using the static analyzer.
if (FEOpts.ProgramAction == frontend::RunAnalysis)
Builder.defineMacro("__clang_analyzer__");
if (LangOpts.FastRelaxedMath)
Builder.defineMacro("__FAST_RELAXED_MATH__");
if (LangOpts.ObjCAutoRefCount) {
Builder.defineMacro("__weak", "__attribute__((objc_ownership(weak)))");
Builder.defineMacro("__strong", "__attribute__((objc_ownership(strong)))");
Builder.defineMacro("__autoreleasing",
"__attribute__((objc_ownership(autoreleasing)))");
Builder.defineMacro("__unsafe_unretained",
"__attribute__((objc_ownership(none)))");
}
// Get other target #defines.
TI.getTargetDefines(LangOpts, Builder);
}
// Initialize the remapping of files to alternative contents, e.g.,
// those specified through other files.
static void InitializeFileRemapping(DiagnosticsEngine &Diags,
SourceManager &SourceMgr,
FileManager &FileMgr,
const PreprocessorOptions &InitOpts) {
// Remap files in the source manager (with buffers).
for (PreprocessorOptions::const_remapped_file_buffer_iterator
Remap = InitOpts.remapped_file_buffer_begin(),
RemapEnd = InitOpts.remapped_file_buffer_end();
Remap != RemapEnd;
++Remap) {
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile = FileMgr.getVirtualFile(Remap->first,
Remap->second->getBufferSize(),
0);
if (!FromFile) {
Diags.Report(diag::err_fe_remap_missing_from_file)
<< Remap->first;
if (!InitOpts.RetainRemappedFileBuffers)
delete Remap->second;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
SourceMgr.overrideFileContents(FromFile, Remap->second,
InitOpts.RetainRemappedFileBuffers);
}
// Remap files in the source manager (with other files).
for (PreprocessorOptions::const_remapped_file_iterator
Remap = InitOpts.remapped_file_begin(),
RemapEnd = InitOpts.remapped_file_end();
Remap != RemapEnd;
++Remap) {
// Find the file that we're mapping to.
const FileEntry *ToFile = FileMgr.getFile(Remap->second);
if (!ToFile) {
Diags.Report(diag::err_fe_remap_missing_to_file)
<< Remap->first << Remap->second;
continue;
}
// Create the file entry for the file that we're mapping from.
const FileEntry *FromFile = FileMgr.getVirtualFile(Remap->first,
ToFile->getSize(), 0);
if (!FromFile) {
Diags.Report(diag::err_fe_remap_missing_from_file)
<< Remap->first;
continue;
}
// Override the contents of the "from" file with the contents of
// the "to" file.
SourceMgr.overrideFileContents(FromFile, ToFile);
}
SourceMgr.setOverridenFilesKeepOriginalName(
InitOpts.RemappedFilesKeepOriginalName);
}
/// InitializePreprocessor - Initialize the preprocessor getting it and the
/// environment ready to process a single file. This returns true on error.
///
void clang::InitializePreprocessor(Preprocessor &PP,
const PreprocessorOptions &InitOpts,
const HeaderSearchOptions &HSOpts,
const FrontendOptions &FEOpts) {
const LangOptions &LangOpts = PP.getLangOptions();
std::string PredefineBuffer;
PredefineBuffer.reserve(4080);
llvm::raw_string_ostream Predefines(PredefineBuffer);
MacroBuilder Builder(Predefines);
InitializeFileRemapping(PP.getDiagnostics(), PP.getSourceManager(),
PP.getFileManager(), InitOpts);
// Specify whether the preprocessor should replace #include/#import with
// module imports when plausible.
PP.setAutoModuleImport(InitOpts.AutoModuleImport);
// Emit line markers for various builtin sections of the file. We don't do
// this in asm preprocessor mode, because "# 4" is not a line marker directive
// in this mode.
if (!PP.getLangOptions().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 3");
// Install things like __POWERPC__, __GNUC__, etc into the macro table.
if (InitOpts.UsePredefines) {
InitializePredefinedMacros(PP.getTargetInfo(), LangOpts, FEOpts, Builder);
// Install definitions to make Objective-C++ ARC work well with various
// C++ Standard Library implementations.
if (LangOpts.ObjC1 && LangOpts.CPlusPlus && LangOpts.ObjCAutoRefCount) {
switch (InitOpts.ObjCXXARCStandardLibrary) {
case ARCXX_nolib:
case ARCXX_libcxx:
break;
case ARCXX_libstdcxx:
AddObjCXXARCLibstdcxxDefines(LangOpts, Builder);
break;
}
}
}
// Even with predefines off, some macros are still predefined.
// These should all be defined in the preprocessor according to the
// current language configuration.
InitializeStandardPredefinedMacros(PP.getTargetInfo(), PP.getLangOptions(),
FEOpts, Builder);
// Add on the predefines from the driver. Wrap in a #line directive to report
// that they come from the command line.
if (!PP.getLangOptions().AsmPreprocessor)
Builder.append("# 1 \"<command line>\" 1");
// Process #define's and #undef's in the order they are given.
for (unsigned i = 0, e = InitOpts.Macros.size(); i != e; ++i) {
if (InitOpts.Macros[i].second) // isUndef
Builder.undefineMacro(InitOpts.Macros[i].first);
else
DefineBuiltinMacro(Builder, InitOpts.Macros[i].first,
PP.getDiagnostics());
}
// If -imacros are specified, include them now. These are processed before
// any -include directives.
for (unsigned i = 0, e = InitOpts.MacroIncludes.size(); i != e; ++i)
AddImplicitIncludeMacros(Builder, InitOpts.MacroIncludes[i],
PP.getFileManager());
// Process -include directives.
for (unsigned i = 0, e = InitOpts.Includes.size(); i != e; ++i) {
const std::string &Path = InitOpts.Includes[i];
if (Path == InitOpts.ImplicitPTHInclude)
AddImplicitIncludePTH(Builder, PP, Path);
else
AddImplicitInclude(Builder, Path, PP.getFileManager());
}
// Exit the command line and go back to <built-in> (2 is LC_LEAVE).
if (!PP.getLangOptions().AsmPreprocessor)
Builder.append("# 1 \"<built-in>\" 2");
// Instruct the preprocessor to skip the preamble.
PP.setSkipMainFilePreamble(InitOpts.PrecompiledPreambleBytes.first,
InitOpts.PrecompiledPreambleBytes.second);
// Copy PredefinedBuffer into the Preprocessor.
PP.setPredefines(Predefines.str());
// Initialize the header search object.
ApplyHeaderSearchOptions(PP.getHeaderSearchInfo(), HSOpts,
PP.getLangOptions(),
PP.getTargetInfo().getTriple());
}