llvm-project/llvm/lib/CodeGen/MachineInstr.cpp

2210 lines
76 KiB
C++

//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Methods common to all machine instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <utility>
using namespace llvm;
static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
if (const MachineBasicBlock *MBB = MI.getParent())
if (const MachineFunction *MF = MBB->getParent())
return MF;
return nullptr;
}
// Try to crawl up to the machine function and get TRI and IntrinsicInfo from
// it.
static void tryToGetTargetInfo(const MachineInstr &MI,
const TargetRegisterInfo *&TRI,
const MachineRegisterInfo *&MRI,
const TargetIntrinsicInfo *&IntrinsicInfo,
const TargetInstrInfo *&TII) {
if (const MachineFunction *MF = getMFIfAvailable(MI)) {
TRI = MF->getSubtarget().getRegisterInfo();
MRI = &MF->getRegInfo();
IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
TII = MF->getSubtarget().getInstrInfo();
}
}
void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
if (MCID->ImplicitDefs)
for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
++ImpDefs)
addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
if (MCID->ImplicitUses)
for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
++ImpUses)
addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
}
/// MachineInstr ctor - This constructor creates a MachineInstr and adds the
/// implicit operands. It reserves space for the number of operands specified by
/// the MCInstrDesc.
MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
DebugLoc dl, bool NoImp)
: MCID(&tid), debugLoc(std::move(dl)) {
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
// Reserve space for the expected number of operands.
if (unsigned NumOps = MCID->getNumOperands() +
MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
CapOperands = OperandCapacity::get(NumOps);
Operands = MF.allocateOperandArray(CapOperands);
}
if (!NoImp)
addImplicitDefUseOperands(MF);
}
/// MachineInstr ctor - Copies MachineInstr arg exactly
///
MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
: MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()) {
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
CapOperands = OperandCapacity::get(MI.getNumOperands());
Operands = MF.allocateOperandArray(CapOperands);
// Copy operands.
for (const MachineOperand &MO : MI.operands())
addOperand(MF, MO);
// Copy all the sensible flags.
setFlags(MI.Flags);
}
/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *MachineInstr::getRegInfo() {
if (MachineBasicBlock *MBB = getParent())
return &MBB->getParent()->getRegInfo();
return nullptr;
}
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands already be on their use lists.
void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
for (MachineOperand &MO : operands())
if (MO.isReg())
MRI.removeRegOperandFromUseList(&MO);
}
/// AddRegOperandsToUseLists - Add all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands not be on their use lists yet.
void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
for (MachineOperand &MO : operands())
if (MO.isReg())
MRI.addRegOperandToUseList(&MO);
}
void MachineInstr::addOperand(const MachineOperand &Op) {
MachineBasicBlock *MBB = getParent();
assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
MachineFunction *MF = MBB->getParent();
assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
addOperand(*MF, Op);
}
/// Move NumOps MachineOperands from Src to Dst, with support for overlapping
/// ranges. If MRI is non-null also update use-def chains.
static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
unsigned NumOps, MachineRegisterInfo *MRI) {
if (MRI)
return MRI->moveOperands(Dst, Src, NumOps);
// MachineOperand is a trivially copyable type so we can just use memmove.
assert(Dst && Src && "Unknown operands");
std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
}
/// addOperand - Add the specified operand to the instruction. If it is an
/// implicit operand, it is added to the end of the operand list. If it is
/// an explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
assert(MCID && "Cannot add operands before providing an instr descriptor");
// Check if we're adding one of our existing operands.
if (&Op >= Operands && &Op < Operands + NumOperands) {
// This is unusual: MI->addOperand(MI->getOperand(i)).
// If adding Op requires reallocating or moving existing operands around,
// the Op reference could go stale. Support it by copying Op.
MachineOperand CopyOp(Op);
return addOperand(MF, CopyOp);
}
// Find the insert location for the new operand. Implicit registers go at
// the end, everything else goes before the implicit regs.
//
// FIXME: Allow mixed explicit and implicit operands on inline asm.
// InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
// implicit-defs, but they must not be moved around. See the FIXME in
// InstrEmitter.cpp.
unsigned OpNo = getNumOperands();
bool isImpReg = Op.isReg() && Op.isImplicit();
if (!isImpReg && !isInlineAsm()) {
while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
--OpNo;
assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
}
}
#ifndef NDEBUG
bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
Op.getType() == MachineOperand::MO_MCSymbol;
// OpNo now points as the desired insertion point. Unless this is a variadic
// instruction, only implicit regs are allowed beyond MCID->getNumOperands().
// RegMask operands go between the explicit and implicit operands.
assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
OpNo < MCID->getNumOperands() || isDebugOp) &&
"Trying to add an operand to a machine instr that is already done!");
#endif
MachineRegisterInfo *MRI = getRegInfo();
// Determine if the Operands array needs to be reallocated.
// Save the old capacity and operand array.
OperandCapacity OldCap = CapOperands;
MachineOperand *OldOperands = Operands;
if (!OldOperands || OldCap.getSize() == getNumOperands()) {
CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
Operands = MF.allocateOperandArray(CapOperands);
// Move the operands before the insertion point.
if (OpNo)
moveOperands(Operands, OldOperands, OpNo, MRI);
}
// Move the operands following the insertion point.
if (OpNo != NumOperands)
moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
MRI);
++NumOperands;
// Deallocate the old operand array.
if (OldOperands != Operands && OldOperands)
MF.deallocateOperandArray(OldCap, OldOperands);
// Copy Op into place. It still needs to be inserted into the MRI use lists.
MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
NewMO->ParentMI = this;
// When adding a register operand, tell MRI about it.
if (NewMO->isReg()) {
// Ensure isOnRegUseList() returns false, regardless of Op's status.
NewMO->Contents.Reg.Prev = nullptr;
// Ignore existing ties. This is not a property that can be copied.
NewMO->TiedTo = 0;
// Add the new operand to MRI, but only for instructions in an MBB.
if (MRI)
MRI->addRegOperandToUseList(NewMO);
// The MCID operand information isn't accurate until we start adding
// explicit operands. The implicit operands are added first, then the
// explicits are inserted before them.
if (!isImpReg) {
// Tie uses to defs as indicated in MCInstrDesc.
if (NewMO->isUse()) {
int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
if (DefIdx != -1)
tieOperands(DefIdx, OpNo);
}
// If the register operand is flagged as early, mark the operand as such.
if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
NewMO->setIsEarlyClobber(true);
}
}
}
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
///
void MachineInstr::RemoveOperand(unsigned OpNo) {
assert(OpNo < getNumOperands() && "Invalid operand number");
untieRegOperand(OpNo);
#ifndef NDEBUG
// Moving tied operands would break the ties.
for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
if (Operands[i].isReg())
assert(!Operands[i].isTied() && "Cannot move tied operands");
#endif
MachineRegisterInfo *MRI = getRegInfo();
if (MRI && Operands[OpNo].isReg())
MRI->removeRegOperandFromUseList(Operands + OpNo);
// Don't call the MachineOperand destructor. A lot of this code depends on
// MachineOperand having a trivial destructor anyway, and adding a call here
// wouldn't make it 'destructor-correct'.
if (unsigned N = NumOperands - 1 - OpNo)
moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
--NumOperands;
}
void MachineInstr::setExtraInfo(MachineFunction &MF,
ArrayRef<MachineMemOperand *> MMOs,
MCSymbol *PreInstrSymbol,
MCSymbol *PostInstrSymbol,
MDNode *HeapAllocMarker) {
bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
int NumPointers =
MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
// Drop all extra info if there is none.
if (NumPointers <= 0) {
Info.clear();
return;
}
// If more than one pointer, then store out of line. Store heap alloc markers
// out of line because PointerSumType cannot hold more than 4 tag types with
// 32-bit pointers.
// FIXME: Maybe we should make the symbols in the extra info mutable?
else if (NumPointers > 1 || HasHeapAllocMarker) {
Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
return;
}
// Otherwise store the single pointer inline.
if (HasPreInstrSymbol)
Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
else if (HasPostInstrSymbol)
Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
else
Info.set<EIIK_MMO>(MMOs[0]);
}
void MachineInstr::dropMemRefs(MachineFunction &MF) {
if (memoperands_empty())
return;
setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
getHeapAllocMarker());
}
void MachineInstr::setMemRefs(MachineFunction &MF,
ArrayRef<MachineMemOperand *> MMOs) {
if (MMOs.empty()) {
dropMemRefs(MF);
return;
}
setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
getHeapAllocMarker());
}
void MachineInstr::addMemOperand(MachineFunction &MF,
MachineMemOperand *MO) {
SmallVector<MachineMemOperand *, 2> MMOs;
MMOs.append(memoperands_begin(), memoperands_end());
MMOs.push_back(MO);
setMemRefs(MF, MMOs);
}
void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
if (this == &MI)
// Nothing to do for a self-clone!
return;
assert(&MF == MI.getMF() &&
"Invalid machine functions when cloning memory refrences!");
// See if we can just steal the extra info already allocated for the
// instruction. We can do this whenever the pre- and post-instruction symbols
// are the same (including null).
if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
getPostInstrSymbol() == MI.getPostInstrSymbol() &&
getHeapAllocMarker() == MI.getHeapAllocMarker()) {
Info = MI.Info;
return;
}
// Otherwise, fall back on a copy-based clone.
setMemRefs(MF, MI.memoperands());
}
/// Check to see if the MMOs pointed to by the two MemRefs arrays are
/// identical.
static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
ArrayRef<MachineMemOperand *> RHS) {
if (LHS.size() != RHS.size())
return false;
auto LHSPointees = make_pointee_range(LHS);
auto RHSPointees = make_pointee_range(RHS);
return std::equal(LHSPointees.begin(), LHSPointees.end(),
RHSPointees.begin());
}
void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
ArrayRef<const MachineInstr *> MIs) {
// Try handling easy numbers of MIs with simpler mechanisms.
if (MIs.empty()) {
dropMemRefs(MF);
return;
}
if (MIs.size() == 1) {
cloneMemRefs(MF, *MIs[0]);
return;
}
// Because an empty memoperands list provides *no* information and must be
// handled conservatively (assuming the instruction can do anything), the only
// way to merge with it is to drop all other memoperands.
if (MIs[0]->memoperands_empty()) {
dropMemRefs(MF);
return;
}
// Handle the general case.
SmallVector<MachineMemOperand *, 2> MergedMMOs;
// Start with the first instruction.
assert(&MF == MIs[0]->getMF() &&
"Invalid machine functions when cloning memory references!");
MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
// Now walk all the other instructions and accumulate any different MMOs.
for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
assert(&MF == MI.getMF() &&
"Invalid machine functions when cloning memory references!");
// Skip MIs with identical operands to the first. This is a somewhat
// arbitrary hack but will catch common cases without being quadratic.
// TODO: We could fully implement merge semantics here if needed.
if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
continue;
// Because an empty memoperands list provides *no* information and must be
// handled conservatively (assuming the instruction can do anything), the
// only way to merge with it is to drop all other memoperands.
if (MI.memoperands_empty()) {
dropMemRefs(MF);
return;
}
// Otherwise accumulate these into our temporary buffer of the merged state.
MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
}
setMemRefs(MF, MergedMMOs);
}
void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
// Do nothing if old and new symbols are the same.
if (Symbol == getPreInstrSymbol())
return;
// If there was only one symbol and we're removing it, just clear info.
if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
Info.clear();
return;
}
setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
getHeapAllocMarker());
}
void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
// Do nothing if old and new symbols are the same.
if (Symbol == getPostInstrSymbol())
return;
// If there was only one symbol and we're removing it, just clear info.
if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
Info.clear();
return;
}
setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
getHeapAllocMarker());
}
void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
// Do nothing if old and new symbols are the same.
if (Marker == getHeapAllocMarker())
return;
setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
Marker);
}
void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
const MachineInstr &MI) {
if (this == &MI)
// Nothing to do for a self-clone!
return;
assert(&MF == MI.getMF() &&
"Invalid machine functions when cloning instruction symbols!");
setPreInstrSymbol(MF, MI.getPreInstrSymbol());
setPostInstrSymbol(MF, MI.getPostInstrSymbol());
setHeapAllocMarker(MF, MI.getHeapAllocMarker());
}
uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
// For now, the just return the union of the flags. If the flags get more
// complicated over time, we might need more logic here.
return getFlags() | Other.getFlags();
}
uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
uint16_t MIFlags = 0;
// Copy the wrapping flags.
if (const OverflowingBinaryOperator *OB =
dyn_cast<OverflowingBinaryOperator>(&I)) {
if (OB->hasNoSignedWrap())
MIFlags |= MachineInstr::MIFlag::NoSWrap;
if (OB->hasNoUnsignedWrap())
MIFlags |= MachineInstr::MIFlag::NoUWrap;
}
// Copy the exact flag.
if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
if (PE->isExact())
MIFlags |= MachineInstr::MIFlag::IsExact;
// Copy the fast-math flags.
if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
const FastMathFlags Flags = FP->getFastMathFlags();
if (Flags.noNaNs())
MIFlags |= MachineInstr::MIFlag::FmNoNans;
if (Flags.noInfs())
MIFlags |= MachineInstr::MIFlag::FmNoInfs;
if (Flags.noSignedZeros())
MIFlags |= MachineInstr::MIFlag::FmNsz;
if (Flags.allowReciprocal())
MIFlags |= MachineInstr::MIFlag::FmArcp;
if (Flags.allowContract())
MIFlags |= MachineInstr::MIFlag::FmContract;
if (Flags.approxFunc())
MIFlags |= MachineInstr::MIFlag::FmAfn;
if (Flags.allowReassoc())
MIFlags |= MachineInstr::MIFlag::FmReassoc;
}
return MIFlags;
}
void MachineInstr::copyIRFlags(const Instruction &I) {
Flags = copyFlagsFromInstruction(I);
}
bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
assert(!isBundledWithPred() && "Must be called on bundle header");
for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
if (MII->getDesc().getFlags() & Mask) {
if (Type == AnyInBundle)
return true;
} else {
if (Type == AllInBundle && !MII->isBundle())
return false;
}
// This was the last instruction in the bundle.
if (!MII->isBundledWithSucc())
return Type == AllInBundle;
}
}
bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
MICheckType Check) const {
// If opcodes or number of operands are not the same then the two
// instructions are obviously not identical.
if (Other.getOpcode() != getOpcode() ||
Other.getNumOperands() != getNumOperands())
return false;
if (isBundle()) {
// We have passed the test above that both instructions have the same
// opcode, so we know that both instructions are bundles here. Let's compare
// MIs inside the bundle.
assert(Other.isBundle() && "Expected that both instructions are bundles.");
MachineBasicBlock::const_instr_iterator I1 = getIterator();
MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
// Loop until we analysed the last intruction inside at least one of the
// bundles.
while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
++I1;
++I2;
if (!I1->isIdenticalTo(*I2, Check))
return false;
}
// If we've reached the end of just one of the two bundles, but not both,
// the instructions are not identical.
if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
return false;
}
// Check operands to make sure they match.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
const MachineOperand &OMO = Other.getOperand(i);
if (!MO.isReg()) {
if (!MO.isIdenticalTo(OMO))
return false;
continue;
}
// Clients may or may not want to ignore defs when testing for equality.
// For example, machine CSE pass only cares about finding common
// subexpressions, so it's safe to ignore virtual register defs.
if (MO.isDef()) {
if (Check == IgnoreDefs)
continue;
else if (Check == IgnoreVRegDefs) {
if (!Register::isVirtualRegister(MO.getReg()) ||
!Register::isVirtualRegister(OMO.getReg()))
if (!MO.isIdenticalTo(OMO))
return false;
} else {
if (!MO.isIdenticalTo(OMO))
return false;
if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
return false;
}
} else {
if (!MO.isIdenticalTo(OMO))
return false;
if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
return false;
}
}
// If DebugLoc does not match then two debug instructions are not identical.
if (isDebugInstr())
if (getDebugLoc() && Other.getDebugLoc() &&
getDebugLoc() != Other.getDebugLoc())
return false;
return true;
}
const MachineFunction *MachineInstr::getMF() const {
return getParent()->getParent();
}
MachineInstr *MachineInstr::removeFromParent() {
assert(getParent() && "Not embedded in a basic block!");
return getParent()->remove(this);
}
MachineInstr *MachineInstr::removeFromBundle() {
assert(getParent() && "Not embedded in a basic block!");
return getParent()->remove_instr(this);
}
void MachineInstr::eraseFromParent() {
assert(getParent() && "Not embedded in a basic block!");
getParent()->erase(this);
}
void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
assert(getParent() && "Not embedded in a basic block!");
MachineBasicBlock *MBB = getParent();
MachineFunction *MF = MBB->getParent();
assert(MF && "Not embedded in a function!");
MachineInstr *MI = (MachineInstr *)this;
MachineRegisterInfo &MRI = MF->getRegInfo();
for (const MachineOperand &MO : MI->operands()) {
if (!MO.isReg() || !MO.isDef())
continue;
Register Reg = MO.getReg();
if (!Reg.isVirtual())
continue;
MRI.markUsesInDebugValueAsUndef(Reg);
}
MI->eraseFromParent();
}
void MachineInstr::eraseFromBundle() {
assert(getParent() && "Not embedded in a basic block!");
getParent()->erase_instr(this);
}
bool MachineInstr::isCandidateForCallSiteEntry() const {
if (!isCall(MachineInstr::IgnoreBundle))
return false;
switch (getOpcode()) {
case TargetOpcode::PATCHABLE_EVENT_CALL:
case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
case TargetOpcode::PATCHPOINT:
case TargetOpcode::STACKMAP:
case TargetOpcode::STATEPOINT:
return false;
}
return true;
}
unsigned MachineInstr::getNumExplicitOperands() const {
unsigned NumOperands = MCID->getNumOperands();
if (!MCID->isVariadic())
return NumOperands;
for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
const MachineOperand &MO = getOperand(I);
// The operands must always be in the following order:
// - explicit reg defs,
// - other explicit operands (reg uses, immediates, etc.),
// - implicit reg defs
// - implicit reg uses
if (MO.isReg() && MO.isImplicit())
break;
++NumOperands;
}
return NumOperands;
}
unsigned MachineInstr::getNumExplicitDefs() const {
unsigned NumDefs = MCID->getNumDefs();
if (!MCID->isVariadic())
return NumDefs;
for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
const MachineOperand &MO = getOperand(I);
if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
break;
++NumDefs;
}
return NumDefs;
}
void MachineInstr::bundleWithPred() {
assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
setFlag(BundledPred);
MachineBasicBlock::instr_iterator Pred = getIterator();
--Pred;
assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
Pred->setFlag(BundledSucc);
}
void MachineInstr::bundleWithSucc() {
assert(!isBundledWithSucc() && "MI is already bundled with its successor");
setFlag(BundledSucc);
MachineBasicBlock::instr_iterator Succ = getIterator();
++Succ;
assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
Succ->setFlag(BundledPred);
}
void MachineInstr::unbundleFromPred() {
assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
clearFlag(BundledPred);
MachineBasicBlock::instr_iterator Pred = getIterator();
--Pred;
assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
Pred->clearFlag(BundledSucc);
}
void MachineInstr::unbundleFromSucc() {
assert(isBundledWithSucc() && "MI isn't bundled with its successor");
clearFlag(BundledSucc);
MachineBasicBlock::instr_iterator Succ = getIterator();
++Succ;
assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
Succ->clearFlag(BundledPred);
}
bool MachineInstr::isStackAligningInlineAsm() const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
return true;
}
return false;
}
InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
}
int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
unsigned *GroupNo) const {
assert(isInlineAsm() && "Expected an inline asm instruction");
assert(OpIdx < getNumOperands() && "OpIdx out of range");
// Ignore queries about the initial operands.
if (OpIdx < InlineAsm::MIOp_FirstOperand)
return -1;
unsigned Group = 0;
unsigned NumOps;
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
i += NumOps) {
const MachineOperand &FlagMO = getOperand(i);
// If we reach the implicit register operands, stop looking.
if (!FlagMO.isImm())
return -1;
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
if (i + NumOps > OpIdx) {
if (GroupNo)
*GroupNo = Group;
return i;
}
++Group;
}
return -1;
}
const DILabel *MachineInstr::getDebugLabel() const {
assert(isDebugLabel() && "not a DBG_LABEL");
return cast<DILabel>(getOperand(0).getMetadata());
}
const DILocalVariable *MachineInstr::getDebugVariable() const {
assert(isDebugValue() && "not a DBG_VALUE");
return cast<DILocalVariable>(getOperand(2).getMetadata());
}
const DIExpression *MachineInstr::getDebugExpression() const {
assert(isDebugValue() && "not a DBG_VALUE");
return cast<DIExpression>(getOperand(3).getMetadata());
}
bool MachineInstr::isDebugEntryValue() const {
return isDebugValue() && getDebugExpression()->isEntryValue();
}
const TargetRegisterClass*
MachineInstr::getRegClassConstraint(unsigned OpIdx,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const {
assert(getParent() && "Can't have an MBB reference here!");
assert(getMF() && "Can't have an MF reference here!");
const MachineFunction &MF = *getMF();
// Most opcodes have fixed constraints in their MCInstrDesc.
if (!isInlineAsm())
return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
if (!getOperand(OpIdx).isReg())
return nullptr;
// For tied uses on inline asm, get the constraint from the def.
unsigned DefIdx;
if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
OpIdx = DefIdx;
// Inline asm stores register class constraints in the flag word.
int FlagIdx = findInlineAsmFlagIdx(OpIdx);
if (FlagIdx < 0)
return nullptr;
unsigned Flag = getOperand(FlagIdx).getImm();
unsigned RCID;
if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
InlineAsm::hasRegClassConstraint(Flag, RCID))
return TRI->getRegClass(RCID);
// Assume that all registers in a memory operand are pointers.
if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
return TRI->getPointerRegClass(MF);
return nullptr;
}
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI, bool ExploreBundle) const {
// Check every operands inside the bundle if we have
// been asked to.
if (ExploreBundle)
for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
++OpndIt)
CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
else
// Otherwise, just check the current operands.
for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
return CurRC;
}
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
assert(CurRC && "Invalid initial register class");
// Check if Reg is constrained by some of its use/def from MI.
const MachineOperand &MO = getOperand(OpIdx);
if (!MO.isReg() || MO.getReg() != Reg)
return CurRC;
// If yes, accumulate the constraints through the operand.
return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
}
const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
unsigned OpIdx, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
const MachineOperand &MO = getOperand(OpIdx);
assert(MO.isReg() &&
"Cannot get register constraints for non-register operand");
assert(CurRC && "Invalid initial register class");
if (unsigned SubIdx = MO.getSubReg()) {
if (OpRC)
CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
else
CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
} else if (OpRC)
CurRC = TRI->getCommonSubClass(CurRC, OpRC);
return CurRC;
}
/// Return the number of instructions inside the MI bundle, not counting the
/// header instruction.
unsigned MachineInstr::getBundleSize() const {
MachineBasicBlock::const_instr_iterator I = getIterator();
unsigned Size = 0;
while (I->isBundledWithSucc()) {
++Size;
++I;
}
return Size;
}
/// Returns true if the MachineInstr has an implicit-use operand of exactly
/// the given register (not considering sub/super-registers).
bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
return true;
}
return false;
}
/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int MachineInstr::findRegisterUseOperandIdx(
Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
Register MOReg = MO.getReg();
if (!MOReg)
continue;
if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
if (!isKill || MO.isKill())
return i;
}
return -1;
}
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
std::pair<bool,bool>
MachineInstr::readsWritesVirtualRegister(Register Reg,
SmallVectorImpl<unsigned> *Ops) const {
bool PartDef = false; // Partial redefine.
bool FullDef = false; // Full define.
bool Use = false;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (!MO.isReg() || MO.getReg() != Reg)
continue;
if (Ops)
Ops->push_back(i);
if (MO.isUse())
Use |= !MO.isUndef();
else if (MO.getSubReg() && !MO.isUndef())
// A partial def undef doesn't count as reading the register.
PartDef = true;
else
FullDef = true;
}
// A partial redefine uses Reg unless there is also a full define.
return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
}
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
/// also checks if there is a def of a super-register.
int
MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
const TargetRegisterInfo *TRI) const {
bool isPhys = Register::isPhysicalRegister(Reg);
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
// Accept regmask operands when Overlap is set.
// Ignore them when looking for a specific def operand (Overlap == false).
if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
return i;
if (!MO.isReg() || !MO.isDef())
continue;
Register MOReg = MO.getReg();
bool Found = (MOReg == Reg);
if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
if (Overlap)
Found = TRI->regsOverlap(MOReg, Reg);
else
Found = TRI->isSubRegister(MOReg, Reg);
}
if (Found && (!isDead || MO.isDead()))
return i;
}
return -1;
}
/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int MachineInstr::findFirstPredOperandIdx() const {
// Don't call MCID.findFirstPredOperandIdx() because this variant
// is sometimes called on an instruction that's not yet complete, and
// so the number of operands is less than the MCID indicates. In
// particular, the PTX target does this.
const MCInstrDesc &MCID = getDesc();
if (MCID.isPredicable()) {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (MCID.OpInfo[i].isPredicate())
return i;
}
return -1;
}
// MachineOperand::TiedTo is 4 bits wide.
const unsigned TiedMax = 15;
/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
///
/// Use and def operands can be tied together, indicated by a non-zero TiedTo
/// field. TiedTo can have these values:
///
/// 0: Operand is not tied to anything.
/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
/// TiedMax: Tied to an operand >= TiedMax-1.
///
/// The tied def must be one of the first TiedMax operands on a normal
/// instruction. INLINEASM instructions allow more tied defs.
///
void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
MachineOperand &DefMO = getOperand(DefIdx);
MachineOperand &UseMO = getOperand(UseIdx);
assert(DefMO.isDef() && "DefIdx must be a def operand");
assert(UseMO.isUse() && "UseIdx must be a use operand");
assert(!DefMO.isTied() && "Def is already tied to another use");
assert(!UseMO.isTied() && "Use is already tied to another def");
if (DefIdx < TiedMax)
UseMO.TiedTo = DefIdx + 1;
else {
// Inline asm can use the group descriptors to find tied operands, but on
// normal instruction, the tied def must be within the first TiedMax
// operands.
assert(isInlineAsm() && "DefIdx out of range");
UseMO.TiedTo = TiedMax;
}
// UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
}
/// Given the index of a tied register operand, find the operand it is tied to.
/// Defs are tied to uses and vice versa. Returns the index of the tied operand
/// which must exist.
unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
const MachineOperand &MO = getOperand(OpIdx);
assert(MO.isTied() && "Operand isn't tied");
// Normally TiedTo is in range.
if (MO.TiedTo < TiedMax)
return MO.TiedTo - 1;
// Uses on normal instructions can be out of range.
if (!isInlineAsm()) {
// Normal tied defs must be in the 0..TiedMax-1 range.
if (MO.isUse())
return TiedMax - 1;
// MO is a def. Search for the tied use.
for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
const MachineOperand &UseMO = getOperand(i);
if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
return i;
}
llvm_unreachable("Can't find tied use");
}
// Now deal with inline asm by parsing the operand group descriptor flags.
// Find the beginning of each operand group.
SmallVector<unsigned, 8> GroupIdx;
unsigned OpIdxGroup = ~0u;
unsigned NumOps;
for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
i += NumOps) {
const MachineOperand &FlagMO = getOperand(i);
assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
unsigned CurGroup = GroupIdx.size();
GroupIdx.push_back(i);
NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
// OpIdx belongs to this operand group.
if (OpIdx > i && OpIdx < i + NumOps)
OpIdxGroup = CurGroup;
unsigned TiedGroup;
if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
continue;
// Operands in this group are tied to operands in TiedGroup which must be
// earlier. Find the number of operands between the two groups.
unsigned Delta = i - GroupIdx[TiedGroup];
// OpIdx is a use tied to TiedGroup.
if (OpIdxGroup == CurGroup)
return OpIdx - Delta;
// OpIdx is a def tied to this use group.
if (OpIdxGroup == TiedGroup)
return OpIdx + Delta;
}
llvm_unreachable("Invalid tied operand on inline asm");
}
/// clearKillInfo - Clears kill flags on all operands.
///
void MachineInstr::clearKillInfo() {
for (MachineOperand &MO : operands()) {
if (MO.isReg() && MO.isUse())
MO.setIsKill(false);
}
}
void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
unsigned SubIdx,
const TargetRegisterInfo &RegInfo) {
if (Register::isPhysicalRegister(ToReg)) {
if (SubIdx)
ToReg = RegInfo.getSubReg(ToReg, SubIdx);
for (MachineOperand &MO : operands()) {
if (!MO.isReg() || MO.getReg() != FromReg)
continue;
MO.substPhysReg(ToReg, RegInfo);
}
} else {
for (MachineOperand &MO : operands()) {
if (!MO.isReg() || MO.getReg() != FromReg)
continue;
MO.substVirtReg(ToReg, SubIdx, RegInfo);
}
}
}
/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
// Ignore stuff that we obviously can't move.
//
// Treat volatile loads as stores. This is not strictly necessary for
// volatiles, but it is required for atomic loads. It is not allowed to move
// a load across an atomic load with Ordering > Monotonic.
if (mayStore() || isCall() || isPHI() ||
(mayLoad() && hasOrderedMemoryRef())) {
SawStore = true;
return false;
}
if (isPosition() || isDebugInstr() || isTerminator() ||
mayRaiseFPException() || hasUnmodeledSideEffects())
return false;
// See if this instruction does a load. If so, we have to guarantee that the
// loaded value doesn't change between the load and the its intended
// destination. The check for isInvariantLoad gives the targe the chance to
// classify the load as always returning a constant, e.g. a constant pool
// load.
if (mayLoad() && !isDereferenceableInvariantLoad(AA))
// Otherwise, this is a real load. If there is a store between the load and
// end of block, we can't move it.
return !SawStore;
return true;
}
bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
bool UseTBAA) const {
const MachineFunction *MF = getMF();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
const MachineFrameInfo &MFI = MF->getFrameInfo();
// If neither instruction stores to memory, they can't alias in any
// meaningful way, even if they read from the same address.
if (!mayStore() && !Other.mayStore())
return false;
// Let the target decide if memory accesses cannot possibly overlap.
if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
return false;
// FIXME: Need to handle multiple memory operands to support all targets.
if (!hasOneMemOperand() || !Other.hasOneMemOperand())
return true;
MachineMemOperand *MMOa = *memoperands_begin();
MachineMemOperand *MMOb = *Other.memoperands_begin();
// The following interface to AA is fashioned after DAGCombiner::isAlias
// and operates with MachineMemOperand offset with some important
// assumptions:
// - LLVM fundamentally assumes flat address spaces.
// - MachineOperand offset can *only* result from legalization and
// cannot affect queries other than the trivial case of overlap
// checking.
// - These offsets never wrap and never step outside
// of allocated objects.
// - There should never be any negative offsets here.
//
// FIXME: Modify API to hide this math from "user"
// Even before we go to AA we can reason locally about some
// memory objects. It can save compile time, and possibly catch some
// corner cases not currently covered.
int64_t OffsetA = MMOa->getOffset();
int64_t OffsetB = MMOb->getOffset();
int64_t MinOffset = std::min(OffsetA, OffsetB);
uint64_t WidthA = MMOa->getSize();
uint64_t WidthB = MMOb->getSize();
bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
const Value *ValA = MMOa->getValue();
const Value *ValB = MMOb->getValue();
bool SameVal = (ValA && ValB && (ValA == ValB));
if (!SameVal) {
const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
if (PSVa && ValB && !PSVa->mayAlias(&MFI))
return false;
if (PSVb && ValA && !PSVb->mayAlias(&MFI))
return false;
if (PSVa && PSVb && (PSVa == PSVb))
SameVal = true;
}
if (SameVal) {
if (!KnownWidthA || !KnownWidthB)
return true;
int64_t MaxOffset = std::max(OffsetA, OffsetB);
int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
return (MinOffset + LowWidth > MaxOffset);
}
if (!AA)
return true;
if (!ValA || !ValB)
return true;
assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset
: MemoryLocation::UnknownSize;
int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset
: MemoryLocation::UnknownSize;
AliasResult AAResult = AA->alias(
MemoryLocation(ValA, OverlapA,
UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
MemoryLocation(ValB, OverlapB,
UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
return (AAResult != NoAlias);
}
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no ordered
/// memory references.
bool MachineInstr::hasOrderedMemoryRef() const {
// An instruction known never to access memory won't have a volatile access.
if (!mayStore() &&
!mayLoad() &&
!isCall() &&
!hasUnmodeledSideEffects())
return false;
// Otherwise, if the instruction has no memory reference information,
// conservatively assume it wasn't preserved.
if (memoperands_empty())
return true;
// Check if any of our memory operands are ordered.
return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
return !MMO->isUnordered();
});
}
/// isDereferenceableInvariantLoad - Return true if this instruction will never
/// trap and is loading from a location whose value is invariant across a run of
/// this function.
bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
// If the instruction doesn't load at all, it isn't an invariant load.
if (!mayLoad())
return false;
// If the instruction has lost its memoperands, conservatively assume that
// it may not be an invariant load.
if (memoperands_empty())
return false;
const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
for (MachineMemOperand *MMO : memoperands()) {
if (!MMO->isUnordered())
// If the memory operand has ordering side effects, we can't move the
// instruction. Such an instruction is technically an invariant load,
// but the caller code would need updated to expect that.
return false;
if (MMO->isStore()) return false;
if (MMO->isInvariant() && MMO->isDereferenceable())
continue;
// A load from a constant PseudoSourceValue is invariant.
if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
if (PSV->isConstant(&MFI))
continue;
if (const Value *V = MMO->getValue()) {
// If we have an AliasAnalysis, ask it whether the memory is constant.
if (AA &&
AA->pointsToConstantMemory(
MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
continue;
}
// Otherwise assume conservatively.
return false;
}
// Everything checks out.
return true;
}
/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned MachineInstr::isConstantValuePHI() const {
if (!isPHI())
return 0;
assert(getNumOperands() >= 3 &&
"It's illegal to have a PHI without source operands");
Register Reg = getOperand(1).getReg();
for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
if (getOperand(i).getReg() != Reg)
return 0;
return Reg;
}
bool MachineInstr::hasUnmodeledSideEffects() const {
if (hasProperty(MCID::UnmodeledSideEffects))
return true;
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
return true;
}
return false;
}
bool MachineInstr::isLoadFoldBarrier() const {
return mayStore() || isCall() || hasUnmodeledSideEffects();
}
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool MachineInstr::allDefsAreDead() const {
for (const MachineOperand &MO : operands()) {
if (!MO.isReg() || MO.isUse())
continue;
if (!MO.isDead())
return false;
}
return true;
}
/// copyImplicitOps - Copy implicit register operands from specified
/// instruction to this instruction.
void MachineInstr::copyImplicitOps(MachineFunction &MF,
const MachineInstr &MI) {
for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands();
i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
addOperand(MF, MO);
}
}
bool MachineInstr::hasComplexRegisterTies() const {
const MCInstrDesc &MCID = getDesc();
for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
const auto &Operand = getOperand(I);
if (!Operand.isReg() || Operand.isDef())
// Ignore the defined registers as MCID marks only the uses as tied.
continue;
int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
if (ExpectedTiedIdx != TiedIdx)
return true;
}
return false;
}
LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
const MachineRegisterInfo &MRI) const {
const MachineOperand &Op = getOperand(OpIdx);
if (!Op.isReg())
return LLT{};
if (isVariadic() || OpIdx >= getNumExplicitOperands())
return MRI.getType(Op.getReg());
auto &OpInfo = getDesc().OpInfo[OpIdx];
if (!OpInfo.isGenericType())
return MRI.getType(Op.getReg());
if (PrintedTypes[OpInfo.getGenericTypeIndex()])
return LLT{};
LLT TypeToPrint = MRI.getType(Op.getReg());
// Don't mark the type index printed if it wasn't actually printed: maybe
// another operand with the same type index has an actual type attached:
if (TypeToPrint.isValid())
PrintedTypes.set(OpInfo.getGenericTypeIndex());
return TypeToPrint;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MachineInstr::dump() const {
dbgs() << " ";
print(dbgs());
}
#endif
void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
bool SkipDebugLoc, bool AddNewLine,
const TargetInstrInfo *TII) const {
const Module *M = nullptr;
const Function *F = nullptr;
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
F = &MF->getFunction();
M = F->getParent();
if (!TII)
TII = MF->getSubtarget().getInstrInfo();
}
ModuleSlotTracker MST(M);
if (F)
MST.incorporateFunction(*F);
print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
}
void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
bool AddNewLine, const TargetInstrInfo *TII) const {
// We can be a bit tidier if we know the MachineFunction.
const MachineFunction *MF = nullptr;
const TargetRegisterInfo *TRI = nullptr;
const MachineRegisterInfo *MRI = nullptr;
const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
if (isCFIInstruction())
assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
SmallBitVector PrintedTypes(8);
bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
auto getTiedOperandIdx = [&](unsigned OpIdx) {
if (!ShouldPrintRegisterTies)
return 0U;
const MachineOperand &MO = getOperand(OpIdx);
if (MO.isReg() && MO.isTied() && !MO.isDef())
return findTiedOperandIdx(OpIdx);
return 0U;
};
unsigned StartOp = 0;
unsigned e = getNumOperands();
// Print explicitly defined operands on the left of an assignment syntax.
while (StartOp < e) {
const MachineOperand &MO = getOperand(StartOp);
if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
break;
if (StartOp != 0)
OS << ", ";
LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
++StartOp;
}
if (StartOp != 0)
OS << " = ";
if (getFlag(MachineInstr::FrameSetup))
OS << "frame-setup ";
if (getFlag(MachineInstr::FrameDestroy))
OS << "frame-destroy ";
if (getFlag(MachineInstr::FmNoNans))
OS << "nnan ";
if (getFlag(MachineInstr::FmNoInfs))
OS << "ninf ";
if (getFlag(MachineInstr::FmNsz))
OS << "nsz ";
if (getFlag(MachineInstr::FmArcp))
OS << "arcp ";
if (getFlag(MachineInstr::FmContract))
OS << "contract ";
if (getFlag(MachineInstr::FmAfn))
OS << "afn ";
if (getFlag(MachineInstr::FmReassoc))
OS << "reassoc ";
if (getFlag(MachineInstr::NoUWrap))
OS << "nuw ";
if (getFlag(MachineInstr::NoSWrap))
OS << "nsw ";
if (getFlag(MachineInstr::IsExact))
OS << "exact ";
if (getFlag(MachineInstr::NoFPExcept))
OS << "nofpexcept ";
// Print the opcode name.
if (TII)
OS << TII->getName(getOpcode());
else
OS << "UNKNOWN";
if (SkipOpers)
return;
// Print the rest of the operands.
bool FirstOp = true;
unsigned AsmDescOp = ~0u;
unsigned AsmOpCount = 0;
if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
// Print asm string.
OS << " ";
const unsigned OpIdx = InlineAsm::MIOp_AsmString;
LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
ShouldPrintRegisterTies, TiedOperandIdx, TRI,
IntrinsicInfo);
// Print HasSideEffects, MayLoad, MayStore, IsAlignStack
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
OS << " [sideeffect]";
if (ExtraInfo & InlineAsm::Extra_MayLoad)
OS << " [mayload]";
if (ExtraInfo & InlineAsm::Extra_MayStore)
OS << " [maystore]";
if (ExtraInfo & InlineAsm::Extra_IsConvergent)
OS << " [isconvergent]";
if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
OS << " [alignstack]";
if (getInlineAsmDialect() == InlineAsm::AD_ATT)
OS << " [attdialect]";
if (getInlineAsmDialect() == InlineAsm::AD_Intel)
OS << " [inteldialect]";
StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
FirstOp = false;
}
for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
const MachineOperand &MO = getOperand(i);
if (FirstOp) FirstOp = false; else OS << ",";
OS << " ";
if (isDebugValue() && MO.isMetadata()) {
// Pretty print DBG_VALUE instructions.
auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
if (DIV && !DIV->getName().empty())
OS << "!\"" << DIV->getName() << '\"';
else {
LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
unsigned TiedOperandIdx = getTiedOperandIdx(i);
MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
}
} else if (isDebugLabel() && MO.isMetadata()) {
// Pretty print DBG_LABEL instructions.
auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
if (DIL && !DIL->getName().empty())
OS << "\"" << DIL->getName() << '\"';
else {
LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
unsigned TiedOperandIdx = getTiedOperandIdx(i);
MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
}
} else if (i == AsmDescOp && MO.isImm()) {
// Pretty print the inline asm operand descriptor.
OS << '$' << AsmOpCount++;
unsigned Flag = MO.getImm();
switch (InlineAsm::getKind(Flag)) {
case InlineAsm::Kind_RegUse: OS << ":[reguse"; break;
case InlineAsm::Kind_RegDef: OS << ":[regdef"; break;
case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
case InlineAsm::Kind_Clobber: OS << ":[clobber"; break;
case InlineAsm::Kind_Imm: OS << ":[imm"; break;
case InlineAsm::Kind_Mem: OS << ":[mem"; break;
default: OS << ":[??" << InlineAsm::getKind(Flag); break;
}
unsigned RCID = 0;
if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
InlineAsm::hasRegClassConstraint(Flag, RCID)) {
if (TRI) {
OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
} else
OS << ":RC" << RCID;
}
if (InlineAsm::isMemKind(Flag)) {
unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
switch (MCID) {
case InlineAsm::Constraint_es: OS << ":es"; break;
case InlineAsm::Constraint_i: OS << ":i"; break;
case InlineAsm::Constraint_m: OS << ":m"; break;
case InlineAsm::Constraint_o: OS << ":o"; break;
case InlineAsm::Constraint_v: OS << ":v"; break;
case InlineAsm::Constraint_Q: OS << ":Q"; break;
case InlineAsm::Constraint_R: OS << ":R"; break;
case InlineAsm::Constraint_S: OS << ":S"; break;
case InlineAsm::Constraint_T: OS << ":T"; break;
case InlineAsm::Constraint_Um: OS << ":Um"; break;
case InlineAsm::Constraint_Un: OS << ":Un"; break;
case InlineAsm::Constraint_Uq: OS << ":Uq"; break;
case InlineAsm::Constraint_Us: OS << ":Us"; break;
case InlineAsm::Constraint_Ut: OS << ":Ut"; break;
case InlineAsm::Constraint_Uv: OS << ":Uv"; break;
case InlineAsm::Constraint_Uy: OS << ":Uy"; break;
case InlineAsm::Constraint_X: OS << ":X"; break;
case InlineAsm::Constraint_Z: OS << ":Z"; break;
case InlineAsm::Constraint_ZC: OS << ":ZC"; break;
case InlineAsm::Constraint_Zy: OS << ":Zy"; break;
default: OS << ":?"; break;
}
}
unsigned TiedTo = 0;
if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
OS << " tiedto:$" << TiedTo;
OS << ']';
// Compute the index of the next operand descriptor.
AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
} else {
LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
unsigned TiedOperandIdx = getTiedOperandIdx(i);
if (MO.isImm() && isOperandSubregIdx(i))
MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
else
MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
}
}
// Print any optional symbols attached to this instruction as-if they were
// operands.
if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
if (!FirstOp) {
FirstOp = false;
OS << ',';
}
OS << " pre-instr-symbol ";
MachineOperand::printSymbol(OS, *PreInstrSymbol);
}
if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
if (!FirstOp) {
FirstOp = false;
OS << ',';
}
OS << " post-instr-symbol ";
MachineOperand::printSymbol(OS, *PostInstrSymbol);
}
if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
if (!FirstOp) {
FirstOp = false;
OS << ',';
}
OS << " heap-alloc-marker ";
HeapAllocMarker->printAsOperand(OS, MST);
}
if (!SkipDebugLoc) {
if (const DebugLoc &DL = getDebugLoc()) {
if (!FirstOp)
OS << ',';
OS << " debug-location ";
DL->printAsOperand(OS, MST);
}
}
if (!memoperands_empty()) {
SmallVector<StringRef, 0> SSNs;
const LLVMContext *Context = nullptr;
std::unique_ptr<LLVMContext> CtxPtr;
const MachineFrameInfo *MFI = nullptr;
if (const MachineFunction *MF = getMFIfAvailable(*this)) {
MFI = &MF->getFrameInfo();
Context = &MF->getFunction().getContext();
} else {
CtxPtr = std::make_unique<LLVMContext>();
Context = CtxPtr.get();
}
OS << " :: ";
bool NeedComma = false;
for (const MachineMemOperand *Op : memoperands()) {
if (NeedComma)
OS << ", ";
Op->print(OS, MST, SSNs, *Context, MFI, TII);
NeedComma = true;
}
}
if (SkipDebugLoc)
return;
bool HaveSemi = false;
// Print debug location information.
if (const DebugLoc &DL = getDebugLoc()) {
if (!HaveSemi) {
OS << ';';
HaveSemi = true;
}
OS << ' ';
DL.print(OS);
}
// Print extra comments for DEBUG_VALUE.
if (isDebugValue() && getOperand(e - 2).isMetadata()) {
if (!HaveSemi) {
OS << ";";
HaveSemi = true;
}
auto *DV = cast<DILocalVariable>(getOperand(e - 2).getMetadata());
OS << " line no:" << DV->getLine();
if (auto *InlinedAt = debugLoc->getInlinedAt()) {
DebugLoc InlinedAtDL(InlinedAt);
if (InlinedAtDL && MF) {
OS << " inlined @[ ";
InlinedAtDL.print(OS);
OS << " ]";
}
}
if (isIndirectDebugValue())
OS << " indirect";
}
// TODO: DBG_LABEL
if (AddNewLine)
OS << '\n';
}
bool MachineInstr::addRegisterKilled(Register IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound) {
bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
bool hasAliases = isPhysReg &&
MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
bool Found = false;
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isUse() || MO.isUndef())
continue;
// DEBUG_VALUE nodes do not contribute to code generation and should
// always be ignored. Failure to do so may result in trying to modify
// KILL flags on DEBUG_VALUE nodes.
if (MO.isDebug())
continue;
Register Reg = MO.getReg();
if (!Reg)
continue;
if (Reg == IncomingReg) {
if (!Found) {
if (MO.isKill())
// The register is already marked kill.
return true;
if (isPhysReg && isRegTiedToDefOperand(i))
// Two-address uses of physregs must not be marked kill.
return true;
MO.setIsKill();
Found = true;
}
} else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
// A super-register kill already exists.
if (RegInfo->isSuperRegister(IncomingReg, Reg))
return true;
if (RegInfo->isSubRegister(IncomingReg, Reg))
DeadOps.push_back(i);
}
}
// Trim unneeded kill operands.
while (!DeadOps.empty()) {
unsigned OpIdx = DeadOps.back();
if (getOperand(OpIdx).isImplicit() &&
(!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
RemoveOperand(OpIdx);
else
getOperand(OpIdx).setIsKill(false);
DeadOps.pop_back();
}
// If not found, this means an alias of one of the operands is killed. Add a
// new implicit operand if required.
if (!Found && AddIfNotFound) {
addOperand(MachineOperand::CreateReg(IncomingReg,
false /*IsDef*/,
true /*IsImp*/,
true /*IsKill*/));
return true;
}
return Found;
}
void MachineInstr::clearRegisterKills(Register Reg,
const TargetRegisterInfo *RegInfo) {
if (!Register::isPhysicalRegister(Reg))
RegInfo = nullptr;
for (MachineOperand &MO : operands()) {
if (!MO.isReg() || !MO.isUse() || !MO.isKill())
continue;
Register OpReg = MO.getReg();
if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
MO.setIsKill(false);
}
}
bool MachineInstr::addRegisterDead(Register Reg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound) {
bool isPhysReg = Register::isPhysicalRegister(Reg);
bool hasAliases = isPhysReg &&
MCRegAliasIterator(Reg, RegInfo, false).isValid();
bool Found = false;
SmallVector<unsigned,4> DeadOps;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
MachineOperand &MO = getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
Register MOReg = MO.getReg();
if (!MOReg)
continue;
if (MOReg == Reg) {
MO.setIsDead();
Found = true;
} else if (hasAliases && MO.isDead() &&
Register::isPhysicalRegister(MOReg)) {
// There exists a super-register that's marked dead.
if (RegInfo->isSuperRegister(Reg, MOReg))
return true;
if (RegInfo->isSubRegister(Reg, MOReg))
DeadOps.push_back(i);
}
}
// Trim unneeded dead operands.
while (!DeadOps.empty()) {
unsigned OpIdx = DeadOps.back();
if (getOperand(OpIdx).isImplicit() &&
(!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
RemoveOperand(OpIdx);
else
getOperand(OpIdx).setIsDead(false);
DeadOps.pop_back();
}
// If not found, this means an alias of one of the operands is dead. Add a
// new implicit operand if required.
if (Found || !AddIfNotFound)
return Found;
addOperand(MachineOperand::CreateReg(Reg,
true /*IsDef*/,
true /*IsImp*/,
false /*IsKill*/,
true /*IsDead*/));
return true;
}
void MachineInstr::clearRegisterDeads(Register Reg) {
for (MachineOperand &MO : operands()) {
if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
continue;
MO.setIsDead(false);
}
}
void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
for (MachineOperand &MO : operands()) {
if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
continue;
MO.setIsUndef(IsUndef);
}
}
void MachineInstr::addRegisterDefined(Register Reg,
const TargetRegisterInfo *RegInfo) {
if (Register::isPhysicalRegister(Reg)) {
MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
if (MO)
return;
} else {
for (const MachineOperand &MO : operands()) {
if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
MO.getSubReg() == 0)
return;
}
}
addOperand(MachineOperand::CreateReg(Reg,
true /*IsDef*/,
true /*IsImp*/));
}
void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
const TargetRegisterInfo &TRI) {
bool HasRegMask = false;
for (MachineOperand &MO : operands()) {
if (MO.isRegMask()) {
HasRegMask = true;
continue;
}
if (!MO.isReg() || !MO.isDef()) continue;
Register Reg = MO.getReg();
if (!Reg.isPhysical())
continue;
// If there are no uses, including partial uses, the def is dead.
if (llvm::none_of(UsedRegs,
[&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
MO.setIsDead();
}
// This is a call with a register mask operand.
// Mask clobbers are always dead, so add defs for the non-dead defines.
if (HasRegMask)
for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
I != E; ++I)
addRegisterDefined(*I, &TRI);
}
unsigned
MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
// Build up a buffer of hash code components.
SmallVector<size_t, 16> HashComponents;
HashComponents.reserve(MI->getNumOperands() + 1);
HashComponents.push_back(MI->getOpcode());
for (const MachineOperand &MO : MI->operands()) {
if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
continue; // Skip virtual register defs.
HashComponents.push_back(hash_value(MO));
}
return hash_combine_range(HashComponents.begin(), HashComponents.end());
}
void MachineInstr::emitError(StringRef Msg) const {
// Find the source location cookie.
unsigned LocCookie = 0;
const MDNode *LocMD = nullptr;
for (unsigned i = getNumOperands(); i != 0; --i) {
if (getOperand(i-1).isMetadata() &&
(LocMD = getOperand(i-1).getMetadata()) &&
LocMD->getNumOperands() != 0) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
LocCookie = CI->getZExtValue();
break;
}
}
}
if (const MachineBasicBlock *MBB = getParent())
if (const MachineFunction *MF = MBB->getParent())
return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
report_fatal_error(Msg);
}
MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
const MCInstrDesc &MCID, bool IsIndirect,
Register Reg, const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug);
if (IsIndirect)
MIB.addImm(0U);
else
MIB.addReg(0U, RegState::Debug);
return MIB.addMetadata(Variable).addMetadata(Expr);
}
MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
const MCInstrDesc &MCID, bool IsIndirect,
MachineOperand &MO, const MDNode *Variable,
const MDNode *Expr) {
assert(isa<DILocalVariable>(Variable) && "not a variable");
assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
if (MO.isReg())
return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
auto MIB = BuildMI(MF, DL, MCID).add(MO);
if (IsIndirect)
MIB.addImm(0U);
else
MIB.addReg(0U, RegState::Debug);
return MIB.addMetadata(Variable).addMetadata(Expr);
}
MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, const MCInstrDesc &MCID,
bool IsIndirect, Register Reg,
const MDNode *Variable, const MDNode *Expr) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
BB.insert(I, MI);
return MachineInstrBuilder(MF, MI);
}
MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, const MCInstrDesc &MCID,
bool IsIndirect, MachineOperand &MO,
const MDNode *Variable, const MDNode *Expr) {
MachineFunction &MF = *BB.getParent();
MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
BB.insert(I, MI);
return MachineInstrBuilder(MF, *MI);
}
/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
static const DIExpression *computeExprForSpill(const MachineInstr &MI) {
assert(MI.getOperand(0).isReg() && "can't spill non-register");
assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
"Expected inlined-at fields to agree");
const DIExpression *Expr = MI.getDebugExpression();
if (MI.isIndirectDebugValue()) {
assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset");
Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
}
return Expr;
}
MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
const MachineInstr &Orig,
int FrameIndex) {
const DIExpression *Expr = computeExprForSpill(Orig);
return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc())
.addFrameIndex(FrameIndex)
.addImm(0U)
.addMetadata(Orig.getDebugVariable())
.addMetadata(Expr);
}
void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) {
const DIExpression *Expr = computeExprForSpill(Orig);
Orig.getOperand(0).ChangeToFrameIndex(FrameIndex);
Orig.getOperand(1).ChangeToImmediate(0U);
Orig.getOperand(3).setMetadata(Expr);
}
void MachineInstr::collectDebugValues(
SmallVectorImpl<MachineInstr *> &DbgValues) {
MachineInstr &MI = *this;
if (!MI.getOperand(0).isReg())
return;
MachineBasicBlock::iterator DI = MI; ++DI;
for (MachineBasicBlock::iterator DE = MI.getParent()->end();
DI != DE; ++DI) {
if (!DI->isDebugValue())
return;
if (DI->getOperand(0).isReg() &&
DI->getOperand(0).getReg() == MI.getOperand(0).getReg())
DbgValues.push_back(&*DI);
}
}
void MachineInstr::changeDebugValuesDefReg(Register Reg) {
// Collect matching debug values.
SmallVector<MachineInstr *, 2> DbgValues;
if (!getOperand(0).isReg())
return;
unsigned DefReg = getOperand(0).getReg();
auto *MRI = getRegInfo();
for (auto &MO : MRI->use_operands(DefReg)) {
auto *DI = MO.getParent();
if (!DI->isDebugValue())
continue;
if (DI->getOperand(0).isReg() &&
DI->getOperand(0).getReg() == DefReg){
DbgValues.push_back(DI);
}
}
// Propagate Reg to debug value instructions.
for (auto *DBI : DbgValues)
DBI->getOperand(0).setReg(Reg);
}
using MMOList = SmallVector<const MachineMemOperand *, 2>;
static unsigned getSpillSlotSize(MMOList &Accesses,
const MachineFrameInfo &MFI) {
unsigned Size = 0;
for (auto A : Accesses)
if (MFI.isSpillSlotObjectIndex(
cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
->getFrameIndex()))
Size += A->getSize();
return Size;
}
Optional<unsigned>
MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
int FI;
if (TII->isStoreToStackSlotPostFE(*this, FI)) {
const MachineFrameInfo &MFI = getMF()->getFrameInfo();
if (MFI.isSpillSlotObjectIndex(FI))
return (*memoperands_begin())->getSize();
}
return None;
}
Optional<unsigned>
MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
MMOList Accesses;
if (TII->hasStoreToStackSlot(*this, Accesses))
return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
return None;
}
Optional<unsigned>
MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
int FI;
if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
const MachineFrameInfo &MFI = getMF()->getFrameInfo();
if (MFI.isSpillSlotObjectIndex(FI))
return (*memoperands_begin())->getSize();
}
return None;
}
Optional<unsigned>
MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
MMOList Accesses;
if (TII->hasLoadFromStackSlot(*this, Accesses))
return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
return None;
}